

David Greaves + Ali Zaidi NMI Multicore Cambridge

spEEDO: Energy Efficiency through
Debug suppOrt (& On Chip Analytics)

David Greaves
Ali Zaidi
Klaus McDonald Maier

University of Cambridge
Computer Laboratory
And Ultrasoc Ltd
NMI Multicore Meeting,
Cambridge March 2014.

PEHAM Project: Power estimation from high-level models

David Greaves + Ali Zaidi NMI Multicore Cambridge

Computer Laboratory Research 1

 - Energy Management Techniques in Modern Mobile Handsets

(N Vallina-Rodriguez, J Crowcroft, IEEE COMMUNICATIONS SURVEYS 2012).

- Dynamic Microarchitectural Adaptation Using Machine Learning

(C Dubach, TM Jones EV Bonilla , ACM Transactions on Architecture and Code
Optimization TACO 2013)

- The Smart Cache: An Energy-Efficient Cache Architecture Through Dynamic Adaptation

(KT Sundararajan, TM Jones and NP Topham International Journal of Parallel
Programming 2013)

- Computer Laboratory: C-AWARE

C-AWARE aims to build services to improve users' awareness of their personal
energy consumption, and modify their energy demand.

https://www.cl.cam.ac.uk/%7Etmj32/papers/docs/dubach13-taco.pdf
https://www.cl.cam.ac.uk/%7Etmj32/papers/docs/sundararajan13-ijpp.pdf
http://www.cl.cam.ac.uk/research/srg/netos/c-aware/

David Greaves + Ali Zaidi NMI Multicore Cambridge

Gates Building Power
We have a log of nearly all the power used in our building in Cambridge.

David Greaves + Ali Zaidi NMI Multicore Cambridge

That's in the
 C-Aware Project

which has installed
monitors on all the
mains cables in the

switch room.

The picture shows just four of many.

David Greaves + Ali Zaidi NMI Multicore Cambridge

David Greaves + Ali Zaidi NMI Multicore Cambridge

Computer Laboratory Research 2

- KIWI – Compiling dotnet C#
programs to FPGA for low energy
execution (DJ Greaves + S Singh).

- Achieving Superscalar
Performance without Superscalar
Overheads – A Dataflow Compiler
IR for Custom Computing (AM
Zaidi and DJ Greaves).

- TLM POWER 3: Power Estimation Methodology for SystemC TLM
2.0' (DJ Greaves & MM Yasin, FDL'12)

David Greaves + Ali Zaidi NMI Multicore Cambridge

PC CPU Power Probe

The same USB probe

Measures 12 volt rail
to motherboard CPU
socket.

Measures volts and
amps at 10 Hz rate.

Accuracy:
 consistency of about
1 percent between
runs.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Probed and Probing Machines

AMD 6-Core Phenom 64 Processor with TCP connection to power probe machine.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Splash-2 'RADIX' : First Test Setup

Plot shows two runs with two cores and then one run with one core.

Problem: Power probe was running on same machine (spikes).
Problem: Some spikes missed owing to aliasing (missing ADC LPF).
Fixed thereafter (use separate probe machine and add an RC filter).
Note: this older CPU used 3x power compared with Phenom...

David Greaves + Ali Zaidi NMI Multicore Cambridge

TLM Power 2 Library
● TLM POWER 2

developed at
France CEA
(Lebreton/Vivet)

● Used phase/mode
modelling

● No LT
● No TLM socket

integration.

David Greaves + Ali Zaidi NMI Multicore Cambridge

TLM POWER 3: Motivation

● Power estimation from high-level models.
● Rapid architectural exploration using SystemC.
● Absolute accuracy goal: correct order of

magnitude at least!
● Relative accuracy goal: 30 percent or so.

● Want correct polarity of the parameter
derivatives : A change is better or worse!

David Greaves + Ali Zaidi NMI Multicore Cambridge

Physical Units

● SystemC provides overloaded sc_time units
● TLM POWER 2 added pw_energy and

pw_power units with all appropriate overloads.
● TLM POWER 3 adds pw_voltage for F/V

scaling.
● TLM POWER 3 also adds pw_length and

pw_area.

Basic physics: energy divided by time ---> power

Basic physics: length times length ---> area

David Greaves + Ali Zaidi NMI Multicore Cambridge

Setting Static Parameters

Excess area: the local increment above the sum of the instantiated
modules below.

Typically set the area and static power in the constructor.

Example: for a RAM, the area can be dependent on the number if bits.

David Greaves + Ali Zaidi NMI Multicore Cambridge

LT b_transport energy annotation

Bad:
This shows computation of energy per transaction in the body of the transaction.

Better:
Energy and floating point computations done in RECOMPUTE_PVT callback.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Spatial Layout Support

● Every SC_MODULE has a chip/region
designation.

● The area of a module is sum of
● its children with the same chip/region name
● its locally defined 'excess area'.

● Inter-module wiring lengths can be estimated
using Rent's Rule on area of lowest-common-
parent.

● Actual X-Y co-ordinates could be allocated by a
placer.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Report Formats (2: Ascii-art text file)

David Greaves + Ali Zaidi NMI Multicore Cambridge

spEEDO
● spEEDO: Energy Efficiency through Debug

suppOrt

● University of Cambridge Computer Laboratory
in Collaboration with Ultrasoc Limited.

● Funded for six months by the UK TSB

● Started October 2013

David Greaves + Ali Zaidi NMI Multicore Cambridge

spEEDO

● Develop a power API for three purposes:
● Embedded software energy reflection API
● Remote debugger energy accounting and logging
● Debug access to power-gated regions

Current activities:

- Develop a strawman energy API for access to
 'On Chip Analytics'
 - Trials on SystemC virtual SoC
 - Extend GDB schemas for energy regs

David Greaves + Ali Zaidi NMI Multicore Cambridge

Reference Architecture

David Greaves + Ali Zaidi NMI Multicore Cambridge

Existing Power Events

Existing event counters in device drivers and hardware can be projected
through a calibration matrix to give energy estimates.

David Greaves + Ali Zaidi NMI Multicore Cambridge

MSRs

Machine-Specific
Registers:

Oprofile example.

Oprofile gives
a uniform API to a wide

variety of hardware
platforms.

Listing shows monitorable
event counters on AMD

x86-Hammer

David Greaves + Ali Zaidi NMI Multicore Cambridge

New Power Supply Monitors

Resistive shunt
 measurement Measurement using

switched-mode
(SMPSU) cycle

counting
 measurement

David Greaves + Ali Zaidi NMI Multicore Cambridge

Intel's Power Gadget MSRs

David Greaves + Ali Zaidi NMI Multicore Cambridge

Energy Aware COmputing
Framework (EACOF)

Hayden Field / James Pedlingham – University of Bristol

Basically an SQL
networked server where:

 - Multiple sensors and
other providers can log
energy use

 - Multiple customers
and analytics can
inspect.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Existing GDB Energy Capability ...

...
 is inadequate !

David Greaves + Ali Zaidi NMI Multicore Cambridge

GDB RSP
Extensions

&
XML Target Description

Extensions

David Greaves + Ali Zaidi NMI Multicore Cambridge

Register Power ABI Strawman

David Greaves + Ali Zaidi NMI Multicore Cambridge

C API – Registers via HAL

David Greaves + Ali Zaidi NMI Multicore Cambridge

Customer Number

David Greaves + Ali Zaidi NMI Multicore Cambridge

Context Swap H/W Energy Bank

David Greaves + Ali Zaidi NMI Multicore Cambridge

A Hello World, very-simple C app.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Output from
the very-
simple

C Program

David Greaves + Ali Zaidi NMI Multicore Cambridge

Energy Report With Customer Nos

David Greaves + Ali Zaidi NMI Multicore Cambridge

Running on two cores...

David Greaves + Ali Zaidi NMI Multicore Cambridge

Thankyou for listening

David Greaves
Ali Zaidi
Klaus McDonald Maier

University of Cambridge
Computer Laboratory

FOSDEM'14
Energy Efficient Computing.

David Greaves + Ali Zaidi NMI Multicore Cambridge

BACKUP SLIDES NOW FOLLOW
....

TLM Modelling
and TLM POWER 3

David Greaves + Ali Zaidi NMI Multicore Cambridge

SMP OpenRISC Demo Platform

1 to 64 cores (four shown)
Shared or split or no L1 Cache
Flexible cache architectures
L2 and L3 caches easily added

Each cache has power-annotated tag and data RAMs
SRAM parameters from CACTI
DRAM modelled by Univ Maryland DRAMSIM2

Verilated OpenRISC Core
Or fast ORSIM ISS
(Or MIPS64)

David Greaves + Ali Zaidi NMI Multicore Cambridge

SystemC

A free C++ library that provides:

 A hardware module description system where a module is a C++ class,

 An eventing and threading kernel,

 Compute/commit signals as well as other forms of channel,

 A library of fixed-precision integers,

 Plotting and logging facilities for generating output,

 Two transactional modelling libraries.

Originally aimed as an RTL replacement, for low-level hardware modelling.

Now being used for high-level (esp. transactional) modelling for architectural
exploration.

Also now being used as an implementation language with its own synthesis
tools.

David Greaves + Ali Zaidi NMI Multicore Cambridge

SystemC: Example Module
In this example a C++ class is defined using the the SC_MODULE macro.

SC_MODULE(mycounter)
{
 sc_in < bool > clk, enable, reset;
 sc_out < sc_int<10> > sum;

 void m() // Behaviour
 {
 if (reset) sum = 0;
 else if (enable) sum = sum.read()+1;
 // Use .read() since sc_out makes a signal.
 }

 SC_CTOR(mycounter) // constructor
 { SC_METHOD(m);
 sensitive << clk.pos();
 }
}

Modules inherit various attributes appropriate for an hierarchic
hardware design including an instance name field and a channel
binding capability.

David Greaves + Ali Zaidi NMI Multicore Cambridge

SystemC: Structural Netlist

// Example of structural hierarchy and wiring
// between levels:

SC_MODULE(shiftreg) // Two-bit shift register
{ sc_in < bool > clk, reset, din;
 sc_out < bool > dout;

 sc_signal < bool > q1_s;
 dff dff1, dff2; // Instantiate FFs

 SC_CTOR(shiftreg) :
 dff1("dff1"), dff2("dff2")
 { dff1.clk(clk);
 dff1.reset(reset);
 dff1.d(din);
 dff1.q(q1_s);

 dff2.clk(clk);
 dff2.reset(reset);
 dff2.d(q1_s);
 dff2.q(dout);
 }
};

The sc_signal (extends sc_channel) should be used
to obtain the compute/commit paradigm. Avoids
non-determinacy from races on zero-delay flip-flops.

sc_in and sc_out extend sc_channel.

General SystemC channel provides general
purpose interface between components.

Other SystemC channel types include FIFOs and
semaphores.

sc_port and sc_export needed for TLM modelling.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Transaction Level Modelling

Note that the roles of initiator and target do not necessarily relate to the
sources and sinks of the data.

Infact, an initiator can commonly make both a read and a write transaction on
a given target and so the direction of data transfer is dynamic.

David Greaves + Ali Zaidi NMI Multicore Cambridge

TLM: Loose Timing

 b_putbyte(char d)
 {
 printf(“Byte '%c'\n”, d);
 wait(250, SC_NS);
 }

b_putbyte(char d, sc_time &delay)
{
 sc_time del(250, SC_NS);
 printf(“Byte '%c'\n”, d);
 delay += del;
}

Naive Coding Style Loosely-Timed Coding Style

But, at any point, any thread can resynch itself with the
kernel by performing:

 // Resynch idiomatic form:
 sc_wait(delay);
 Delay = 0;

Have a local variable 'delay' associated with each thread.

Simulation performance is reduced when there are frequent resynchs,
but true transaction ordering will be modelled correctly.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Loosely-timed TLM Modelling: General Structure

David Greaves + Ali Zaidi NMI Multicore Cambridge

Records, Accounts and Observers
● Every monitored module is tied to a power record

● by inheritance or

● by SystemC attribute.

● Every power record contains a set of accounts.

● Accounts have common (user-defined) names and
purposes across the system. Typically:

● A1 Static power

● A2 Dynamic energy

● A3 Wiring energy

● Each account can track both energy and power.

● An observer sums activity in a collection of records
keeping accounts separate.

● A report file has one observer per line.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Hop Tracking: Origin/Hop/Terminus.

● Initiator makes the origin and terminus calls.

● Intermediate nodes (cache and bus models) call log_hop.

● Flags enable energy to be logged at src or dest.

● Options 1+2:

● For additional transition counting, need to know which bus
transaction is on and which fields in TLM payload are active.

Option 1: Track transaction trajectory to get distance travelled.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Report Formats (3: VCD)

● Each account and their summations can be plotted in various forms

● 1: Ascii-art table format

● 2: SYLK or CSV spreadsheet format

● 3: VCD temporal display (using dirac impulse response or
average over interval)

● A physical layout file is also written.

David Greaves + Ali Zaidi NMI Multicore Cambridge

An OpenRISC Core in TLM Form

Two approaches to getting an OpenRISC core:

1. Verilated:
 - Use OR1200 in verilog and pass through Verilator to
 create net-level SystemC.
 - Manually write a TLM 2.0 wrapper for it.

2. ORSIM ISS:
 - Take the (auto-generated?) sim.C code from orsim
 - Add some backdoor nops
 (e.g. atomic prefix for load-linked bus transaction)
 - Manually write a SystemC TLM wrapper for it.

David Greaves + Ali Zaidi NMI Multicore Cambridge

OpenRISC Core Power Annotation

Two approaches to getting an OpenRISC core:

1. Verilated:
 - Add a static power consumption in the constructor.
 - Modify Verilator's net update macros to debit energy
quanta according to hamming distance (TODO).

2. ORSIM ISS:
 - Add a static power consumption in constructor.
 - Adjust static power mode on any sleep modes.
 - Add an array giving the complexity of each instruction.
 - On each instruction, debit dynamic energy proportional to
complexity.

David Greaves + Ali Zaidi NMI Multicore Cambridge

AMD Phenom 6 Core Model

David Greaves + Ali Zaidi NMI Multicore Cambridge

Phenom Corner Cases: 1 to 8 threads

Integer
ALU

Floating
Point ALU

Memory Access:
Disjoint Footprints

Memory
Access:
Overlapping
 Footprint

Vertical bar -> 1 second.
Horizontal scale -> 100 Watts.

System has 6 cores
sharing one DRAM bank.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Splash-2 'RADIX' : Power + Energy

Running the RADIX test on
 n = 1 to 6 cores.

Program modified to suit n not
a power of 2.

Increasing n ---> increased
performance.

Increasing n ---> better
efficiency.

Strange power humps !

One DRAM DIMM shared.
1 2 3 4 5 6

David Greaves + Ali Zaidi NMI Multicore Cambridge

Phenom Energy Coefficients

Instruction 1 nJ

I Cache
Miss

50 nJ

D Cache
Miss

15 uJ

D Cache
Snoop
Read

4 mJ

D Cache
Evict

7 mJ

Values obtained from
curve fitting

CPU + Caches only.

DRAM excluded.

David Greaves + Ali Zaidi NMI Multicore Cambridge

 Measured v Predicted: Runs 19-24 extrapolated
from data fitting on 1-18.

Energy

Time

David Greaves + Ali Zaidi NMI Multicore Cambridge

Static or Initial Parameters (2)
● Set up static parameters in constructor:

● Excess or actual area or dimensions

● Static power consumption

● Chip/region name

● VCC supply voltage

● Optional per-instance or per-kind technology file (XML) can be
accessed (defines phases and modes and default VCC ...).

● Some are less static:
● Set these in PVT change callback (virtual function).

● Call that yourself from constructor.

● PVT called-back when VCC changes.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Confidence Switcher
Generic API for a measuring and
estimating component.

Use for time, energy, transition
count and so on ...

Very simple implementation if we
just want an estimate of the
average metric:

Discard first N
measurements, average next N,
return this value while making an
actual measurement one in every
N to check for LOSS OF
CONFIDENCE.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Augmented DMI Flow

Latency can be credited to the initiating thread's 'delay' as always.

Energy should be credited to the intermediate components:

so DMI record at initiator is extended with either
a) a list of intermediate agents that have their own records

 or
 b) bulk read and write energy records (simpler, not shown).

David Greaves + Ali Zaidi NMI Multicore Cambridge

Power Estimation: Project Flow

David Greaves + Ali Zaidi NMI Multicore Cambridge

Backup Slide: ESL Modelling Flow

David Greaves + Ali Zaidi NMI Multicore Cambridge

Talk Overview

● SystemC + TLM Introduction
● TLM POWER 2
● TLM POWER 3

● Loose timing
● Energy based
● Layout aware
● Bit transition counting

● Splash-2 benchmarks, power probed.
● Data fit x86_64 to OpenRISC !

David Greaves + Ali Zaidi NMI Multicore Cambridge

Loosely-Timed: Effect of Quantum
Two cores running: main() { for(i=0;i<5;i++) puts(“Hello World”); }

Core clock Is 200 MHz (5ns period).

Global Q = 5ns
Lock-step execution

Global Q = 100us
Coarsely interleaved

Global Q = 1us
Finely interleaved

Sim Start: cores=2
Hello World
HeHello World
Hello World

Hello Woolo World
Hello rld
Hello World
World
Hello Wor
Hello World
CPU 0 exit : insns #717
CPU 1 exit: insns #717

Sim Start: cores=2
HHelleol lWoo rWlodr
ld
HHeelllloo WWoorrlldd

HHeelllloo Wwoorrlldd

HHeelllloo WWoorrlldd
H
eHlellol oW oWrolrd
ld
CPU 0 exit: insns #717
CPU 1 exit: insns #717

Sim Start: cores=2
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
CPU 0 exit: insns #717
CPU 1 exit: insns #717

 Three different settings of the global quantum.

David Greaves + Ali Zaidi NMI Multicore Cambridge

Loosely-Timed Performance Lost

Relative performance of LT TLM Model (2 cores, running SPLASH-2 Radix Sort n=100)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

