
5 with prob 45%
3 with prob 41%
6 with prob 45%

…

PROBABILITY MODELLER’S VIEW

𝜃

features
𝜃

CONVENTIONAL (ALGORITHMIC) VIEW OF ML

evaluation metric:
loss function e.g. 𝐿 𝑦, ො𝑦 = 1 ො𝑦≠𝑦

evaluation metric:
log likelihood i.e. log Pr𝑌(𝑦)

5
predicted 

label ො𝑦

random predicted label 𝑌

ground truth:
Let 𝑦 be the actual observed label in 
the dataset



PROBABILITY MODELLER’S VIEW

𝜃

𝜃

CONVENTIONAL (ALGORITHMIC) VIEW OF MODELLING

evaluation metric:
loss function e.g. 𝐿 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

evaluation metric:
log likelihood i.e. log Pr𝑌(𝑦; 𝑡)

random variable for 
temperature 𝑌 
at timepoint 𝑡

ground truth:
Let 𝑦 be the actual observed 
temperature at time 𝑡

timepoint 𝑡

predicted 
temperature ො𝑦 
at timepoint 𝑡

timepoint 𝑡



𝜃 random variable for 
temperature 𝑌 
at timepoint 𝑡

timepoint 𝑡

Our job is to invent a 
probability model, specifying 
the distribution of 
temperature at a given 
timepoint.



Example (regression)
Given a labelled dataset consisting of 
pairs 𝑥𝑖 , 𝑦𝑖  of real numbers, fit the 

model 𝑌𝑖 ∼ 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2 + 𝑁(0, 𝜎2)

Model for a single observation:

Likelihood of a single observation:

Log likelihood of the dataset:

Optimize over the unknown parameters:

𝑌 ∼ 𝛼 + 𝛽𝑥 + 𝛾𝑥2 + 𝑁 0, 𝜎2

∼ 𝑁(𝛼 + 𝛽𝑥 + 𝛾𝑥2, 𝜎2)

Pr𝑌 𝑦 ; 𝑥, 𝛼, 𝛽, 𝛾, 𝜎 =
1

2𝜋𝜎2
𝑒−(𝑦− 𝛼+𝛽𝑥+𝛾𝑥2 )/2𝜎2

log Pr 𝑦1, … 𝑦𝑛; 𝑥1, … , 𝑥𝑛, 𝛼, 𝛽, 𝛾, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2

where ො𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2

def logpr(y, x, α,β,γ,σ):
    pred = α + β*x + γ*(x**2)
    return - 0.5*np.log(2*𝜋*𝜎2) – (y – pred)**2 / (2*𝜎2)

x,y = …
def f(θ):
    return - np.sum(logpr(y, x, θ[0], θ[1], θ[2], θ[3]))

scipy.optimize.fmin(f, [3,1,0.1,3])



1 class RWiggle(nn.Module):

 2 def __init__(self):

 3 super().__init__()

 4 self.μ = ...

 5 self.𝜎 = nn.Parameter(torch.tensor(1.0))

       # compute log Pr(y;x)
 6 def forward(self, y, x):

 7 return - 0.5*torch.log(2*𝜋*𝜎2) - torch.pow(y - self.μ(x), 2) / (2*𝜎2)

 8  x,y = ...
 9  mymodel = RWiggle()
10

11  optimizer = optim.Adam(mymodel.parameters())
12  for epoch in range(10000):
13      optimizer.zero_grad()
14      loglik = torch.sum(mymodel(y, x))
15      (-loglik).backward()
16      optimizer.step()

Example (regression)
Given a labelled dataset consisting of 
pairs 𝑥𝑖 , 𝑦𝑖  of real numbers, fit the 
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2)

The question implies that 𝜇𝜃(⋅) is some 

given function with unknown parameter 𝜃.

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛; 𝑥1, … , 𝑥𝑛, 𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:



𝑥 𝜇𝜃 𝑥

edge weights 𝜃

self.μ = nn.Sequential(
    nn.Linear(1,4), nn.LeakyReLU(),
    nn.Linear(4,20), nn.LeakyReLU(),
    nn.Linear(20,20), nn.LeakyReLU(),
    nn.Linear(20,1)  )

× 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4

element-wise nonlinear function

matrix multiplication



https://xkcd.com/1838

https://xkcd.com/1838
https://creativecommons.org/licenses/by-nc/2.5/


Example (regression)
Given a labelled dataset consisting of 
pairs 𝑥𝑖 , 𝑦𝑖  of real numbers, fit the 
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2)

The question implies that 𝜇𝜃(⋅) is some 

given function with unknown parameter 𝜃.

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛; 𝑥1, … , 𝑥𝑛, 𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

max
𝜃,𝜎

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2 ෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

= max
𝜎

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2 min
𝜃

෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

= max
𝜎

max
𝜃

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2 ෍

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

“First, find θ to minimize 
prediction loss. Next, pick σ.”



▪ Any useful “minimize prediction 
loss” problem can be restated as a 
maximum likelihood problem

▪ Supervised ML is fitting a 
probability model

▪ Probability modelling is a more 
powerful way to think about ML



Example (classification)
The MNIST dataset consists of pairs 
𝑥𝑖 , 𝑦𝑖 , where each record consists of 

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten 
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict 
the label of a given input image, and fit it.

some arbitrary 
function,

parameters 𝜃

What sort of probability 
model might we use for 
the response 𝑌?input 𝑥



Example (classification)
The MNIST dataset consists of pairs 
𝑥𝑖 , 𝑦𝑖 , where each record consists of 

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten 
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict 
the label of a given input image, and fit it.

some arbitrary 
function,

parameters 𝜃

input 𝑥

Ԧ𝑝(𝑥) = [𝑝0, … , 𝑝9] 𝑌 ∼ Cat( Ԧ𝑝(𝑥))

How can we make sure 
that Ԧ𝑝 is a valid 
probability vector?

(We need 𝑝𝑖 ∈ [0,1] for each 𝑖, 
and Σ𝑖𝑝𝑖 = 1.)



Example (classification)
The MNIST dataset consists of pairs 
𝑥𝑖 , 𝑦𝑖 , where each record consists of 

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten 
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict 
the label of a given input image, and fit it.

some arbitrary 
function,

parameters 𝜃

input 𝑥

Ԧ𝑠 ∈ ℝ10 𝑌 ∼ Cat( Ԧ𝑝)Ԧ𝑝 = softmax( Ԧ𝑠)

How should we fit the 
function parameters 𝜃?

Softmax function:

𝑝𝑘 =
𝑒𝑠𝑘

Σℓ=0
9 𝑒𝑠ℓ



Example (classification)
The MNIST dataset consists of pairs 
𝑥𝑖 , 𝑦𝑖 , where each record consists of 

𝑥𝑖 ∈ ℝ28×28 an image of a handwritten 
digit and 𝑦𝑖 ∈ {0,1, … , 9} is its label.

Devise a probabilistic model to predict 
the label of a given input image, and fit it.

some arbitrary 
function,

parameters 𝜃

input 𝑥

Ԧ𝑠 ∈ ℝ10 𝑌 ∼ Cat( Ԧ𝑝)Ԧ𝑝 = softmax( Ԧ𝑠)

Log likelihood of the dataset:

log Pr 𝑦1, … , 𝑦𝑛 = ෍

𝑖=1

𝑛

log 𝑝𝑦𝑖
(𝑥𝑖; 𝜃)

Model for a single datapoint:

Likelihood of a single datapoint 𝑦:

Pr𝑌 𝑦; 𝑥, 𝜃 = Ԧ𝑝 𝑥; 𝜃 𝑦 = 𝑝𝑦(𝑥; 𝜃)

where Ԧ𝑝 𝑥; 𝜃 = softmax( Ԧ𝑠 𝑥; 𝜃 )

= ෍

𝑖=1

𝑛

෍

𝑘=

9

1𝑦𝑖=𝑘 log 𝑝𝑘(𝑥𝑖; 𝜃)

This is called softmax 
cross-entropy, and it’s the 
standard loss function for 
classification.



some arbitrary 
function,

parameters 𝜃

input 𝑥

Ԧ𝑠 ∈ ℝ10 𝑌 ∼ Cat( Ԧ𝑝)Ԧ𝑝 = softmax( Ԧ𝑠)

HOMEWORK

▪ Make sure you can run this 
code

▪ For each digit {0,1,…,9}, 
select some images where 
the label is very likely, and 
some where it is very 
unlikely



This is machine learning, too!



CONVENTIONAL VIEW OF MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃(𝑥𝑖)

Training goal: Invent a loss function and 
 learn 𝜃 to minimize the prediction loss

෍
𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖 )

Evaluation: prediction loss on holdout data

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

Evaluation: ???



Section 3.4. Latent-variable generative models

random 
noise 𝑍 𝑋 = 𝑓𝜃(𝑍)

edge weights 𝜃
The output 𝑋 is a random 
variable. It therefore has 
a likelihood function 
Pr𝑋(𝑥).QUESTION. How could we 

even use neural networks to 
generate novel images? 
What should the input be?



Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

Evaluation: ???

random 
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)

edge weights 𝜃

fit the probability model
Pr𝑋 𝑥 ; 𝜃

Learn 𝜃 to maximize the 
log likelihood of the dataset

෍
𝑖
log Pr𝑋(𝑥𝑖  ; 𝜃) 

log likelihood of holdout dataset

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Fit a probability model
Pr𝑌(𝑦𝑖  ; 𝑓𝜃(𝑥𝑖)) 

Training goal: Learn 𝜃 to maximize the 
 log likelihood of the dataset

෍
𝑖
log Pr𝑌(𝑦𝑖  ;  𝑓𝜃(𝑥𝑖))

Evaluation: log likelihood of holdout data

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning

𝑌



Exercise (generative modelling).
Train a generative model for a collection of points 𝑥(1), … , 𝑥(𝑛)  ∈
ℝ2. The model should have the form

𝑋1

𝑋2
∼ 𝑓 𝑍 +

𝑁(0, 𝜎2)

𝑁(0, 𝜎2)

where 𝑍 ∼ 𝑈[0,1] and 𝑓: 0,1 → ℝ2 is a neural network to be 
trained.

the path 𝑓(𝑧) the likelihood 
Pr𝑋1,𝑋2 (𝑥1, 𝑥2)

Model for a single observation

Likelihood for a single observation

Log likelihood of the dataset

Maximize over unknown parameters

𝑍 ∼ 𝑈 0,1
𝑋1 ∼ 𝑓1 𝑍 + 𝑁 0, 𝜎2

𝑋2 ∼ 𝑓2 𝑍 + 𝑁(0, 𝜎2)

Pr 𝑥1, 𝑥2 = න
𝑧=0

1

Pr 𝑥1, 𝑥2 𝑍 = 𝑧  Pr𝑍 𝑧  𝑑𝑧

Pr 𝑥1 𝑍 = 𝑧  Pr(𝑥2|𝑍 = 𝑧)

Pr 𝑥𝑖 𝑍 = 𝑧 =
1

2𝜋𝜎2
𝑒 𝑥𝑖−𝑓𝑖 𝑧

2
/2𝜎2

Pr𝑍 𝑧 = 1

෍

𝑖=1

𝑛

log Pr(𝑥1
(𝑖)

, 𝑥2
(𝑖)

)

(We’ll approximate the integral over 𝑧 by a sum.)



𝜃 random variable for 
response 𝑌 
at input 𝑥

input 𝑥 
(e.g. 
timepoint)

Our job is to invent a 
probability model, specifying 
the distribution of the 
response at a given input.



What are we really after, 
when we fit a probability model?

What’s a good model? 

How can we compare models?

SECTION 4



dataset of (𝑥𝑖 , 𝑦𝑖) pairs



𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

Question
Which of these two models fits the dataset 
better?

dataset of (𝑥𝑖 , 𝑦𝑖) pairs



dataset {𝑥1, … , 𝑥𝑛}



Question
Which of these two models fits the dataset better?

Model A:
IID sample from
𝑋 ∼ 𝑁(0.9, 0.032)

Model B:
IID sample from
𝑋 ∼ 𝑁(0.1, 0.62)

dataset {𝑥1, … , 𝑥𝑛}

This model is extraordinarily unlikely to generate the 
dataset, so it’s a bad model.

This model might possibly have generated the 
data (but it’s still not great).

These points 
have 
likelihood ≈ 0 

log lik (dataset) = -570.5

log lik (dataset) = -28.0



𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

Question
Which of these two models fits the dataset 
better?



𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

very unlikely to have 
been generated by 
the model

log lik (dataset) = -64.6

log lik (dataset) = -379.3

This is the better model.



❖ The goal of modelling is to find 
models that fit the dataset well

❖ A good metric for model fit is: 
likelihood of the dataset, 
according to the model

❖ This applies equally to both 
supervised and generative 
modelling

In NLP, log likelihood is called 
“perplexity”

In sports betting, log likelihood is 
called “ignorance score”







Monthly average temperatures in Cambridge, UK

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

What’s a good model for this dataset?

Climate is stable?

Temp 𝑡 ∼ 𝑎 + 𝑏 sin 2𝜋 𝑡 + 𝜙 + 𝑁(0, 𝜎2)

Temperatures are increasing?

Temperatures are increasing, 
and the increase is 
accelerating?

The extremes are 
getting worse?



You’ve got to have models in your head. And you’ve got 
to array your experience – both vicarious and direct – 
on this latticework of models.

You may have noticed students who just try to 
remember and pound back what is remembered. Well, 
they fail in school and in life. You’ve got to hang 
experience on a latticework of models in your head.

Charlie Munger, A lesson on elementary, worldly 
wisdom as it relates to investment management & 
business.



Example 2.1.1
The Iris dataset has 50 records of iris 
measurements, from three species.

How does Petal.Length depend on 
Sepal.Length? 

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated), 
Petal.Length ∼ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2 + 𝑁(0, 𝜎2)



Example 2.1.1
The Iris dataset has 50 records of iris 
measurements, from three species.

How does Petal.Length depend on 
Sepal.Length? 

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated), 
Petal.Length ∼ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2 + 𝑁(0, 𝜎2)

response
vector

PL1

PL2

⋮
PL𝑛

∼ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

+

𝑁(0, 𝜎2)

𝑁(0, 𝜎2)
⋮

𝑁(0, 𝜎2)

unknown parameters 
to be estimated

feature
vectors



PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

.

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

2.1. LINEAR MODELS

Models of this form are called linear models
(because they’re based on linear algebra).

They are flexible, and very fast to optimize.

We’ll assume Gaussian errors. Thus, maximum 
likelihood estimation is the same as minimizing 
squared prediction loss. Linear modelling is also 
called “least squares model-fitting”.



1 iris = pandas.read_csv(...)

2
3
4
5

one, SL, PL = np.ones(len(iris)), iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(np.column_stack([one, SL, SL**2]), PL)
(α,β,γ) = model.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = model.predict(np.column_stack([one, newSL, newSL**2]))

Making predictions / getting fitted values from the model

Fitting the model

PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

.

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2



Feature design

How do we design features, so that 
linear models answer the questions 
we want answered?



ONE-HOT CODING

1
2
3
4
5
6
7

species, SL = iris['Species'], iris['Sepal.Length']
PL = iris['Petal.Length']
species_levels = ['setosa','versicolor','virginica']
i1,i2,i3 = [np.where(species==k,1,0) for k in species_levels]
X = np.column_stack([i1, i2, i3, i1*SL, i2*SL, i3*SL])
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(X, PL)

Linear model form
(linear combination of features, weighted by parameters)
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0
0
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⋮
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1
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1
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⋮

1
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⋮

1
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1
0

⋮

1

0

⋮

1
0

⋮

1

0
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1
0

⋮
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NON-LINEAR RESPONSE

Petal.Length ≈
zinger𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

Petal.Length ≈

𝑧𝑖𝑛𝑔𝑒𝑟𝛽0 + ෍
𝑘=1

𝐾

𝛽𝑘 Sepal.Length 𝑘



NON-LINEAR RESPONSE via one-hot coding

PL ≈ 𝛼41SL<4 + 𝛼51⌊SL ⌋=5 + 𝛼61⌊SL ⌋=6 + 𝛼71SL≥7

e.g. for an observation with SL=5.3, we predict PL ≈ 𝛼5

e.g. for an observation with SL=3.1, we predict PL ≈ 𝛼4



COMPARING GROUPS
Measurements for condition 𝐴:  a = [a1,a2,…,am]
Measurements for condition 𝐵:  b = [b1,b2,…,bn]

Can we use a linear model to compare 𝐴 and 𝐵?



MODEL DIAGNOSIS

After we fit a model, how do we learn if it’s a good fit?

1. Evaluate its log likelihood 

2. Hypothesis testing [next week]

3. Eyeball it!

Find the prediction error for 
each datapoint, and plot it 
every way we can think of

Find the log likelihood of each 
datapoint, and showcase 
some datapoints with very 
low or very high likelihood



temp = 𝛼 + 𝛽 sin 2𝜋 t + 𝜙 + ε

If we hadn’t thought to include climate change in our temperature model ...

ε

temp = 𝛼′ + 𝛽′ sin 2𝜋 t + 𝜙 + 𝛾t + ε

This suggests a revised model ...

temp ≈ 𝛼 + 𝛽 sin 2𝜋 t + 𝜙



quadratic

cubic

polynomial 
degree 10

𝑦 ≈ 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽10𝑥10

𝑥

𝑦

Q. Should we just keep adding more 
and more features to our model?

A. No. If we did, we’d overfit. 
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