


GPT is a model for sequences.

❖ It sees text as a sequence of tokens 𝑥 = 𝑥0𝑥1𝑥2 ⋯ 𝑥𝑁

❖ Its training dataset is a collection of sequences {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}

GPT tokenizer: https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer


GPT is a probability model for sequences of tokens

❖ Let 𝑋 = 𝑋0𝑋1𝑋2 ⋯ 𝑋𝑁 be a random sequence of tokens, of random length 𝑁

❖ GPT has been trained to fit a probability model for 𝑋 to its training dataset 
{𝑥(1), 𝑥(2), … , 𝑥(𝑛)}

GPT playground: https://platform.openai.com/playground?mode=complete

❖ Once we have a trained probability model, we can use it for completion. 
We give it an input prompt 𝑥 = 𝑥0𝑥1 ⋯ 𝑥𝑚 and it generates a sample of

𝑋 𝑥0𝑥1 ⋯ 𝑥𝑚)

https://platform.openai.com/playground?mode=complete


SECTION 13

How can we learn a 
probability model 
for sequences?



Example 13.1.1: fitting a Markov model
Let (𝑥0, 𝑥1, … , 𝑥𝑛) be a time series which we 
believe is generated by

𝑋𝑖+1 = 𝑎 + 𝑏 𝑋𝑖 + 𝑁 0, 𝜎2 .
Estimate 𝑎, 𝑏, and 𝜎 using maximum likelihood 
estimation.

The question tells us
𝑋𝑖+1 ∼ 𝑎 + 𝑏𝑋𝑖 + 𝑁(0, 𝜎2)

therefore
𝑋𝑖 ∼ 𝑁(𝑎 + 𝑏𝑋𝑖 , 𝜎2)

and so the likelihood is
Pr𝑋𝑖

𝑥𝑖|𝑋𝑖−1 = 𝑥𝑖−1

𝑀𝑀𝑀𝑀 =
1

2𝜋𝜎2
𝑒− 𝑥𝑖− 𝑎+𝑏𝑥𝑖−1

2/2𝜎2

The question doesn’t tell us 
anything about the model for 
𝑋0. So all we can do is leave 
this term un-fitted.

To fit this model (i.e. to learn 𝑎, 𝑏, 𝜎) we simply maximize this likelihood, as usual.

We’ve seen this sort of learning before! It’s just supervised learning, and in particular it’s a 
simple linear model 𝑥𝑖+1 ≈ 𝑎 + 𝑏𝑥𝑖 . We can fit it with sklearn, using the feature vectors 
[1,1, … , 1] and [𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1] and response vector [𝑥1, 𝑥2, … , 𝑥𝑛].

(This is called an autoregressive model, because it’s a regression (i.e. supervised learning with numerical response), 
and it’s ‘auto’ because it’s a regression of 𝑥 using 𝑥 itself as a predictor.)



Bag-of-words text generation
Generate a sentence (𝑋1, … , 𝑋𝑁) by choosing 
words at random from the entire corpus 

“us the incite o'er a land-damn are peace 

incardinate take him worthy quick generals □”

SECTION 13.2. Models for text sequences



Markov model
Generate the next word based on the preceding word. In 
other words, let (𝑋1, … , 𝑋𝑁) be a random walk on the 
graph of words, with weighted edges for word pairs.

“to foreign princes lie in your blessing god who 

shall have the prince of rome □”

to

be
or

sleep
afeard

Markov chain on state space 𝕍 =  {𝑤1, 𝑤2, … , 𝑤𝑊, □}, where 𝑊 is the vocabulary size.
Generate 𝑋 by starting at □ and jumping from word to word until we hit □ again. 

□ → 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑁 → □

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = 𝑝 𝑥1 □ × 𝑝 𝑥2 𝑥1 × ⋯ × 𝑝 𝑥𝑛 𝑥𝑛−1 × 𝑝(□|𝑥𝑛)

It’s easy to estimate 𝑝, the word-to-word transition probabilities, by simple counting.

end-of-
sentence 
token

(Formally, this is an autoregressive model, and fitting it with MLE gives us the obvious 𝑝 estimates.)



Andrei Markov (1856–1922)



Markov’s trigram model
Generate a sequence (𝑋1, … , 𝑋𝑁) by looking at the last 
two words, seeing where they appear in the corpus and 
which word comes next, and generating the next word at 
random from these options.

“to be wind-shaken we will be glad to receive at 

once for the example of thousands □”

be contented to be what they

who is to be executed this

in him to be truly touched

took occasion to be quickly woo’d

Generate 𝑋 by starting with □□ and repeatedly generating the next word based on the 
preceding two, until we produce □.

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = 𝑝 𝑥1 □□  𝑝 𝑥2 □𝑥1  𝑝 𝑥3 𝑥1𝑥2 × ⋯ × 𝑝𝜃 𝑥𝑛 𝑥𝑛−2𝑥𝑛−1  𝑝𝜃(□|𝑥𝑛−1𝑥𝑛)

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

It’s easy to estimate 𝑝, the (word,word)-to-word transition probabilities, by simple counting. 
(Before counting, preprocess the dataset by putting □□ at the start and □ at the end of every sentence.)



Different ways to write the trigram model:

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁 𝑋𝑁□⋯

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯

A Markov chain on state 
space 𝕍2, 
where all transitions 
𝑎, 𝑏 → (𝑐, 𝑑) with 𝑏 ≠ 𝑐 

have probability 0

deterministic bookkeeping 
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation



Trigram character-by-character model trained on Shakespeare:
“on youghtlee for vingiond do my not whow’d no crehout withal 

deepher forand a but thave a doses?”

5-gram character-by-character model trained on Shakespeare:
“once is pleasurely. though the the with them with 

comes in hand. good. give and she story tongue.”

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping 
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

QUESTION. What are the advantages and disadvantages 
of a long history window?

QUESTION. Can we do better than using a fixed history 
window?

□□□□ □□□𝑋1 □□𝑋1𝑋2 □𝑋1𝑋2𝑋3 𝑋𝑁−3𝑋𝑁−2𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯

Can we get a better model by 
using more history?



learnable function 
𝑓𝜃 𝑠, 𝑥 = (𝑝, 𝑠new)

𝑝

𝑋new

random generation
𝑋new ∼ Cat(𝑝)

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.”

Recurrent Neural Network (RNN)
Let’s use a neural network to learn an appropriate history digest. This is 
more flexible than choosing a fixed history window.



def loglik(xstr):
    res = 0
    s,x = 0,□
    for xnext in xstr + “□”:
        s,p = 𝑓𝜃(s,x)
        res += log(p[xnext])
        x = xnext
    return res

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

A Recurrent Neural Network (RNN) is a probability model for generating a random 
sequence 𝑋.

𝑋𝑖 ∼ Cat(𝑝𝑖)

𝑠𝑖+1, 𝑝𝑖+1 = 𝑓𝜃(𝑠𝑖 , 𝑋𝑖)

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint:



0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

A Recurrent Neural Network (RNN) is a probability model for generating a random 
sequence 𝑋.

𝑋𝑖 ∼ Cat(𝑝𝑖)

𝑠𝑖+1, 𝑝𝑖+1 = 𝑓𝜃(𝑠𝑖 , 𝑋𝑖)

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint.

It’s also easy to generate new strings (or to complete prompts).

def generate():
    xstr = “”
    x,v = □,0
    while true:
        s,p = 𝑓𝜃(s, x)
        x = np.random.choice(VOCABULARY+□, p)
 if x == □: break
 xstr += x
    return xstr



Exercise
Given a dataset of strings, how can we 
generate new strings of the same general 
type?

abbas
abbott
abby
abel

abigail
abraham
adlai
adria

andrew
anne
ahab
...

See the notebook nn.ipynb for code.



The history of random sequence models

Markov 
chains TransformersRNN

1913 1986 2017

LSTM

1997

all trained by 
maximum likelihood



Transformer architecture
This is a probability model for a random sequence 𝑋.

Like the RNN, there’s a simple explicit formula for the log likelihood Pr𝑋(𝑥), so it’s easy to train.

It’s more powerful than an RNN, because 𝑓 has access to the full sequence;
it doesn’t have to squeeze history into a “history digest” at each step.
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𝑓

tokens, 
encoded as 
vectors

𝑝1

𝑝2

𝑝3

⋮

probability 
distribution 
over tokens

next token 
is chosen 
at random



What does 𝑓 look like? How is it built out of differentiable functions?

The following is a classic

464 1708 318 257 6833

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

Split the text into tokens 𝑡𝑖 ∈ {1, … , 𝑊}

Turn each token into a vector 𝑒𝑖 ∈ ℝ𝑑

by looking up an embedding matrix 𝐸 ∈ ℝ𝑊×𝑑

1 2 3 4 5
⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

For each position 𝑖 ∈ 1, … , 𝑛
create a position-embedding vector 𝑡𝑖 ∈ ℝ𝑑

sin 𝑖
cos 𝑖

sin Τ𝑖 2
cos Τ𝑖 2

⋮

Let 𝑥𝑖 = 𝑒𝑖 + 𝑡𝑖 ∈ ℝ𝑑+ + + + +

𝑥𝑖



Let 𝑖 𝑖 + 𝑖+ + + + +

𝑥𝑖

𝑞𝑖

𝑘𝑖

𝑣𝑖

For each position 𝑖 ∈ {1, … , 𝑛},
let 𝑞𝑖 = 𝑄𝑥𝑖, let 𝑘𝑖 = 𝐾𝑥𝑖, let 𝑣𝑖 = 𝑉𝑥𝑖

∈ ℝ𝑒 ∈ ℝ𝑒 ∈ ℝ𝑑

𝑦1 𝑦2 𝑦𝑗 𝑦4 𝑦5
For each position 𝑗 ∈ {1, … , 𝑛} we’ll produce 

an output vector 𝑦𝑗 ∈ ℝ𝑑, as follows:

1. let 𝑠𝑗𝑖 = 𝑞𝑗 ⋅ 𝑘𝑖 and 𝑎𝑗∗ = softmax Τ𝑠𝑗∗ 𝑒

2. let 𝑦𝑗 = Σ𝑖𝑎𝑗𝑖𝑣𝑖𝑔

From the final value 𝑦𝑛, compute 𝑝 = 𝑔 𝑦𝑛 ∈ ℝ𝑊

where 𝑔 is some straightforward neural network
𝑝

𝑋𝑛+1 Generate the next token by 𝑋𝑛+1 ∼ Cat(𝑝)

𝑎𝑗𝑖 is the attention 

that we should give 
to input 𝑥𝑖  when 
computing output 𝑦𝑗

𝑥1 𝑥3 𝑥4 𝑥5



In practice, it’s useful to use 
several passes of the 
attention mechanism.

The following is a classic

embedding layer
convert text to vectors in ℝ𝑑

attention layer

process the output

attention layer

process the output

attention layer

process the output

readout next word 𝑋𝑛+1



The history of random sequence models

Markov 
chains TransformersRNN

1913 1986 2017

LSTM

1997

Better models of the data 
All trained by maximizing the 
log likelihood of the data

linguistic 
theories

non-
probabilistic 
metrics

larger 
scale

prompt 
engineering



The history of random sequence models

Markov 
chains TransformersRNN

1913 1986 2017

LSTM

1997

Better models of the data 
All trained by maximizing the 
log likelihood of the data

Hidden 
Markov 
models

1966



𝑍1 𝑍2 𝑍3

𝑋1 𝑋2 𝑋3

⋯

⋯

‘true’ state

noisy observed sequence

Hidden Markov models

▪ Uber collects precise logs (both 𝑧 and 𝑥) from a few drivers, so it 
can learn the full probability model for how 𝑍 and 𝑋 are generated 
using straightforward supervised learning

▪ Then, for regular trips (only 𝑥 data available), it can infer 𝑍 using 
Bayes’s rule

For a hidden Markov model, the likelihood function Pr𝑋(𝑥) is nasty, and 
it’s pretty much impossible to learn the model from 𝑥 data. 

So why are they useful?



一只可爱的白鼬



Group project
Our friend Data Stoat has gone missing! 

The GPS sensor that he normally carries has 
stopped working. But he still has a low-res 
camera with mobile uplink, so we know what 
sort of scenery they're in. 

Can you help find Data Stoat?

𝑍1 𝑍2 𝑍3

𝑋1 𝑋2 𝑋3

⋯

⋯

true location

colour of scenery

Your task: (1) use data from animals 1–4 
(for which we know both 𝑧 and 𝑥) to 
learn the probability model (2) use 
computational Bayes to find the 
distribution of 𝑍 given 𝑋 = 𝑥.



Exploring 
and comparing 
models



BIG IDEA 1
Log likelihood measures 
how well a model fits 
your data



This model has a low log 
likelihood score, because 
it’s a bad fit for the 
outlier datapoints.

This model has a low 
log likelihood score, 
because it’s a bad fit for 
most of the datapoints.

SUPERVISED LEARNING GENERATIVE MODELLING



BIG IDEA 1
Log likelihood measures 
how well a model fits 
your data

Model diagnostics
Look at datapoints with low likelihood. 
They’ll suggest what you need to fix.

Model comparison
Pick the model that 
has the higher log 
likelihood



BIG IDEA 2
Evaluate your model on a 
holdout dataset (if you can)

training
holdout

full dataset



“Every genuine scientific theory must be 

falsifiable.

“It is easy to obtain evidence in support of 

virtually any theory; the evidence only 

counts if it is the positive result of a 

genuinely risky prediction.”

Karl Popper (1902–1994)

training
holdout

full dataset

What’s the alternative to Popper’s philosophy? Another view is that 
in science we gather evidence that supports our theories. But 
consider the theory “all swans are white”, which is logically 
equivalent to “all non-white things are not swans”. Thus, a black pen 
is evidence in support of the theory. This is absurd! It’s why Popper 
doesn’t like “supporting evidence” and prefers “prediction”.

which is what holdout sets 
are there to test



training
holdout

full dataset

❖ What we care about is how well 
our model will work in the future, 
on in-the-wild data that it hasn’t 
seen before

❖ We use holdout data as a proxy for 
in-the-wild data 

(and so we MUST NOT PEEK at 
holdout data during training)

in-the-wild



❖ A model is said to be overfitted if it’s a great 
fit for the training data but a bad fit for 
holdout data

Likelihood maximization means “seek the 
model with the best fit”, so it wants to 
overfit

❖ To avoid overfitting, we need to take a step 
back from pure likelihood maximization

— only use low-complexity models?

— add a penalty term to the training 
objective?

— make life hard for gradient descent, 
by adding jitter (such as dropout)?

These are all called “regularization methods”

It’s silly to limit ourselves 
unnecessarily!

There’s an interesting link with Bayesianism.

Suppose we’re Bayesianists, and we’ve proposed a model with 
unknown parameters 𝜃, and we’ve found the posterior distribution

Pr 𝜃 data = const × Pr 𝜃  Pr(data|𝜃)
A simple way to summarize this posterior distribution is by reporting the 
MAP (Maximum A Posteriori) estimate, i.e. the value of 𝜃 that maximizes 
the posterior distribution. In other words, we pick 𝜃 to maximize

log Pr data|𝜃 + log Pr(𝜃)
This is similar to likelihood maximization, but we’ve added a regularizer 
term log Pr(𝜃) to the objective function. In other words, our Bayesian 
prior belief about 𝜃 acts as a regularizer.



❖ How much regularization should we add?
training

validation

full dataset

holdout in-the-wild

Work it out by experiment!
Create a validation set (not used for fitting), 
and choose the regularizer that gives best 
performance on this validation set.



BIG IDEA 2
Evaluate your model on a 
holdout dataset (if you can)

training
validation

full dataset

holdout in-the-wild

Cross-validation
Regularize your training. To choose 
how much regularization, choose 
whatever works best on a validation 
set.



Let’s poke holes 
in these two big 
ideas.



BIG IDEA 1
Log likelihood measures 
how well a model fits 
your data

Model diagnostics
Look at datapoints with low likelihood. 
They’ll suggest what you need to fix.

Model comparison
Pick the model that 
has the higher log 
likelihood



Thought experiment 2
I have a dataset of binary values

data = 11111111111111110111
and I propose a simple model: each item is an 
independent Bin(1, ½) random variable.

Thought experiment 1
I have a dataset of binary sequences

𝑥(1) = 11111111111111110111

𝑥(2) = 00101010011000110101
⋯

and I propose a simple model: each sequence 
is made of independent Bin(1, ½) random 
variable.

QUESTION. What is the likelihood of each of 
the points in my dataset?

Is my model a good model?

QUESTION. Which sequence has higher 

likelihood, 𝑥(1) or 𝑥(2)?



In Lecture 2, to diagnose what was wrong with a model, 
we plotted prediction errors:

A single large prediction error, or a single low-likelihood 
datapoint, isn’t a worry.

What’s worrying is a lot of errors that all point in the 
same direction.



The Hypothesis Testing approach

1. Propose a test statistic 𝑡. This can be any 
function at all that maps your dataset to a 
real number.

2. Using your fitted model, generate lots of 
synthetic datasets, and evaluate 𝑡 on each 
of them. Plot a histogram.

3. Mark on the 𝑡 of the actual dataset, and 
count what fraction of your simulated 𝑡 are 
as extreme or more so than the actual 𝑡. 
This is the 𝑝-value.

𝑡 = number of 1s in the sequence

Generate lots of sequences of length 20, 
each made up of Bin(1, ½) values.

0 5 10 15 20

actual 𝑡 = 19

𝑝 = 0.002% of 
simulated 
datasets
had 𝑡 ≥ 19

This is a tool for looking for systematic errors in a model. It’s not limited to prediction problems.



The Hypothesis Testing approach

0 5 10 15 20

actual 𝑡 = 19

𝑝 = 0.002% of 
simulated 
datasets
had 𝑡 ≥ 19

The 𝑝-value measures “What is the 
chance of seeing something as 
extreme as my dataset, assuming 
my model is true?”

If the 𝑝-value is very small (e.g. 
<5%), your model is probably 
wrong.



1. Propose a test statistic 𝑡. This can be any 
function at all that maps your dataset to a 
real number.

It’s up to you to choose whatever test statistic you 
think will be useful.

Use hypothesis testing when you have spotted a 
possible problem with your model, and you want 
to know if it’s worth inventing a new model



Thought experiment 2
I have a dataset of binary values

data = 11111111111111110111
and I propose a simple model: each item is an 
independent Bin(1, ½) random variable.

Hold on! If this model were true, I 
wouldn’t expect to see so many 1s.

The 𝑝-value is 0.002%, for the test 
statistic “number of 1s”.

So I should invent a better model!

If we want to decide between two models, 
we can use log likelihood.

If we want to test the fit of a single model, 
we can use hypothesis testing. We don’t 
need to propose an alternative model.



BIG IDEA 2
Evaluate your model on a 
holdout dataset (if you can)

training
validation

full dataset

holdout in-the-wild

Cross-validation
Regularize your training. To choose 
how much regularization, choose 
whatever works best on a validation 
set.



“All science is either physics or stamp 

collecting.”

Ernest Rutherford



stamp 
collecting 
(as Rutherford 
would say)



training
holdout

full dataset

in-the-wild

What your readers think:

For a new in-the-wild datapoint 𝑥,
ℙ classify 𝑥 correctly = 93.7%

What you actually meant:

When I take a bunch of new in-the-wild 
datapoints (matching the composition of my 
holdout set) then, averaged across this bunch,

fraction classified correctly = 93.7%

“My classification 
algorithm achieves 
93.7% accuracy on 
the holdout set.”



“Every genuine scientific theory must be 

falsifiable.

“It is easy to obtain evidence in support of 

virtually any theory; the evidence only 

counts if it is the positive result of a 

genuinely risky prediction.”

Karl Popper (1902–1994)

training
holdout

full dataset

in-the-wild
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Machine learning approach

“The job of a model is to generalize 
to new data. I’ll split my data into 
training + holdout, and measure how 
accurate it is on the holdout set.”
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Scientist’s approach

“The job of a model is to generalize to 
novel situations. Any model that’s not 
based on well-grounded scientific 
concepts will probably make bad 
predictions.”



Everything should be made 

as simple as possible, 

but not simpler.

Albert Einstein

“It is more important to have 

beauty in one’s equations than 

to have them fit experiment.”

Paul Dirac

“It can scarcely be denied that the supreme goal 

of all theory is to make the irreducible basic 

elements as simple and as few as possible without 

having to surrender the adequate representation of 

a single datum of experience.”

the Herbert Spencer Lecture, Oxford, 10 June 

1933
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Machine learning approach

“The job of a model is to generalize 
to new data. I’ll split my data into 
training + holdout, and measure how 
accurate it is on the holdout set.”
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Scientist’s approach

“The job of a model is to generalize to 
novel situations. Any model that’s not 
based on well-grounded scientific 
concepts will probably make bad 
predictions.”
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Simple tip

Don’t choose your holdout set 
by random shuffling. Perhaps 
choose it to be the most 
extreme 10%?
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But how can probability modelling possibly be enough to 
address the big questions?

❖ Safety

❖ Alignment, fairness

❖ Explainability, latent knowledge

❖ Domain shift, meta learning

❖ Adaptive learning

Throughout this course, I’ve tried to persuade you that 
machine learning is probability modelling.



“Ow!”
hit 

thumb

hurts

𝑥1 𝑥2

𝑦

Suppose we’re given a dataset of (𝑥1, 𝑥2, 𝑦) and 
we’re asked to predict 𝑦.

We go ahead and train a model, and find that 
shouting “Ow!” predicts hurt (99.5% accuracy).

location

We deploy our model – in a library. 
Now it makes rubbish predictions.

This is called domain shift. 

We retrain our model on library 
data. Now it makes bad predictions 
on our original dataset.

This is called catastrophic 
forgetting.
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The next big thing in machine 
learning is building systems that can 
learn causal models from data.

Throughout this course, I’ve tried to persuade you that 
machine learning is probability modelling.

(They’ll still have to be probabilistic 
models, of course. That’s the only 
sort of model that works robustly.)
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The Land of Random Variables

non-probabilistic 
models

explainability

inductive bias

parameter 
scaling

systems

grokking

exotic 
architectures

representation
learning

readouts

language
models

images

reinforcement
learning

regression &
classificationuncertainty

Bayes

H O W W H A T

A map of  machine learning

causal modelling

WHAT is 
my model?

HOW do I 
find the max 
likelihood fit?
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