
Principles of resource allocation in networks

Devavrat Shah (MIT) and Damon Wischik (UCL)

ABSTRACT
Much research in networking, in areas such as TCP conges-
tion control, wireless MAC protocols, fair sharing of data
centers, and optimization of distributed algorithms, falls un-
der the general heading of resource allocation. The net-
work modeling community has developed a general-purpose
language for describing resource allocation problems, and
canonical mechanisms for solving them. We believe these
should be taught as fundamental principles to graduate stu-
dents in networking. This will encourage them to apply ideas
from one area of networking to another, it will help them to
distinguish which parts of a problem need hands-on systems-
level work and which do not, and it will make them think
more deeply about economic and social questions such as
network neutrality.

1. INTRODUCTION
At the 2011 NSDI conference, 19% of papers and 26%

of posters could be described as having network resource
allocation as their main focus; an additional 33% of pa-
pers and 35% of posters were concerned in some way
with the control plane for resource allocation problems.
The resources in question ranged from Internet band-
width to data center machines to wireless spectrum.
From our experience of teaching network modelling to

graduate students, both lecturing and also giving advice
to students doing their masters projects, we believe it
is useful to teach general-purpose principles that can be
applied to many different problems to do with resource
allocation. By teaching general principles illustrated
by a small number of applications, rather than going
through a set of papers, students are given the tools
they need to derive answers for themselves and com-
pare their answers to published work, which is the best
way to learn. We also believe it helps students to make
connections between different application areas, rein-
forcing their knowledge. Finally, it allows us to cover
more ground in a fewer lectures.
In Sections 2–4, we outline the general principles and

give illustrations, to indicate what material could be
covered in such a course. The general approach has
three steps:

Step 1: identify the feasible region.
The first step is to identify the feasible region, i.e. the

set of flow rates that the network can support. In Sec-
tion 2 we give examples of feasible regions for Internet
bandwidth, wireless bandwidth, data center resource al-
location, and distributed algorithms.

Step 2: choose the desired operating point.
The second step is to decide where in the feasible

region we would like the network to operate. It is im-
portant to make students realize that there is always
a normative decision to be made (“the network should

choose this feasible allocation rather than that feasible
allocation”).
In Section 3 we describe a general-purpose objective—

weighted α-fair utility maximization—and illustrate how
it applies to TCP and to data centers. This objective
subsumes other goals including max-min fairness, TCP
friendliness, throughput maximization, and Pareto effi-
ciency, and this makes it a good tool to make students
think about tradeoffs in network resource allocation. To
put it bluntly, students need to face up to complexities
of networks beyond what can be captured by average
throughput and Jain’s fairness index.
The mathematical prerequisite for this step is the

ability to understand an optimization problem with con-
straints. We have found that this can be taught to
students with high-school mathematics, in one or two
lectures, helped by interactive animations in Mathemat-
ica.

Step 3: reach the desired operating point.
The third step is to design an algorithm. There are

canonical distributed algorithms for finding the opti-
mum operating point, which we outline in Section 4.
These canonical algorithms must then be translated to
the network in question; when they are translated to In-
ternet congestion control, for example, we obtain TCP-
like, RCP-like and backpressure-like algorithms.
When students understand that resource allocation is

a general-purpose problem, and that there are canon-
ical solutions, they will be better equipped to extract

1

y0

y1 y2 y3

Ca Cb Cc

Figure 1: Bandwidth alloca-
tion for TCP

y2

y0

y1

b

a

Figure 2: Job arrival rates
for a distributed algorithm

s1
d1

s2

d2

Figure 3: Wireless transmis-
sion with interference

general-purpose mechanisms from a paper in one area
and apply it to a different area. We also believe it can
help students working on projects to understand which
parts of their work have generic solutions (to save them
from re-inventing the wheel), and which parts require
hands-on domain-specific systems work.
To fully understand the canonical solutions, it is nec-

essary to be able to form the dual of a constrained
optimization problem, and to understand the role of
dual variables. We have found this is accessible to some
students and inaccessible to others, depending on their
mathematical background. The latter students can be
taught the canonical solutions as recipes.

Taking it further
A formal introduction to resource allocation, as outlined
above, can be the starting point for informed discussion
in two directions:
The first direction is about the general architecture of

control planes for resource allocation. The canonical al-
gorithms from Step 3 involve signals from congested re-
sources, and end-system response to those signals. This
leads to the question: what sorts of congestion signals
do different types of network expose, and to whom,
and what sort of resource allocation outcomes can be
achieved from these signals?
The second direction for discussion is about policy.

Step 2 forces students to confront the fact that the net-
work designer has to make a normative decision about
resource allocation. How does this fit with the idea of
network neutrality? In ‘adversarial’ networks, how can
a policy about resource allocation be enforced?
We discuss these directions briefly in the conclusion,

Section 5.

Background and related work
The general-purpose approach to resource allocation has
been developed in the network modelling community
over the past 20 years. Notable contributions are by
Tassiulas and Ephremides [13] and Kelly et al. [5]. Band-
width allocation in the wired Internet has received the
most attention (see for example [8], the book by Shakkot-
tai and Srikant [12], and the tutorial by Le Boudec [7]),

though one of our goals in this position paper is to point
out that the ideas apply much more widely than just
bandwidth allocation. The work builds on general the-
ory about multi-commodity flows on graphs, which has
a long history in the operations research community, see
for example [1]. Much of this work is written by and for
the network modelling community, and it may not be
very accessible to systems-oriented graduate students.

2. THE FEASIBLE REGION
The feasible region is defined to be the set of flow rates

that can be supported, given the available capacity in a
network. To flesh this out, here are some examples. The
first four examples are of static scenarios, e.g. allocation
of bandwidth to long-lived TCP flows. The last two
examples are of dynamic scenarios, e.g. rate of arrivals
of TCP flows of given average size.

Example 1 (data center) This is a toy example from
[3], intended to illustrate resource sharing in a data cen-
ter. Consider a system with 9 CPUs and 18GB of RAM,
and two users, where an instance of user 1’s task re-
quires 1 CPU and 4GB of RAM, and an instance of
user 2’s task requires 3 CPUs and 1GB of RAM. We
will allow fractional tasks, e.g. if user 1 is allocated
1/2CPU and 2GB RAM then his/her instance runs at
half speed. Let y1 be the number of instances allocated
to user 1, and let y2 be the number of instances allo-
cated to user 2. The feasible region is the set of all
(y1, y2) ≥ 0 such that

y1 + 3y2 ≤ 9 (CPU constraint)

4y1 + y2 ≤ 18 (RAM constraint) ♦

Example 2 (TCP) Consider a network with three links
with capacities Ca, Cb and Cc Mb/s, and four TCP
flows, as shown in Figure 1. Let ys be the throughput
of flow s ∈ {0, 1, 2, 3}. The feasible region is the set of
all (y0, y1, y2, y3) ≥ 0 such that

y0 + y1 ≤ Ca, y0 + y2 ≤ Cb, y0 + y3 ≤ Cc. ♦

Example 3 (multipath TCP) This example is from
[14, Figure 2]. Consider a network with three links with

2

capacities Ca, Cb and Cc. Let there be three multipath
flows: flow 1 can use path 1 through a or path 2 through
b and c, flow 2 can use path 3 through b or path 4
through a and c, flow 3 can use path 5 through c or
path 6 through a and b. Let xr be the throughput on
path r ∈ {1, . . . , 6}, and let ys be the total throughput
of flow s ∈ {1, 2, 3}. The feasible region is the set of all
(y1, y2, y3) ≥ 0 such that there exist x1, . . . , x6 ≥ 0 for
which

y1 = x1 + x2, y2 = x3 + x4, y3 = x5 + x6,

x1 + x4 + x6 ≤ Ca, x2 + x3 + x6 ≤ Cb,

x2 + x4 + x5 ≤ Cc.

After some careful linear algebra, one discovers that the
xr can be eliminated: the feasible region is the set of all
(y1, y2, y3) such that

y1+y2 ≤ Ca+Cb, y2+y3 ≤ Cb+Cc, y1+y3 ≤ Ca+Cc.

(Students with good linear algebra may be able to fol-
low the proof in [4, Section 3.3] that the feasible region
always involves linear constraints on the ys. This par-
ticular calculation is taken from that reference.) ♦

Example 4 (wireless capacity) The Shannon-Hartley
theorem says that the capacity of a wireless channel is
B log2(1 + S/N) where B is the channel bandwidth,
S is the power of the signal, and N is the power of
noise. Consider the wireless network in Figure 3, with
two transmitters and two receivers. Let hs,d be the fad-
ing from transmitter s to receiver d. Suppose that each
transmitter chooses to transmit at power xsPs for some
xs ∈ [0, 1], where Ps is the maximum power of trans-
mitter s, and to send data at rate ys ≥ 0, and suppose
that each receiver attempts to decode only the signal
intended for it (i.e. the receivers do not use SIC), and
that there is background noise of power N . The feasible
region is the set of all (y1, y2) ≥ 0 such that there exist
x1, x2 ∈ [0, 1] such that

y1 ≤ B log
2

(

1 + x1h1,1P1/(N + x2h2,1P2)
)

,

y2 ≤ B log2
(

1 + x2h2,2P2/(N + x1h1,2P2)
)

.

After some algebra, one finds that the xs can be elimi-
nated, and the feasible region can be rewritten in terms
of inequalities involving only y1, y2, and the constants
h, P and n. ♦

Example 5 (distributed algorithm) This is a toy ex-
ample from [11], intended to illustrate job scheduling in
a distributed algorithm such as a distributed hash table.
Consider a system with two machines and three types
of jobs, as shown in Figure 2. Suppose both machines
can handle C jobs per second. Let ys be the rate at
which jobs arrive of type s ∈ {0, 1, 2}, and suppose jobs
of type 0 use machine a then b, jobs of type 1 use only
machine a, and jobs of type 2 use only machine b. The

feasible region is the set of all (y0, y1, y2) ≥ 0 such that

y0 + y1 ≤ C, and y0 + y2 ≤ C. ♦

Example 6 (flow-level TCP) Consider first a single
bottleneck link used by TCP flows, and take the TCP
flows to have average size m Mb. Let the average rate
at which new flows arrive be y per second (perhaps
one flow starts as soon as the last one finishes, per-
haps new flows arrive independent of what has arrived
previously). Let the link speed be C Mb/s. The feasi-
ble region is simply {y ≥ 0 : ym ≤ C}. If y lies outside
this region then demand (measured in bits per second)
arrives quicker than it can be transmitted, so the num-
ber of active flows increases steadily. If y lies inside this
region then (assuming that TCP manages to keep the
link fully utilized) demand is served at the same average
rate it arrives, and the link is stable.
Here is a network example of the same general sort,

taken from [10]. Consider a network consisting of two
links, link a with capacity Ca and link b with capacity
Cb. Suppose some TCP flows use just link a, some use
just link b, and some use both links; call these flows
type 1, type 2 and type 0 respectively. Suppose the
flows have finite size; let the average size of flows of
type s be ms. Depending on the number of active flows
of each type, it may be that link a is the bottleneck, or
link b, or both jointly may form the bottleneck. Let ys
be the average rate at which new flows of type s arrive.
The feasible region is the set of all (y0, y1, y2) ≥ 0 such
that

y0m0 + y1m1 ≤ Ca, and y0m0 + y2m2 ≤ Cb. (1)

To see that these inequalities are required for stable
operation, simply count up the total demand (in bits
per second) to be transmitted across each link. It is
not true in general that these inequalities are sufficient
to ensure stable operation—for example, if there are
alternating flows of type 1 and type 2, and one flow
starts as soon as the previous flow finishes, then stable
operation requires y1m1/Ca + y2m2/Cb ≤ 1, which is
more restrictive than (1). However, it has been shown
[10] that if flow arrivals are a Poisson process, then (1) is
sufficient to ensure stable operation, using an idealized
model of TCP. ♦

3. CHOOSING THE OPERATING POINT
The network has to operate with some allocation in

the feasible region. The choice of which allocation de-
pends both on the algorithms for the control plane of
the network, and on user behaviour. We will first give
some examples, then review the standard metrics for
evaluating resource allocation, then specify a general-
purpose metric which encompasses all the examples and
the standard metrics.

3

Example 1 (data center) The proposal in [3] is that
the data center should pick an allocation (y1, y2) such
that the vector (w1y1, w2y2) is max-min fair, wherew1 =
4/18 and w2 = 3/9. The idea is to weight tasks accord-
ing to how much capacity they consume at the resource
at which they consume their largest share: for example
one unit w1y1 = 1 corresponds to y1 = 18/4 instances
of task 1, which consume 100% of the RAM and 50%
of the CPUs, and one unit w2y2 = 1 consumes 100% of
the CPUs and 17% of the RAM. A max-min fair alloca-
tion of (w1y1, w2y2) attempts to equalize consumption
at each flow’s dominant resource. ♦

Example 2 (TCP) Let pa, pb and pc be the loss rates
at the three links in Example 2 above, and let RTT0

etc. be the round trip times. According to the TCP
throughput formula, the throughputs achieved by the
four flows are

y0 =

√
2

RTT0

√
pa + pb + pc

, y1 =

√
2

RTT1

√
pa

,

y2 =

√
2

RTT2

√
pb

, y3 =

√
2

RTT3

√
pc

,

assuming that loss rates are small enough that the loss
rate experienced by flow 0 is 1 − (1 − pa)(1 − pb)(1 −
pc) ≈ pa + pb + pc. It is not hard to show that these
throughputs are exactly the solution to the optimization
problem

maximize
−2

y0RTT2
0

+
−2

y1RTT2
1

+
−2

y2RTT2
2

+
−2

y3RTT2
3

such that (y0, y1, y2, y3) is feasible. ♦

Example 5 (Distributed algorithm) In Example 5
above, it would be reasonable to treat the arrival rates
of jobs as fixed by user demand, and outside the con-
trol of the distributed system. If this is so, either the
arrival rates are inside the feasible region and all jobs
can be handled, or the arrival rates are outside the fea-
sible region and some must be dropped. In other words,
the resource allocation problem is one of admission con-
trol rather than rate allocation. Even the decision not
to implement explicit admission control, and to simply
drop jobs when buffers fill up, is a form of admission
control—a foolish form of admission control, since it
may lead to congestion collapse, i.e. wasting effort by
serving a job that will turn out to be dropped down-
stream.
A simple objective is to maximize the net through-

put. In the context of this simple example, this means
picking rates ŷ0, ŷ1, ŷ2 so as to

maximize ŷ0 + ŷ1 + ŷ2 over (ŷ0, ŷ1, ŷ2) feasible,

such that ŷ0 ≤ y0, ŷ1 ≤ y1, ŷ2 ≤ y1.

In this problem, ys is the arrival rate of jobs of type
s, taken to be fixed, and ŷs is the rate at which those
jobs are admitted, taken to be under the control of the
distributed algorithm. Alternatively, we might imagine
that there is a revenue associated with each completed
job, say revenue ws for jobs of class s, and aim to pick
job admission rates so as to maximize w0y

′
0
+ w1y

′
1
+

w2y
′
2. For example, if the revenues in Figure 2 are w0 =

$5, w1 = $4 and w2 = $6, and the offered rate y2 is high
enough, then it is optimal for machine a to reject all $5
jobs and only serve $4 jobs. ♦

Here are some of the standard ways to evaluate a
resource allocation.
Jain’s fairness index measures how equal the flow

rates are. It is given by (
∑

ys)
2/(n

∑

y2s) where n is
the number of flows. It lies in the range [0, 1], and if all
flow rates are equal it has value 1.
Pareto efficiency is a more appropriate way to judge

an allocation in networks with more than one bottle-
neck, when it may not be possible to achieve a Jain’s
fairness index of 1. An allocation vector y is Pareto effi-
cient if there does not exist any other feasible allocation
y′ such that y′ ≥ y and y′s > ys for at least one flow s.
Max-min fairness specifies one particular allocation

out of the many possible Pareto-efficient allocations. An
allocation is max-min fair if increasing the allocation of
any user must be at the cost of reducing the allocation of
some other less fortunate user. Formally, y is max-min
fair if for any other feasible allocation y′ with y′s > ys
there exists t with y′t < yt ≤ ys. This can be general-
ized by attaching weights to each user, as in Example 1
above.
Throughput maximization is another intuitively ap-

pealing goal. The trouble with max-min fair alloca-
tions is that they may have low total throughput. For
example, in Example 2 (Figure 1), if all links have equal
capacity, then the max-min fair allocation gets 2/3 of the
maximum possible throughput. As described in Exam-
ple 5, revenue maximization is the same as weighted
throughput maximization.

A general-purpose metric.
All these examples and metrics can be subsumed into

a single goal: given weights ws > 0 and a parameter
α ≥ 0, choose the allocation vector y which solves

maximize
∑

s

ws

y1−α
s

1− α
(2)

over all feasible allocations y.

(If α = 1 then maximize
∑

s ws log(ys) instead.) This
metric (2) is known as weighted α-fair utility, and it
was introduced by Mo and Walrand [9]. Let us stress
straight away that this metric is intended as a concep-
tual aid; it is not intended that students should attempt

4

to solve it in anything more than toy examples, and it
is certainly not something that should ever be explicitly
computed in a live network.
The links with the earlier examples and metrics are

as follows. The solution to this optimization problem is
always Pareto efficient, for any weights and any α ≥ 0.
It can be shown that as α → ∞, the solution approaches
the weighted max-min fair allocation. At α = 0, we re-
cover the weighted throughput-maximizing allocation.
At α = 2 and with weights ws = 2/RTT2

s we recover the
allocation achieved by TCP (Example 2).
The pedagogical benefits of teaching resource alloca-

tion via weighted α-fair utility maximization are:

• It is a general-purpose metric which subsumes all
the other standard metrics and examples. Resource
allocation is not a hodge-podge of different ideas.

• Different types of resource allocation are parame-
terized very simply, by adjusting weights and the
α parameter. This makes it easy to systematically
explore the problem space.

• It makes it clear that there is a continuum between
efficiency (small α) and fairness (large α), and there
is in general no sweet spot which is both max-min
fair and throughput-maximizing.

• Most importantly, there are canonical distributed
algorithms for finding an allocation which maximizes
this metric, which are the topic of the next section.

4. CANONICAL ALGORITHMS
We have seen that resource allocation can be viewed

as a constrained optimization problem. This means
there is a wide range of numerical techniques for com-
puting the solution. What is interesting to network sys-
tems researchers is that some of these techniques trans-
late into distributed algorithms.
We will give one detailed illustration here, for the ex-

ample of Internet congestion control. The key point to
bear in mind, though, is that resource allocation prob-
lems all have the same basic structure, given by (2), and
so algorithms that work for one application should be
translatable to other applications.

Example 2 We noted that TCP solves the optimiza-
tion problem

maximize
∑

s∈{0,1,2,3}

−2

ysRTT2
s

over y0, y1, y2, y3 ≥ 0

such that y0 + y1 ≤ Ca, y0 + y2 ≤ Cb, y0 + y3 ≤ Cc.

A simple heuristic algorithm for solving such an opti-
mization problem is steepest ascent with penalty func-
tions. Invent a penalty function for each of the con-
straints, say Pa(y0 + y1) etc., with the property that

it is 0 if y0 + y1 � Ca, and it increases rapidly at
y0 + y1 ≈ Ca. It doesn’t much matter what the exact
penalty function is. Next, consider the unconstrained
optimization problem, to pick y0, y1, y2, y3 ≥ 0 so as to
maximize

L(y0, y1, y2, y3) =
∑

s∈{0,1,2,3}

−2

ysRTT2
s

− Pa(y0 + y1)− Pb(y0 + y2)− Pc(y0 + y3).

Pick some arbitrary initial values for the ys. The natu-
ral way to update the ys is to take a small step in the
direction of steepest ascent, which is given by the par-
tial derivatives of L with respect to each of its variables.
Writing pa = P ′

a(y0 + y1) etc., the direction of steepest
ascent is

dy0 =
2

y2
0
RTT

2
0

− (pa + pb + pc), dy1 =
2

y2
1
RTT

2
1

− pa,

dy2 =
2

y2
2
RTT

2
2

− pb, dy3 =
2

y2
3
RTT

2
3

− pc.

TCP actually controls window size rather than rate. If
we express these updates in terms of window sizes, e.g.
w0 = y0RTT0, then

dw0 =
(

2/w2

0 − (pa + pb + pc)
)

RTT0. (3)

In fact, TCP increases its window at rate 1/RTT0 in
the absence of drops, and it decreases its window by
w0/2 when there is a drop, and drops occur at rate
(pa + pb + pc)w0/RTT0, giving

dw0 = 1/RTT0 − (pa + pb + pc)w
2

0
/(2RTT0) (4)

where pj is the loss rate at link j. This is propor-
tional to the formula (3), but multiplied by the factor
w2

0
/(2RTT2

0
). It is still a small step of ascent, but it is

not steepest ascent. ♦

There are several important lessons to draw from this
example.

• Once we have decided on the optimization problem,
the most naive optimization method possible (i.e.
steepest ascent) suggests to us a distributed algo-
rithm.

• The difference between (3) and (4) is the intellectual
content of systems research. There is little merit in
cranking a handle and producing a canonical solu-
tion. There is substantial merit in testing the canon-
ical solution, finding its practical shortcomings, and
fixing it. In this case, the difference is that TCP’s
adjustements are smaller when RTT is larger, which
is a way of preventing instability.

• The canonical algorithm tells us how to adapt at the
level of flow rates. To turn this into an actual packet-
level algorithm also takes systems-level inspiration.

5

An optimization problem like the one we started with
can be written in a variety of ways. Here is a rough
outline of ways of writing it, and of the corresponding
distributed algorithms. This is not the place to give
details; a fuller and rather technical account of how they
apply to congestion control is given in [12].

• The above formulation, in which the variables are
the flow rates, leads to TCP-style congestion control.

• The dual optimization problem, in which the vari-
ables are dual variables at the resources, leads to
RCP-style congestion control.

• If we extra variables for flow rates on each link, e.g.
y0,a, y0,b and y0,c, and add flow conservation con-
straints y0,a = y0,b = y0,c, we obtain backpressure-
style congestion control.

For the application to distributed algorithms see [11].

5. DISCUSSION
We now consider two directions for further discussion

with students. The first is about design principles for
control planes for resource allocation, and the second is
about policy.

Design principles for a resource control plane.
The most important guidance from the canonical al-

gorithm in Section 4 is that it tells us a signalling archi-
tecture: it tells us that there are capacity constraints,
and each needs to send a signal to the users who are
using it, and users need to respond to their aggregate
feedback. The other styles of canonical algorithm (men-
tioned at the end of that section) correspond to differ-
ent signalling architectures, namely signals from users
to resources for RCP-style algorithms, and signals be-
tween neighbouring resources for backpressure-style al-
gorithms.
The signalling architecture does not depend on the

weights nor on α, in the general-purpose objective (2).
In other words, the outcome you want the network to
achieve (whether it is max-min fairness, maximum effi-
ciency, or something in between) has no bearing on the
fundamental signalling architecture. Conversely, if the
right signals are not there, it will be hard to achieve any
sensible resource allocation.
This can lead to an informed discussion about sig-

nalling mechanisms. For example, what are the sig-
nalling mechanisms in DOCSIS, or wifi, or overloaded
distributed hash tables? Do they measure all the con-
strained resources? In networks with strict isolation be-
tween users, what sort of resource allocation outcomes
are possible?

Policy and network neutrality.
The most important lesson from Section 3 is that

there is always a normative decision about who gets

how much. The simple-minded view of network neu-
trality, often seen expressed on popular sites such as
slashdot.org, is “I paid for 8Mb/s, so I should get
8Mb/s.” Where in the feasible region is this operat-
ing point? Is it a useful way to think about network
neutrality? See also [2].
To achieve a given resource allocation outcome, there

needs to be either cooperation, or incentives to coop-
erate, or policing. This can lead to a discussion about
control in various networks. What specific resource al-
location was Comcast trying to achieve, by using DPI
to throttle bittorrent traffic? How could users of a data
center such as [3] cheat by hiding their true identities?
This also ties in nicely with the conex working group at
the IETF.

References
[1] D. Bertsekas and R. Gallager. Data networks. Prentice Hall,

1987.

[2] Bob Briscoe. Flow rate fairness: dismantling a religion.
ACM/SIGCOMM CCR, 2007.

[3] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Kon-
winsku, Scott Shenker, and Ion Stoica. Dominant resource
fairness: fair allocation of multiple resource types. In Proc.
NSDI, 2011.

[4] F. P. Kelly. Loss networks. Annals of Applied Probability, 1,
1991.

[5] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate con-
trol in communication networks: shadow prices, proportional
fairness and stability. Journal of the Operational Research
Society, 49, 1998.

[6] Fabius Klemm, Jean-Yves Le Boudec, and Karl Aberer. Con-
gestion control for distributed hash tables. In Proc. IEEE
NCA, 2006.

[7] Jean-Yves Le Boudec. Rate adaptation, congestion control
and fairness: a tutorial. Retrieved 28 April 2011, 2008. URL
http://ica1www.epfl.ch/PS_files/LEB3132.pdf.

[8] Laurent Massoulié and James Roberts. Bandwidth shar-
ing: objectives and algorithms. IEEE/ACM Transactions
on Networking, 2002.

[9] J Mo and J Walrand. Fair end-to-end window-based conges-
tion control. IEE/ACM Transactions on Networking, 2000.

[10] J. W. Roberts and L. Massoulié. Bandwidth sharing and
admission control for elastic traffic. In Proc. ITC Specialist
Seminar, 1998.

[11] Devavrat Shah and Damon Wischik. Fluid models of conges-
tion collapse in overloaded switched networks. Submitted,
2011. URL http://www.cs.ucl.ac.uk/staff/d.wischik/

Research/overload.html.

[12] Srinivas Shakkottai and R. Srikant. Network optimization
and control. Foundations and trends in networking, 2007.

[13] L. Tassiulas and A. Ephremides. Stability properties of con-
strained queueing systems and scheduling policies for maxi-
mum throughput in multihop radio networks. IEEE Trans-
actions on Automatic Control, 1992.

[14] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and
Mark Handley. Design, implementation and evaluation of
congestion control for multipath TCP. In Proc. NSDI, 2011.

6

