
R250 Advanced topics in machine learning

Topic 5: autoencoders
Damon Wischik

stoat

image

labels

hidden
layers

What is an autoencoder?

A classifier
Input: labelled data 𝑋𝑛, 𝑌𝑛 𝑛=1..𝑁

Task: predict the output 𝑌 given input 𝑋

image

latent
representation

encoder decoder

An autoencoder
Input: unlabelled data 𝑋𝑛 𝑛=1..𝑁

Task: given an input, reconstruct it
Challenge: squeeze the data through a “bottleneck”

What’s the point in learning to recreate the input?

෨𝑋

𝑍

𝑋

classifier

𝑌

latent
repr.

Train a neural network with two objectives:
(a) output the target label 𝑌
(b) reproduce the input

▪ This is useful if labels are low entropy
e.g. sentiment classification of text.
The “reproduce the input” objective (b) gives extra
feedback, which helps backpropagation learn useful
features.

▪ It’s also useful if you have lots of unlabelled data and
only a little labelled data.

enc dec

It can help with multitask / transfer / semi-supervised learning.

The heart of autoencoding
We hope it will learn a useful / meaningful latent
representation.

Surely, if it didn’t learn a good representation, it’d
have no chance of reconstructing the input from just
a few variables!

෨𝑋
𝑍

𝑋

useful
representation

enc dec

input
datapoint

recon-
struction

MNIST
image

{‘digit’: 6,
‘slant’: UPRIGHT,
‘weight’: MEDIUM,
‘style’: LOOSE}

A 4-dimensional
representation

What sort of representations does it actually learn?

MNIST
image

4-dimensional
representation

recon-
struction

1.4400
1.5164
0.3757
3.2569

Source images

Reconstructions after 0.1 epochs

Reconstructions after 2 epochs

Reconstructions after 3 epochs

PCA plot showing the
latent representations

colour = true digit

If we had a good representation, we could ...

▪ Pick a random 𝑍, and decode.
This should let us synthesize entirely new
images.

▪ Take two source images 𝑋1 and 𝑋2,
encode to get 𝑍1 and 𝑍2, let 𝑍 =
1 − 𝜆 𝑍1 + 𝜆𝑍2, and decode 𝑍.

This should generate a smooth
interpolation between the two inputs,
where each intermediate looks “nice”.

▪ Take a source image 𝑋, encode it to
get 𝑍, then vary the “digit” field of
𝑍 and decode.
This should give a family of digits with the
same handwriting.

varying dimension 0

varying dimension 1

varying dimension 2

varying dimension 3

source image 𝑋

𝑋1 𝑋2

Autoencoders are a tool for
dimension reduction

▪ It’s easier to train a supervised learner
from dimension-reduced features than
from the raw dataset

▪ The reduced dimensions are meaningful
axes for our dataset; this is useful for
interpolation etc.

▪ We can synthesize new data, by
sampling randomly in the reduced-
dimension space.

None of this works well off-the-shelf
(hence the papers we will study).

And in fact the entire premise is dodgy.

We haven’t specified a proper
evaluation criterion. Without this we
can’t compare models, or tune
hyperparameters; we’re just blindly
hacking.

How should we validate an autoencoder? A thought experiment...

▪ In training, the aim is to minimize the reconstruction loss 𝔼𝑋~train 𝐿 𝑋, ෨𝑋

▪ The obvious way to validate is to run the network on unseen data (the holdout /

validation dataset), and measure the reconstruction loss 𝔼𝑋~test 𝐿 𝑋, ෨𝑋

▪ But consider a super-intelligent autoencoder, which has learnt to encode input
pixel 𝑖 into bit 𝑖 of the latent variable 𝑍 ∈ ℝ. This autoencoder is surely not what
we want — but it will score perfectly.

෨𝑋

𝑍

𝑋

latent
repr.

enc dec
Input: unlabelled data 𝑋𝑛 𝑛=1..𝑁

Reconstruction loss metric: 𝐿 𝑋, ෨𝑋

Autoencoders are a tool for
dimension reduction

▪ It’s easier to train a supervised learner
from dimension-reduced features than
from the raw dataset

▪ The reduced dimensions are meaningful
axes for our dataset; this is useful for
interpolation etc.

▪ We can synthesize new data, by
sampling randomly in the reduced-
dimension space.

None of this works well off-the-shelf
(hence the papers we will study).

Just like PCA!

Does PCA give us any insight into
the problem of validation?

Principle Components Analysis

Given a collection of points 𝑋1, … , 𝑋𝑁 ∈ ℝ𝑑

PCA looks for a linear subspace of dimension 𝑒 < 𝑑 to
represent the data.

PCA is an autoencoder.
▪ It encodes 𝑋 ∈ ℝ𝑑 into 𝑍 ∈ ℝ𝑒

▪ The decoder positions the linear subspace ℝ𝑒 within ℝ𝑑

▪ PCA seeks to minimize mean square error

This picture depicts dimension reduction from ℝ2 to ℝ1.

▪ With 𝑒 = 𝑑 we’d get perfect reconstruction
(but no dimension reduction)

▪ There are hacks to pick a useful 𝑒 < 𝑑 ...

The Goldilocks problem

PCA only looks for linear subspaces. It
is incapable of overfitting (as long as
𝑒 < 𝑑).

If we allow nonlinear enc and dec,
surely we can describe the data
better.

Too much capacity → overfitting.

In the story of autoencoders, there are three overlapping challenges.

Formulate AE
so that we
can validate /
compare
models Coerce AE into

producing
meaningful
representations

Be good at
synthesizing
new data

GANs

2. Fair rep.

4. CVAE
5. 𝛽VAE

1. Denoising

Schedule Assessment

▪ participation ≈ 5%

▪ presentation ≈ 15%

▪ project report 70%

Presenters, please chat
with me the Friday before
your presentation.

You should all read the
papers, try the code, and
participate in the
discussion.

(Please introduce yourself. I’ll
record for marking purposes.)

20 January
(1 hour)

Introduction

27 January
(1 hour)

1. Denoising AEs
3a. VAE

3 February
(1 hour)

2. Fair representations
3b. VAE

10 February
(2 hours)

4. Conditional VAE
5. β-VAE
6. VAE+RNN ?
Project report ideas

Arrangements
There is a Cambridge
Gitlab repository for this
course, with a toy MNIST
example in Pytorch.

Presenters will contribute
working code.

Participants should also
contribute issues / pull
requests / code. (This gives

you participation marks.)

