
Synthesis of a Parallel Smith-Waterman Sequence Alignment Kernel into
FPGA Hardware

David Greaves
Computer Laboratory

University of Cambridge
Cambridge CB3 0FD

United Kingdom
David.Greaves@cl.cam.ac.uk

Sutirtha Sanyal
Barcelona Supercomputing Center

Barcelona
sutirtha.sanyal@bsc.es

Satnam Singh
Microsoft Research Cambridge

Cambridge CB3 0FB
United Kingdom

satnams@microsoft.com

1

Abstract

This paper addresses the issue of making FPGA-
based co-processors accessible to systems biologists
who do not have an extensive knowledge of digital
circuit design or hardware description languages like
VHDL or Verilog. Our approach allows a software
engineer to model the compute intensive core of some
algorithm (the as a multi-threaded program which can
then be automatically synthesized into a digital circuit.
Key aspects of our approach include the ability to
control the quality of results by adjusting the model
to instantiate different numbers of threads and adjust
how information flows between threads and well as
the ability to program, debug and verify using regular
software compilers and integrated design environments
(IDEs).

We illustrate our approach using the kernel of the
Smith-Waterman sequence alignment algorithm. This
kernel is expressed as a parallel C# program which is
automatically compiled into an FPGA implementation.
We describe how to represent the parallel architecture
of the desired circuit using multi-threaded code which
models the key architectural aspects of the circuits. We
argue that descriptions in a regular, high-level lan-
guage that can be automatically compiled into circuits
makes hardware-based accelerators more accessible to
software engineers.

1. Introduction

This paper presents a technique for implementing a
software algorithm for DNA sequence alignment as a

1. Proceedings of Many-Core and Reconfigurable Supercomput-
ing Conference 2009, MRSC09, Berlin. (IEEE Computer Society).

hardware component which has significantly superior
performance. A distinctive aspect of our approach
is the use of a mainstream concurrent programming
language to express the parallel architecture of the
sequence alignment algorithm which is in turn used
to generate a Verilog implementation. The novel con-
tribution of our approach is that it a software devel-
oper to exploit FPGA-based co-processors to compute
operations like DNA sequence matching without a
requirement to be skilled in VHDL or Verilog level
digital design. In particular, our flow allows a software
engineer to exploit the power of an FPGA-based co-
processor when a hand crafted and optimized Verilog
level implementation would simply not be an option
due to lack of resources or skills.

Currently, effectively exploiting an FPGA to accel-
erate computations that are typically performed in soft-
ware involves considerable expertise in in the design of
digital systems. Furthermore, the software components
are typically designed in one language (e.g. C) and the
hardware components in a totally different hardware
language (e.g. Verilog) and the system is composed
using buses (e.g. ARM’s AMBA bus). Such complexity
makes it very difficult for regular software engineers
to exploit FPGAs to accelerate their compute intensive
kernels. This is unfortunate since from a technology
perspective FPGAs are becoming even more appealing
as co-processors because they can be be slotted into
Hypertransport sockets and onto Intel’s front side bus
(FSB). This results in significantly improved memory
bandwidth which allows a greater class of computa-
tions to be effectively off-loaded to the FPGA and the
shared memory model provides a convenient way for
processors to communicate with FPGAs.

Our approach to this problem involves trying to
bridge the gap between the level of abstraction at
which the software engineers wish to think about

their problem (i.e. in terms of a modern, high-level
programming language) and the level of abstraction at
which current tools operate for assembling embedded
systems (e.g. embedded C compilers, VHDL/Verilog
simulators and synthesis tools, system buses and tools
like Xilinx’s EDK for assembling such systems).

At first sight it may seem unwise to use a modern
object-orientated language for hardware synthesis be-
cause of the need to support garbage collection, virtual
methods and large run-time libraries. However, we
adopt a pragmatic approach. We believe that by using
even a subset of a language like C# or Java we can give
considerable expressive power to the programmer and
we can use features like annotations to help describe
how programs should be turned into circuits. Our ap-
proach involves allowing dynamic memory allocation
when the upper limits can be determined at compile
time; allowing only static method calls to components
that will be implemented in hardware; we do not
perform any garbage collection of memory associate
with hardware components; and we only support a
limited run-time library.

There are many other advantages to a design flow
that starts from a single description of an embedded
system in a modern programming language. These
include familiar syntax; readily available software de-
velopment tools for debugging, profiling and other
analyses; and the ability to simulate the system entirely
in a single framework.

An interesting point of comparison are modern
GPUs which now provide a very appealing paral-
lel hardware co-processing platform. Initially people
used GPUs for general purpose computation by re-
expressing their computations in terms of graphics
concepts (e.g. shaders) but now programmers have
available a software based abstraction for GPU pro-
gramming in C++ using the CUDA system. We believe
it is important to develop similar software abstractions
for programming FPGAs for co-processing.

2. Background

Much previous work has been focused on the syn-
thesis of circuits from sequential programs. The task
of taking a sequential program and then automatically
transforming it into an efficient circuit is strongly
related to work on automatic parallelization. Indeed,
it is instructive to notice that C-to-gates synthesis and
automatic parallelization are (at some important level
of abstraction) the same activity although research in
these two areas has often occurred without advances
in one community being taken up by the other com-
munity. Both procedures are ultimately limited by the

level of achievable parallelism in a program which, in
turn, is limited by a number of well-known program-
ming artifacts, such as the decidability of conditional
branches and array pointer comparisons.

The idea of using a programming language for
digital design has been around for at least two decades
[7]. Previous work has looked at how code motions
could be exploited as parallelization transformation
technique [12].

Examples of C-to-gates systems include Catapult-
C [20] from Mentor Graphics, SystemC synthesis
with Synopsys CoCentric [4], Handel-C [10], the
DWARV [21] C-to-VHDL system from Delft Univer-
sity of Technology, single-assignment C (SA-C) [15],
ROCCC [5], SPARK [8], CleanC from IMEC [9] and
Streams-C [6].

Some of these languages have incorporated con-
structs to describe aspects of concurrent behavior e.g.
the par blocks of Handel-C. Our approach differs
from Handel-C through the use of regular language
constructs for expressing parallelism whereas Handel-
C makes non-standard extensions to C. This allows our
approach to use a regular compiler and its associated
tools whereas the Handel-C technique requires special
compilers and tools.

Jonathan Babb’s group at MIT have developed an
interesting system for synthesizing sequential C and
FORTRAN programs into circuit by using the no-
tions of small memoriesand virtual wires [3] and we
have also applied to same technique to our flow. Just
as we make use of an existing compiler framework
based on .NET and its associated compiler support
infrastructure the MIT work exploits the rich SUIF
framework. We believe both of these approaches are
complementary to the synthesis flow that we have
developed: our flow already partitions a design into
multiple, separate memory instances as possible, and
there is no reason why virtual wires should not be
incorporated into our system if they are required to
reduce resource usage or improve performance.

A notable recent example of exploiting high level
parallel descriptions for hardware design is the Blue-
spec SystemVerilog language [16] which provides a
rule-based mechanism for circuit description which
provides a new way of defining hardware behaviour
while leaving the back-end considerable freedom. In-
deed, we can use Bluespec as an alternative back-end
for the flow presented in this paper.

Our approach involves providing hardware seman-
tics for existing low-level concurrency constructs found
in a language that already supports concurrent pro-
gramming and then to define features such as the
Handel-Cpar blocks out of these basic building blocks

in a modular manner. By expressing concurrent com-
putations in terms of standard concurrency constructs,
we hope to make our synthesis technology accessi-
ble to mainstream programmers. Although SystemC
descriptions may be very efficiently synthesized, they
still require the designer to think like a digital circuit
engineer. Our approach allows software engineers to
remain in the software realm, to help them move
computationally demanding tasks from executing on
processors to implementation on FPGAs.

3. Hardware Synthesis with Kiwi

The operation of theKiwi system has been described
in a companion paper. In summary, it consists of a C#
library of run-time functions and a compiler, called
Kiwic that takes the CIL bytecode generated by a C#
compiler and generates a synthesisable RTL descrip-
tion. Internally,Kiwic consists of a compiler front-end
that converts from dynamic to static allocation and that
recognizes low-level hooks for thread spawning and
synchronization, followed by a conventional C-to-gates
compiler that is invoked on each user thread in turn.

4. Smith-Waterman Case Study

The Smith-Waterman algorithm [19] is an exam-
ple of a compute-intensive algorithm that many re-
searchers have tried to accelerate by mapping it onto
FPGA-based computing devices. However, variants of
the FASTA [14] or BLAST [2], [1] algorithm offer
significant improvements over the software versions
of the Smith-Waterman algorithm and very effective
implementations have been reported e.g. the Mercury
BLASTP system [11] which trade off sensitivity for
speed. However, in order to find anoptimal alignment
score it is necessary to use an exhaustive technique
like Smith-Waterman since the best scored cases can
be missed by FASTA or BLAST.

For this paper we focus on the Smith-Waterman
algorithm because it is simpler to explain yet it has
characteristics which are found in many other problems
which could also benefit from FPGA-based paralleliza-
tion using the approach we describe.

We implemented the algorithm twice. We wrote it
as a parallel C# program that uses theKiwi library and
was compiled to FPGA by ourkiwic compiler. We also
wrote it by hand in Verilog RTL. The two implementa-
tions had identical signatures and can be run under the
same simulation testbench and separately compiled to
FPGA for comparison purposes. Both implementations
are defined by the parameters in Table 1.

Scoring matrix 21x21 PAM 250
Score precision 16 bits
Width of PE,w 16 bases

Number of PEs,p, 8
Maximum query length,wp 128 bases

Unwind factor 1

Table 1. Smith-Waterman, example design
parameters.

4.1. The Smith-Waterman Algorithm

The Smith-Waterman algorithm finds an optimally-
matched local subsequence between a given query se-
quence and and a standard sequence from the genome
database. The algorithm was first proposed by T. Smith
and M.Waterman in 1981. Still today it is widely used
in many applications in bioinformatics.

In this work, we sped up the software implementa-
tion of the Smith-Waterman algorithm by mapping the
compute-intensive part of the algorithm directly into
hardware.

Typically a Smith-Waterman program consists of
four major parts as shown in Figure 1 and Figure 2.

1) The query string and database strings are read-in
from a FASTA formatted sequence specification
file.

2) The query string and database strings are then ar-
ranged in a two dimensional matrix representing
row and column respectively.

3) The core computational part of the algorithm
(Described in section 6.2) walks over the entire
matrix and calculates scores based on a similarity
matrix (the one used in our experiments is PAM-
250, a 20x20 predefined matrix storing similarity
scores for all amino acids).

4) Finally, a traceback step starts from the cell
having highest score and traces back the entire
path that leads to that cell starting from a cell
having 0 score.

It is the third step which is very high in com-
putational intensity. But the algorithm has inherent
parallelization opportunity that is commonly exploited
in hardware implementations.

Part 2 is also implemented in softwarebut using the
custom attributeKiwi.Hardware which dictates that this
method should be synthesized into a Verilog module.

The database sequence is shifted-in and matrix val-
ues are computed dynamically. Each processing ele-
ment calculates in parallel. The complete architecture
of one processing element is described in section 6.3.
After processing, scores are sent back to the software
by using apiread from fsl. At each time step a new

Figure 1. Smith-Waterman matrix computation.

Figure 2. Calculation of score for one cell.

diagonal of the final score matrix is obtained.
The Smith-Waterman algorithm computes the simi-

larity between two sequences of RNA, DNA or protein.
One is the query sequence and another is a known
sequence from database. Suppose the length of query
sequence Q isn and length of database sequence D
is m. We can arrange the two sequences in a matrix
where rows are represented by database sequence and
columns are represented by query sequence.(Figure
4a). The resulting matrix is of dimension(m+1)(n+
1). Now following computation is carried out in each
cell having 1 <= i <= m and 1 <= j <= n to
obtain score corresponding to that cell:

S[i][j] = Max

S[i− 1][j − 1] + δ[i][j]

S[i− 1][j]- gap cost

S[i][j − 1]- gap cost

0

In the above equation,δ[i][j] corresponds to the

Sequence Matching

Top Level Coordination

RS-232

Transmitter, Write_String,

Write_Hex

Ethernet

Control

DDR2

Memory API

LocalLink Protocol DDR2 Memory Controller

Smith-Waterman

Kernel

Figure 3. Top level architecture of the BEE3 Smith-
Waterman co-processor

similarity value obtained by comparing amino acids
from query sequence and database sequence mapping
onto that cell. For our experiments we get this value
by consulting PAM-250 similarity matrix. The ‘gap
cost’ denotes the penalty of inserting a gap while
constructing the matched sub-sequence.

It should be noted that each element in a diago-
nal can be computed parallel. However computation
can only proceed one diagonal at a time since each
diagonal is dependent on results obtained in previous
diagonal. With this configuration, a set ofn processing
elements (PE) is sufficient. Each database character
is shifted through processing elements in each clock
cycle and corresponding values for matrix elements
are calculated in that cycle. The architectural details
of the hand-coded hardware implementation is given
in the next section.

After each cell has been assigned a score, a trace-
back stage starts tracing back a path from the cell hav-
ing highest score to the cell having 0 score. However
the traceback phase is completely sequential in nature
and hence we have mapped it into software.

4.2. Architecture description of kernel in C#

The top-level architecture of the Smith-Waterman
co-processor is shown in Figure 3. The co-processor
system is the BEE3 FPGA system which comprises 4
Xilinx XC5VLX155T FPGAs each with two channels
to external memory with each channel supporting 8GB
of memory (giving a total of 64GB). The host PC
sends query and data-base sequences using a raw
Ethernet protocol which is implemented with a special
device driver on the host Windows Vista PC and by
a specially design circuit on the FPGA which can
unpack sequence payloads directly into external DDR2
memory.

The design for theKiwi flow uses a ‘horizontal’
array of processing elements that are run in parallel,
each with its own C# thread. For flexibility in design
exploration, we decided to implement a number of

basic algorithm cells in each processing element. We
programmed this using two parameters which we fix
to constant values in the C# source code, but can
adjust before running akiwic compilation. Firstly,
instead of handling just one query base, an element
handles a substring of the query of widthw bases.
Although we can stream any length of database,m,
through the hardware, long query sequences would
need too many elements if each element could handle
only one symbol. By adjustingwidth we can scale
up the query lengthn that is handled by each ofp
elements usingn = pw. Using the second param-
eter we can experiment with the time/space folding
inside each processing element because each process
unwind_factor base symbols before pausing for a
clock cycle. Hence we can have large area elements
or smaller elements that do their work using a greater
number of clock cycles.

Each element has a pair of channels that are sourced
from the element to the left. A channel is a one-
place queue implemented as a C# class that has Read
and Write methods. Each element handles a fixed
part of the query sequence and so is loaded with the
appropriate slices of the PAM matrix to handle those
symbols before processing of the database symbols
starts. Between each element, one channel passes a
symbol from the db sequence to the element on the
right and the other passes its score, also to the element
on the right. At the left-hand side, the next base
element for the input dataset and a constant score of
zero are passed in. At the right-most column the data is
discarded. These special channel behaviors at the left
and right were implemented by subclassing the channel
class in three different ways: one provides a constant
value, one never goes busy when written and one reads
data from a database symbol staging buffer, ultimately
sourced over the Ethernet.

Score data from the above and the diagonal above
left is retained in the current element from the previous
cycle of operation. Overall diagonal operation is emer-
gent: it can be observed that any particular element
cannot proceed until its left neighbor has processed the
database symbol, and since symbols propagate from
the left, elements to the right start processing later, but
once busy, they remain busy every clock cycle until the
database ends, when they go idle in the reverse order.
They block in their channel read calls. The maximum
score ever encountered by an element is just recorded
in an extra public field and these fields are scanned at
the end of the database by another C# function that
indexes over the element array.

The C# class definition for a single element is as
follows. We used C# short variable to hold the score

values. Since the maximum value in the PAM array is
17, query strings of length up to 1927 can be processed
without any risk of overflow.

public class SwElement
{ int width, unit;
public int max;
public int [] prev, here;
public byte [,] slices; // Local part of the PAM array
public Kiwi.Channel<short> left score, right score;
public Kiwi.Channel<byte> left data, right data;
public Thread thread;
short diag left left = 0;

public SwElement(int u, int h)
{ width = h; unit = u;
here = new int[width];
prev = new int[width];
slices = new byte[width, 20];

}

public short run()
{ max = 0;
byte dbval = left data.Read();
short topScore = left score.Read();
right data.Write(dbval);
for (int qpos = 0; qpos < width; qpos++)

prev[qpos] = here[qpos];
for (int qpos = 0; qpos < width; qpos++)
{ if ((qpos % unwind factor)== 0) Kiwi.Pause();
int above = prev[qpos];
int left = qpos==0 ? topScore: here[qpos−1];
int diag = (qpos == 0) ? diag left left:

prev[qpos − 1];
int score = slices[qpos, dbval];
int nv = Math.Max(0, Math.Max(left − 10,

Math.Max(above − 10, diag + score)));
if (nv > max) max = nv;
here[qpos] = nv;
if (qpos == width−1) right score.Write((short)nv);

}
diag left left = topScore;
return max;

}

// We need a way of exiting the elements
// when run as a S/W program.
public void SWOperator()
{ while(!elements exit) run();
}

}

A horizontal array ofP.UNITS instances is created
by the following code. The configurable parameters of
the design were all placed in a class of constants, not
shown, calledP.

static SwElement [] Elements;

public static short run(seq query, seq db)
{ int width=(query.seq.Length+P.UNITS−1)/P.UNITS;
Elements = new SwElement [P.UNITS];
for (int unit=0; unit<P.UNITS;unit++)

{ Elements[unit] = new SwElement(unit, width);
Elements[unit].left data = (unit==0) ? new
Kiwi.Channel<byte>() : Elements[unit−1].right data;
Elements[unit].left score = (unit==0) ? new
Kiwi.constChannel<short>(0): Elements[unit−1].right score;
Elements[unit].right data = (unit==P.UNITS−1) ?
new Kiwi.sinkChannel<byte>(): new Kiwi.Channel<byte>();
Elements[unit].right score = (unit==P.UNITS−1)?
new Kiwi.sinkChannel<short>(): new Kiwi.Channel<short>();

// Send the relevant part of the PAM matrix.
for (int h=0;h<width;h++)
{ int sidx = h+unit∗width;
int idx = sidx>= query.seq.Length ? 0:

symbol to index(query.seq[sidx]);
for (int i=0; i<20; i++) Elements[unit].slices[h, i] =

(byte)(pam250[idx, i]);
}
// Create a thread for each element
Elements[unit].thread = new Thread(delegate()

{ Elements[unit].SWOperator(); });
Elements[unit].thread.Start();

}

for (int dbpos = 0; dbpos < db.seq.Length; dbpos++)
{ byte dbval = (byte)(symbol to index(db.seq[dbpos]));
Elements[0].left data.Write(dbval);

}

short max = 0;
for (int u = 0; u<P.UNITS; u++)

max = Math.Max(Elements[u].max, max);
return max;

}

4.3. Architecture description of the hand-
coded hardware kernel

The hand-coded implementation was designed to
mirror the overall operation of the software version,
using the same level of parallelism: both designs used
nine threads. It would have been possible to define a
larger number of smaller cells, to increase the paral-
lelism, but our main aim was to determine if there
was a performance or efficiency gap between what is
generated using theKiwi approach and what can be
done by an RTL expert who implements precisely the
same algorithm.

4.4. Results

Table 2 presents the main difference between the
hand-coded andKiwi synthesized designs. This is the
length of the RTL code. As per Table 1, the hand-
coded version used 8 instances of a cell module that if
in-lined to resemble the flat design generated bykiwic
would lead to a file approximately 977 lines long.

Design RTL Length State CUPs/Clock
Hand 396 lines 59877 bits 8/19 = 0.42
Kiwi 27421 lines 68666 bits 8/20 = 0.40

Table 2. Comparison with hand-coded design.

With an unwind factor of 1, meaning thatw = 16
clock cycles should be used for each db element,
the measured results in simulation were 19 and 20
clock cycles per db element for the two designs. The
overheads arise owing to the way data was passed
along channels from one element to the next.

Table 3 shows the device utilization and clock fre-
quencies achieved for the two designs when elaborated
for two contemporary FPGA devices using Synplicity
Synplify Premier.

Although the CUPs/Clock metric for this design is
quite low, at 0.4, compared with previous FPGA im-
plementations (§4.5), this could be increased by simply
instantiating further cells. For instance, we used only
15 percent of the Altera array and hence CUPs/Clock
could be easily raised to 2.6. However, this would
still be a comparatively low figure, compared with
(§4.5). A figure closer to 100 would be reached using a
larger number of smaller cells owing to the additional
parallelism. However, we cannot yet report that result
because of heap size problems whenkiwic is applied
to that larger designs.

Running the C# program under .net or mono resulted
in output that was nearly identical to the output from
running the version created bykiwic using the Verilog
simulator. The main difference was a permutation of
printing order for$display statements executed in
a common clock cycle. It is interesting to note that
the mono version, running on a 2 GHz AMD Turion
core, performed at 117 kCUP/s, but clearly this style
of execution is intended only for debugging and devel-
opment, rather than efficiency. An un-threaded version
would certainly run faster when the mono interpreter
only uses one core of the workstation, as was the case
with this result.

Writing the code to convert from ASCII base char-
acters and initializing the slices was much easier and
natural in C# than in Verilog RTL.

Here is an example of the console output, gener-
ated by theConsole.WriteLine calls in the C#
program that are converted to Verilogdisplay calls:

Starting processing of database
length 894 at time 689100

Updating max to 6 at 0
Updating max to 11 at 1
Updating max to 20 at 2
Updating max to 26 at 3

Design FPGA PART Device Utilization Levels Clock CUP/s
Hand coded Altera Stratix III EP3SL340 5536 ALMs 28 138 MHz 58 ×10

6

Hand coded Xilinx Virtex V XC5VLX155T 5215 LUTs 25 101 MHz 42 ×10
6

Kiwi Altera Stratix III EP3SL340 20925 ALMs 37 83 MHz 33 ×10
6

Kiwi Xilinx Virtex V XC5VLX155T 55306 LUTs 86 46 MHz 18 ×10
6

Table 3. FPGA Performance Results (figures from Synplicity Premier).

Updating max to 30 at 5
Updating max to 36 at 6
Updating max to 42 at 7

4.5. Comparison with Previous Results

Oliver et. al. [17] exploit dynamic reconfiguration
to optimize the kernel computation performed by the
processing element by customizing it to the query
string. They report a performance of up to 8.0 GCUP/s
for a query length in the range 841 – 1004 using a
RC2000 FPGA mezzanine PCI-board with a Virtex-II
XC2V6000 from Celoxica. In related work [18] they
report a 170 speedup for linear gap penalties and 125
for affine gap penalties.

One project used the XtremeData Inc. XD1000
board which includes an Altera StratixII FPGA and a
dual Operaton processor to achieve a speedup of about
180X for a sequence length of 65536 [23].

An early implementation of a systolic Smith-
Waterman cell was reported by Kwong et. al. [22]
which worked on the Pilchard platform which uses a
Xilinx Virtex XCV1000E-6 FPGA (1228 slices) and an
SDRAM interface instead of a conventional PCI bus
to communicate with the host system.

Li et. al. [13] used an unclocked implementation
of the cell computations rather than the typical syn-
chronous implementation which results in each ma-
jor diagonal being processed at once. This approach
yielded a 160-fold performance improvement over
software versions of the algorithm.

5. Future Work

It appears thatKiwic causes clock cycles to be
wasted as data is transferred through the one-place
channels, although, interestingly, almost exactly the
same amount of overhead occurred in the hand-crafted
code as in that generated by our compiler. The com-
piler is designed so that two threads can operate on
a single shared-variable an unlimited number of times
per clock cycle, so the reason for this overhead in the
synthesized design needs further investigation.

As we use more of the FPGA for longer sequences
n or lower widthw, we will get more parallel speed

up. There are four FPGAs on the BEE3 board, so
our utilization of the total hardware resource in this
experiment is actually four percent.

kiwic needs to be modified to use less memory or to
better support an incremental or modular compilation
arrangement.

The C-to-gates backend we used was an old piece
of code that does not embody the latest developments
in auto-parallelization and scheduling. The code it
generates does not seem to mesh well with today’s
FPGA tools. A next step might be to investigate gener-
ating Bluespec System Verilog instead of conventional
Verilog.

Although Synplicity Synplify Premier out-
performed the FPGA tools provided by the FPGA
vendors, it took 45 minutes to place and route the
design. This must be added to thekiwic compilation
time of 15 minutes to give the turn around time
for a result. Of course, with theKiwi approach, a
certain level of design validation can be carried out
quickly by running the C# design on the mono or
.net virtual machines, but it would be nicer to be
able to move to the FPGA execution platform in a
more timely way. Producing a faster version ofkiwic
should not be a major problem and this could then
emit its internal VM code directly for interpreting
on a ‘default standard’ programming of the FPGA
resources, thereby avoiding the place and route time.

6. Conclusions

In this work we investigated whether well-known
parallel constructs used for software programming
could be exploited as a basis for hardware acceleration
of a scientific application. The techniques were the
single-place buffer and threading. We encouraged the
user to use a greater number of threads than might
be natural, since we exploit this parallelism for spatial
layout across the FPGA, yet he still had a working
program that could be run under .net or mono. Another
source of parallelism is that extracted from within each
single thread, which was provided by a conventional
C-to-gates backend flow.

Our main design parameter was the upper bound
of the query sequence. We also implemented two sec-

ondary parameters to support architectural exploration
and sensitivity analysis. However, we did not report
on adjusting the secondary parameters since we clearly
need to leverage recent work on C-to-gates and perhaps
develop a C-to-Bluespec flow which will give us better
basic silicon use efficiency.

By entering the same design in two different ways,
we discovered that it was much easier to write and
debug the application in C# than in synthesisable RTL,
but that the spatial efficiency of the C# result was poor.
However, we expect to improve on this situation.

In the future we will demonsrate streaming data
to a parallel bank of FPGA booards over their Eth-
ernet network interfaces. We will extend our Kiwi
development framework accordingly, so that it remains
straightfoward to migrate code from workstations or
server blades to FPGA without rewriting the software
or changing the structure of the interconnection net-
work.

Our results demonstrate good preliminary results to
support a flow that allows software engineers to model
an algorithm using standard concurrency constructs
and then synthesize them to good digital circuits which
perform significantly faster than their software coun-
terparts but are not as fast as hand crafted designs. We
believe that there is a growing demand for software
engineers and systems biologist to exploit FPGA-based
co-processors to accelerate compute intensive kernels.
The software-based flow that we present here is a
step towards a system which makes the power of
reconfigurable computing accessible to a much wider
audience that is already having to learn parallel and
concurrent programming due to the arrival of multi-
core processors.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,
W. Miller, and D. J. Lipman. Gapped BLAST and PSI-
BLAST: A new generation of protien database search
programs.Nucleic Acids Research, 25(17), 1997.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J.
Lipman. Basic local alginment search tool.Journal of
Molecular Biology, 215(3), 1990.

[3] Janthan Babb, Martin Rinard, Csaba Andras Moritz,
Walter Lee, Matthew Frank, Rajeev Barua, and Saman
Amarasinghe. Parallelizing applications into silicon.
7th IEEE Symposium on Field-Programmable Custom
Computing Machines, 1999.

[4] Francesco Bruschi and Fabrizio Ferrandi. Synthesis
of complex control structures from behavioral systemc
models.Design, Automation and Test in Europe, 2003.

[5] B. A. Buyukkurt, Z. Guo, and W. Najjar. Impact of loop
unrolling on throughput, area and clock frequency in
ROCCC: C to VHDL compiler for FPGAs.Int. Work-
shop On Applied Reconfigurable Computing, March
2006.

[6] M. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski.
Stream-oriented FPGA computing in the Streams-C
high hevel language.8th IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000.

[7] Rajesh K. Gupta and Stan Y. Liao. Using a program-
ming language for digital system design.IEEE Design
and Test of Computers, 14, April 1997.

[8] Sumit Gupta, Nikil D. Dutt, Rajesh K. Gupta, and Alex
Nicolau. SPARK: A high-level synthesis framework for
applying parallelizing compiler transformations.Inter-
national Conference on VLSI Design, January 2003.

[9] IMEC. CleanC analysis tools. Web page
http://www.imec.be/CleanC/, 2008.

[10] Celoxica Inc. Handel-C language overview.Web page
http://www.celoxica.com, 2004.

[11] Arpith Jacob, Joseph Lancaster, Jeremy Buhler, Bran-
don Harris, and Roger Chamberlain. Mercury
BLASTP: Accelerating Protein Sequence Alignment.
Transactions on Reconfigurable Technology and Sys-
tems, 1(2), 2008.

[12] Monia S. Lam and Robert P. Wilson. Limits of control
flow on parallelism. The 19th Annual International
Symposium on Computer Architecture, May 1992.

[13] Issac TS Li, Warren Shum, and Kevin Truong. 160–fold
acceleration of the smith-waterman algorithm using
a Field Programmable Gate Aarray (FPGA).BMC
Bioinformatics, 8(185), 2007.

[14] D.J. Lipman and W.R. Pearson. Rapid and sensitive
protien similarity searches.Science, 227(4693), 1985.

[15] W. A. Najjar, A. P. W. Bohm, B. A. Draper, J. Hammes,
R. Rinker, J. R. Beveridge, M. Chawathe, and C. Ross.
High-level language abstraction for reconfigurable
computing. IEEE Computer, 36(8), 2003.

[16] Rishiyur Nikhil. Bluespec SystemVerilog: Efficient,
correct RTL from high-level specifications.Formal
Methods and Models for Co-Design (MEMOCODE),
2004.

[17] Timothy Oliver and Bertil Schmidt. High performance
biosequence database scanning on reconfigurable plat-
forms. International Parallel and Distributed Process-
ing Symposium, 2004.

[18] Timothy Oliver, Bertil Schmidt, and Douglas Maskell.
Hyper Customized Processors for Bio-Sequence
Database Scanning on FPGASs. International
Symposiumm on Field-Programmable Gate Arrays,
2005.

[19] T. F. Smith and M. S. Waterman. Identification of com-
mon molecular subsequences.Journal of Molecular
Biology, 147(1), 1981.

[20] Andres Takach, Bryan Bower, and Thomas Bollaert.
C based hardware design for wireless applications.
Design, Automation and Test in Europe, 2005.

[21] Y. D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G. N.
Gaydadjiev, Y. Lu, and S. Vassiliadis. DWARV: Delft-
workbench automated reconfigurable VHDL generator.
17th International Conference on Field Programmable
Logic and Applications, August 2007.

[22] C. W. Yu, K. H. Kwong, K. H. Lee, and P. H. W. Leong.
A Smith-Waterman Systolic Cell.Proceedings of the
13th Int. Workshop n Field Programmable Logic and
Applications (FPL’03), Springer, LNCS 2778, 2003.

[23] Peiheng Zhang, Guangming Tan, and Guang R. Gao.
Implementation of the Smith-Waterman algorithm on a
reconfigurable supercomputing platform.Proceedings
of the 1st international workshop on High-performance
reconfigurable computing technology and applications,
2007.

