
Modelling and machine learning
(adapted from 2nd and 4th year Computer Science
courses in data science and machine learning)

Dr Damon Wischik
Computer Science, Cambridge University

Monthly average temperatures in Cambridge, UK

station yyyy mm t af rain sun tmin tmax temp

Cambridge 1985 1 1985.00 23 37.3 40.7 -2.2 3.4 0.6

Cambridge 1985 2 1985.08 13 14.6 79 -1.9 4.9 1.5

Cambridge 1985 3 1985.16 10 45.8 97.8 1.1 8.7 4.9

⋮

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

The UK weather office provides monthly readings from 37 weather stations around the
country. Let’s look at Cambridge, from 1990.

QUESTION. What model / formula would you suggest to fit this dataset?

def temp_model(t, …):
 return …

A SCIENTIST’S DETERMINISTIC MODEL

A DATA SCIENTIST’S PROBABILITY MODEL

def temp_model(t, α=6.62, φ=-0.27, c=10.74):
 return c + α * np.sin(2*π*(t+φ))

def rtemp(t, α=6.62, φ=-0.27, c=10.74, σ=1.43):
 pred = c + α * np.sin(2*π*(t+φ))
 return np.random.normal(loc=pred, scale=σ)

1. Write out a probability model

2. Fit the model from data

ALL OF MACHINE LEARNING:

▪ Schedule
▪ Slides [uploaded the night before]
▪ Assignments
▪ Code snippets

Course website
[Search for “Damon Wischik” and follow the link to
“Modelling and machine learning summer course”]

▪ Basic probability
▪ Calculus, optimization
▪ Python, numpy

Prerequisites

If you don’t get this elementary,
but mildly unnatural, mathematics
of elementary probability into your
repertoire, then you go through a
long life like a one-legged man in
an ass kicking contest.
Charles Munger, business partner of Warren Buffett

1.1. How to specify a probability model

def rtemp(t, α=10, φ=-0.25, c=11, γ=0.035, σ=2):
 pred = c + α * np.sin(2*π*(t+φ)) + γ*t
 return np.random.normal(loc=pred, scale=σ)

df = pandas.read_csv(...)
Temp = rtemp(df.t)

When I run this, what type of object is Temp?

Three views of a probability model

rand.var
notation

code

likelihood

for intuition and
simulation

for learning
from data

Three views of a probability model

rand.var
notation

code

likelihood

def rtemp(t, α,φ,c,γ,σ):
 pred = c + α * np.sin(2*π*(t+φ)) + γ*t
 return np.random.normal(loc=pred, scale=σ)

Temp𝑖 ~ 𝛼 sin 2𝜋 𝑡𝑖 + 𝜑 + 𝑐 + 𝛾𝑡𝑖 + Normal 0, 𝜎2 ,

𝑖 ∈ {1, … , 𝑛}

def ry():
 x = random.random()
 y = x ** 2
 return y

𝑋 ∼ 𝑈 0,1
𝑌 = 𝑋2

def ri(a,b):
 x = random.random()
 i = math.floor(a*x+b)
 return i

𝑋 ∼ 𝑈 0,1
𝐼 = 𝑎𝑋 + 𝑏

x = random.random()
y = x**2

𝑋 ∼ 𝑈 0,1
𝑌 = 𝑋2

def rz():
 x1 = random.random()
 x2 = random.random()
 return x1 * math.log(x2)

𝑋1, 𝑋2 ∼ 𝑈 0,1
𝑍 = 𝑋1 log 𝑋2

def rmyrandpair():
 x1 = random.random()
 x2 = random.random()
 y,z = (x1+x2, x1*x2)
 return (y,z)

𝑌, 𝑍 ∼ Myrandpair

λ = 3
x1 = random.uniform(0,λ)
x2 = random.uniform(0,λ)

𝑋1, 𝑋2 ∼ 𝑈 0, λ

x = random.random()
y = 1 - x

𝑋 ∼ 𝑈 0,1
𝑌 = 1 − 𝑋

x = random.random()
y = np.random.normal(
 loc=x, scale=0.1)

𝑋 ∼ 𝑈 0,1
𝑌 ∼ 𝑁(𝑋, 0.12)

def rtemp(t, α=10, φ=-0.25, c=11, γ=0.035, σ=2):
 pred = α*np.sin(2*π*(t+φ)) + c + γ*t
 return np.random.normal(loc=pred, scale=σ)

df = pandas.read_csv(...) # data frame, 380 rows
Temp = rtemp(t) # vector of 380 random temperatures

Temp𝑖 ~ 𝛼 sin 2𝜋 𝑡𝑖 + 𝜑 + 𝑐 + 𝛾𝑡𝑖 + Normal 0, 𝜎2 , 𝑖 ∈ {1, … , 𝑛}

Temp𝑖 = 𝛼 sin 2𝜋 𝑡𝑖 + 𝜑 + 𝑐 + 𝛾𝑡𝑖 + ε𝑖 , 𝜀𝑖 ∼ Normal 0, 𝜎2 , 𝑖 ∈ {1, … , 𝑛}

A histogram of radial velocities of 120 galaxies

Speeds of galaxies in the Corona Borealis region
Postman, Huchra, Geller (1986)

How would you complete this code?

def rgalaxy(...):
TODO: return a random galaxy speed

Speeds of galaxies in the Corona Borealis region
Postman, Huchra, Geller (1986)

def rgalaxy(p,μ,σ):
 k = np.random.choice([1,2,3], p=p)
 μi,σi = μ[k-1], σ[k-1]
 x = np.random.normal(loc=μi, scale=σi)
 return x

def rgalaxies(size, p,μ,σ):
 return [rgalaxy(p,μ,σ) for _ in range(size)]

p = [0.28, 0.54, 0.18]
μ = [9740, 21300, 15000]
σ = [340, 1700, 10600]

This is called a Gaussian
mixture model. It’s handy
for identifying clusters.

1.2. The standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

1. Write out a probability model

2. Fit the model from data

Section 1.3

Maximum Likelihood Estimation

Suppose our probability model has unknown parameters which
we’d like to estimate.

• The likelihood is the probability of seeing the data that we
actually saw.

• The likelihood depends on our model’s parameters.

• Let’s simply pick the parameters that maximize the likelihood.

Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it 𝑛 = 10 times,
and observe 𝑥 = 6 heads. Let’s use the probability model

𝑋 ~ Binom(𝑛, 𝑝)

where 𝑝 is the probability of heads. Estimate 𝑝.

Likelihood of the observed data:

Parameter that maximizes it:

DISCRETE RANDOM VARIABLES (integer-valued)

Binomial ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑋~Bin(𝑛, 𝑝) 𝑥 ∈ {0,1, … , 𝑛}
np.random.binomial(𝑛,𝑝)

Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it 𝑛 = 10 times,
and observe 𝑥 = 6 heads. Let’s use the probability model

𝑋 ~ Binom(𝑛, 𝑝)

where 𝑝 is the probability of heads. Estimate 𝑝.

Log likelihood of the observed data:

Parameter that maximizes it:

• If the data consists of many datapoints, and our model says
they’re all independent, the likelihood of the dataset is the
product of the likelihoods of the individual datapoints.

Maximum Likelihood Estimation

Suppose our probability model has unknown parameters which
we’d like to estimate.

• The likelihood is the probability of seeing the data that we
actually saw.

• The likelihood depends on our model’s parameters.

• Let’s simply pick the parameters that maximize the likelihood.

Exercise 1.3.2 (Exponential sample)
Let the dataset be a list of real numbers, 𝑥1, … , 𝑥𝑛, all > 0.
Use the probability model that says they’re all independent
Exp(𝜆) random variables, where 𝜆 is unknown. Estimate 𝜆.

Log likelihood of the observed data:

Parameter that maximizes it:

CONTINUOUS RANDOM VARIABLES (real-valued)

Exponential pdf 𝑥 = 𝜆𝑒−𝜆𝑥

𝑋~Exp 𝜆 𝑥 > 0
np.random.exponential(scale=1/𝜆)

Exercise (Using indicator functions to handle boundaries)
We throw a 𝑘-sided dice, and get the answer 10.
Estimate 𝑘, using the probability model

ℙ throw 𝑥 =
1

𝑘
, 𝑥 ∈ {1, … , 𝑘}

INDICATOR FUNCTIONS

The indicator function 1𝐴 is simply

1𝐴 = ቊ
1 if statement 𝐴 is true
0 if statement 𝐴 is false

Exercise 1.3.4 (Predictive models)
Consider a dataset of January temperatures, one record per year. Let 𝑡𝑖
be the year for record 𝑖 = 1, … , 𝑛, and let 𝑦𝑖 be the temperature. Using
the probability model

𝑌𝑖 ~ Normal 𝛼 + 𝛾𝑡𝑖 , 𝜎2

estimate 𝛾, the annual rate of temperature change.

When there are multiple unknowns,
we have to maximize over all of
them simultaneously (even if we only
care about one of them)

Three views of a probability model

rand.var
notation

code

likelihood

def rtemp(t, α,φ,c,γ,σ):
 pred = c + α * np.sin(2*π*(t+φ)) + γ*t
 return np.random.normal(loc=pred, scale=σ)

Temp𝑖 ~ 𝛼 sin 2𝜋 𝑡𝑖 + 𝜑 + 𝑐 + 𝛾𝑡𝑖 + Normal 0, 𝜎2 ,

𝑖 ∈ {1, … , 𝑛}

log likelihood of observations (temp1,…,tempn)

= ෍

𝑖=1

𝑛

log
1

2𝜋𝜎2
𝑒− temp𝑖−pred𝑖

2
/2𝜎2

1. Write out a probability model

2. Fit the model from data
using Maximum Likelihood Estimation
with numerical optimization

Section 1.4

▪ There is no scipy.optimize.fmax
▪ See the documentation to control number of iterations, …
▪ This function finds a local minimum, perhaps not a global minimum, so choose x0 wisely

Numerical optimization with Python / scipy

To find the minimum of a function 𝑓: ℝ𝐾 → ℝ,

1 import scipy.optimize
2

3 def f(x):
4 return …
5

6 x0 = […] # initial guess
7 ොx = scipy.optimize.fmin(f, x0)

Exercise (Softmax transformation)
Find the maximum of

𝑓 𝑝1, 𝑝2, 𝑝3 = 0.2 log 𝑝1 + 0.5 log 𝑝2 + 0.3 log 𝑝3

over 𝑝1, 𝑝2, 𝑝3 ∈ (0,1) such that 𝑝1 + 𝑝2 + 𝑝3 = 1.

1
2
3
4
5
6
7
8
9
10

def f(p):
 p1,p2,p3 = p
 return 0.2*np.log(p1) + 0.5*np.log(p2) + 0.3*np.log(p3)

def softmax(s):
 p = np.exp(s)
 return p / np.sum(p)

ŝ = scipy.optimize.fmin(lambda s: -f(softmax(s)), [0,0,0])
softmax(ŝ)

Optimization terminated successfully. Current function value: 1.02965. Iterations: 63.
Function evaluations: 120
array([0.19999474, 0.49999912, 0.30000614])

Software 1.0 is code we write. Software 2.0 is code written by the

optimization based on an evaluation criterion (such as “classify this

training data correctly”). It is likely that any setting where the

program is not obvious but one can repeatedly evaluate the

performance of it (e.g. — did you classify some images correctly? do

you win games of Go?) will be subject to this transition, because the

optimization can find much better code than what a human can

write.

1. Write out a probability model

2. Fit the model from data
using Maximum Likelihood Estimation
usually with numerical optimization

The likelihood function for a random variable 𝑋
is written Pr𝑋 𝑥 and defined as

 Pr𝑋 𝑥 = ℙ(𝑋 = 𝑥) in the case where 𝑋 is discrete

and as

 Pr𝑋 𝑥 = pdf(𝑥) in the case where 𝑋 is continuous
 with prob. density function pdf(𝑥)

For parameterized random variables, write
 Pr𝑋(𝑥 ; 𝜃)

Transforms of random variables:
Pr𝑋+𝑌(0.2) or Pr𝑋2(𝑧)

The Pr𝑋(𝑥) notation keeps track of
• the random variable 𝑋
• an observation 𝑥

Pairs of random variables:
Pr𝑋,𝑌 𝑥, 𝑦

Pr𝑋,𝑌(𝑥, 𝑦) is called the joint likelihood of 𝑋 and 𝑌

Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥 and 𝑌 = 𝑦
 for discrete random variables

Pr𝑋,𝑌 𝑥, 𝑦 = <something similar/>
 for continuous random variables

I call RNG for X, and I call the RNG for
Y, and I add the two outputs together.
What’s the chance I got 0.2?

Exercise. Write down the joint likelihood Pr𝐾,𝑋(𝑘, 𝑥) for
 def rgalaxy(p,μ,σ):
 k = np.random.choice([1,2,3], p=p)
 return np.random.normal(loc=μ[k-1], scale=σ[k-1])

Independent random variables:
Pr𝑋,𝑌 𝑥, 𝑦 = Pr𝑋 𝑥 Pr𝑌(𝑦)

Independent identically-distributed (IID)
sample from 𝑋:
Pr 𝑥1, … , 𝑥𝑛 = Pr𝑋 𝑥1 × ⋯ × Pr𝑋(𝑥𝑛)

Sequential generation of 𝑋 then 𝑌:
Pr𝑋,𝑌 𝑥, 𝑦 = Pr𝑋 𝑥 Pr𝑌(𝑦 ; 𝑥)

Maximum Likelihood Estimation, again

If we've seen an outcome 𝑥, and we've proposed a probability
model 𝑋, and if its distribution involves some unknown
parameters 𝜃,

the maximum likelihood estimator for 𝜃 is

መ𝜃 = arg max
𝜃

Pr𝑋(𝑥 ; 𝜃)

Brain teaser
Let 𝑋 ∼ Bin(𝑛 = 2, 𝑝 = 0.9). What is Pr𝑋(𝑋) ?

1.6. GENERATIVE MODELLING
Given a dataset 𝑥1, … , 𝑥𝑛 can we design a probability model that
might have generated it?

1. Choose a distribution with tuneable parameters, call it
𝑋. We want 𝑥1, … , 𝑥𝑛 to look like independent samples
from 𝑋.

2. Write out the likelihood of the dataset
Pr 𝑥1, … , 𝑥𝑛 ; 𝜃 = Pr𝑋 𝑥1; 𝜃 × ⋯ × Pr𝑋(𝑥𝑛; 𝜃)

3. Fit the model using maximum likelihood estimation

1.6. GENERATIVE MODELLING
Given a dataset 𝑥1, … , 𝑥𝑛 can we design a probability model that
might have generated it?

Exercise 1.6.1 (Fitting a Normal distribution)
Given a numerical dataset 𝑥1, … , 𝑥𝑛, fit a Normal(𝜇, 𝜎2)
distribution, where 𝜇 and 𝜎 are unknown.

Model for a single observation

Likelihood for a single observation

Log likelihood of the dataset

Maximize over unknown parameters

1.7. SUPERVISED LEARNING

station yyyy mm t af rain sun tmin tmax temp

Cambridge 1985 1 1985.00 23 37.3 40.7 -2.2 3.4 0.6

Cambridge 1985 2 1985.08 13 14.6 79 -1.9 4.9 1.5

Cambridge 1985 3 1985.16 10 45.8 97.8 1.1 8.7 4.9

⋮

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

How have temperatures been changing? What will they be in the future?

i.e. how can I PREDICT temp GIVEN t?

1.7. SUPERVISED LEARNING

station yyyy mm t af rain sun tmin tmax temp

Cambridge 1985 1 1985.00 23 37.3 40.7 -2.2 3.4 0.6

Cambridge 1985 2 1985.08 13 14.6 79 -1.9 4.9 1.5

Cambridge 1985 3 1985.16 10 45.8 97.8 1.1 8.7 4.9

⋮

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

How have temperatures been changing? What will they be in the future?

i.e. how can I PREDICT temp GIVEN t?

called the PREDICTOR variable,
or the FEATURE,
or the COVARIATE

called the RESPONSE,
or the LABEL variable

1.7. SUPERVISED LEARNING

station yyyy mm t af rain sun tmin tmax temp

Cambridge 1985 1 1985.00 23 37.3 40.7 -2.2 3.4 0.6

Cambridge 1985 2 1985.08 13 14.6 79 -1.9 4.9 1.5

Cambridge 1985 3 1985.16 10 45.8 97.8 1.1 8.7 4.9

⋮

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

How have temperatures been changing? What will they be in the future?

i.e. how can I PREDICT temp GIVEN t?

i.e. what’s a good PROBABILITY MODEL for temp GIVEN t?

Supervised learning

1. Choose a probability distribution for the label, which depends on
one or more unknown parameters 𝜃 as well as on the predictors.
Let its likelihood be

Pr𝑌(𝑦 ; 𝑥, 𝜃)

2. Model the dataset as independent observations of 𝑌 drawn from
this distribution, i.e. let the likelihood of the dataset be
Pr 𝑦1, … , 𝑦𝑛 ; 𝑥1, … , 𝑥𝑛, 𝜃 = Pr𝑌 𝑦1; 𝑥1, 𝜃 × ⋯ × Pr𝑌(𝑦𝑛; 𝑥𝑛, 𝜃)

3. Estimate 𝜃 using maximum likelihood estimation

Given a dataset 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) where 𝑦𝑖 is the label
in record 𝑖 and 𝑥𝑖 is the predictor variable or variables,

Exercise (Straight-line fit)
Given a labelled dataset
𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) consisting of pairs of

numbers, fit the model

𝑌𝑖 ∼ 𝑎 + 𝑏 𝑥𝑖 + Normal(0, 𝜎2)

where 𝜎 is given and 𝑎 and 𝑏 are
parameters to be estimated.

Data from Randall Munroe, https://xkcd.com/2048/, via https://gitlab.com/b-rowlingson

1.2. The standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

1.2. The standard numerical random variables that you should know:

Useful properties of the Normal distribution:

▪ If we rescale a Normal, we get a Normal

▪ If we add independent Normals, we get a Normal

The Uniform isn’t as nicely behaved:
▪ 𝑎 + 𝑏 𝑈 0,1 ∼ 𝑈 𝑎, 𝑎 + 𝑏
▪ 𝑈 0,1 + 𝑈[0,1] is not uniform

The Binomial isn’t as nicely behaved:
▪ 𝑎 + 𝑏 Bin 𝑛, 𝑝 is not Binomial
▪ Bin 𝑛1, 𝑝 + Bin 𝑛2, 𝑝 ∼ Bin(𝑛1 + 𝑛2, 𝑝)

Exercise (Straight-line fit)
Given a labelled dataset
𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) consisting of pairs of

numbers, fit the model

𝑌𝑖 ∼ 𝑎 + 𝑏 𝑥𝑖 + Normal(0, 𝜎2)

where 𝜎 is given and 𝑎 and 𝑏 are
parameters to be estimated.

Data from Randall Munroe, https://xkcd.com/2048/, via https://gitlab.com/b-rowlingson

Model for a single observation:

Likelihood of a single observation:

Log likelihood of the dataset:

Optimize over the unknown parameters:

DISCUSSION:
Why should we use Maximum Likelihood Estimation rather than
other methods (e.g. the Method of Moments) to estimate
parameters?

According to my “underwear theory of modelling”, parameters and models are private things inside the head of the
modeller, and it’s indecent to expose it in public. What matters is the probability distribution we’re proposing, not
the parameters.

▪ Sometimes, the same model can be written with different parameters. For example, 𝑁(𝜇, 𝜎2) and 𝑁(𝜇, 𝑒𝑠)
result in the same distribution, just with different parameters. Maximum Likelihood Estimation will find
parameters that give the best-fitting model, regardless of how we’ve chosen to parameterize the model.

▪ Sometimes, a model’s parameters are unidentifiable. For example, if our model is 𝑁(𝑎 + 𝑏, 𝜎2), then it’s
impossible to distinguish (𝑎 = 1, 𝑏 = 2) from (𝑎 = 1.5, 𝑏 = 1.5), since they give the same distribution. (This is
especially relevant in neural networks, where we don’t care if one neuron does a task or another neuron does it,
all we care about is how the neurons work together.) Maximum Likelihood Estimation simply returns an arbitrary
choice that maximizes the likelihood; other estimation methods just give up.

▪ All the successful methods in machine learning use maximum likelihood estimation. If it’s good enough for
ChatGPT and DALL-E, it’s good enough for us!

THE CONVENTIONAL VIEW OF MACHINE LEARNING

image

3Data

ML

Training Measure the prediction accuracy, i.e. the fraction of images it predicts correctly
Tune the model’s parameters (𝜃) to get good prediction accuracy on a training dataset

𝜃

true
label

(from manual
annotation)

5
predicted

label

training
holdout

full dataset

Evaluate your model’s accuracy on a holdout setEvaluation

prediction =

5 with prob 45%
3 with prob 41%
6 with prob 45%

…

PROBABILITY MODELLER’S VIEW

𝜃

features prediction

𝜃

CONVENTIONAL (ALGORITHMIC) VIEW

evaluation metric on
holdout dataset:
prediction accuracy

evaluation metric on
holdout dataset:
the probability that our
model assigns to the
true label

PROBABILITY MODELLER’S VIEW

𝜃

timepoint 𝑡

Our job is to invent a probability
model, specifying the
distribution of temperature at a
given timepoint.

	1
	Slide 1
	Slide 2: Monthly average temperatures in Cambridge, UK
	Slide 3
	Slide 4

	arrangements
	Slide 5
	Slide 6
	Slide 7

	1.1
	Slide 8: 1.1. How to specify a probability model
	Slide 9: Three views of a probability model
	Slide 10: Three views of a probability model
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	1.2
	Slide 18: 1.2. The standard numerical random variables that you should know:

	1.3
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Three views of a probability model

	1.4
	Slide 28
	Slide 29
	Slide 30
	Slide 31

	1.5
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38

	1.6
	Slide 39: 1.6. GENERATIVE MODELLING Given a dataset x sub 1,dot dot dot ,x sub n can we design a probability model that might have generated it?
	Slide 40: 1.6. GENERATIVE MODELLING Given a dataset x sub 1,dot dot dot ,x sub n can we design a probability model that might have generated it?
	Slide 41

	1.7
	Slide 42: 1.7. SUPERVISED LEARNING
	Slide 43: 1.7. SUPERVISED LEARNING
	Slide 44: 1.7. SUPERVISED LEARNING
	Slide 45: Given a dataset open paren x sub 1,y sub 1 , , close paren ,dot dot dot ,open paren x sub n ,y sub n close paren where y sub i. is the label in record i. and x sub i. is the predictor variable or variables,
	Slide 46
	Slide 47: 1.2. The standard numerical random variables that you should know:
	Slide 48
	Slide 49
	Slide 50: DISCUSSION: Why should we use Maximum Likelihood Estimation rather than other methods (e.g. the Method of Moments) to estimate parameters?
	Slide 51: THE CONVENTIONAL VIEW OF MACHINE LEARNING
	Slide 52
	Slide 53

