Supervised learning

= lLabelled data
= Learn to predict the label

Generative modelling

= Unlabelled data
= Learn to generate new values,
similar to those in the dataset

Autoencoder

= Unlabelled data
= Learn to reconstruct values,
with a “low-dimensional bottleneck”

 — random
— p— label
T

WONOAOUDWNRO

random
noise

encoder decoder

=3

What on earth is the point of
training a neural network to

simply reproduce its input?
Isn’t that a simple task?

It’s not a simple task, if we force it to go via
a low-dimensional bottleneck.

This low-dimensional variable will have to low-dimensional

contain all the information that’s needed to “latent”

reconstruct the input. Therefore, surely, it representation

will have to capture only the essential in out

features of the input. datapoint 7 reconstruction
We call it a “latent representation” of the X enc . dec X

input. The word “latent” means “hidden”.
It’s hidden from us, and we have to learn
what it should be.

What can we do with a low-

dimensional representation?

Use case 1: it can make it easier to train a classifier.

= Suppose we have lots of unlabelled data, and only a little bit of
labelled data, and we want to train a classifier.

= \We can train an autoencoder on unlabelled data. We have lots of

data, so this should be easy. We'll learn to encode each datapoint x; latent
into a low-dimensional representation z;. repr.
= Now, train a classifier to predict the label y; from z;. This should be VA
easier than training a full classifier from scratch, since z; has already
been condensed into only the essential features. Thus, we shouldn’t . dec
need very much labelled data to train the classifier. X enc
= This method is also useful for fully labelled data, if the labels have only
a little bit of information, e.g. sentiment classification of text. If we [| y
tried to train using only the labels, it might take a gigantic amount of

data for the network to learn what features are useful. cIassifier

=N

What can we do with a low-

dimensional representation?

Use case 2: it’s a good way to build a generator.

Ignore the encoder, and simply generate novel outputs by creating
random Z and feeding it into the decoder. If Z really is a good low-
dimensional representation, then every Z that we might create
should be decodable into a decent output.

Use case 3: denoising the input.

Take a corrupted source image x', encode it to get z = enc(x"), then
decode to get x = dec(z). This should clean up the image, assuming
that the encoder has learnt to keep only the important details.

enc

latent
repr.

Z

dec

N

What do we hope the latent

representation will contain?

MNIST A 4-dimensional

Image representation

{“digit’: 6,
slant’: UPRIGHT,
‘weight’: MEDIUM,
‘style’: LOOSE}

We hope that the low-dimensional latent
representation will contain meaningful dimensions,
and that we can set each dimension separately and
tweak aspects of the datapoint.

Use case 4: smooth interpolation.

= Take two source images x; and x,, and
generate a new image x* by

z, = enc(x,) wnna wnna
Z; = enc(xl) X1 0' a q q q q "-i X2
X* - deC(0.521 + 0.522) 4mEm?® x* ammm?®

This should generate a smooth interpolation
between the two inputs, where each intermediate
looks “nice”.

The dream of autoencoding:

Neural networks can learn

meaningful representations of their
Inputs.

But nothing comes easy ...

SECTION 10.1. THE CURSE OF OVERFITTING for supervised learning

NON-LINEAR RESPONSE

If our model is too rich
(too many parameters, too
many layers), it will overfit
the training data.

And then it will perform
badly on new data.

SECTION 10.1. THE CURSE OF OVERFITTING for generative models

Suppose we have a dataset of points in R?, and we want to learn a generative model of the form X = f(Z) + noise.

+ high 10
4 noise A + medium A)
noise

noise

v

v

v

If our model is too rich, it
can learn to overfit the
training data. It’ll probably
be an unhelpful model.

Supervised learning
If the classifier neural network is too rich,

\ then our model will overfit

X —| classifier [—Y

/

Generative modelling
If the generator neural network is too rich,

Autoencoder

YA
. ~ QUESTION. If we trained a very rich encoder

X —| encoder decoder =X and decoder, what would they learn?

SECTION 10.2. AVOIDING OVERFITTING WITH A VALIDATION SET

validation holdout

We should test our model on a validation e > %

set, and tune our model’s complexity so that %% 0%

it does well on this set. \ > J
If it does well on validation, it’ll likely do well full dataset

on holdout data.

v

Supervised learning

\

X —| classifier [—Y

/

Generative modelling

Z —| generator

Autoencoder

Z
X —| encoder .

— X

decoder

If the classifier neural network is too rich,
then our model will overfit

and do badly on the validation set, so we can
learn to avoid overfitting

If the generator neural network is too rich,
then our model will overfit

and do badly on the validation set, so we can
learn to avoid overfitting

If the neural networks are too rich, then they
will learn to encode x perfectly in z,

which would be useless

but it’d still score perfectly on validation!

If we simply train an autoencoder to reconstruct
its input, it won’t learn a useful representation.

What's a better training objective?
What's a better way to think of autoencoders?

SECTION 6.4.

Auto-Encoding Variational Bayes

Diederik P. Kingma Max Welling
lachine Learning Group A him: L{'urninﬂ Gmup
rersiteit van Amsterdam 2 -
i 1ail.com

Abstract

How can we perform efficient inference and learning in directed probabilistic
models, in the presence of continuous latent variables with intractable posterior
distributions, and large :LILNL .7 We introduce a stochastic variational inference The SOI ution .
Luld ILq.lr[lln“ rorithm that scales to la atasets and, under some mild differ-
y ca e. Our contributions is
'Lwl;'J—I'{JId. Fith we show that a reparameterization of the variational lower bound
yields a lower bound estimator that can be strai ‘n[fnrv.'ur:ll".' Uplimizcd usi :

dand stochastic gradient methods. Second, v show s d. dataset Don’t try to build an autoencoder.

s per datapoint, poste

tl:llh' {HILZL['I'_I h» mn' ':.FTH}?rlllLItll'dz-\llthirLlll—ILL[;"II:UI'H v-‘u‘J 1"}“”;‘ ‘ru:'lddi;\l.lﬂ“ InStead’ jUSt bu ild a better generator -
and the encoder will come “for free”

Theoretical advantages are reflected in L..\pl._.rllIILI'lT...il results.

SECTION 6.4. WARNING: MASTERS-LEVEL MATHS

In the Advanced Coursework, you will be asked to build a
neural network for generating a font of handwritten digits.
For this sort of creative extension, we need to understand
deeply the maths of the variational autoencoder.

7 — &2
@ \.\. random image
:%./ - of digit d

d ()

NI
o) o= | |08

6
6
&
&

A (o [ON

| | ——
W
|||

VY= Jhs=1[+

L |» |0 | D

Brain teaser
Let X ~ Bin(n = 2,p = 0.9). What is Pry(X) ?

X is a random Voahlr X ~ Bin (2, 0-)

p(xz0) =00 0wk prdh O
P(x=)=01% X = g1 wirhpe ‘;.g,
P(X=2)= 03l 2wtk pr
P, (o) - o0l
X

Pe, (1) = 0!8
Pr, (2) = 0-€)

0-0(wity gt 0Ol
Pr, (x)= (X)) - 912 wirh prd O\E
b= o 8 with pnb. oR

f

Recall: [atent-variable generative modelling (section 3.4)

| have a collection of datapoints in R% X1y eenr Xy

Q. How might | model this dataset?

A. Model the datapoints as samples from
X ~N(fy(Z),0%) where Z ~ N(0,1)
Z measures distance along the line
/ — —X fo(Z) specifies the shape of the line

is noise around the line

Q. How should | learn the parameters ¢ and ¢?

A. Fit the model, i.e. choose ¢ and o to maximize - \.
the log likelihood of the dataset

v

n
1

log lik(data; 0,)=EZIOgPrX(xi; ,0)
i=1

loglik (data) = z log Pry (x;) 7 —

— X
=1
| h (2) ~ N1 ~ N(fy(2),02)
ElogJ Pr(al = 2)Pr (2)ds Law of Total Probability A 1s o random
y & rF
k("“) VOV'Q"‘(\. 5‘
hod a |ihelshood
/ log Z~ZPrX(xl|Z—Z)] rewrite integral as expectation ‘!/-vmd-"on P‘-x

n
Z Z Pry(|Z = 2) Monte Carlo approximeeion, Eh (Z\ _— Z h(z)
i=1 =1

wheérezrare sampled from Z
J o

(%)

n m
~ Z log %Z {PFX(XJZ — Zj) 'Prz(z)) } Importance Sampling approximation,

Prz(z;) where z; are sampled from Z

j=1

Prz(z) IfZ is well chosen, we can get away
Z log {PrX (xilZ = 2) Prz(z)} with just using a single sample from Z

rz(Z)}

n
Z {log Pry(x;|Z = z) + log Pry(2)

i=1

[A at valnef
. . SO\
Recall: importance sampling (secTion 6.3) ,U:fp?.' G fv-lv’/u;(ﬂ

—

Let Z be a random variable, let i be a real-valued function, and

let Z be any distribution. Then, if we sample z4, ..., z,,, from Z, s?"f""7 dAifferent volics
alet B v ’{z.])

© .
PS .. o8 - o P

—

We womt §(2) = const,

This works for any sampling distribution Z. P, (2

But it will only be useful if we choose a sensible sampling P“", (2)

distribution! < = P (@) = onst x
Z h(2) x

sz_ (z)

The more samples we take, the better the approximation
should be.

QUESTION. How could we choose the sampling
distribution Z so that we don’t need very many samples?

Recall: importance sampling (SECTION 6.3)

Let Z be a random variable, let i be a real-valued function, and

let Z be any distribution. Then, if we sample z, ..., z,,, from Z,

Prz(z;)

ER(Z) ~ mzj_ (7)) Pr;(z;)

This works for any sampling distribution Z.

But it will only be useful if we choose a sensible sampling

distribution!

If we choose Z so that h(z) is roughly constant,

Z
P z()
then we can get away with just a few samples.

Prz(z)
Prz(z)

~ const = Pr;(z) = const X h(z) Pry(z)

h(z)

loglik (data) = z log Pry (x;) 7 — — x
i=1 ~N(0,1) ~ N(fp(2),07?)

n
N Z log LPrX (xilZ = 2)Prz(2)dz Law of Total Probability
1=

Zlog E;-zPrx(x;|Z = 2)]

rewrite integral as expectation

n
Z mz Prx(xi|Z — Zj) Monte Carlo approxiga@tion,
=1 i

wherezraresampled from Z

n m
~ Z log %Z {PFX(Xilz _ Zj) Prz(Zj)} Importance Sampling approximation,

Prz(z;) where z; are sampled from Z

j=1

Pr,(z) If Z is well chosen, we can get away
Z log {PrX (x;]Z = 2) PrZ(Z)} with just using a single sample z from Z

rz(Z)}

n
Z {log Pry(x;|Z = z) + log Pry(2)

i=1

Pry(z) If Z is well chosen, we can get away
Z log {PrX (xilZ = 2) PrZ(Z)} with just using a single sample z from Z

zn: {log Pry(x;|1Z = z) + log (Z)}
= o Prz(z)

QUESTION. How should we choose Z?

N - N7 — Pr;(z)
~ ; log {PrX(xL|Z =2Z) PrZ(Z)}

n /\A ~
{ rZ(Z)} = _%1og(2n02) - Tiz (x; — dec(m))z
=1

log Pry (x;|Z = z) +logPr @
Z

l

This term measures how well our networks can
reconstruct a noisy input.

noisy input nnnn t !
=onsrecion [A A

We should ideally choose Z so that[z(z) ~ const X Pry(x;|Z = z) PrZ(z).
But it’s really tricky to find const and if we could it’s still tricky to sample from this ideal distribution...

So let’s use a neural network to choose its own sampling distribution!
(We just need to make sure that the network is given x; as an input.)

Xi— — / ~ N(enc¢(xi),p2)

Z— — X ~ N(dec,(2),0%)
~ N(0,1)

class BernoulliImageGenerator(nn.Module):
def __init (self, d=4):
self.p = nn.Sequential(..)
def loglik(self, x, z):
xr = self.p(z)
return (x*torch.log(xr) + (1-x)*torch.log(1l-xr)).sum((1,2,3))

class GaussianEncoder(nn.Module).:
def _ init (self, decoder):
self.dec = decoder
self.enc = nn.Sequential(..)

def forward(self, x):
MT = self.enc(x)
U, T = pt[:,:self.decoder.d], ut[:,self.decoder.d:]

return u, torch.exp(t/2)

loglik_lb(self, %)«
W,p = self(x)

kl = 0.5 * (p**2 + p**2 - torch.log(p**2) - 1).sum(1)
€ = torch.randn_like(p)

11 = self.decode.loglik(x, z=p+p*e)

def

zZ— — p — X ~ Bin(1,p)
R4 R28%28 R28%28

— —> —_— 7 . 2
Ricsxzs Mléf z 1\]{%&“"0)

return 11 - k1l dataset

optimizer

log Pry (x)

Pr,(z
> logPry(x|Z =2z) + E,_;log 2(2)

Prz(z)

for epoch in range(10):

See sections 6.4 and 6.5 of lecture notes
for more details.

model =~GaussianEncoder(BernoulliImageGenerator(d=4))
optim.Adam(model.parameters())

for imgs in batched(dataset):
optimizer.zero_
loglik 1b = torch.mean(model.loglik 1lb(imgs))
(-loglik_1b).backward()
optimizer.step()

grad()

Qoo

hﬁ_——_“

EEE

W |||

Ll |<|d

Ao [On

o~ | o

N\ [|
o) |o= = |08

L= (oD

** Exam on 10 August, open book
— linear models [lecture 2]
— confidence ribbon [lecture 3]
— fitting a sequence model [lecture 5]
— hypothesis testing [lecture 5]

¢ Presentation on 16 August, group work
— inventing models [lecture 2]
— Markov chain calculations [lecture 4]

** Advanced coursework, not assessed
— variational autoencoder [lecture 4]

Kﬁ)fﬂ.x suijt
W& % (traditional)

= — x
L o
comply, machine
vary according to
tfollow attend to

subtle things

: VRN
i %4 23

move little things guarding

Example 12.1.2: epidemic model

Let X,, € N be the number of infected people on day n, ﬂ— . #‘MW _.533 +2-| = b

and let it evolve according to
Xn+1 = X,, — Recoveries,, + Infections,,

Example 12.1.2: epidemic model

Let X,, € N be the number of infected people on day n,

and let it evolve according to

Xn+1 = X,, — Recoveries,, + Infections,,

14 A
12 A
10 A

num. infected X,, 8 -
(5 simulation runs)

25

50

75

timen

100

125

150

175

200

Example 12.1.3 (active users)

Let X,, € N be the number of users currently using an
online platform at timestep n, and let it evolve according
to

Xn+1 = X, + Newusers,, — Departures,,

num. users X,
(2 simulation runs)

_1] L] L) L) L]]] L]]
0.0 2.5 5.0 1.5 10.0 12,5 15.0 17.5 20.0

timen

SECTION 12
Famous applications:
any system whose state changes over time, ChatGPT, CoPilot

with probabilistic dynamics.

Xo, X1, X5, -
Famous applications:
a random process in which each X;is , __— epidemic modelling, queueing theory,
generated based only on the preceding stock market, Google PageRank, Manhattan Project
state X;_1.

XO _)Xl _)XZ_)

SECTION 12.1. Three ways to specify a Markov chain model

STATE SPACE DIAGRAM

CAUSAL DIAGRAM

Each X; is generated based only on
the preceding state X;_:

X1 _)XZ _)XB_)

TRANSITION MATRIX

next state
isj

in state
[

)

Example 12.2.1

(Multi-step transition probabilities)

If it’s grey today, what’s the chance of rain
two days from now?

MEGMORY LESSNESS
XX, 2> X3 >

we

rain

2 6 2
P = 3 0 .7

0O 5 .5

C =rain

ﬂ’()(z:f |)(o=j) g= 1€y

d = drizzk

= Z P()(zzf'\ X,=x, X°=j> fP()(,=7/Xo=j)

* by Law § Tatd PrE with &9
baggey 3 %]

W

> P(X=r X =x) P(x=x] %=3)

gine Xz s rm.wmd boged cnly o™ X,
o the stoba ot fime O /s irrelvoms

lonle e know ¢he sfah af Fime l) .

LS R B - TR o [P,

2%
X

Law of Total Probability Law of Total Probability with baggage
P(A = a) P(A=al)

:ZIP(AzaIB:b)[P’(sz) =ZIP>(A=a|B=b,)P(B=h|
b b

Exercise fP()(' = Z, ,)(o-:z,,)(z ._.12))(o—pf — Xz

Given that yesterday was rain, and tomorrow
is rain, what’s the chance that today is
drizzle?

P(x"x’ , Yo =%, X2 >%) b) e finiho,

‘f cow\ oo

P(& =::(°, X = zz) F(&“;“b .

Xl_)XZ_)XS_)”'

()

rain

2 .6 .2
P = 3 0 .7

0O 5 .5

Helpful rules for working with Markov chains

Law of Total Probability Law of Total Probability with baggage
P(A =a) P(A=al)
ZZP(AzaIB:b)IP’(B=b) =ZP(A=aIB=b,)P(B=0b]|)
b b

Bayes'’s rule Bayes’s rule with baggage

P(A=a|B =b) P(A=a|B =b,)

_P(A=a)P(B=Db|A=a) _P(A=aq|)P(B =b|A =a,
B P(B = b) B P(B = b|)

Definition of conditional independence
If A and B are conditionally independent given

Definition of independence
If A and B are independent then

P(A=a|B=b)=PA=a) P(A=a|B=»b Y=P(A=al)

The chain is memoryless

Xg = X; = -
i.e. each item is generated based only on
the previous item

The most important thing about Markov chains is
memorylessness.

Whenever we’re doing calculations with Markov chains, we have
to wrangle our expression into a form where we can use
memorylessness (plus the transition probability matrix).

Remember memorylessness as
“conditional on the present, the future is
independent of the past”.

P(X3 =x3|X; = xz»ﬁf Xy Xo-=7> = P(X3 = x3 | X3 = x3)

futrt prywt oyt .
P(X3 = x3 | X1 = x1, X0 = x¢) = {P(XZ:’(S’ l)(,-x.)

. T.3 proggnt at -
]P(X:{) = X3 |)(2nz xz,X0P= xO) — IP (x =)(3 { x z 12)

The full sequence X = [X,X1X, ---] is a random variable, with a likelihood function,
Pry(xox1%; - %) = P(Xo = %0, X1 = X1,++, Xy = xp)

We'll need the likelihood
for machine learning

Pr(xox; X223 -+ xp)
any system whose state changes over time, = P(xy) X P(xq]|xg) X P(x5]|xq, x0) X P(x3]|x5,%q1,X0) X -+

with probabilistic dynamics.
Xo, X1, X5, ...

Pr(xox;x,%3 -+ xp)
a random process in which each X; is = P(x) X P(x;]x) X PCry]x1) X P(ra|xy) X -

generated based only on the preceding
state X;_1.

XO _)Xl _)XZ_)

SECTION 12.4-12.6. Analysis of Markov chains

] % How likely is it that the epidemic

” / dies out?

40 - J

21 WJAf/ ¢ If it doesn’t die out, how does it How can we learn the
e w““ﬁv«m . . progress? growth rate?

30 A

ol (T
- (e N‘\«\Mﬁ’v‘w .

101
[

** What'’s the average number
of active users?

> How can we learn
0 100 200 300 400 4600 4700 4800 4900 5000 th-l-s diﬁtribution7

Example 12.1.3 (active users)

Let X,, € N be the number of users currently using an
online platform at timestep n, and let it evolve according
to

Xn+1 = X, + Newusers,, — Departures,,

num. users X,
(2 simulation runs)

_1] L] L) L) L]]] L]]
0.0 2.5 5.0 1.5 10.0 12,5 15.0 17.5 20.0

timen

It looks like this

J distribution is stable

)“ ¢ | ; i.e. unchanging over time
Wt sk =2

/
|

0 100 200 300 400 4600 4700 4800 4900 5000

Can we find a probability distribution 7 such that, if X, ~ m, then X; ~ w?

(and so X, ~ m, and X3 ~ m, and ...) \/\
X; ~ T means:

P(X; = x) = m, for all x in the state space

Let’s assume X, ~ m, and calculate P(X; = x):

PO =) =) PO = x | Xo = x0) P(Xo = X))

X0
= ZPxOx Ty, = Enxo Peox = [P,
X0 X0

Now, if T is a stable distribution, then
P(X, =x)=m, forallx

thus
This is called the stationarity equation. It’s a

“_/ ___ simple matrix equation; we can solve it to
find the stable distribution.

T = P

80

60

40

20 A

Drift analysis

... is @ nice simple back-of-the-envelope way to
get a rough idea of how a Markov chain X, is
likely to behave.

Drift formula: 6(x) = E(X,,., — X,, | X,,=x)

Drift model: solutionto x,,; = x,, + 6(x,,)

Simple epidemic (example 12.1.2)

Let X,, € N be the number of infected people on day n, Why these par‘ticular‘
and let it evolve according to distributions? Explained in
Xn+1 = Xp + Poisson(rX,, /d) — Bin(X,,1/d) <+— notes, eXample 12.1.2.

Suppose the R-number (r) is > 1. What’s the growth
rate of the epidemic?

Drift formula: 6(x) = E(X,,4; — X, | X;;,= %)

| rXx o 1
= msson(d)— in x,d

rx X

d d
[T = 1
Drift model: solutionto x,,.1 = x,, + 6(x;,)

x1=x0(1+r;1)

o 4
R

R=4
each infected person infects
4 others on average

Vaccinated

S &

R84, q=75%
each infected person infects
R gthersnodhieragen average

Recovered

Vaccinated
Infected

Irfected w
&) N

A
Susceptible o @
A

Susceptible Susceptible
Anti-vax Unvaccinated

Recovered
@ Infected Vaccinated Let X,, = (4, U, Vi, Ry, 1), and let total population be N.

ﬂ \ 6 Model the epidemic as follows: the update each timestep is
?\ Infections in subgroup A: Poisson(r/, A, /Nd)

Infections in subgroup U: Poisson(r/, U, /Nd)
Infections in subgroup V: Poisson(r/, (1 —p,)V,,/Nd)
Infections in subgroup R: Poisson(r/, (1 —p,)R,,/Nd)
= Recoveries: Bin(/,,1/d)

0 = Vaccination elapses: Bin(},, 1,)
ﬁ ?\\ = Jabs: Bin(U, 1,)

N

%popn in each subgroup

Susceptible Susceptible 1.0 A

Anti-vax Unvaccinated 0.8 -
0.6 :

population 1000

0.4 1

0.2 1

0.0 1

0 20 60 80

40
dayn

Random processes are more precise,

and they let me analyse fluctuations

such as whether an infection dies out

or grows into an epidemic, Hold on! Where are you guys
getting your models from?

Dif ferential equations let
me analyse lar ge-scale

phenomena such as epidemic And they reduce to dif ferential
growth rates. equations, when you zoom out. | can tell you what the

/ ') dynamics really are, by
And they re easy to But they re tricker to / learning from data.

work with, \ work with, w

ig \
44’////,/”———____—’;;;;ISTICIAN

|
PHYSICIST MATHEMATICIAN

	6.4, 6.5
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: SECTION 6.4. If we had a good representation, we could ...
	Slide 7: SECTION 10.1. THE CURSE OF OVERFITTING for supervised learning
	Slide 8: SECTION 10.1. THE CURSE OF OVERFITTING for generative models
	Slide 9
	Slide 10: SECTION 10.2. AVOIDING OVERFITTING WITH A VALIDATION SET
	Slide 11
	Slide 12
	Slide 13: SECTION 6.4.
	Slide 14: SECTION 6.4. WARNING: MASTERS-LEVEL MATHS
	Slide 15
	Slide 16: Recall: latent-variable generative modelling (SECTION 3.4)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	12
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: SECTION 12

	12.2
	Slide 30: SECTION 12.1. Three ways to specify a Markov chain model
	Slide 31
	Slide 33
	Slide 34
	Slide 36: Helpful rules for working with Markov chains
	Slide 37
	Slide 38

	12.4, 12.5, 12.6
	Slide 39: SECTION 12.4–12.6. Analysis of Markov chains
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

