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What on earth is the point of 
training a neural network to 
simply reproduce its input? 
Isn’t that a simple task?

It’s not a simple task, if we force it to go via 
a low-dimensional bottleneck.

This low-dimensional variable will have to 
contain all the information that’s needed to 
reconstruct the input. Therefore, surely, it 
will have to capture only the essential 
features of the input.

We call it a “latent representation” of the 
input. The word “latent” means “hidden”. 
It’s hidden from us, and we have to learn 
what it should be.

low-dimensional
“latent”

representation

reconstruction

෤𝑥
𝑧

𝑥 enc dec

input 
datapoint



What can we do with a low-
dimensional representation?

▪ Suppose we have lots of unlabelled data, and only a little bit of 
labelled data, and we want to train a classifier.

▪ We can train an autoencoder on unlabelled data. We have lots of 
data, so this should be easy. We’ll learn to encode each datapoint 𝑥𝑖 
into a low-dimensional representation 𝑧𝑖.

▪ Now, train a classifier to predict the label 𝑦𝑖  from 𝑧𝑖. This should be 
easier than training a full classifier from scratch, since 𝑧𝑖  has already 
been condensed into only the essential features. Thus, we shouldn’t 
need very much labelled data to train the classifier.

▪ This method is also useful for fully labelled data, if the labels have only 
a little bit of information, e.g. sentiment classification of text. If we 
tried to train using only the labels, it might take a gigantic amount of 
data for the network to learn what features are useful.

Use case 1: it can make it easier to train a classifier. 

෤𝑥

𝑧

𝑥

classifier

𝑦

latent 
repr.

enc dec



What can we do with a low-
dimensional representation?

▪ Ignore the encoder, and simply generate novel outputs by creating 
random 𝑍 and feeding it into the decoder. If 𝑍 really is a good low-
dimensional representation, then every 𝑍 that we might create 
should be decodable into a decent output.

Use case 2: it’s a good way to build a generator.

෤𝑥

𝑧

𝑥

latent 
repr.

enc dec

𝑥′

𝑥

▪ Take a corrupted source image 𝑥′, encode it to get 𝑧 = enc(𝑥′), then 
decode to get 𝑥 = dec(𝑧). This should clean up the image, assuming 
that the encoder has learnt to keep only the important details.

Use case 3: denoising the input.



What do we hope the latent 
representation will contain?

MNIST 
image

{‘digit’: 6,
 ‘slant’: UPRIGHT,
 ‘weight’: MEDIUM,
 ‘style’: LOOSE}

A 4-dimensional 
representation

We hope that the low-dimensional latent 
representation will contain meaningful dimensions, 
and that we can set each dimension separately and 
tweak aspects of the datapoint.

▪ Take two source images 𝑥1 and 𝑥2, and 
generate a new image 𝑥∗ by

𝑧1 = enc 𝑥1

𝑧2 = enc 𝑥2

𝑥∗ = dec(0.5𝑧1 + 0.5𝑧2)
This should generate a smooth interpolation 
between the two inputs, where each intermediate 
looks “nice”.

Use case 4: smooth interpolation.

𝑥1
𝑥2

𝑥∗



SECTION 6.4. If we had a good representation, we could ...

▪ Pick a random 𝑧, and decode.
This should let us synthesize entirely new 
images.

▪ Take two source images 𝑥1 and 𝑥2,
𝑧1 = enc 𝑥1

𝑧2 = enc 𝑥2

𝑥∗ = dec(0.5𝑧1 + 0.5𝑧2)
This should generate a smooth 
interpolation between the two inputs, 
where each intermediate looks “nice”.

▪ Take a corrupted source image 𝑥′, 
encode it to get 𝑧 = enc(𝑥′), then 
decode to get 𝑥 = dec(𝑧).
This should clean up the image, assuming 𝑧 
only contains relevant details.

𝑥1
𝑥2

𝑥∗

𝑥′

𝑥

The dream of autoencoding:
Neural networks can learn 
meaningful representations of their 
inputs.

𝑧1

𝑧2

1

70

3

8

9
6

But nothing comes easy …



SECTION 10.1. THE CURSE OF OVERFITTING for supervised learning

If our model is too rich 
(too many parameters, too 
many layers), it will overfit 
the training data.

And then it will perform 
badly on new data. 



SECTION 10.1. THE CURSE OF OVERFITTING for generative models

If our model is too rich, it 
can learn to overfit the 
training data. It’ll probably 
be an unhelpful model.

Suppose we have a dataset of points in ℝ2, and we want to learn a generative model of the form 𝑋 = 𝑓 𝑍 + noise.

+ high 
noise + medium 

noise

+ no 
noise



𝑌𝑥 classifier

Supervised learning

Generative modelling

Autoencoder

If the classifier neural network is too rich, 
then our model will overfit

𝑋𝑍 generator

If the generator neural network is too rich, 
then our model will overfit

𝑥 encoder ෤𝑥decoder

𝑧
QUESTION. If we trained a very rich encoder 
and decoder, what would they learn?



SECTION 10.2. AVOIDING OVERFITTING WITH A VALIDATION SET

We should test our model on a validation 
set, and tune our model’s complexity so that 
it does well on this set.

If it does well on validation, it’ll likely do well 
on holdout data.

training
validation

full dataset

holdout



𝑌𝑥 classifier

Supervised learning

Generative modelling

Autoencoder

If the classifier neural network is too rich, 
then our model will overfit

𝑋𝑍 generator

If the generator neural network is too rich, 
then our model will overfit

𝑥 encoder ෤𝑥decoder

𝑧

and do badly on the validation set, so we can 
learn to avoid overfitting

and do badly on the validation set, so we can 
learn to avoid overfitting

If the neural networks are too rich, then they 
will learn to encode 𝑥 perfectly in 𝑧, 
which would be useless

but it’d still score perfectly on validation!



𝑥 encoder ෤𝑥decoder

𝑧

If we simply train an autoencoder to reconstruct 
its input, it won’t learn a useful representation.

What’s a better training objective?
What’s a better way to think of autoencoders?



The solution:

Don’t try to build an autoencoder. 
Instead, just build a better generator – 
and the encoder will come “for free”.

SECTION 6.4.



𝑧1

𝑧2

𝑧3

𝑧4

𝑍

𝑑

random image 
of digit 𝑑

SECTION 6.4. WARNING: MASTERS-LEVEL MATHS
In the Advanced Coursework, you will be asked to build a 
neural network for generating a font of handwritten digits. 
For this sort of creative extension, we need to understand 
deeply the maths of the variational autoencoder.



Brain teaser
Let 𝑋 ∼ Bin(𝑛 = 2, 𝑝 = 0.9). What is Pr𝑋(𝑋) ?



𝑍 measures distance along the line

𝑓𝜃(𝑍) specifies the shape of the line

𝜎 is noise around the line

Recall: latent-variable generative modelling (SECTION 3.4)

I have a collection of datapoints in ℝ𝑑, 𝑥1, … , 𝑥𝑛. 

Q. How might I model this dataset?

A. Model the datapoints as samples from 
𝑋 ∼ 𝑁(𝑓𝜃 𝑍 , 𝜎2) where 𝑍 ∼ 𝑁(0,1)

𝑋𝑍 𝑓𝜃

Q. How should I learn the parameters 𝜃 and 𝜎?

A. Fit the model, i.e. choose 𝜃 and 𝜎 to maximize 
the log likelihood of the dataset

log lik data; 𝜃, 𝜎 =
1

𝑛
෍

𝑖=1

𝑛

log Pr𝑋 𝑥𝑖; 𝜃, 𝜎



log lik data = ෍

𝑖=1

𝑛

log Pr𝑋(𝑥𝑖)

= ෍

𝑖=1

𝑛

log න
𝑧

Pr𝑋 𝑥𝑖 𝑍 = 𝑧 Pr𝑍 𝑧 𝑑𝑧

= ෍

𝑖=1

𝑛

log 𝔼𝑧∼𝑍Pr𝑋(𝑥𝑖|𝑍 = 𝑧)

Law of Total Probability 

Monte Carlo approximation, 
where 𝑧𝑗 are sampled from 𝑍

𝑋
∼ 𝑁(𝑓𝜃 𝑍 , 𝜎2)

𝑍
∼ 𝑁(0,1)

𝑓𝜃

rewrite integral as expectation

≈ ෍

𝑖=1

𝑛

log
1

𝑚
෍

𝑗=1

𝑚

Pr𝑋 𝑥𝑖|𝑍 = 𝑧𝑗

Pr𝑍(𝑧𝑗)

Pr ෨𝑍(𝑧𝑗)

Importance Sampling approximation, 
where 𝑧𝑗 are sampled from ෨𝑍

≈ ෍

𝑖=1

𝑛

log Pr𝑋 𝑥𝑖|𝑍 = 𝑧
Pr𝑍 𝑧

Pr ෨𝑍 𝑧

≈ ෍

𝑖=1

𝑛

log
1

𝑚
෍

𝑗=1

𝑚

Pr𝑋 𝑥𝑖|𝑍 = 𝑧𝑗

If ෨𝑍 is well chosen, we can get away 
with just using a single sample from ෨𝑍

= ෍

𝑖=1

𝑛

log Pr𝑋 𝑥𝑖|𝑍 = 𝑧 + log
Pr𝑍 𝑧

Pr ෨𝑍 𝑧



Let 𝑍 be a random variable, let ℎ be a real-valued function, and 

let ෨𝑍 be any distribution. Then, if we sample 𝑧1, … , 𝑧𝑚 from ෨𝑍,

𝔼ℎ 𝑍 ≈
1

𝑚
෍

𝑗=1

𝑚

ℎ 𝑧𝑗

Pr𝑍(𝑧𝑗)

Pr ෨𝑍(𝑧𝑗)

This works for any sampling distribution ෨𝑍. 

But it will only be useful if we choose a sensible sampling 

distribution!

Recall: importance sampling (SECTION 6.3)

The more samples we take, the better the approximation 
should be.

QUESTION. How could we choose the sampling 
distribution ෨𝑍 so that we don’t need very many samples?



Let 𝑍 be a random variable, let ℎ be a real-valued function, and 

let ෨𝑍 be any distribution. Then, if we sample 𝑧1, … , 𝑧𝑚 from ෨𝑍,

𝔼ℎ 𝑍 ≈
1

𝑚
෍

𝑗=1

𝑚

ℎ 𝑧𝑗

Pr𝑍(𝑧𝑗)

Pr ෨𝑍(𝑧𝑗)

This works for any sampling distribution ෨𝑍. 

But it will only be useful if we choose a sensible sampling 

distribution!

Recall: importance sampling (SECTION 6.3)

If we choose ෨𝑍 so that   ℎ 𝑧
Pr𝑍(𝑧)

Pr෩𝑍(𝑧)
   is roughly constant, 

then we can get away with just a few samples.

ℎ 𝑧
Pr𝑍(𝑧)

Pr ෨𝑍(𝑧)
≈ const ⟹  Pr ෨𝑍 𝑧 ≈ const × ℎ 𝑧  Pr𝑍(𝑧)



log lik data = ෍

𝑖=1

𝑛
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∼ 𝑁(𝑓𝜃 𝑍 , 𝜎2)

𝑍
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Importance Sampling approximation, 
where 𝑧𝑗 are sampled from ෨𝑍
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log Pr𝑋 𝑥𝑖|𝑍 = 𝑧
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log
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𝑚
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𝑚
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If ෨𝑍 is well chosen, we can get away 
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= ෍
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𝑛

log Pr𝑋 𝑥𝑖|𝑍 = 𝑧 + log
Pr𝑍 𝑧
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෍ ෍

≈ ෍

𝑖=1

𝑛

log Pr𝑋 𝑥𝑖|𝑍 = 𝑧
Pr𝑍 𝑧

Pr ෨𝑍 𝑧

෍ ෍

If ෨𝑍 is well chosen, we can get away 
with just using a single sample 𝑧 from ෨𝑍

= ෍

𝑖=1

𝑛

log Pr𝑋 𝑥𝑖|𝑍 = 𝑧 + log
Pr𝑍 𝑧

Pr ෨𝑍 𝑧

QUESTION. How should we choose ෨𝑍?



≈ ෍

𝑖=1

𝑛

log Pr𝑋 𝑥𝑖|𝑍 = 𝑧
Pr𝑍 𝑧

Pr ෨𝑍 𝑧

If ෨𝑍 is well chosen, we can get away 
with just using a single sample 𝑧 from ෨𝑍

= ෍

𝑖=1

𝑛

log Pr𝑋 𝑥𝑖|𝑍 = 𝑧 + log
Pr𝑍 𝑧

Pr ෨𝑍 𝑧

We should ideally choose ෨𝑍 so that Pr ෨𝑍 𝑧 ≈ const × Pr𝑋 𝑥𝑖 𝑍 = 𝑧  Pr𝑍(𝑧).

But it’s really tricky to find const and if we could it’s still tricky to sample from this ideal distribution…

𝑋 ∼ 𝑁(dec𝜃 𝑍 , 𝜎
2

)𝑍
∼ 𝑁(0,1)

dec𝜃

෨𝑍 ∼ 𝑁(enc𝜙 𝑥𝑖 , 𝜌
2

)𝑥𝑖 enc𝜙

This term measures how well our networks can 
reconstruct a noisy input.

= −
1

2
log 2𝜋𝜎2 −

1

2𝜎2 𝑥𝑖 − dec enc 𝑥𝑖 + noise
2

So let’s use a neural network to choose its own sampling distribution!
(We just need to make sure that the network is given 𝑥𝑖 as an input.)

noisy input

reconstruction
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17
18
19
20
21

class BernoulliImageGenerator(nn.Module):
    def __init__(self, d=4):

self.p = nn.Sequential( … )

def loglik(self, x, z):
        xr = self.p(z)
        return (x*torch.log(xr) + (1-x)*torch.log(1-xr)).sum((1,2,3))

class GaussianEncoder(nn.Module):
    def __init__(self, decoder):
        self.dec = decoder
        self.enc = nn.Sequential( … )

def forward(self, x):
        μτ = self.enc(x)
        μ,τ = μτ[:,:self.decoder.d], μτ[:,self.decoder.d:]
        return μ, torch.exp(τ/2)

    def loglik_lb(self, x):
        μ,ρ = self(x)
        kl = 0.5 * (μ**2 + ρ**2 - torch.log(ρ**2) - 1).sum(1)
        ε = torch.randn_like(ρ)

ll = self.decode.loglik(x, z=μ+ρ*ε)
return ll – kl 22

23
24
25
26
27
28
29
30
31

dataset = ...
model = GaussianEncoder(BernoulliImageGenerator(d=4))
optimizer = optim.Adam(model.parameters())

for epoch in range(10):
for imgs in batched(dataset):

optimizer.zero_grad()
loglik_lb = torch.mean(model.loglik_lb(imgs))
(-loglik_lb).backward()
optimizer.step()

𝑝
ℝ28×28

𝑧
ℝ𝑑

dec 𝑋 ∼ Bin(1, 𝑝)
ℝ28×28

෨𝑍 ∼ 𝑁 𝜇, 𝜌2

ℝ4

enc𝑥
ℝ28×28

𝜇, 𝜌
ℝ4

log Pr𝑋 𝑥

 ≥  log Pr𝑋 𝑥|𝑍 = 𝑧 + 𝔼𝑧∼ ෨𝑍 log
Pr𝑍 𝑧

Pr ෨𝑍 𝑧

See sections 6.4 and 6.5 of lecture notes 
for more details.



❖ Exam on 10 August, open book
— linear models [lecture 2]

— confidence ribbon [lecture 3]

— fitting a sequence model [lecture 5]

— hypothesis testing [lecture 5]

❖ Presentation on 16 August, group work
— inventing models [lecture 2]

— Markov chain calculations [lecture 4]

❖ Advanced coursework, not assessed
— variational autoencoder [lecture 4]



随机 suíjī
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Example 12.1.2: epidemic model
Let 𝑋𝑛 ∈ ℕ be the number of infected people on day 𝑛, 
and let it evolve according to

𝑋𝑛+1 = 𝑋𝑛 − Recoveries𝑛 + Infections𝑛



Example 12.1.2: epidemic model
Let 𝑋𝑛 ∈ ℕ be the number of infected people on day 𝑛, 
and let it evolve according to

𝑋𝑛+1 = 𝑋𝑛 − Recoveries𝑛 + Infections𝑛

time 𝑛

num. infected 𝑋𝑛

(5 simulation runs)



Example 12.1.3 (active users)
Let 𝑋𝑛 ∈ ℕ be the number of users currently using an 
online platform at timestep 𝑛, and let it evolve according 
to

𝑋𝑛+1 = 𝑋𝑛 + Newusers𝑛 − Departures𝑛

time 𝑛

num. users 𝑋𝑛

(2 simulation runs)



Random process:
any system whose state changes over time, 
with probabilistic dynamics.

𝑋0, 𝑋1, 𝑋2, … 

Markov chain:
a random process in which each 𝑋𝑖  is 
generated based only on the preceding 
state 𝑋𝑖−1.

𝑋0 → 𝑋1 → 𝑋2 → ⋯ 

Famous applications:
ChatGPT, CoPilot

Famous applications:
epidemic modelling, queueing theory,
stock market, Google PageRank, Manhattan Project

SECTION 12



rain

drizzle grey

0.2

0.3

0.7

0.6

0.2

0.5

0.5

SECTION 12.1. Three ways to specify a Markov chain model

STATE SPACE DIAGRAM TRANSITION MATRIX

𝑃 =  
.2 .6 .2
.3 0 .7
0 .5 .5

rain

drizzle

grey

𝑃𝑖𝑗 = ℙ
next state

is 𝑗
in state

𝑖

CAUSAL DIAGRAM

𝑋1 → 𝑋2 → 𝑋3 → ⋯

Each 𝑋𝑖  is generated based only on 
the preceding state 𝑋𝑖−1: 



rain

drizzle grey

0.2

0.3

0.7

0.6

0.2

0.5

0.5

Example 12.2.1
(Multi-step transition probabilities)
If it’s grey today, what’s the chance of rain 
two days from now?

𝑃 =  
.2 .6 .2
.3 0 .7
0 .5 .5

rain

drizzle

grey

𝑋1 → 𝑋2 → 𝑋3 → ⋯



Law of Total Probability with baggage {𝐶 = 𝑐}

ℙ 𝐴 = 𝑎 𝐶 = 𝑐)

 = ෍

𝑏

ℙ 𝐴 = 𝑎 𝐵 = 𝑏, 𝐶 = 𝑐) ℙ 𝐵 = 𝑏 𝐶 = 𝑐)

Law of Total Probability

ℙ 𝐴 = 𝑎

 = ෍

𝑏

ℙ 𝐴 = 𝑎 𝐵 = 𝑏) ℙ(𝐵 = 𝑏)



rain

drizzle grey
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0.3

0.7
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Exercise
Given that yesterday was rain, and tomorrow 
is rain, what’s the chance that today is 
drizzle?

𝑃 =  
.2 .6 .2
.3 0 .7
0 .5 .5

rain

drizzle

grey

𝑋1 → 𝑋2 → 𝑋3 → ⋯



Law of Total Probability Law of Total Probability with baggage {𝐶 = 𝑐}

ℙ 𝐴 = 𝑎 𝐶 = 𝑐)

 = ෍

𝑏

ℙ 𝐴 = 𝑎 𝐵 = 𝑏, 𝐶 = 𝑐) ℙ 𝐵 = 𝑏 𝐶 = 𝑐)

ℙ 𝐴 = 𝑎

 = ෍

𝑏

ℙ 𝐴 = 𝑎 𝐵 = 𝑏) ℙ(𝐵 = 𝑏)

Definition of independence
If 𝐴 and 𝐵 are independent then

Definition of conditional independence
If 𝐴 and 𝐵 are conditionally independent given {𝐶 = 𝑐} then

ℙ 𝐴 = 𝑎 𝐵 = 𝑏, 𝐶 = 𝑐) = ℙ 𝐴 = 𝑎 𝐶 = 𝑐)ℙ 𝐴 = 𝑎 | 𝐵 = 𝑏 = ℙ(𝐴 = 𝑎)

Helpful rules for working with Markov chains

Bayes’s rule

ℙ 𝐴 = 𝑎 | 𝐵 = 𝑏

 =
ℙ 𝐴 = 𝑎  ℙ(𝐵 = 𝑏|𝐴 = 𝑎)

ℙ 𝐵 = 𝑏

ℙ 𝐴 = 𝑎 | 𝐵 = 𝑏, 𝐶 = 𝑐

 =
ℙ 𝐴 = 𝑎|𝐶 = 𝑐  ℙ(𝐵 = 𝑏|𝐴 = 𝑎, 𝐶 = 𝑐)

ℙ 𝐵 = 𝑏|𝐶 = 𝑐

Bayes’s rule with baggage {𝐶 = 𝑐}



Calculating with Markov Chains

The chain is memoryless
𝑋0 → 𝑋1 → ⋯

i.e. each item is generated based only on 
the previous item

The most important thing about Markov chains is 
memorylessness.

Whenever we’re doing calculations with Markov chains, we have 
to wrangle our expression into a form where we can use 
memorylessness (plus the transition probability matrix).

Remember memorylessness as 
“conditional on the present, the future is 
independent of the past”.

ℙ 𝑋3 = 𝑥3 𝑋2 = 𝑥2, 𝑋1 = 𝑥1, 𝑋0 = 𝑥0 = ℙ 𝑋3 = 𝑥3 𝑋2 = 𝑥2)

ℙ 𝑋3 = 𝑥3 𝑋1 = 𝑥1, 𝑋0 = 𝑥0 =

ℙ 𝑋3 = 𝑥3 𝑋2 = 𝑥2, 𝑋0 = 𝑥0 =



Random process:
any system whose state changes over time, 
with probabilistic dynamics.

𝑋0, 𝑋1, 𝑋2, … 

Markov chain:
a random process in which each 𝑋𝑖  is 
generated based only on the preceding 
state 𝑋𝑖−1.

𝑋0 → 𝑋1 → 𝑋2 → ⋯ 

Pr 𝑥0𝑥1𝑥2𝑥3 ⋯ 𝑥𝑛

= ℙ 𝑥0 × ℙ 𝑥1 𝑥0 × ℙ 𝑥2 𝑥1, 𝑥0 × ℙ 𝑥3 𝑥2, 𝑥1, 𝑥0 × ⋯

Pr 𝑥0𝑥1𝑥2𝑥3 ⋯ 𝑥𝑛

= ℙ 𝑥0 × ℙ 𝑥1 𝑥0 × ℙ 𝑥2 𝑥1 × ℙ 𝑥3 𝑥2 × ⋯

The full sequence 𝑋 = [𝑋0𝑋1𝑋2 ⋯ ] is a random variable, with a likelihood function,

Pr𝑋 𝑥0𝑥1𝑥2 ⋯ 𝑥𝑛 = ℙ(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, ⋯ , 𝑋𝑛 = 𝑥𝑛)

We’ll need the likelihood 
for machine learning



❖ How likely is it that the epidemic 
dies out?

❖ If it doesn’t die out, how does it 
progress?

❖ What’s the average number 
of active users?

EPIDEMIC MODEL

ACTIVE USERS MODEL

SECTION 12.4–12.6. Analysis of Markov chains

How can we learn 
this distribution?

How can we learn the 
growth rate?



Example 12.1.3 (active users)
Let 𝑋𝑛 ∈ ℕ be the number of users currently using an 
online platform at timestep 𝑛, and let it evolve according 
to

𝑋𝑛+1 = 𝑋𝑛 + Newusers𝑛 − Departures𝑛

time 𝑛

num. users 𝑋𝑛

(2 simulation runs)



It looks like this 
distribution is stable
i.e. unchanging over time

Can we find a probability distribution 𝜋 such that, if 𝑋0 ∼ 𝜋, then 𝑋1 ∼ 𝜋?
(and so 𝑋2 ∼ 𝜋, and 𝑋3 ∼ 𝜋, and …)

𝑋𝑖 ∼ 𝜋 means: 
ℙ 𝑋𝑖 = 𝑥 = 𝜋𝑥 for all 𝑥 in the state space

Let’s assume 𝑋0 ∼ 𝜋, and calculate ℙ(𝑋1 = 𝑥):

ℙ 𝑋1 = 𝑥 = ෍

𝑥0

ℙ 𝑋1 = 𝑥 𝑋0 = 𝑥0) ℙ(𝑋0 = 𝑥0)

= ෍

𝑥0

𝑃𝑥0𝑥 𝜋𝑥0
= ෍

𝑥0

𝜋𝑥0
 𝑃𝑥0𝑥 = 𝜋𝑃 𝑥

Now, if 𝜋 is a stable distribution, then 
ℙ 𝑋1 = 𝑥 = 𝜋𝑥 for all 𝑥

thus
𝜋 = 𝜋𝑃 This is called the stationarity equation. It’s a 

simple matrix equation; we can solve it to 
find the stable distribution.

ACTIVE USERS MODEL



Drift analysis

… is a nice simple back-of-the-envelope way to 
get a rough idea of how a Markov chain 𝑋𝑛 is 
likely to behave.

Drift formula:  𝛿 𝑥 = 𝔼 𝑋𝑛+1 − 𝑋𝑛 𝑋𝑛 = 𝑥)

Drift model:  solution to 𝑥𝑛+1 = 𝑥𝑛 + 𝛿(𝑥𝑛)

EPIDEMIC MODEL



Simple epidemic (example 12.1.2)
Let 𝑋𝑛 ∈ ℕ be the number of infected people on day 𝑛, 
and let it evolve according to

𝑋𝑛+1 = 𝑋𝑛 + Poisson 𝑟𝑋𝑛/𝑑 − Bin 𝑋𝑛, 1/𝑑
Suppose the R-number (𝑟) is > 1. What’s the growth 
rate of the epidemic?

Drift formula:  𝛿 𝑥 = 𝔼 𝑋𝑛+1 − 𝑋𝑛 𝑋𝑛 = 𝑥)

Drift model:  solution to 𝑥𝑛+1 = 𝑥𝑛 + 𝛿(𝑥𝑛)

time 𝑛

#infected 
𝑥

𝑥1 = 𝑥0 1 +
𝑟−1

𝑑
 

𝑥2 = 𝑥1 1 +
𝑟−1

𝑑
= 𝑥0 1 +

𝑟−1

𝑑

2
 

⋯

𝑥𝑛 = 𝑥0 1 +
𝑟−1

𝑑

𝑛
 

= 𝔼 Poisson
𝑟𝑥

𝑑
− Bin 𝑥,

1

𝑑

=
𝑟𝑥

𝑑
−

𝑥

𝑑

= 𝑥
𝑟 − 1

𝑑

Why these particular 
distributions? Explained in 
notes, example 12.1.2.



𝑅=4
each infected person infects 
4 others on average



𝑅=4
each infected person infects 
4 others on average

Vaccinated

Recovered

𝑅0=4, 𝑞=75%
each infected person infects 
𝑅0 1 − 𝑞  others on average



Infected

Susceptible

Infected

Susceptible
Anti-vax

Susceptible
Unvaccinated

Vaccinated

Recovered



Infected

Susceptible
Anti-vax

Susceptible
Unvaccinated

Vaccinated
Recovered

Let 𝑋𝑛 = (𝐴𝑛, 𝑈𝑛, 𝑉𝑛, 𝑅𝑛, 𝐼𝑛), and let total population be 𝑁.

Model the epidemic as follows: the update each timestep is
▪ Infections in subgroup A: Poisson( Τ𝑟𝐼𝑛𝐴𝑛 𝑁𝑑)
▪ Infections in subgroup U:  Poisson( Τ𝑟𝐼𝑛𝑈𝑛 𝑁𝑑)
▪ Infections in subgroup V:  Poisson( Τ𝑟𝐼𝑛 (1 − 𝑝𝑣)𝑉𝑛 𝑁𝑑)
▪ Infections in subgroup R:  Poisson( Τ𝑟𝐼𝑛 (1 − 𝑝𝑟)𝑅𝑛 𝑁𝑑)
▪ Recoveries:  Bin(𝐼𝑛, Τ1 𝑑)
▪ Vaccination elapses:  Bin(𝑉𝑛, 𝜆𝑒)
▪ Jabs:  Bin(𝑈, 𝜆𝑣)

day 𝑛

%popn in each subgroup

population 100population 10,000



STATISTICIAN

Differential equations let 
me analyse large-scale 
phenomena such as epidemic 
growth rates.

And they’re easy to 
work with.

Random processes are more precise, 
and they let me analyse fluctuations 
such as whether an infection dies out 
or grows into an epidemic.

And they reduce to differential 
equations, when you zoom out.

But they’re tricker to 
work with.

PHYSICIST MATHEMATICIAN

Hold on! Where are you guys 
getting your models from?

I can tell you what the 
dynamics really are, by 
learning from data.
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