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Computer Laboratory Research 1

 - Energy Management Techniques in Modern Mobile Handsets

(N Vallina-Rodriguez, J Crowcroft, IEEE COMMUNICATIONS SURVEYS 2012). 

- Dynamic Microarchitectural Adaptation Using Machine Learning 

(C Dubach, TM Jones EV Bonilla , ACM Transactions on Architecture and Code 
Optimization TACO 2013)

- The Smart Cache: An Energy-Efficient Cache Architecture Through Dynamic Adaptation 

(KT Sundararajan, TM Jones and NP Topham International Journal of Parallel 
Programming 2013) 

- Computer Laboratory: C-AWARE

C-AWARE aims to build services to improve users' awareness of their personal 
energy consumption, and modify their energy demand.

https://www.cl.cam.ac.uk/%7Etmj32/papers/docs/dubach13-taco.pdf
https://www.cl.cam.ac.uk/%7Etmj32/papers/docs/sundararajan13-ijpp.pdf
http://www.cl.cam.ac.uk/research/srg/netos/c-aware/
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Gates Building Power
We have a log of nearly all the power used in our building in Cambridge.
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That's in the
 C-Aware Project 

which has installed 
monitors on all the 
mains cables in the 

switch room.

The picture shows just four of many.
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Computer Laboratory Research 2

- KIWI – Compiling dotnet C# 
programs to FPGA for low energy 
execution (DJ Greaves  + S Singh).

- Achieving Superscalar 
Performance without Superscalar 
Overheads – A Dataflow Compiler 
IR for Custom Computing (AM 
Zaidi and DJ Greaves).

- TLM POWER 3: Power Estimation Methodology for SystemC TLM 
2.0'  (DJ Greaves & MM Yasin, FDL'12)
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PC CPU Power Probe

The same USB probe

Measures 12 volt rail 
to motherboard CPU 
socket.

Measures volts and 
amps at 10 Hz rate.

Accuracy:
   consistency of about 
1 percent between 
runs.
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Probed and Probing Machines

AMD 6-Core Phenom 64 Processor with TCP connection to power probe machine.
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Splash-2 'RADIX' : First Test Setup

Plot shows two runs with two cores and then one run with one core.

Problem: Power probe was running on same machine (spikes).
Problem: Some spikes missed owing to aliasing (missing ADC LPF).
Fixed thereafter  (use separate probe machine and add an RC filter).
Note: this older CPU used 3x power compared with Phenom...
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TLM Power 2 Library
● TLM POWER 2 

developed at 
France CEA 
(Lebreton/Vivet)

● Used phase/mode 
modelling

● No LT
● No TLM socket 

integration.
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TLM POWER 3: Motivation

● Power estimation from high-level models.
● Rapid architectural exploration using SystemC.
● Absolute accuracy goal: correct order of 

magnitude at least!
● Relative accuracy goal: 30 percent or so.

● Want correct polarity of the parameter 
derivatives : A change is better or worse! 
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Physical Units

● SystemC provides overloaded sc_time units
● TLM POWER 2 added pw_energy and 

pw_power units with all appropriate overloads.
● TLM POWER 3 adds pw_voltage for F/V 

scaling.
● TLM POWER 3 also adds pw_length and 

pw_area.

Basic physics: energy divided by time ---> power

Basic physics: length times length ---> area 
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Setting Static Parameters

Excess area: the local increment above the sum of the instantiated 
modules below.

Typically set the area and static power in the constructor.

Example: for a RAM, the area can be dependent on the number if bits.
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LT b_transport energy annotation

Bad: 
This shows computation of energy per transaction in the body of the transaction.

Better:  
Energy and floating point computations done in RECOMPUTE_PVT callback. 



  

David Greaves + Ali Zaidi                                                                        NMI Multicore Cambridge

Spatial Layout Support

● Every SC_MODULE has a chip/region 
designation.

● The area of a module is sum of 
● its children with the same chip/region name
● its locally defined 'excess area'. 

● Inter-module wiring lengths  can be estimated 
using Rent's Rule on area of lowest-common-
parent.

● Actual X-Y co-ordinates could be allocated by a 
placer.
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Report Formats (2: Ascii-art text file)
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spEEDO
● spEEDO: Energy Efficiency through Debug 

suppOrt

● University of Cambridge Computer Laboratory 
in Collaboration with Ultrasoc Limited.

● Funded for six months by the UK TSB

● Started October 2013
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spEEDO

● Develop a power API for three purposes:
● Embedded software energy reflection API
● Remote debugger energy accounting and logging
● Debug access to power-gated regions

Current activities:

- Develop a strawman energy API  for access to
                'On Chip Analytics'
     - Trials on  SystemC virtual SoC
     - Extend GDB schemas for energy regs
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Reference Architecture
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Existing Power Events

Existing event counters in device drivers and hardware can be projected 
through a calibration matrix to give energy estimates.
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MSRs

Machine-Specific 
Registers:

Oprofile example.

Oprofile gives 
a uniform API to a wide 

variety of hardware 
platforms.

Listing shows monitorable 
event counters on AMD

x86-Hammer
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New Power Supply Monitors

Resistive shunt
 measurement Measurement using 

switched-mode
(SMPSU) cycle 

counting
 measurement
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Intel's Power Gadget MSRs
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Energy Aware COmputing 
Framework (EACOF) 

Hayden Field / James Pedlingham – University of Bristol

Basically an SQL 
networked server where:

  - Multiple sensors and 
other providers can log 
energy use

  - Multiple customers 
and analytics can 
inspect.
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Existing GDB Energy Capability ...

...
  is inadequate !
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GDB RSP
Extensions

&
XML Target Description

Extensions
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Register Power ABI Strawman
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C API – Registers via HAL
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Customer Number 
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Context Swap H/W Energy Bank
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A Hello World, very-simple C app.
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Output from
the very-
simple

C Program
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Energy Report With Customer Nos
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Running on two cores...
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Thankyou for listening

David Greaves
Ali Zaidi
Klaus McDonald Maier

University of Cambridge
Computer Laboratory

FOSDEM'14
Energy Efficient Computing.
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BACKUP SLIDES NOW FOLLOW
.... 

TLM Modelling
and TLM POWER 3
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SMP OpenRISC Demo Platform

1 to 64 cores (four shown)
Shared or split or no L1 Cache
Flexible cache architectures
L2 and L3 caches easily added

Each cache has power-annotated tag and data RAMs 
SRAM parameters from CACTI
DRAM modelled by Univ Maryland DRAMSIM2 

Verilated OpenRISC Core
Or fast ORSIM ISS
(Or MIPS64)
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SystemC

A free C++ library that provides:

 A hardware module description system where a module is a C++ class, 

 An eventing and threading kernel, 

 Compute/commit signals as well as other forms of channel, 

 A library of fixed-precision integers, 

 Plotting and logging facilities for generating output, 

 Two transactional modelling libraries. 

Originally aimed as an RTL replacement, for low-level hardware modelling. 

Now being used for high-level (esp. transactional) modelling for architectural 
exploration. 

Also now being used as an implementation language with its own synthesis 
tools. 
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SystemC: Example Module
In this example a C++ class is defined using the the SC_MODULE macro. 

SC_MODULE(mycounter)
{
   sc_in  < bool       > clk, enable, reset;
   sc_out < sc_int<10> > sum;

   void m() // Behaviour 
   {
      if (reset) sum = 0;
      else if (enable) sum = sum.read()+1; 
      // Use .read() since sc_out makes a signal.
   }

   SC_CTOR(mycounter) // constructor
     { SC_METHOD(m);
       sensitive << clk.pos();
     }
}

Modules inherit various attributes appropriate for an hierarchic 
hardware design including an instance name field and a channel 
binding capability. 
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SystemC: Structural Netlist 

// Example of structural hierarchy and wiring
// between levels: 

SC_MODULE(shiftreg)  // Two-bit shift register 
{   sc_in  < bool >  clk, reset, din;
    sc_out < bool >  dout;
 
    sc_signal < bool > q1_s;
    dff dff1, dff2;      // Instantiate FFs
 
    SC_CTOR(shiftreg) : 
                 dff1("dff1"), dff2("dff2")
    {   dff1.clk(clk);
        dff1.reset(reset);
        dff1.d(din);
        dff1.q(q1_s);
 
        dff2.clk(clk);
        dff2.reset(reset);
        dff2.d(q1_s);
        dff2.q(dout);
    }
};

The sc_signal (extends sc_channel) should be used 
to obtain the compute/commit paradigm. Avoids 
non-determinacy from races on zero-delay flip-flops. 

sc_in and sc_out extend sc_channel.

General SystemC channel provides general 
purpose interface between components. 

Other SystemC channel types include FIFOs and 
semaphores. 

sc_port and sc_export needed for TLM modelling.
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Transaction Level Modelling

Note that the roles of initiator and target do not necessarily relate to the 
sources and sinks of the data. 

Infact, an initiator can commonly make both a read and a write transaction on 
a given target and so the direction of data transfer is dynamic. 
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TLM: Loose Timing 

  
  b_putbyte(char d)
  {
    printf(“Byte '%c'\n”, d);
    wait(250, SC_NS);
  }
  

  
 
b_putbyte(char d, sc_time &delay)
{
  sc_time del(250, SC_NS); 
  printf(“Byte '%c'\n”, d);
  delay += del; 
}

Naive Coding Style Loosely-Timed Coding Style

But, at any point, any thread can resynch itself with the 
kernel by performing:

   // Resynch idiomatic form:
   sc_wait(delay);
   Delay = 0;

Have a local variable 'delay' associated with each thread.

Simulation performance is reduced when there are frequent resynchs, 
but true transaction ordering will be modelled correctly. 



  

David Greaves + Ali Zaidi                                                                        NMI Multicore Cambridge

Loosely-timed TLM Modelling: General Structure



  

David Greaves + Ali Zaidi                                                                        NMI Multicore Cambridge

Records, Accounts and Observers
● Every monitored module is tied to a power record

● by inheritance or

●  by SystemC attribute.

● Every power record contains a set of accounts.

● Accounts have common (user-defined) names and 
purposes across the system. Typically:

● A1   Static power

● A2   Dynamic energy

● A3   Wiring energy

● Each account can track both energy and power.

● An observer sums activity in a collection of records 
keeping accounts separate.

● A report file has one observer per line.
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Hop Tracking: Origin/Hop/Terminus.

● Initiator makes the origin and terminus calls.

● Intermediate nodes (cache and bus models) call log_hop.

● Flags enable energy to be logged at src or dest.

● Options 1+2:

● For additional transition counting, need to know which bus 
transaction is on and which fields in TLM payload are active. 

Option 1: Track transaction trajectory to get distance travelled.
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Report Formats (3: VCD)

● Each account  and their summations can be plotted in various forms

● 1: Ascii-art table format

● 2: SYLK or CSV spreadsheet format

● 3: VCD temporal display (using dirac impulse response or 
average over interval)

● A physical layout file is also written.

 



  

David Greaves + Ali Zaidi                                                                        NMI Multicore Cambridge

An OpenRISC Core in TLM Form

Two approaches to getting an OpenRISC core:

1. Verilated: 
  - Use OR1200 in verilog and pass through Verilator to           
                 create net-level SystemC.
  - Manually write a TLM 2.0 wrapper for it.

2. ORSIM ISS:
   -  Take the (auto-generated?) sim.C code from orsim 
   -  Add some backdoor nops
              (e.g.  atomic prefix for load-linked bus transaction)
    - Manually write a SystemC TLM wrapper for it.
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OpenRISC Core Power Annotation

Two approaches to getting an OpenRISC core:

1. Verilated:
  - Add a static power consumption in the constructor.
  - Modify Verilator's net update macros to debit energy 
quanta according to hamming distance (TODO).

2.  ORSIM ISS:
   - Add a static power consumption in constructor.
   - Adjust static power mode on any sleep modes.
   - Add an array giving the complexity of each instruction.
   - On each instruction, debit dynamic energy proportional to 
complexity.
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AMD Phenom 6 Core Model
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Phenom Corner Cases: 1 to 8 threads

Integer
ALU

Floating 
Point ALU

Memory Access:
Disjoint Footprints

Memory
Access:
Overlapping
 Footprint

Vertical bar -> 1 second.
Horizontal scale -> 100 Watts.

System has 6 cores 
sharing one DRAM bank.
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Splash-2 'RADIX' : Power + Energy

Running the RADIX test on
 n = 1 to 6 cores.

Program modified to suit n not 
a power of 2.

Increasing n ---> increased    
performance.

Increasing n ---> better 
efficiency.

Strange power humps !

One DRAM DIMM shared.
1       2      3     4       5      6
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Phenom Energy Coefficients

Instruction 1 nJ

I Cache 
Miss

50 nJ

D Cache 
Miss

15 uJ

D Cache 
Snoop 
Read

4 mJ

D Cache 
Evict

7 mJ

Values obtained from 
curve fitting

CPU + Caches only.

DRAM excluded.
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 Measured v Predicted: Runs 19-24 extrapolated
from data fitting on 1-18.

Energy

Time
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Static or Initial Parameters (2)
● Set up static parameters in constructor:

● Excess or actual area or dimensions

● Static power consumption

● Chip/region name

● VCC supply voltage

● Optional per-instance or per-kind technology file (XML) can be 
accessed (defines phases and modes and default VCC ...).

● Some are less static:
● Set these in PVT change callback (virtual function).

● Call that yourself from constructor.

●  PVT called-back when VCC changes.
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Confidence Switcher
Generic API for a measuring and 
estimating component.

Use for time, energy, transition 
count and so on ...

Very simple implementation if we 
just want an estimate of the 
average metric:

Discard first N 
measurements, average next N, 
return this value while  making an 
actual measurement one in every 
N to check for LOSS OF 
CONFIDENCE.
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Augmented DMI Flow

Latency can be credited to the  initiating thread's 'delay' as always.

Energy should be credited to the intermediate components:

so DMI record at initiator is extended with either 
a) a list of intermediate agents that have their own records

 or
 b) bulk read and write energy records (simpler, not shown).
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Power Estimation: Project Flow
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Backup Slide: ESL Modelling Flow
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Talk Overview

● SystemC + TLM Introduction
● TLM POWER 2
● TLM POWER 3

● Loose timing
● Energy based
● Layout aware
● Bit transition counting

● Splash-2 benchmarks, power probed.
● Data fit  x86_64 to OpenRISC !
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Loosely-Timed: Effect of Quantum
Two cores running: main() { for(i=0;i<5;i++) puts(“Hello World”); } 

Core clock Is 200 MHz (5ns period).

Global Q = 5ns
Lock-step execution

Global Q = 100us
Coarsely interleaved

Global Q = 1us
Finely interleaved

Sim Start: cores=2
Hello World
HeHello World
Hello World

Hello Woolo World
Hello rld
Hello World
World
Hello Wor
Hello World
CPU 0 exit : insns #717
CPU 1 exit:  insns #717

Sim Start: cores=2
HHelleol lWoo rWlodr
ld
HHeelllloo  WWoorrlldd

HHeelllloo  Wwoorrlldd

HHeelllloo  WWoorrlldd
H
eHlellol oW oWrolrd
ld
CPU 0 exit: insns #717
CPU 1 exit: insns #717

Sim Start: cores=2
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
CPU 0 exit: insns #717
CPU 1 exit: insns #717

 Three different settings of the global quantum.
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Loosely-Timed Performance Lost

Relative performance of LT TLM Model (2 cores, running SPLASH-2 Radix Sort n=100)
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