

GPT is a model for sequences.

❖ It sees text as a sequence of tokens 𝑥 = 𝑥0𝑥1𝑥2 ⋯ 𝑥𝑁

❖ Its training dataset is a collection of sequences {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}

GPT tokenizer: https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

GPT is a probability model for sequences of tokens

❖ Let 𝑋 = 𝑋0𝑋1𝑋2 ⋯ 𝑋𝑁 be a random sequence of tokens, of random length 𝑁

❖ GPT has been trained to fit a probability model for 𝑋 to its training dataset
{𝑥(1), 𝑥(2), … , 𝑥(𝑛)}

GPT playground: https://platform.openai.com/playground?mode=complete

❖ Once we have a trained probability model, we can use it for completion.
We give it an input prompt 𝑥 = 𝑥0𝑥1 ⋯ 𝑥𝑚 and it generates a sample of

𝑋 𝑥0𝑥1 ⋯ 𝑥𝑚)

https://platform.openai.com/playground?mode=complete

SECTION 13

How can we learn a
probability model
for sequences?

Example 13.1.1: fitting a Markov model
Let (𝑥0, 𝑥1, … , 𝑥𝑛) be a time series which we
believe is generated by

𝑋𝑖+1 = 𝑎 + 𝑏 𝑋𝑖 + 𝑁 0, 𝜎2 .
Estimate 𝑎, 𝑏, and 𝜎 using maximum likelihood
estimation.

The question tells us
𝑋𝑖+1 ∼ 𝑎 + 𝑏𝑋𝑖 + 𝑁(0, 𝜎2)

therefore
𝑋𝑖 ∼ 𝑁(𝑎 + 𝑏𝑋𝑖 , 𝜎2)

and so the likelihood is
Pr𝑋𝑖

𝑥𝑖|𝑋𝑖−1 = 𝑥𝑖−1

𝑀𝑀𝑀𝑀 =
1

2𝜋𝜎2
𝑒− 𝑥𝑖− 𝑎+𝑏𝑥𝑖−1

2/2𝜎2

The question doesn’t tell us
anything about the model for
𝑋0. So all we can do is leave
this term un-fitted.

To fit this model (i.e. to learn 𝑎, 𝑏, 𝜎) we simply maximize this likelihood, as usual.

We’ve seen this sort of learning before! It’s just supervised learning, and in particular it’s a
simple linear model 𝑥𝑖+1 ≈ 𝑎 + 𝑏𝑥𝑖 . We can fit it with sklearn, using the feature vectors
[1,1, … , 1] and [𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1] and response vector [𝑥1, 𝑥2, … , 𝑥𝑛].

(This is called an autoregressive model, because it’s a regression (i.e. supervised learning with numerical response),
and it’s ‘auto’ because it’s a regression of 𝑥 using 𝑥 itself as a predictor.)

Bag-of-words text generation
Generate a sentence (𝑋1, … , 𝑋𝑁) by choosing
words at random from the entire corpus

“us the incite o'er a land-damn are peace

incardinate take him worthy quick generals □”

SECTION 13.2. Models for text sequences

Markov model
Generate the next word based on the preceding word. In
other words, let (𝑋1, … , 𝑋𝑁) be a random walk on the
graph of words, with weighted edges for word pairs.

“to foreign princes lie in your blessing god who

shall have the prince of rome □”

to

be
or

sleep
afeard

Markov chain on state space 𝕍 = {𝑤1, 𝑤2, … , 𝑤𝑊, □}, where 𝑊 is the vocabulary size.
Generate 𝑋 by starting at □ and jumping from word to word until we hit □ again.

□ → 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑁 → □

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = 𝑝 𝑥1 □ × 𝑝 𝑥2 𝑥1 × ⋯ × 𝑝 𝑥𝑛 𝑥𝑛−1 × 𝑝(□|𝑥𝑛)

It’s easy to estimate 𝑝, the word-to-word transition probabilities, by simple counting.

end-of-
sentence
token

(Formally, this is an autoregressive model, and fitting it with MLE gives us the obvious 𝑝 estimates.)

Andrei Markov (1856–1922)

Markov’s trigram model
Generate a sequence (𝑋1, … , 𝑋𝑁) by looking at the last
two words, seeing where they appear in the corpus and
which word comes next, and generating the next word at
random from these options.

“to be wind-shaken we will be glad to receive at

once for the example of thousands □”

be contented to be what they

who is to be executed this

in him to be truly touched

took occasion to be quickly woo’d

Generate 𝑋 by starting with □□ and repeatedly generating the next word based on the
preceding two, until we produce □.

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = 𝑝 𝑥1 □□ 𝑝 𝑥2 □𝑥1 𝑝 𝑥3 𝑥1𝑥2 × ⋯ × 𝑝𝜃 𝑥𝑛 𝑥𝑛−2𝑥𝑛−1 𝑝𝜃(□|𝑥𝑛−1𝑥𝑛)

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

It’s easy to estimate 𝑝, the (word,word)-to-word transition probabilities, by simple counting.
(Before counting, preprocess the dataset by putting □□ at the start and □ at the end of every sentence.)

Different ways to write the trigram model:

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁 𝑋𝑁□⋯

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯

A Markov chain on state
space 𝕍2,
where all transitions
𝑎, 𝑏 → (𝑐, 𝑑) with 𝑏 ≠ 𝑐

have probability 0

deterministic bookkeeping
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

Trigram character-by-character model trained on Shakespeare:
“on youghtlee for vingiond do my not whow’d no crehout withal

deepher forand a but thave a doses?”

5-gram character-by-character model trained on Shakespeare:
“once is pleasurely. though the the with them with

comes in hand. good. give and she story tongue.”

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

QUESTION. What are the advantages and disadvantages
of a long history window?

QUESTION. Can we do better than using a fixed history
window?

□□□□ □□□𝑋1 □□𝑋1𝑋2 □𝑋1𝑋2𝑋3 𝑋𝑁−3𝑋𝑁−2𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯

Can we get a better model by
using more history?

learnable function
𝑓𝜃 𝑠, 𝑥 = (𝑝, 𝑠new)

𝑝

𝑋new

random generation
𝑋new ∼ Cat(𝑝)

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.”

Recurrent Neural Network (RNN)
Let’s use a neural network to learn an appropriate history digest. This is
more flexible than choosing a fixed history window.

def loglik(xstr):
 res = 0
 s,x = 0,□
 for xnext in xstr + “□”:
 s,p = 𝑓𝜃(s,x)
 res += log(p[xnext])
 x = xnext
 return res

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

A Recurrent Neural Network (RNN) is a probability model for generating a random
sequence 𝑋.

𝑋𝑖 ∼ Cat(𝑝𝑖)

𝑠𝑖+1, 𝑝𝑖+1 = 𝑓𝜃(𝑠𝑖 , 𝑋𝑖)

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint:

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

A Recurrent Neural Network (RNN) is a probability model for generating a random
sequence 𝑋.

𝑋𝑖 ∼ Cat(𝑝𝑖)

𝑠𝑖+1, 𝑝𝑖+1 = 𝑓𝜃(𝑠𝑖 , 𝑋𝑖)

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint.

It’s also easy to generate new strings (or to complete prompts).

def generate():
 xstr = “”
 x,v = □,0
 while true:
 s,p = 𝑓𝜃(s, x)
 x = np.random.choice(VOCABULARY+□, p)
 if x == □: break
 xstr += x
 return xstr

Exercise
Given a dataset of strings, how can we
generate new strings of the same general
type?

abbas
abbott
abby
abel

abigail
abraham
adlai
adria

andrew
anne
ahab
...

See the notebook nn.ipynb for code.

The history of random sequence models

Markov
chains TransformersRNN

1913 1986 2017

LSTM

1997

all trained by
maximum likelihood

Transformer architecture
This is a probability model for a random sequence 𝑋.

Like the RNN, there’s a simple explicit formula for the log likelihood Pr𝑋(𝑥), so it’s easy to train.

It’s more powerful than an RNN, because 𝑓 has access to the full sequence;
it doesn’t have to squeeze history into a “history digest” at each step.

Th
e

fo
llo

w
in

g

is a classic

C
h

in
ese

p
o

em

fro
m

th
e

Tan
g

d
yn

asty

, tran
slated

in
to

En
glish

.

some
cunning
function

𝑓

tokens,
encoded as
vectors

𝑝1

𝑝2

𝑝3

⋮

probability
distribution
over tokens

next token
is chosen
at random

What does 𝑓 look like? How is it built out of differentiable functions?

The following is a classic

464 1708 318 257 6833

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

Split the text into tokens 𝑡𝑖 ∈ {1, … , 𝑊}

Turn each token into a vector 𝑒𝑖 ∈ ℝ𝑑

by looking up an embedding matrix 𝐸 ∈ ℝ𝑊×𝑑

1 2 3 4 5
⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

For each position 𝑖 ∈ 1, … , 𝑛
create a position-embedding vector 𝑡𝑖 ∈ ℝ𝑑

sin 𝑖
cos 𝑖

sin Τ𝑖 2
cos Τ𝑖 2

⋮

Let 𝑥𝑖 = 𝑒𝑖 + 𝑡𝑖 ∈ ℝ𝑑+ + + + +

𝑥𝑖

Let 𝑖 𝑖 + 𝑖+ + + + +

𝑥𝑖

𝑞𝑖

𝑘𝑖

𝑣𝑖

For each position 𝑖 ∈ {1, … , 𝑛},
let 𝑞𝑖 = 𝑄𝑥𝑖, let 𝑘𝑖 = 𝐾𝑥𝑖, let 𝑣𝑖 = 𝑉𝑥𝑖

∈ ℝ𝑒 ∈ ℝ𝑒 ∈ ℝ𝑑

𝑦1 𝑦2 𝑦𝑗 𝑦4 𝑦5
For each position 𝑗 ∈ {1, … , 𝑛} we’ll produce

an output vector 𝑦𝑗 ∈ ℝ𝑑, as follows:

1. let 𝑠𝑗𝑖 = 𝑞𝑗 ⋅ 𝑘𝑖 and 𝑎𝑗∗ = softmax Τ𝑠𝑗∗ 𝑒

2. let 𝑦𝑗 = Σ𝑖𝑎𝑗𝑖𝑣𝑖𝑔

From the final value 𝑦𝑛, compute 𝑝 = 𝑔 𝑦𝑛 ∈ ℝ𝑊

where 𝑔 is some straightforward neural network
𝑝

𝑋𝑛+1 Generate the next token by 𝑋𝑛+1 ∼ Cat(𝑝)

𝑎𝑗𝑖 is the attention

that we should give
to input 𝑥𝑖 when
computing output 𝑦𝑗

𝑥1 𝑥3 𝑥4 𝑥5

In practice, it’s useful to use
several passes of the
attention mechanism.

The following is a classic

embedding layer
convert text to vectors in ℝ𝑑

attention layer

process the output

attention layer

process the output

attention layer

process the output

readout next word 𝑋𝑛+1

The history of random sequence models

Markov
chains TransformersRNN

1913 1986 2017

LSTM

1997

Better models of the data
All trained by maximizing the
log likelihood of the data

linguistic
theories

non-
probabilistic
metrics

larger
scale

prompt
engineering

The history of random sequence models

Markov
chains TransformersRNN

1913 1986 2017

LSTM

1997

Better models of the data
All trained by maximizing the
log likelihood of the data

Hidden
Markov
models

1966

𝑍1 𝑍2 𝑍3

𝑋1 𝑋2 𝑋3

⋯

⋯

‘true’ state

noisy observed sequence

Hidden Markov models

▪ Uber collects precise logs (both 𝑧 and 𝑥) from a few drivers, so it
can learn the full probability model for how 𝑍 and 𝑋 are generated
using straightforward supervised learning

▪ Then, for regular trips (only 𝑥 data available), it can infer 𝑍 using
Bayes’s rule

For a hidden Markov model, the likelihood function Pr𝑋(𝑥) is nasty, and
it’s pretty much impossible to learn the model from 𝑥 data.

So why are they useful?

一只可爱的白鼬

Group project
Our friend Data Stoat has gone missing!

The GPS sensor that he normally carries has
stopped working. But he still has a low-res
camera with mobile uplink, so we know what
sort of scenery they're in.

Can you help find Data Stoat?

𝑍1 𝑍2 𝑍3

𝑋1 𝑋2 𝑋3

⋯

⋯

true location

colour of scenery

Your task: (1) use data from animals 1–4
(for which we know both 𝑧 and 𝑥) to
learn the probability model (2) use
computational Bayes to find the
distribution of 𝑍 given 𝑋 = 𝑥.

Exploring
and comparing
models

BIG IDEA 1
Log likelihood measures
how well a model fits
your data

This model has a low log
likelihood score, because
it’s a bad fit for the
outlier datapoints.

This model has a low
log likelihood score,
because it’s a bad fit for
most of the datapoints.

SUPERVISED LEARNING GENERATIVE MODELLING

BIG IDEA 1
Log likelihood measures
how well a model fits
your data

Model diagnostics
Look at datapoints with low likelihood.
They’ll suggest what you need to fix.

Model comparison
Pick the model that
has the higher log
likelihood

BIG IDEA 2
Evaluate your model on a
holdout dataset (if you can)

training
holdout

full dataset

“Every genuine scientific theory must be

falsifiable.

“It is easy to obtain evidence in support of

virtually any theory; the evidence only

counts if it is the positive result of a

genuinely risky prediction.”

Karl Popper (1902–1994)

training
holdout

full dataset

What’s the alternative to Popper’s philosophy? Another view is that
in science we gather evidence that supports our theories. But
consider the theory “all swans are white”, which is logically
equivalent to “all non-white things are not swans”. Thus, a black pen
is evidence in support of the theory. This is absurd! It’s why Popper
doesn’t like “supporting evidence” and prefers “prediction”.

which is what holdout sets
are there to test

training
holdout

full dataset

❖ What we care about is how well
our model will work in the future,
on in-the-wild data that it hasn’t
seen before

❖ We use holdout data as a proxy for
in-the-wild data

(and so we MUST NOT PEEK at
holdout data during training)

in-the-wild

❖ A model is said to be overfitted if it’s a great
fit for the training data but a bad fit for
holdout data

Likelihood maximization means “seek the
model with the best fit”, so it wants to
overfit

❖ To avoid overfitting, we need to take a step
back from pure likelihood maximization

— only use low-complexity models?

— add a penalty term to the training
objective?

— make life hard for gradient descent,
by adding jitter (such as dropout)?

These are all called “regularization methods”

It’s silly to limit ourselves
unnecessarily!

There’s an interesting link with Bayesianism.

Suppose we’re Bayesianists, and we’ve proposed a model with
unknown parameters 𝜃, and we’ve found the posterior distribution

Pr 𝜃 data = const × Pr 𝜃 Pr(data|𝜃)
A simple way to summarize this posterior distribution is by reporting the
MAP (Maximum A Posteriori) estimate, i.e. the value of 𝜃 that maximizes
the posterior distribution. In other words, we pick 𝜃 to maximize

log Pr data|𝜃 + log Pr(𝜃)
This is similar to likelihood maximization, but we’ve added a regularizer
term log Pr(𝜃) to the objective function. In other words, our Bayesian
prior belief about 𝜃 acts as a regularizer.

❖ How much regularization should we add?
training

validation

full dataset

holdout in-the-wild

Work it out by experiment!
Create a validation set (not used for fitting),
and choose the regularizer that gives best
performance on this validation set.

BIG IDEA 2
Evaluate your model on a
holdout dataset (if you can)

training
validation

full dataset

holdout in-the-wild

Cross-validation
Regularize your training. To choose
how much regularization, choose
whatever works best on a validation
set.

Let’s poke holes
in these two big
ideas.

BIG IDEA 1
Log likelihood measures
how well a model fits
your data

Model diagnostics
Look at datapoints with low likelihood.
They’ll suggest what you need to fix.

Model comparison
Pick the model that
has the higher log
likelihood

Thought experiment 2
I have a dataset of binary values

data = 11111111111111110111
and I propose a simple model: each item is an
independent Bin(1, ½) random variable.

Thought experiment 1
I have a dataset of binary sequences

𝑥(1) = 11111111111111110111

𝑥(2) = 00101010011000110101
⋯

and I propose a simple model: each sequence
is made of independent Bin(1, ½) random
variable.

QUESTION. What is the likelihood of each of
the points in my dataset?

Is my model a good model?

QUESTION. Which sequence has higher

likelihood, 𝑥(1) or 𝑥(2)?

In Lecture 2, to diagnose what was wrong with a model,
we plotted prediction errors:

A single large prediction error, or a single low-likelihood
datapoint, isn’t a worry.

What’s worrying is a lot of errors that all point in the
same direction.

The Hypothesis Testing approach

1. Propose a test statistic 𝑡. This can be any
function at all that maps your dataset to a
real number.

2. Using your fitted model, generate lots of
synthetic datasets, and evaluate 𝑡 on each
of them. Plot a histogram.

3. Mark on the 𝑡 of the actual dataset, and
count what fraction of your simulated 𝑡 are
as extreme or more so than the actual 𝑡.
This is the 𝑝-value.

𝑡 = number of 1s in the sequence

Generate lots of sequences of length 20,
each made up of Bin(1, ½) values.

0 5 10 15 20

actual 𝑡 = 19

𝑝 = 0.002% of
simulated
datasets
had 𝑡 ≥ 19

This is a tool for looking for systematic errors in a model. It’s not limited to prediction problems.

The Hypothesis Testing approach

0 5 10 15 20

actual 𝑡 = 19

𝑝 = 0.002% of
simulated
datasets
had 𝑡 ≥ 19

The 𝑝-value measures “What is the
chance of seeing something as
extreme as my dataset, assuming
my model is true?”

If the 𝑝-value is very small (e.g.
<5%), your model is probably
wrong.

1. Propose a test statistic 𝑡. This can be any
function at all that maps your dataset to a
real number.

It’s up to you to choose whatever test statistic you
think will be useful.

Use hypothesis testing when you have spotted a
possible problem with your model, and you want
to know if it’s worth inventing a new model

Thought experiment 2
I have a dataset of binary values

data = 11111111111111110111
and I propose a simple model: each item is an
independent Bin(1, ½) random variable.

Hold on! If this model were true, I
wouldn’t expect to see so many 1s.

The 𝑝-value is 0.002%, for the test
statistic “number of 1s”.

So I should invent a better model!

If we want to decide between two models,
we can use log likelihood.

If we want to test the fit of a single model,
we can use hypothesis testing. We don’t
need to propose an alternative model.

BIG IDEA 2
Evaluate your model on a
holdout dataset (if you can)

training
validation

full dataset

holdout in-the-wild

Cross-validation
Regularize your training. To choose
how much regularization, choose
whatever works best on a validation
set.

“All science is either physics or stamp

collecting.”

Ernest Rutherford

stamp
collecting
(as Rutherford
would say)

training
holdout

full dataset

in-the-wild

What your readers think:

For a new in-the-wild datapoint 𝑥,
ℙ classify 𝑥 correctly = 93.7%

What you actually meant:

When I take a bunch of new in-the-wild
datapoints (matching the composition of my
holdout set) then, averaged across this bunch,

fraction classified correctly = 93.7%

“My classification
algorithm achieves
93.7% accuracy on
the holdout set.”

“Every genuine scientific theory must be

falsifiable.

“It is easy to obtain evidence in support of

virtually any theory; the evidence only

counts if it is the positive result of a

genuinely risky prediction.”

Karl Popper (1902–1994)

training
holdout

full dataset

in-the-wild

+

+ +
+
+ ++

+

+

+
++
+

+

+

++
+
+

+
+

+
+

+
+

+
+

+

+

+
+

Machine learning approach

“The job of a model is to generalize
to new data. I’ll split my data into
training + holdout, and measure how
accurate it is on the holdout set.”

+
+ ++++++

+
++++

+

+
++++++

++++++

+

+

++

Scientist’s approach

“The job of a model is to generalize to
novel situations. Any model that’s not
based on well-grounded scientific
concepts will probably make bad
predictions.”

Everything should be made

as simple as possible,

but not simpler.

Albert Einstein

“It is more important to have

beauty in one’s equations than

to have them fit experiment.”

Paul Dirac

“It can scarcely be denied that the supreme goal

of all theory is to make the irreducible basic

elements as simple and as few as possible without

having to surrender the adequate representation of

a single datum of experience.”

the Herbert Spencer Lecture, Oxford, 10 June

1933

+

+ +
+
+ ++

+

+

+
++
+

+

+

++
+
+

+
+

+
+

+
+

+
+

+

+

+
+

Machine learning approach

“The job of a model is to generalize
to new data. I’ll split my data into
training + holdout, and measure how
accurate it is on the holdout set.”

+
+ ++++++

+
++++

+

+
++++++

++++++

+

+

++

Scientist’s approach

“The job of a model is to generalize to
novel situations. Any model that’s not
based on well-grounded scientific
concepts will probably make bad
predictions.”

+

+ +
+
+ ++

+

+

+
++
+

+

+

++
+
+

+
+

+
+

+
+

+
+

+

+

+
+

Simple tip

Don’t choose your holdout set
by random shuffling. Perhaps
choose it to be the most
extreme 10%?

53

But how can probability modelling possibly be enough to
address the big questions?

❖ Safety

❖ Alignment, fairness

❖ Explainability, latent knowledge

❖ Domain shift, meta learning

❖ Adaptive learning

Throughout this course, I’ve tried to persuade you that
machine learning is probability modelling.

“Ow!”
hit

thumb

hurts

𝑥1 𝑥2

𝑦

Suppose we’re given a dataset of (𝑥1, 𝑥2, 𝑦) and
we’re asked to predict 𝑦.

We go ahead and train a model, and find that
shouting “Ow!” predicts hurt (99.5% accuracy).

location

We deploy our model – in a library.
Now it makes rubbish predictions.

This is called domain shift.

We retrain our model on library
data. Now it makes bad predictions
on our original dataset.

This is called catastrophic
forgetting.

55

The next big thing in machine
learning is building systems that can
learn causal models from data.

Throughout this course, I’ve tried to persuade you that
machine learning is probability modelling.

(They’ll still have to be probabilistic
models, of course. That’s the only
sort of model that works robustly.)

56

The Land of Random Variables

non-probabilistic
models

explainability

inductive bias

parameter
scaling

systems

grokking

exotic
architectures

representation
learning

readouts

language
models

images

reinforcement
learning

regression &
classificationuncertainty

Bayes

H O W W H A T

A map of machine learning

causal modelling

WHAT is
my model?

HOW do I
find the max
likelihood fit?

	11.1
	Slide 1
	Slide 2: GPT is a model for sequences.
	Slide 3: GPT is a probability model for sequences of tokens
	Slide 4
	Slide 5

	11.2
	Slide 6: SECTION 13.2. Models for text sequences
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Different ways to write the trigram model:
	Slide 11: Can we get a better model by using more history?
	Slide 12: Recurrent Neural Network (RNN)

	11.2
	Slide 13
	Slide 14
	Slide 15
	Slide 16: The history of random sequence models
	Slide 17: Transformer architecture
	Slide 18: What does f look like? How is it built out of differentiable functions?
	Slide 19: What does f look like? How is it built out of differentiable functions?
	Slide 20
	Slide 21: The history of random sequence models
	Slide 22: The history of random sequence models
	Slide 23: Hidden Markov models
	Slide 24
	Slide 25

	9
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: The Hypothesis Testing approach
	Slide 42: The Hypothesis Testing approach
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: But how can probability modelling possibly be enough to address the big questions?
	Slide 54
	Slide 55: The next big thing in machine learning is building systems that can learn causal models from data.
	Slide 56

