
5 with prob 45%
3 with prob 41%
6 with prob 45%

…

PROBABILITY MODELLER’S VIEW

𝜃

features
𝜃

CONVENTIONAL (ALGORITHMIC) VIEW OF ML

evaluation metric:
loss function e.g. 𝐿 𝑦, ො𝑦 = 1 ො𝑦≠𝑦

evaluation metric:
log likelihood i.e. log Pr𝑌(𝑦)

5
predicted

label ො𝑦

random predicted label 𝑌

ground truth:
Let 𝑦 be the actual observed label in
the dataset

PROBABILITY MODELLER’S VIEW

𝜃

𝜃

CONVENTIONAL (ALGORITHMIC) VIEW OF MODELLING

evaluation metric:
loss function e.g. 𝐿 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

evaluation metric:
log likelihood i.e. log Pr𝑌(𝑦; 𝑡)

random variable for
temperature 𝑌
at timepoint 𝑡

ground truth:
Let 𝑦 be the actual observed
temperature at time 𝑡

timepoint 𝑡

predicted
temperature ො𝑦
at timepoint 𝑡

timepoint 𝑡

𝜃 random variable for
temperature 𝑌
at timepoint 𝑡

timepoint 𝑡

Our job is to invent a
probability model, specifying
the distribution of
temperature at a given
timepoint.

Example (regression)
Given a labelled dataset consisting of
pairs 𝑥𝑖 , 𝑦𝑖 of real numbers, fit the

model 𝑌𝑖 ∼ 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2 + 𝑁(0, 𝜎2)

Model for a single observation:

Likelihood of a single observation:

Log likelihood of the dataset:

Optimize over the unknown parameters:

𝑌 ∼ 𝛼 + 𝛽𝑥 + 𝛾𝑥2 + 𝑁 0, 𝜎2

∼ 𝑁(𝛼 + 𝛽𝑥 + 𝛾𝑥2, 𝜎2)

Pr𝑌 𝑦 ; 𝑥, 𝛼, 𝛽, 𝛾, 𝜎 =
1

2𝜋𝜎2
𝑒−(𝑦− 𝛼+𝛽𝑥+𝛾𝑥2)/2𝜎2

log Pr 𝑦1, … 𝑦𝑛; 𝑥1, … , 𝑥𝑛, 𝛼, 𝛽, 𝛾, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2

where ො𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2

def logpr(y, x, α,β,γ,σ):
 pred = α + β*x + γ*(x**2)
 return - 0.5*np.log(2*𝜋*𝜎2) – (y – pred)**2 / (2*𝜎2)

x,y = …
def f(θ):
 return - np.sum(logpr(y, x, θ[0], θ[1], θ[2], θ[3]))

scipy.optimize.fmin(f, [3,1,0.1,3])

1 class RWiggle(nn.Module):

 2 def __init__(self):

 3 super().__init__()

 4 self.μ = ...

 5 self.𝜎 = nn.Parameter(torch.tensor(1.0))

 # compute log Pr(y;x)
 6 def forward(self, y, x):

 7 return - 0.5*torch.log(2*𝜋*𝜎2) - torch.pow(y - self.μ(x), 2) / (2*𝜎2)

 8 x,y = ...
 9 mymodel = RWiggle()
10

11 optimizer = optim.Adam(mymodel.parameters())
12 for epoch in range(10000):
13 optimizer.zero_grad()
14 loglik = torch.sum(mymodel(y, x))
15 (-loglik).backward()
16 optimizer.step()

Example (regression)
Given a labelled dataset consisting of
pairs 𝑥𝑖 , 𝑦𝑖 of real numbers, fit the
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2)

The question implies that 𝜇𝜃(⋅) is some

given function with unknown parameter 𝜃.

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛; 𝑥1, … , 𝑥𝑛, 𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

self.μ = nn.Sequential(
 nn.Linear(1,4), nn.LeakyReLU(),
 nn.Linear(4,20), nn.LeakyReLU(),
 nn.Linear(20,20), nn.LeakyReLU(),
 nn.Linear(20,1))

× 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4

element-wise nonlinear function

matrix multiplication

https://xkcd.com/1838

https://xkcd.com/1838
https://creativecommons.org/licenses/by-nc/2.5/

Example (regression)
Given a labelled dataset consisting of
pairs 𝑥𝑖 , 𝑦𝑖 of real numbers, fit the
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2)

The question implies that 𝜇𝜃(⋅) is some

given function with unknown parameter 𝜃.

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛; 𝑥1, … , 𝑥𝑛, 𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

max
𝜃,𝜎

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2 ෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

= max
𝜎

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2 min
𝜃

෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

= max
𝜎

max
𝜃

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2 ෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

“First, find θ to minimize
prediction loss. Next, pick σ.”

▪ Any useful “minimize prediction
loss” problem can be restated as a
maximum likelihood problem

▪ Supervised ML is fitting a
probability model

▪ Probability modelling is a more
powerful way to think about ML

Example (classification)
The MNIST dataset consists of pairs
𝑥𝑖 , 𝑦𝑖 , where each record consists of

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict
the label of a given input image, and fit it.

some arbitrary
function,

parameters 𝜃

What sort of probability
model might we use for
the response 𝑌?input 𝑥

Example (classification)
The MNIST dataset consists of pairs
𝑥𝑖 , 𝑦𝑖 , where each record consists of

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict
the label of a given input image, and fit it.

some arbitrary
function,

parameters 𝜃

input 𝑥

Ԧ𝑝(𝑥) = [𝑝0, … , 𝑝9] 𝑌 ∼ Cat(Ԧ𝑝(𝑥))

How can we make sure
that Ԧ𝑝 is a valid
probability vector?

(We need 𝑝𝑖 ∈ [0,1] for each 𝑖,
and Σ𝑖𝑝𝑖 = 1.)

Example (classification)
The MNIST dataset consists of pairs
𝑥𝑖 , 𝑦𝑖 , where each record consists of

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict
the label of a given input image, and fit it.

some arbitrary
function,

parameters 𝜃

input 𝑥

Ԧ𝑠 ∈ ℝ10 𝑌 ∼ Cat(Ԧ𝑝)Ԧ𝑝 = softmax(Ԧ𝑠)

How should we fit the
function parameters 𝜃?

Softmax function:

𝑝𝑘 =
𝑒𝑠𝑘

Σℓ=0
9 𝑒𝑠ℓ

Example (classification)
The MNIST dataset consists of pairs
𝑥𝑖 , 𝑦𝑖 , where each record consists of

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict
the label of a given input image, and fit it.

some arbitrary
function,

parameters 𝜃

input 𝑥

Ԧ𝑠 ∈ ℝ10 𝑌 ∼ Cat(Ԧ𝑝)Ԧ𝑝 = softmax(Ԧ𝑠)

Log likelihood of the dataset:

log Pr 𝑦1, … , 𝑦𝑛 = ෍

𝑖=1

𝑛

log 𝑝𝑦𝑖
(𝑥𝑖; 𝜃)

Model for a single datapoint:

Likelihood of a single datapoint 𝑦:

Pr𝑌 𝑦; 𝑥, 𝜃 = Ԧ𝑝 𝑥; 𝜃 𝑦 = 𝑝𝑦(𝑥; 𝜃)

where Ԧ𝑝 𝑥; 𝜃 = softmax(Ԧ𝑠 𝑥; 𝜃)

= ෍

𝑖=1

𝑛

෍

𝑘=

9

1𝑦𝑖=𝑘 log 𝑝𝑘(𝑥𝑖; 𝜃)

This is called softmax
cross-entropy, and it’s the
standard loss function for
classification.

some arbitrary
function,

parameters 𝜃

input 𝑥

Ԧ𝑠 ∈ ℝ10 𝑌 ∼ Cat(Ԧ𝑝)Ԧ𝑝 = softmax(Ԧ𝑠)

HOMEWORK

▪ Make sure you can run this
code

▪ For each digit {0,1,…,9},
select some images where
the label is very likely, and
some where it is very
unlikely

This is machine learning, too!

CONVENTIONAL VIEW OF MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃(𝑥𝑖)

Training goal: Invent a loss function and
 learn 𝜃 to minimize the prediction loss

෍
𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖)

Evaluation: prediction loss on holdout data

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

Evaluation: ???

Section 3.4. Latent-variable generative models

random
noise 𝑍 𝑋 = 𝑓𝜃(𝑍)

edge weights 𝜃
The output 𝑋 is a random
variable. It therefore has
a likelihood function
Pr𝑋(𝑥).QUESTION. How could we

even use neural networks to
generate novel images?
What should the input be?

Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

Evaluation: ???

random
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)

edge weights 𝜃

fit the probability model
Pr𝑋 𝑥 ; 𝜃

Learn 𝜃 to maximize the
log likelihood of the dataset

෍
𝑖
log Pr𝑋(𝑥𝑖 ; 𝜃)

log likelihood of holdout dataset

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Fit a probability model
Pr𝑌(𝑦𝑖 ; 𝑓𝜃(𝑥𝑖))

Training goal: Learn 𝜃 to maximize the
 log likelihood of the dataset

෍
𝑖
log Pr𝑌(𝑦𝑖 ; 𝑓𝜃(𝑥𝑖))

Evaluation: log likelihood of holdout data

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning

𝑌

Exercise (generative modelling).
Train a generative model for a collection of points 𝑥(1), … , 𝑥(𝑛) ∈
ℝ2. The model should have the form

𝑋1

𝑋2
∼ 𝑓 𝑍 +

𝑁(0, 𝜎2)

𝑁(0, 𝜎2)

where 𝑍 ∼ 𝑈[0,1] and 𝑓: 0,1 → ℝ2 is a neural network to be
trained.

the path 𝑓(𝑧) the likelihood
Pr𝑋1,𝑋2 (𝑥1, 𝑥2)

Model for a single observation

Likelihood for a single observation

Log likelihood of the dataset

Maximize over unknown parameters

𝑍 ∼ 𝑈 0,1
𝑋1 ∼ 𝑓1 𝑍 + 𝑁 0, 𝜎2

𝑋2 ∼ 𝑓2 𝑍 + 𝑁(0, 𝜎2)

Pr 𝑥1, 𝑥2 = න
𝑧=0

1

Pr 𝑥1, 𝑥2 𝑍 = 𝑧 Pr𝑍 𝑧 𝑑𝑧

Pr 𝑥1 𝑍 = 𝑧 Pr(𝑥2|𝑍 = 𝑧)

Pr 𝑥𝑖 𝑍 = 𝑧 =
1

2𝜋𝜎2
𝑒 𝑥𝑖−𝑓𝑖 𝑧

2
/2𝜎2

Pr𝑍 𝑧 = 1

෍

𝑖=1

𝑛

log Pr(𝑥1
(𝑖)

, 𝑥2
(𝑖)

)

(We’ll approximate the integral over 𝑧 by a sum.)

𝜃 random variable for
response 𝑌
at input 𝑥

input 𝑥
(e.g.
timepoint)

Our job is to invent a
probability model, specifying
the distribution of the
response at a given input.

What are we really after,
when we fit a probability model?

What’s a good model?

How can we compare models?

SECTION 4

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

Question
Which of these two models fits the dataset
better?

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

dataset {𝑥1, … , 𝑥𝑛}

Question
Which of these two models fits the dataset better?

Model A:
IID sample from
𝑋 ∼ 𝑁(0.9, 0.032)

Model B:
IID sample from
𝑋 ∼ 𝑁(0.1, 0.62)

dataset {𝑥1, … , 𝑥𝑛}

This model is extraordinarily unlikely to generate the
dataset, so it’s a bad model.

This model might possibly have generated the
data (but it’s still not great).

These points
have
likelihood ≈ 0

log lik (dataset) = -570.5

log lik (dataset) = -28.0

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

Question
Which of these two models fits the dataset
better?

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

very unlikely to have
been generated by
the model

log lik (dataset) = -64.6

log lik (dataset) = -379.3

This is the better model.

❖ The goal of modelling is to find
models that fit the dataset well

❖ A good metric for model fit is:
likelihood of the dataset,
according to the model

❖ This applies equally to both
supervised and generative
modelling

In NLP, log likelihood is called
“perplexity”

In sports betting, log likelihood is
called “ignorance score”

Monthly average temperatures in Cambridge, UK

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

What’s a good model for this dataset?

Climate is stable?

Temp 𝑡 ∼ 𝑎 + 𝑏 sin 2𝜋 𝑡 + 𝜙 + 𝑁(0, 𝜎2)

Temperatures are increasing?

Temperatures are increasing,
and the increase is
accelerating?

The extremes are
getting worse?

You’ve got to have models in your head. And you’ve got
to array your experience – both vicarious and direct –
on this latticework of models.

You may have noticed students who just try to
remember and pound back what is remembered. Well,
they fail in school and in life. You’ve got to hang
experience on a latticework of models in your head.

Charlie Munger, A lesson on elementary, worldly
wisdom as it relates to investment management &
business.

Example 2.1.1
The Iris dataset has 50 records of iris
measurements, from three species.

How does Petal.Length depend on
Sepal.Length?

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated),
Petal.Length ∼ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2 + 𝑁(0, 𝜎2)

Example 2.1.1
The Iris dataset has 50 records of iris
measurements, from three species.

How does Petal.Length depend on
Sepal.Length?

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated),
Petal.Length ∼ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2 + 𝑁(0, 𝜎2)

response
vector

PL1

PL2

⋮
PL𝑛

∼ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

+

𝑁(0, 𝜎2)

𝑁(0, 𝜎2)
⋮

𝑁(0, 𝜎2)

unknown parameters
to be estimated

feature
vectors

PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

.

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

2.1. LINEAR MODELS

Models of this form are called linear models
(because they’re based on linear algebra).

They are flexible, and very fast to optimize.

We’ll assume Gaussian errors. Thus, maximum
likelihood estimation is the same as minimizing
squared prediction loss. Linear modelling is also
called “least squares model-fitting”.

1 iris = pandas.read_csv(...)

2
3
4
5

one, SL, PL = np.ones(len(iris)), iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(np.column_stack([one, SL, SL**2]), PL)
(α,β,γ) = model.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = model.predict(np.column_stack([one, newSL, newSL**2]))

Making predictions / getting fitted values from the model

Fitting the model

PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

.

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

Feature design

How do we design features, so that
linear models answer the questions
we want answered?

ONE-HOT CODING

1
2
3
4
5
6
7

species, SL = iris['Species'], iris['Sepal.Length']
PL = iris['Petal.Length']
species_levels = ['setosa','versicolor','virginica']
i1,i2,i3 = [np.where(species==k,1,0) for k in species_levels]
X = np.column_stack([i1, i2, i3, i1*SL, i2*SL, i3*SL])
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(X, PL)

Linear model form
(linear combination of features, weighted by parameters)

PL1

PL2

PL3

PL4

PL5

⋮

0
1

1

0

0

⋮

0
0

0

0

1

⋮

SL1

0

0

SL4

0

⋮

0
SL2

SL3

0

0

⋮

0
0

0

0

SL5

⋮

+𝛽vers+𝛽virg+𝛽seto≈ 𝛼seto +𝛼virg +𝛼vers

seto

virg

virg

seto

vers

1
0

0

1

0

⋮

1
0

⋮

1

0

⋮

1
0

⋮

1

0

⋮

1
0

⋮

1

0

⋮

1
0

⋮

1

0

⋮

1
0

⋮

1

0

⋮

1
0

⋮

1

0

⋮

NON-LINEAR RESPONSE

Petal.Length ≈
zinger𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

Petal.Length ≈

𝑧𝑖𝑛𝑔𝑒𝑟𝛽0 + ෍
𝑘=1

𝐾

𝛽𝑘 Sepal.Length 𝑘

NON-LINEAR RESPONSE via one-hot coding

PL ≈ 𝛼41SL<4 + 𝛼51⌊SL ⌋=5 + 𝛼61⌊SL ⌋=6 + 𝛼71SL≥7

e.g. for an observation with SL=5.3, we predict PL ≈ 𝛼5

e.g. for an observation with SL=3.1, we predict PL ≈ 𝛼4

COMPARING GROUPS
Measurements for condition 𝐴: a = [a1,a2,…,am]
Measurements for condition 𝐵: b = [b1,b2,…,bn]

Can we use a linear model to compare 𝐴 and 𝐵?

MODEL DIAGNOSIS

After we fit a model, how do we learn if it’s a good fit?

1. Evaluate its log likelihood

2. Hypothesis testing [next week]

3. Eyeball it!

Find the prediction error for
each datapoint, and plot it
every way we can think of

Find the log likelihood of each
datapoint, and showcase
some datapoints with very
low or very high likelihood

temp = 𝛼 + 𝛽 sin 2𝜋 t + 𝜙 + ε

If we hadn’t thought to include climate change in our temperature model ...

ε

temp = 𝛼′ + 𝛽′ sin 2𝜋 t + 𝜙 + 𝛾t + ε

This suggests a revised model ...

temp ≈ 𝛼 + 𝛽 sin 2𝜋 t + 𝜙

quadratic

cubic

polynomial
degree 10

𝑦 ≈ 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽10𝑥10

𝑥

𝑦

Q. Should we just keep adding more
and more features to our model?

A. No. If we did, we’d overfit.

	3.1
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	3.4
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	4.1
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

	2.1
	Slide 31: Monthly average temperatures in Cambridge, UK
	Slide 32
	Slide 33
	Slide 34
	Slide 35: 2.1. LINEAR MODELS
	Slide 36
	Slide 37
	Slide 38: ONE-HOT CODING
	Slide 39: NON-LINEAR RESPONSE
	Slide 40: NON-LINEAR RESPONSE via one-hot coding
	Slide 41: COMPARING GROUPS
	Slide 42: MODEL DIAGNOSIS
	Slide 43
	Slide 44

