
This is a 40mph speed 
limit, with probability 98%.



Using a Bin(𝑛, 𝑝) 
model, I estimate 
the probability of 
heads is Ƹ𝑝 = 25%

Using a Bin(𝑛, 𝑝) 
model, I estimate 
the probability of 
heads is Ƹ𝑝 =

But surely, the more data we 
have, the more confident we 
should be!

25% also!



This is a 40mph speed 
limit, with probability 98%.

Neural networks tell us 
probabilities, but they don’t 
tell us their confidence.

No one has worked out how 
to extract confidences from 
neural networks. But, in 
Bayesian statistics, we do 
know how to …



What are these probabilities?
▪ ℙ have COVID test +ve)
▪ ℙ have COVID test −ve)

Let’s rewrite this data as a probability model:

Let 𝑋 = 1have COVID and let 𝑌 = 1test+ve

1 𝑋 ~ Bin(1, 0.004)

test +ve test -ve

got COVID 376 24

not got COVID 996 98,604

Data from a population sample of 10,000 people:

SECTION 5. BAYES’S RULE

99,400

99,600

total

2

3

4

5

if 𝑋 == 1:
    𝑌~ Bin(1, 0.94)
else:
    𝑌~ Bin(1, 0.01)

ℙ 𝑋 = 1 𝑌 = 1

=
ℙ 𝑋 = 1  ℙ(𝑌 = 1|𝑋 = 1)

ℙ(𝑌 = 1)

=
0.004 × 0.94

0.004 × 0.94 + 0.996 × 0.01



Let 𝑋 = 1have COVID

Let 𝑌 = amount of viral RNA in a PCR test (CONTINUOUS)

What is the probability I have COVID, for an amount 𝑌 = 𝑦?

How does Bayes’s rule apply to continuous random variables?

ℙ 𝑋 = 1 𝑌 = 2.1 =
ℙ 𝑋 = 1  ℙ(𝑌 = 2.1|𝑋 = 1)

ℙ(𝑌 = 2.1)

By Bayes's rule,

ℙ 𝑋 = 1 𝑌 = 1 =
ℙ 𝑋 = 1  ℙ 𝑌 = 1 𝑋 = 1)

ℙ(𝑌 = 1)

Let 𝑋 = 1have COVID

Let 𝑌 = 1test+ve

What is the probability I have COVID, i.e. 𝑋 = 1, if 𝑌 = 1?

This version of Bayes’s rule doesn’t make 
sense for continuous random variables!



Bayes’s rule for random variables

Pr𝑋 𝑥 𝑌 = 𝑦 = Pr𝑋 𝑥
Pr𝑌(𝑦|𝑋 = 𝑥)

Pr𝑌(𝑦)
This version of Bayes’s rule works for 
both continuous and discrete random 
variables.

Bayesianism
Whenever there’s an unknown parameter, you should 
express your uncertainty about it by treating it as a 
random variable.

Reverend Thomas 
Bayes, 1701–1761

See section 5.1 for why it works.



I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses.

I propose the probability model 𝑋 ∼ Bin(𝑛, Θ).

I don’t know Θ, so I’ll treat it as a random variable.
I shall assume Θ ∼ 𝑈[0,1] i.e. PrΘ 𝜃 = 1.

You must have a prior 
belief about every 
unknown parameter.

What has the data told me about Θ?

What is my posterior belief PrΘ 𝜃 𝑋 = 𝑥 ?

PrΘ 𝜃 𝑋 = 𝑥 =
PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

Pr𝑋(𝑥)

The only logical way to 
update your beliefs is 
by using Bayes’s rule.

SECTION 8. BAYESIANISM



I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses.

I propose the probability model 𝑋 ∼ Bin(𝑛, Θ).

I don’t know Θ, so I’ll treat it as a random variable.
I shall assume Θ ∼ 𝑈[0,1] i.e. PrΘ 𝜃 = 1.

prior belief
PrΘ 𝜃

 +  
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

𝜃 𝜃

SECTION 8. BAYESIANISM



You are entitled to your own personal prior beliefs.
You have to invent them before you see the data.
They are entirely your choice.

prior belief
PrΘ 𝜃

 + 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥



The data you see will affect 
your posterior belief about the 
parameter.

prior belief
PrΘ 𝜃

 + 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

we can measure 
confidence by the 
width of posterior 
distribution



1. Invent a prior distribution and write out its 
likelihood, PrΘ(𝜃)

2. Apply the Bayes update to find the 
posterior distribution, i.e. the distribution of 
Θ 𝑋 = 𝑥

3. Report the distribution of (Θ|𝑋 = 𝑥), 
for example by plotting its likelihood 
PrΘ(𝜃|𝑋 = 𝑥)

0. Write out the likelihood of the dataset 
Pr𝑋(𝑥|Θ = 𝜃)

𝑋 ∼ Bin(𝑛, 𝜃) Pr𝑋 𝑥 Θ = 𝜃 =
𝑛
𝑥

𝜃𝑥 1 − 𝜃 𝑛−𝑥

Θ ∼ 𝑈[0,1] PrΘ 𝜃 = 1

PrΘ 𝜃 𝑋 = 𝑥 =
PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

Pr𝑋(𝑥)

= 𝜅 PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

= 𝜅′ 𝜃𝑥 1 − 𝜃 𝑛−𝑥

The constant 𝜅′ must be chosen so that this is a valid 
distribution i.e.  𝜃

𝜅′ 𝜃𝑥 1 − 𝜃 𝑛−𝑥 𝑑𝜃 = 1 

PrΘ(𝜃) PrΘ(𝜃|𝑋 = 𝑥)



PrΘ 𝜃 𝑋 = 𝑥 =
PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

Pr𝑋(𝑥)

= 𝜅 PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

= 𝜅′ 𝜃𝑥 1 − 𝜃 𝑛−𝑥

The constant 𝜅′ must be chosen so that this is a valid 
distribution i.e.  𝜃

𝜅′ 𝜃𝑥 1 − 𝜃 𝑛−𝑥 𝑑𝜃 = 1 

COMPUTATIONAL BAYESIAN METHODS

It’s useful to be able to generate samples from 
the posterior distribution (Θ|𝑋 = 𝑥).
For example, we could generate samples 𝜃1, … , 𝜃𝑛 and 
then plot a histogram of their values.

The maths version of 
Bayes’s rule isn’t 
any help for this.

This integral is usually impossible to solve. 
And even if we could solve it, how do we 
sample from this distribution?



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛


𝑖=1

𝑛

1𝑥𝑖∈𝐴

What’s the chance that a randomly thrown 
dart will hit the mystery object 𝐴?

1
2
3
4

# Let 𝑋 ∼ 𝑁(𝜇 = 1, 𝜎 = 3). What is ℙ 𝑋 > 5 ?
x = np.random.normal(loc=1, scale=3, size=10000)
i = (x > 5)
np.mean(i)

SECTION 6.1. COMPUTATIONAL METHODS



Expectation
For a real-valued random variable 𝑋

𝔼𝑋 = ൝
σ𝑥 𝑥 Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥
𝑥 Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 



Law of the Unconscious Statistician
For a random variable 𝑋 and a real-valued function ℎ

𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 



Law of the Unconscious Statistician
For a random variable 𝑋 and a real-valued function ℎ

𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 

≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖

where 𝑥1, … , 𝑥𝑛 is a sample drawn from 𝑋

Monte Carlo integration

𝔼ℎ 𝑋



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛


𝑖=1

𝑛

1𝑥𝑖∈𝐴



Monte Carlo integration

𝑎 𝑏

ℎ(𝑥) 

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈ 

𝑖=1

𝑛

ℎ 𝑥𝑖

𝑏 − 𝑎

𝑛

where 𝑥𝑖 is the midpoint of interval 𝑖

Trinity College integration

Let’s instead approximate this integral using Monte Carlo. Let 𝑋 ∼ 𝑈[𝑎, 𝑏].

By Monte Carlo,

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖  where 𝑥1, … , 𝑥𝑛 sampled from 𝑋

න
𝑥=𝑎

𝑏

ℎ 𝑥  Pr𝑋 𝑥  𝑑𝑥 = න
𝑥=𝑎

𝑏

ℎ 𝑥  
1

𝑏 − 𝑎
 𝑑𝑥

Thus,

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈
𝑏 − 𝑎

𝑛


𝑖=1

𝑛

ℎ(𝑥𝑖)



COMPUTATIONAL METHODS

❖ If we want 𝔼ℎ(𝑋) but the maths is too 
complicated, we can approximate it using 
𝑥1, … , 𝑥𝑛 sampled from 𝑋

❖ This formula for expectation also tells us 
how to estimate probabilities, since 
ℙ 𝑋 ∈ 𝐴 = 𝔼1𝑋∈𝐴

❖ For computational Bayes, we need 
something a bit fancier: weighted samples



0. Write out the likelihood of the dataset 
Pr𝑋(𝑥|Θ = 𝜃)

1. Invent a prior distribution for Θ and 
generate a sample 𝜃1, … , 𝜃𝑛  from it

2. Compute weights 𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one

3. Reason about (Θ|𝑋 = 𝑥) indirectly, using
𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

One way to do

SECTION 6.2. COMPUTATIONAL BAYES



Example

I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses. I 
propose the probability model 𝑋 ∼ Bin(𝑛, Θ). I 
don’t know Θ, so I’ll treat it as a random variable, 
Θ ∼ 𝑈[0,1].

Plot a histogram of the posterior distribution of Θ.

θsamp = np.random.uniform(0,1, size=1000)

Likelihood of the dataset:

Invent a prior distribution for Θ and 
generate a sample 𝜃1, … , 𝜃𝑛  from it:

Compute weights 𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one:

Reason about (Θ|𝑋 = 𝑥) indirectly, using
𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

𝑋 ∼ Bin(𝑛, 𝜃) Pr𝑋 𝑥 Θ = 𝜃 =
𝑛
𝑥

𝜃𝑥 1 − 𝜃 𝑛−𝑥

w = 4 * θsamp**1 * (1-θsamp)**3
w = w / np.sum(w)



Example

I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses. I 
propose the probability model 𝑋 ∼ Bin(𝑛, Θ). I 
don’t know Θ, so I’ll treat it as a random variable, 
Θ ∼ 𝑈[0,1].

Plot a histogram of the posterior distribution of Θ.

Reason about (Θ|𝑋 = 𝑥) indirectly, using
𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

plt.hist(θsamp, weights=w)



Prior distribution for Θ

Posterior distribution for Θ We could report the point with highest likelihood, 
the MAP or maximum a-posteriori estimate

We could report a 95% confidence interval [lo,hi] such that
 ℙ Θ < lo data = 2.5%
 ℙ Θ > hi data = 2.5%

2.5%
2.5%95%How should we report this 

distribution?

SECTION 8.3. BAYESIAN READOUTS



We could report a 95% confidence interval [lo,hi] such that
 ℙ Θ < lo data = 2.5%
 ℙ Θ > hi data = 2.5%

2.5%
2.5%95%

Via the computational Bayes estimates:

ℙ Θ < lo data ≈ 

𝑖

𝑤𝑖 1𝜃𝑖<lo

ℙ Θ > hi data ≈ 

𝑖

𝑤𝑖1𝜃𝑖>hi

How can we compute lo and hi?



prior belief
PrΘ 𝜃

 + 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

I estimate the probability of 
heads is 25%, and my confidence 
interval is [3%, 72%]

I estimate the probability of 
heads is 25%, and my confidence 
interval is [12%, 51%]



I proposed the probability model:   𝑌 ∼ 𝛼 + 𝛽 sin 2𝜋 𝑡 + 𝜙 + 𝛾𝑡 + 𝑁(0, 𝜎2)

SECTION 8.5. BAYESIAN PREDICTION

What will be the temperature in 𝑡∗ = Jan 2050?

I’ll fit the model using maximum likelihood, and report my estimated value

𝑃 = ො𝛼 + መ𝛽 sin 2𝜋 𝑡∗ + 𝜙 + ො𝛾𝑡∗

The actual observed temperature will actually have noise. I’ll report my estimated distribution
𝑌∗ ∼ 𝑁( 𝑃, ො𝜎2)

I’m not even certain about 𝑃, because I’m not certain about my parameter estimates. 

I should report my uncertainty about 𝑃 = 𝛼 + 𝛽 sin 2𝜋 𝑡∗ + 𝜙 + 𝛾𝑡∗.



I’m not even certain about 𝑃, because I’m not certain about my parameter estimates. 

I should report my uncertainty about 𝑃 = 𝛼 + 𝛽 sin 2𝜋 𝑡∗ + 𝜙 + 𝛾𝑡∗.

QUESTION. How should I compute and report my 
uncertainty about 𝑃?



I’m not even certain about 𝑃, because I’m not certain about my parameter estimates. 

I should report my uncertainty about 𝑃 = 𝛼 + 𝛽 sin 2𝜋 𝑡∗ + 𝜙 + 𝛾𝑡∗.

1. The fundamental tenet of Bayesianism is that we should represent our parameter uncertainty by 
treating our parameters as random variables.

2. The parameters I’m uncertain about are 𝜃 = (𝛼, 𝛽, 𝛾, 𝜙, 𝜎). I shall use a random variable Θ, 
taking values in ℝ5, to represent this uncertainty.

3. What distribution should I use for Θ? The Bayesianist view is that it’s entirely up to me what prior 
I choose to use, and that I must choose my prior without looking at the data. 
I might choose for example 𝛼 ∼ 𝑁(10,12)°C if I’m confident that 𝛼 should be around 10; 
I might choose 𝛼 ∼ 𝑁(10,82)°C if I’m uncertain.

4. For Computation Bayes, we first generate a large number of possible parameters 𝜃1, … , 𝜃𝑚 from 
the prior distribution, then we compute a weight 𝑤𝑖  for every 𝜃𝑖, 𝑖 ∈ 1, … , 𝑚

5. For every one of these parameter choices 𝜃𝑖, there’s a corresponding value for 𝑃, call them 
𝑝1, … , 𝑝𝑚

6. I thus have a collection of possible values for 𝑃, each with an associated weight. I can use these 
weights to find a confidence interval for 𝑃.

CONFIDENCE INTERVALS FOR PREDICTIONS



I’m not even certain about 𝑃, because I’m not certain about my parameter estimates. 

I should report my uncertainty about 𝑃 = 𝛼 + 𝛽 sin 2𝜋 𝑡∗ + 𝜙 + 𝛾𝑡∗.

At 𝑡∗ = Jan 2050, I get 
this confidence interval: P

At 𝑡∗ = Feb 2050, I get 
this confidence interval: P

At 𝑡∗ = Mar 2050, I get 
this confidence interval: P

At 𝑡∗ = Apr 2050, I get 
this confidence interval: P

I can show all my 
confidence intervals as a 
ribbon plot:

P

date



I’m not even certain about 𝑃, because I’m not certain about my parameter estimates. 

I should report my uncertainty about 𝑃 = 𝛼 + 𝛽 sin 2𝜋 𝑡∗ + 𝜙 + 𝛾𝑡∗.

1. The fundamental tenet of Bayesianism is that we should represent our parameter uncertainty by 
treating our parameters as random variables.

2. The parameters I’m uncertain about are 𝜃 = (𝛼, 𝛽, 𝛾, 𝜙, 𝜎). I shall use a random variable Θ, 
taking values in ℝ5, to represent this uncertainty.

3. What distribution should I use for Θ? The Bayesianist view is that it’s entirely up to me what prior 
I choose to use, and that I must choose my prior without looking at the data. 
I might choose for example 𝛼 ∼ 𝑁(10,12)°C if I’m confident that 𝛼 should be around 10; 
I might choose 𝛼 ∼ 𝑁(10,82)°C if I’m uncertain.

4. For Computation Bayes, we first generate a large number of possible parameters 𝜃1, … , 𝜃𝑚 from 
the prior distribution, then we compute a weight 𝑤𝑖  for every 𝜃𝑖, 𝑖 ∈ 1, … , 𝑚

5. For every one of these parameter choices 𝜃𝑖, there’s a corresponding value for 𝑃, call them 
𝑝1, … , 𝑝𝑚

6. I thus have a collection of possible values for 𝑃, each with an associated weight. I can use these 
weights to find a confidence interval for 𝑃.

CONFIDENCE INTERVALS FOR PREDICTIONSTIP. Use all the unknowns when you apply 
Bayes’s rule, even if you’re only interested 
in some of them.

TIP. In large datasets, you can run into underflow 
problems when you compute the likelihood and when 
you rescale weights. See the log-sum-exp trick 
(exercise 8.2.4 in notes).



This is a 40mph speed 
limit, with probability 98%.

Neural networks tell us 
probabilities, but they don’t 
tell us their confidence.

No one has worked out how 
to extract confidences from 
neural networks. But, in 
Bayesian statistics, we do 
know how to …

QUESTION. Can we just take the 
parameters of a neural network to be 
random, and use Bayesian methods? 
Surely that would give us confidence 
intervals for the probability!



It may take very large 𝑛
to get a good approximation

Example: 𝑋 ∼ 𝑈[0,1], spiky ℎ function

Let 𝑋 be a random variable, let ℎ be a real-valued function. Then

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖  where 𝑥1, … , 𝑥𝑛 is a sample drawn from 𝑋

SECTION 6.3. IMPORTANCE SAMPLING



Let 𝑋 be a random variable, let ℎ be a real-valued function. Then

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖  where 𝑥1, … , 𝑥𝑛 is a sample drawn from 𝑋

SECTION 6.3. IMPORTANCE SAMPLING



Let 𝑋 be a random variable, let ℎ be a real-valued function. Then

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖  where 𝑥1, … , 𝑥𝑛 is a sample drawn from 𝑋

Let 𝑋 be a random variable, let ℎ be a real-valued function, and let ෨𝑋 be any distribution. Then

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖

Pr𝑋(𝑥𝑖)

Pr ෨𝑋(𝑥𝑖)
 where 𝑥1, … , 𝑥𝑛 is a sample drawn from ෨𝑋

Importance sampling

SECTION 6.3. IMPORTANCE SAMPLING

This works for any sampling distribution ෨𝑋. 
But it will only be useful if we choose a sensible sampling distribution!



Let 𝑋 be a random variable, let ℎ be a real-valued function, and let ෨𝑋 be any distribution. Then

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖

Pr𝑋(𝑥𝑖)

Pr ෨𝑋(𝑥𝑖)
 where 𝑥1, … , 𝑥𝑛 is a sample drawn from ෨𝑋

Importance sampling



Let 𝑋 be a random variable, let ℎ be a real-valued function, and let ෨𝑋 be any distribution. Then

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖

Pr𝑋(𝑥𝑖)

Pr ෨𝑋(𝑥𝑖)
 where 𝑥1, … , 𝑥𝑛 is a sample drawn from ෨𝑋

Importance sampling

Computational Bayes is based on importance sampling. It’s 
based on using samples from the prior distribution (Θ) to 
get estimates for things derived from the posterior 
distribution (Θ|data).

Correction factor:
Pr Θ data 𝜃𝑖

PrΘ(𝜃𝑖)
=

𝜅 PrΘ 𝜃𝑖  Pr(data|𝜃𝑖)

PrΘ(𝜃𝑖)
= 𝜅 Pr(data|𝜃𝑖) by Bayes’s rule

To see how to estimate 𝜅, see notes section 6.2.
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