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Abstract—The Kiwi system achieves co-design by allowing
nominated regions of C# programs to be targeted at FPGAs
while the remainder executes on unmodified .NET and Mono
virtual machines. Using C# attributes, certain methods are
identified for separate compilation and collections of methods
are mapped to multiple FPGAs or to workstations connected
to a common Ethernet switch. Individual methods become
RPC-callable entities for the top-level C# thread running on
one workstation, while server threads may run continually
on other workstations or FPGAs. We illustrate the concept
using minimal modifications to an Adobe Photoshop plug-in
where the processing for each colour channel is farmed over
the Ethernet to one or three remote entities which may each
be either an FPGA or a workstation.

I. INTRODUCTION

Emerging infrastructure for cloud computing will need
to exploit special purpose hardware accelerators including
FPGA and GPU in addition to von Neumann resources [1].
These specialized processing elements are necessary for
reducing latency and energy consumption to meet our re-
quirements for data processing which cannot be serviced
by multicore processors. The general potential is illustrated
by success in some domain-specific examples, such as code
cracking, DNA sequencing and automated trading (e.g. the
MoldUDP protocol for automated trading implemented on
FPGAs that issue buy and sell requests [2]) In this paper
we explore splitting C# programs into separate components
and hosting them on a cluster of workstations and FPGAs
interconnected by an Ethernet LAN. Modern FPGAs have
(multiple) on-board Ethernet MAC blocks, so connecting
them to the LAN is not a problem. Compared with C-to-
gates technology, which focuses on highly-efficient imple-
mentation of limited statically-allocated subsets of single-
threaded C/C++ programs, we look at multi-threaded pro-
grams coded in C#. Starting with multi-threaded programs
gives us a greater seam of potential parallelism to tap. This
was the motivation of the original Kiwi project [3]. However,
it is also a source of spatial parallelism, where different parts
of an algorithm are placed on different execution platforms.
Apart from coding style and language subset issues, which

have been well explored in the past, another main obstacle to
using FPGAs for general computations is the long compile

times incurred by the vendor synthesis, mapping, placement
and routing tools. Although some work has been devoted
to less fine-grained reconfigurable architectures [4], [5],
which should speed up place and route times, other tech-
niques deserve study. We take it for granted that software
toolchains support modular reuse of separately-compiled
libraries (DLLs) that may be locally linked or remotely
invoked by RPC (e.g. using Apache Tomcat) and then run
in parallel. Equivalently, modern FPGA tools now enable
designs to be combined together after place and route for
complete or partial reconfiguration of the FPGA array. For
instance, the Xilinx ‘bitgen’ program enables initialization
files for memories to be inserted into the bitstream immedi-
ately prior to FPGA download. The Xilinx PlanAhead tool
allows us to design a sub-component and constrain it to a
rectangular sub-region of the FPGA. This operation is much
quicker than performing a full place and route of the whole
FPGA (tens of seconds instead of tens of minutes). For even
more rapid, early devlopment, the whole application can be
developed and debugged as a Mono or .NET application on
a single workstation without any hardware compilation.
Our ultimate objective is to demonstrate automated

bitstream-level assembly of such components for FPGAs. As
a stepping stone towards that goal in this paper we show how
.NET C# programs split over several DLLs can be separately
compiled using the KiwiC compiler. These assemblies are
then ready for distribution over a mesh of workstations and
FPGAs. Each hosted application sports a standard net-level
interface that should be amenable to abutment-style wiring,
as is required if no routing is to be done post placement. We
give details of how data is transferred between components
within an FPGA and over the LAN. Specifically, in this
paper, we present a method to partition an application over
some number of Ethernet-connected nodes and also how to
host multiple application components on a single FPGA.
Figure 1 illustrates our general setup, where C# programs

are running on a mixture of FPGAs, Linux and Windows
workstations, interconnected by a LAN. One of the work-
stations is a client for the others which resemble the server
cloud.
Automatic static allocation of tasks to processing elements
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Figure 1. Experiment 1: Running a Photoshop plug-in on a mixture of FPGA and workstation servers.
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Figure 2. FPGA architecture for Experiment 2, offering multiple,
separately-compiled services.

in the absence of runtime profiles is unlikely to achieve
good results. We have not yet investigated parsing the output
of profiling tools as part of our flow, so we use manual
partitioning at the moment. The partitioning is manifested
as a ‘toplevel.v’ structural RTL file that instantiates the
separately-compiled hardware components as well as a
Makefile that invokes the C# and KiwiC compilers and
the Xilinx synthesis, map, placement and bitstream tools.
Selection of DLLs for running on workstations is performed
by conditionally copying them into folders or adjusting the
MONO PATH and/or PATH environment variables. An
ultimate aim is that our ‘toplevel.v’ file is invariant over a
large number partitioning decisions, or at least one of several
pre-compiled top levels can be automatically selected.

An important aspect of our approach is that .NET DLLs
do not need to be recompiled between running on the FPGA
and workstations. This enables us to claim that we are
providing cloud-like execution resources where the author of
the code was not aware of his execution platform. This claim
is slightly tenuous since some current examples contain
specific Kiwi attributes or calls (or even updates to LED

indicators) that a general author would not include.
Another significant aspect is that the complete application

can be run as .NET binary code on a single workstation for
development and debugging, before farming it out to the
cloud.

II. KIWI INTRODUCTION

The basic principles behind the design of the Kiwi system
are:

• The use of an existing language rather than the inven-
tion of a new language: this is achieved by taking as
input .NET bytecode rather than the source text of a
specific programming language;

• The modeling of hardware architecture by using con-
currency to describe the behaviour of system compo-
nents: this is achieved by using the .NET threading
library called System.Threading and in particular thread
synchronize and communicate with thread-safe chan-
nels (which are implemented as FIFOs).

By not extending an existing language the programmer
is free to use a regular compiler to compile programs
built against a Kiwi library and then execute them on a
computer to achieve a simulation of the system description.
Furthermore, standard static analysis tools (e.g. deadlock
checkers) can be applied to the regular .NET bytecode.
An artificial but complete example of a circuit that it-

eratively computes the factorial function in Kiwi and C#
is shown below. This program contains a class called Fac-

torial which has a custom attribute [Kiwi.Hardware()] which
indicates that this class contains a method that should be
converted into hardware through Kiwi synthesis to yield a
Verilog file.
Somehow the inputs and outputs of a generated circuit

module need to be identified. In Kiwi this is done by
decorating static fields with one of several special custom
attributes that specify ports, the polarity of a port, a name
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for it if something other than the .NET name is required and
for integer types the number of bits required to represent
an integer value can be specified. In this case there is an
unsigned 8-bit integer input n and two outputs: a 126-bit
unsigned integer fac which will eventually represented the
factorial of the input n and a single bit output done which
will go high when the factorial has been computed.

using System;

class Factorial
{

[Kiwi.Hardware()]

[Kiwi.InputWordPort(7, 0)]
static uint n ; // Input to factorial circuit

[Kiwi.OutputWordPort(15, 0)]
static uint fac = 1; // Result of factorial circuit

[Kiwi.OutputBitPort]
static bool done = false; // Signal indicating when result is ready

static void FactorialCircuit ()
{

uint i = n; // On reset capture the input n
while (!done)
{

if (i > 1)

fac = fac∗i;
i−−;
if (i == 1)
{

Console.WriteLine(”Factorial is {0}”, fac);
done = true;

}
Kiwi.Pause();

}
}

public static int Main() // Test−bench
{

n = 5;
FactorialCircuit();
return 0;

}

public static void HWEntryPoint() // Top level of hardware circuit
{

FactorialCircuit();
}

}

The method FactorialCircuit computes the factorial circuit
and works iteratively performing a multiplication in each
clock cycle until the base case is reached. The explicit use
of Kiwi.Pause() indicates a synchronization with an implicit
clock.

The main program acts like a test bench for this program.
This program can be compiled and executed and will pro-
duce the output Factorial is 120. The method HWEntryPoint

is a special method that is understood to be the hardware
entry pint and in this case it just calls the static method for
computing factorial. When this program is submitted to the

Src Addr

(6 bytes)

Dest Addr

(6 bytes)

LLC Hdr

(4 bytes)

Length

(4 bytes)

Seq No

(4 bytes)
Application-specific data ...

Figure 3. Ethernet MAC frame format as typically used in our experiments.

Kiwi system it synthesizes the FactorialCircuit method into
a Verilog module which can then be implemented for our
ML605 FPGA boards using the Xilinx ISE tools (or other
vendor tools).

III. EXP. 1: SINGLE APPLICATION PER FPGA

In order to change the protocol stack implementation be-
tween workstation and FPGA execution platforms, we place
the different layers in different DLLs and have multiple alter-
natives at various layer. A client in one layer makes method
calls on the service access points provided by the lower
layer. We then choose a particular combination when tar-
geting a particular platform. Linking of separately-compiled
sections on a workstation is performed by the .NET/Mono
class path loader. Linking of separately-compiled sections on
the FPGA is performed by joining hardware nets with wires.
An alternative approach would have been to exploit an ex-
isting inter-process communication framework like Windows
Communication Foundation (WCF) however we choose our
lighter-weight variant to avoid taking a dependency on too
much .NET infrastructure and to make our system work just
as effectively on Linux as on Windows.

We first describe an experiment where a single application
server (an Adobe Photoshop plug-in) was developed in
C# and run both on the same workstation under .NET as
the Photoshop application and on locally-attached FPGA
cards. In section IV we describe a second experiment where
multiple application servers can be placed on each FPGA at
once.

Figure 3 shows the typical experimental frame format we
used in these experiments. The format is defined entirely
by the C# code and is conveyed through the workstation
operating system using the raw-frames API or compiled into
gates by KiwiC for the FPGA platforms. Rather than using
UDP or TCP we used a strictly word-oriented format that
was easier to develop. In terms of address resolution, all of
the current implementations send replies to the last MAC
address that sent a message, which works fine when each
server is peered with just one client workstation.

In Experiment 1, three DLL files were compiled by KiwiC
to Verilog RTL and combined with ‘toplevel.v’ to complete
the FPGA circuit. They were KiwiNetworkDevice.dll, Re-
liability.dll and PhotoFilter.dll (containing PhotoFilterChan-
nel and ThreeChannels). Hence one application server was
hosted on one FPGA. Two KiwiC compilations were in fact
used, since the application and its reliability/presentation
layer were compiled together rather than as separate RTL
sections. This was done for convenience in this instance,
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but generally compiling DLL’s together results in inter-
procedural optimisations arising from a combined datapath
and sequencer. These optimisations are not generally dis-
covered by the state machine optimisers in the FPGA tools
when operating on individual controllers in isolation. The
reliability layer places a sequence number and length field
in each frame of the packet stream for each application.
The current implementation only checks and logs errors in
a global variable, rather than requesting a retransmit.
The Virtex 6 series of FPGAs contain a Tri-Mode Ethernet

MAC block which is easy to connect to at the net-level using
the LocalLink protocol.
Figure 4 illustrates the transmit-side, low-level LocalLink

code that deals with the net-level interface to the Ethernet
MAC. This DLL is only used on the FPGA platform and,
for brevity, we do not list the workstation alternative. Since
the net-level protocol is defined, as is common, in terms
of clock-cycles, this is compiled in Kiwi ‘hard pause mode’
where clock cycles must not be introduced by KiwiC except
at the manually-inserted Pause() calls. This allows us to
specify cycle accurate behaviour. It can be seen that the
transmitter uses source and destination addresses formed by
swapping over those from the last-received frame.
Customers send payload data to the KiwiNetworkDevice

static class instance by calling its static method WriteInt
defined in Figure 5. This is marked with a Kiwi attribute
Remote so that a net-level interface to it is generated
when the C# compiled DLL is further compiled by Ki-
wiC, to give output as partially shown in Figure 6. The
‘Remote’ mechanism enables this procedure to be called
by a separately-compiled section of hardware. Buses of
the appropriate width are constructed for each argument
(and would be for the return value if it were not void
in this example) along with req and ack signals that
execute a four-phase handshake. In general, any number of
methods can be attributed in this way, each resulting in an
additional set of connections to the RTL component. For the
KiwiNetworkDevice module, four methods were marked in
total, the other three being

public static void DiscardRxFrame();
public static uint RxBytes();
public static uint ReadInt();

For all application modules, we shall use a standard net-
level interface to ultimately support abutment-based wiring,
but the system classes do not require this as they are
specifically instantiated in ‘toplevel.v’.
The client thread for these procedures can be compiled

in the normal ‘soft pause mode’ but some manual Pause
calls are still required (as shown in figure 5). These were
inserted because part of the KiwiC compiler that overcomes
structural hazards in the generated code is currently broken
and the resulting circuit would otherwise attempt four writes
on the byte-wide memory in one clock cycle. An alternative
solution would have been to write the C# code with a 32-

// A static class since only one LAN port in use.
public static class KiwiNetworkDevice
{
static byte[] rx buffer = new byte[2048];
static byte[] tx buffer = new byte[2048];

static int tx PktLength, tx PktPtr;

//Use Kiwi attributes to define the net−level connections
[Kiwi.OutputWordPort(”tx data”)]
static byte tx data; // Write data to be sent to device
[Kiwi.OutputBitPort(”tx sof n”)]
static bool tx sof n = !false; // Start of frame indicator
[Kiwi.OutputBitPort(”tx eof n”)]
static bool tx eof n = !false; // End of frame indicator
[Kiwi.OutputBitPort(”tx src rdy n”)]
static bool tx src rdy n = !false; // Source ready indicator
[Kiwi.InputBitPort(”tx dst rdy n”)]
static bool tx dst rdy n; // Destination ready indicator

static void SendPacket()
{ Kiwi.PauseControl oldmode = Kiwi.PauseMdSet(Kiwi.hardPause);

tx src rdy n = !true; // We are not at the start of a frame
// Now send an Ethernet packet back to where it came from
// Swap source and destination MAC addresses
int j = 0;
tx sof n = !false;
for (j = 6; j < 12; j++) // Emit src address from companion
{

tx data = rx buffer[j];
tx sof n = j != 6;
Kiwi.Pause();

}
for (j = 0; j < 6; j++) // Now emit src address as dest
{

tx data = rx buffer[j];
Kiwi.Pause();

}

// Transmit the remanining bytes from transmit buffer
j = 12;
while (j < tx PktLength)
{

tx data = tx buffer[j];
if (j == tx PktLength − 1)

tx eof n = !true;

j++;
Kiwi.Pause();

}
tx src rdy n = !false;
tx eof n = !false;
Kiwi.Pause();
// End of frame, ready for next frame
Kiwi.PauseMdSet(oldmode);

}

Figure 4. Ethernet MAC interface module, transmit LocalLink code,
compiled in ‘hard pause’ mode where clock cycles may only be inserted
in correspondance with Pause calls in the source code.
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[Kiwi.Remote(”EtherentLocalLink”, ”parallel:four−phase”)]
public static void WriteInt(uint d, KiwiFarmingInterface.Framing kfp)
{

if (kfp == KiwiFarmingInterface.Framing.Start) tx PktPtr = 0;
// Three pauses calls currently: avoids struct haz on mem write
tx buffer[tx PktPtr ++] = (byte)(d >> 24); Kiwi.Pause();
tx buffer[tx PktPtr ++] = (byte)(d >> 16); Kiwi.Pause();
tx buffer[tx PktPtr ++] = (byte)(d >> 8); Kiwi.Pause();
tx buffer[tx PktPtr ++] = (byte)(d >> 0);
if (kfp == KiwiFarmingInterface.Framing.End)
{

tx PktLength = tx PktPtr;
SendPacket();

}
}

Figure 5. Ethernet MAC interface module, transmit-side client entry point.

module EtherLink(reset, clk, tx dst rdy n, ...
input reset;
input clk;
input tx dst rdy n;
output tx src rdy n;
output tx eof n;
output tx sof n;
output [7:0] tx data;
output KiwiNetworkDevice WriteInt ack;
input KiwiNetworkDevice WriteInt req;
input [31:0] KiwiNetworkDevice WriteInt d;
input [31:0] KiwiNetworkDevice WriteInt kfp;
output [31:0] KiwiNetworkDevice ReadInt return;
...

Figure 6. Partial signature of EtherLink (Kiwi-MAC interface module) of
compilation unit (Verilog RTL listing).

bit wide memory and to serialise and deserialised on the
LocalLink side of the buffers.
For brevity, the mutex to stop concurrent operation of the

WriteInt and SendPacket methods on the same buffer
is deleted from the listing, but it follows the same pattern
as we shall illustrate for the Dispatcher component.
Figure 7 shows the example application for Experi-

ment 1—a one dimensional convolver. This follows the de-
sign pattern common to all our applications, of using its own
thread (started by a separate code, not shown, when running
on the local workstation and started by the KiwiC compiler
in response to the Hardware() attribute when running on
the FPGA). It requests work by making a blocking read
into ArrayRead. Note the call to Kiwi.Pause() in
the inner loop, which is a suggestion (in ‘soft pause mode’)
to KiwiC to consume one clock cycle per iteration. Also,
note that we have simplified the code in the listing to do
each channel in turn, whereas separate threads for each
channel within the application are used in the fuller version.
Another possibility, that is easy to code, is to just handle
one channel on each FPGA and to use three FPGA cards in
parallel to serve the workstation. A third possibility is that
three instances of this complete, single-threaded application
are run in parallel on one FPGA using the mechanisms of

class PhotoFilterChannel
{ int[] coefs = new int [9] {1, −2, 3, −4, 5, −4, 3, −2, 1 };

int[] data = new int [9];
int ptr, max;
public int convolve(int din)
{

ptr = (ptr == coefs.Length−1) ? 0: ptr+1;
if (ptr > max) max = ptr;
data[ptr] = din;
int sum = 0;
for (int xx =0; xx<coefs.Length; xx++)
{

int yy = (ptr−xx + coefs.Length) % coefs.Length;
if (xx <= max && yy<=max) sum += data[xx] ∗ coefs[yy];
Kiwi.Pause();

}
return sum;

}
public void Reset()
{

ptr = 0; max = 0;
}

}

public static class ThreeChannels // Top−level for the application.
{ [Kiwi.OutputBitPort()]

// We connect an oscilloscope to these for observation
static bool rx led, tx led, work led, poll led;

static PhotoFilterChannel yy ch = new PhotoFilterChannel();
static PhotoFilterChannel uu ch = new PhotoFilterChannel();
static PhotoFilterChannel vv ch = new PhotoFilterChannel();

static ReliableLayer FarmPort = new ReliableLayer();
static int[] workbuf = new int[512];

[Kiwi.Hardware()]
public static void Main()
{ int k = 0;

yy ch.Reset();
work led = false; poll led = true; tx led = false;
while(true)
{ rx led = true;

uint len = FarmPort.ArrayRead(workbuf);
rx led = false;
yy ch.Reset(); vv ch.Reset(); uu ch.Reset();

work led = true;
for (int i=0; i<len; i+=3) // Work loop
{ workbuf[i+0] = yy ch.convolve((int)workbuf[i+0]);

workbuf[i+1] = uu ch.convolve((int)workbuf[i+1]);
workbuf[i+2] = vv ch.convolve((int)workbuf[i+2]);
poll led = !poll led;

}
work led = false; tx led = true; // Send result data out.
FarmPort.ArrayWrite(workbuf, len);
tx led = false;

}
}

}

Figure 7. Photoshop Plugin Application (version with three filter channels
as one application, simplified single-threaded version).
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public void ArrayWrite(uint [] buffer, uint len)
{ // Add protocol id + flags

KiwiNetworkDevice.WriteInt(0x45C03200, Framing.Start);
KiwiNetworkDevice.WriteInt(tx seqno, Framing.Mid);
KiwiNetworkDevice.WriteInt(len, Framing.Mid);
for (uint pp = 0; pp<len; pp++)

KiwiNetworkDevice.WriteInt(buffer[pp], Framing.Mid);
KiwiNetworkDevice.WriteInt(0x45C03201, Framing.End);
// Protocol id + flags with end of message flag.
tx seqno = tx seqno + 1;

}

Figure 8. The ArrayWrite method from the reliability/presentation
layer code when directly operating on the KiwiNetworkDevice service-
access point as in Experiment 1. (In Experiment 2 it is modified to invoke
the dispatcher SAP).

Experiment 2 to dispatch work in parallel to each instance.

The methods ArrayRead and ArrayWrite are pro-
vided by a reliability and presentation layer, whose simpli-
fied code is shown in Figure 8.

Compared to following a heavy-weight approach like
adopting custom attributes for implementing WCF for cross-
process communication or the use of MPI or direct use of
sockets we believe the level of abstraction provided by the
highly specialized hardware and software custom attributes
strikes a good balance between low-level detail and high-
level intent.

IV. EXP. 2: DYNAMIC DISPATCH

There are several potential levels where dynamic dispatch
can be applied:

1) dynamic sharing on a per-FPGA basis (with one
customer for one pre-loaded FPGA at any one time),

2) implementing more than one function on the FPGA,
if the functions are small, and expecting to get better
load-balancing from the improved sharing potential,

3) dynamic loading of FPGA with combinations of ap-
plications that need to be run.

Numbers 1 and 2 are addressed in this work whereas 3 is for
further study. No 1 is provided by the packet routing within
the Ethernet LAN.

For Experiment 2 we specifically chose option no 2 from
the above list. We placed four application servers and a
Dispatcher and a KiwiNetworkDevice on one FPGA. Each
application had its own instance of the reliability layer.
The applications were three instances of the one-channel
PhotoFilter and one MonitorApp. The latter is a fairly simple
application server that provides status and error reports by
returning the value of public static variables in other classes
(e.g. total number of packets processed and error counts).
Each application connects to a port on the dispatcher and
the first word of the Ethernet payload is used for selecting
the application number. This is a crude approximation of
the port-demultiplexing implemented by TCP and UDP. In

class Dispatcher
{ static Mutex tx mutex;

// Transmit interface − this is a simple exclusion zone:
// only one application can send at a time
public static void ClientWriteInt(uint data,

KiwiFarmingInterface.Framing kf, uint port)
{

if (kf == KiwiFarmingInterface.Framing.Start)
{ // If start of write − need to write LLC header

Monitor.Wait(tx mutex); // Wait here until we gain the lock.
KiwiNetworkDevice.WriteInt(llc header const<<16 | port,

KiwiFarmingInterface.Framing.Start);
KiwiNetworkDevice.WriteInt(data,

KiwiFarmingInterface.Framing.Mid);
}
else if (kf==KiwiFarmingInterface.Framing.End)
{ // If end of write − need to release lock

KiwiNetworkDevice.WriteInt(data, kf);
Monitor.PulseAll(tx mutex);

}
else KiwiNetworkDevice.WriteInt(data, kf);

}

Figure 9. LLC Dispatcher module, transmit-side multiplexor with exclu-
sion Mutex.

future we may use 802 LLC and other standard protocols at
this layer.
Concurrent tasks can easily be run on a given FPGA,

provided it has sufficient area, without crosstalk except at
the network interface and DRAM ports. The examples in this
paper did not use off-chip DRAM. Since each application
has its own hardware thread or threads, and makes a blocking
call into the dispatcher to receive its next work item, the
concurrency relies on thread-safe re-entrant hardware being
generated. Each application server may have any number
of internal threads in general, but in this experiment we
replaced the triple-threaded, three-channel PhotoFilter with
three single-threaded, single-channel instances.
The LLC dispatcher module implements a logical-link

layer packet demultiplexing using a table of registered
hardware entities. Figure 9 shows the ClientWriteInt
method which is re-entrant, being potentially called simul-
taneously by several loaded applications. Each client must
gain exclusive access to the transmit method of the Net-
workDevice module so a mutex is used directly. We assume
clients obey a simple protocol based on the Framing

enumeration type, where their first call sets this to Start,
requiring the mutex to be claimed and also causing the LLC
header to be inserted, and where their last call sets this to
End causing release of the mutex and also signaling to the
NetworkDevice that the packet can be sent.
The received packet handling is slightly more complex:

each client application initially performs a ‘listen’ by send-
ing a thread into the ClientReadInt(port) blocking
method and supplying their port number as an argument.
Each client has its own condition variable, rx_ready, in
the Farmable record, that it blocks on. The Dispatcher
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...
static int PortsInUse = 0;

public class Farmable
{

public volatile bool rx ready;
public void IndicateRX() { rx ready = true; }
...

}
static Farmable [] PortBindings = new Farmable [Ports];

public static int Register(string id)
{ // NB: entirely executed at compile time under KiwiC.

PortBindings[PortsInUse] = new Farmable(id);
return PortsInUse++;

}

static void ReceiverThread()
{

// LLC−like header scan
rxpktLen = KiwiNetworkDevice.ReadInt();
WriteLine(”Dispatcher − pkt len word {0}”, rxpktLen);
uint llc header;
do llc header = KiwiNetworkDevice.ReadInt();
// scan for LLC protocol id and flags.
while (llc header>>16 != llc header const)
uint port = (uint)(llc header & 0xFF);
if (port >= PortsInUse)
{ WriteLine(”Discarded frame ({1} words)”

” rx’d on port {0}”, port, rxpktLen, PortsInUse);
KiwiNetworkDevice.DiscardRxFrame();

}
else
{ WriteLine(”Forwarding frame {1}”

” rx’d on port {0}.”, port, rxpktLen);
lock (rx mutex)
{ PortBindings[port].rx ready = true;

// Set a ready flag and wait for client application
while (PortBindings[port].rx ready)

{ Kiwi.NoUnroll(); Monitor.Wait(rx mutex); }
Monitor.PulseAll(rx mutex);

}
}

}

// Receive client interface service access point
public static uint ClientReadInt(int port)
{ // This entry point blocks its thread until the dispatcher

// thread receives a frame for this client.
WriteLine(”Listen from client blocked waiting.”);
lock (rx mutex) // block client thread spinning here
{ while (!PortBindings[port].rx ready)

{ Kiwi.NoUnroll(); Monitor.Wait(rx mutex); }
}
uint rv = KiwiNetworkDevice.ReadInt();
if (−−rxpktLen == 0)

lock (rx mutex)
{

PortBindings[port].rx ready = false;
Monitor.PulseAll(rx mutex);

}
return rv;

}
...

Figure 10. LLC Dispatcher module, listing continued, receive-side
demultiplexor with condition variables and Mutex. Note that calls to ‘new’
are fully elaborated at compile time: a KiwiC rule is that the heap must have
the same structure at each iteration of a non-unwound loop. (WriteLine
calls are converted to Verilog $display statements but discarded at FPGA
synthesis.)

receiver has its own thread, started by the initialisation code
at the bottom of the Dispatcher class (not shown) that
itself enters the NetworkDevice blocking receive method
until the first packet is received. When this returns, it sets
the condition variable of the desired recipient and spins until
it is cleared again. The recipient, meanwhile, will copy the
LLC payload from the NetworkDevice before clearing the
flag.

The KiwiC compiler cannot handle separate compilation
when threads in different compilations make operations on a
common mutex. This would require synthesis of a hardware
arbiter with an undefined number of input request signals.
On the other hand, as mentioned in the introduction, we
eventually aim to overcome FPGA place and route delays,
and we certainly want to dynamically alter the mix of
applications instantiated on a given FPGA. Therefore we
cannot, in general, compile all of the applications together
with the Dispatcher (although this is supported by KiwiC
and is as illustrated by the reported metrics in §V). Our
approach is to place the central arbiter mechanisms in a
.DLL as is usual to make the program run on mono/.net,
but also to write a number, n, of stub clients of these
mechanisms as separate DLL’s only used for hardware
compilation. These stubs are combined with the main arbiter
DLL in a single KiwiC compilation that results in an n-way
arbiter being generated with separate net-level ports being
exposed, one for each customer application. The same stub
is used when compiling its related application under KiwiC
to generate the calling-side interface nets. When run as a
software program, the stubs have no special significance:
instead they provide a slight inefficiency, introducing an
extra layer of procedure calling between the client and the
dispatcher. This inefficiency could be removed by a C#
compiler that in-lines leaf calls to static methods compiled
at the same time, or alternatively, sometimes it could be
useful to put some minimal functionality in these stubs,
such as presentation-layer format conversion. An example
stub is shown in Figure 11 and the overall compilation
flow is shown in Figure 12. The semi-manually created
top-level.v and other KiwiC-generated RTL files, such
as EtherLink.v, must also be included. Currently we
used a single run of the Xilinx tools (and/or Synplify) to
generate each bitstream but in future work we will combine
separate placements.

V. RESULTS

Table I indicates the size of the RTL files generated by the
KiwiC compiler for each compiled section in terms of the
number of lines of Verilog, flip-flops and memory location
(RAM array) bits. Because the structural-hazard code in the
KiwiC was not working, all of the RAM is distributed RAM
instead of BlockRAM and the clock frequency was lower
than expected.
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public class App14Stub
{

const int MyPortNo = 14;
[Kiwi.Remote(”StubPorts”, ”parallel:four−phase”)]
public static void WriteInt(uint d, KiwiFarmingInterface.Framing kfp)
{

Dispatcher.ClientWriteInt(d, kfp, MyPortNo);
}

[Kiwi.Remote(”StubPorts”, ”parallel:four−phase”)]
public static uint ReadInt()
{

return Dispatcher.ClientReadInt(MyPortNo);
}

}

Figure 11. An example application stub.

Figure 12. Exp. 2 Tool Flow - Each application is compiled separately
with its presentation/reliability layer and stub and then each stub is also
compiled with the central dispatcher.

Module Used RTL Scalar Total
in Exp lines bits bits

EtherLink.v 1+2 502 320 33121
3ch PhotoFilter.v 1 1127 128 16800

toplevel1.v 1 88 0 0
Dispatcher.v 2 2059 256 2720
MonitorApp.v 2 452 32 64

1ch PhotoFilter.v 2 1127 128 5712
toplevel2.v 2 208 0 0

Table I
CODE SIZE OF EACH SEPARATE-COMPILATION ENTITY (EXCLUDING

ETHERNET MAC). THE RELIABILITY LAYER DLL WAS COMBINED

UNDER KIWIC WITH EACH APPLICATION SO DOES NOT APPEAR

SEPARATELY.

Test Place+Route LUTS DSP Utilisation Clock
CPU time blks percent freq

Ex. 1 21 mins 45025 3 7.4 31 Mhz
Ex. 2 50 mins 89046 5 14 20 MHz

Table II
FPGA XC6VLX240 P&R LUT UTILISATION (EXCLUDING ETHERNET

MAC), PLACE+ROUTE TIME (SYNPLIFY PREMIER, 5332 BOGOMIPS

X86 64) AND MAXIMUM CLOCK FREQUENCY.

The ML605 card uses an XC6VLX240 device. Table II
reports the utilisation and clock frequencies together with
the place and route time. The execution time for the KiwiC
and C# compilers was at least two orders of magnitude lower
than the FPGA tool time.

VI. RELATED WORK

Automatic synthesis of channel handshaking signals be-
tween compilation units is not new in hardware synthesis.
Like KiwiC, compilers for the Handle-C [6] and Bluespec
[7] languages generate a handshake signal in each direction
between components with these nets commonly disappearing
when components are part of the same compilation run
or when attributed as ‘always-ready’ or similar. Cardoso
[5] describes a C compiler for a reconfigurable execution
platform that has course grain for rapid place and route,
similar to [4]. Swapping modules at run-time on a Virtex-
4 FPGA was presented in [8] and FPGA companies are
increasing support for dynamic reconfiguration, but there are
many restrictions remaining, such as a tile bitstream being
tied to a fixed absolute X-Y co-ordinate within the device
with no API for moving it. An alternative approach would
be to follow the example of Wires on Demand [9] which
performs light-weight run-time placement and routing. We
avoid this approach because run-time placement and routing
is still a very fragile technology and we target scenarios
where off-line construction of a programming bit-stream is
acceptable.

The closest related work to the Kiwi project is the Liquid
Metal project at IBM and the associated Lime language [10].
The Liquid Metal project takes the decision to design a new
hardware description language by adding concurrency and
hardware constructs to a subset of Java. This permits much
more direct descriptions of system behaviour although it also
requires the development of a special compiler and standard
Java program analysis tools will no longer function on the
extended subset. In comparison, we suffer the constraints of
adding extra hardware and parallel behaviour information
through custom attributes but in return we do not need to
develop special compilers and we benefit from existing static
analysis tools e.g. for deadlock detection. Furthermore, since
our approach takes as input .NET bytecode we are not tied
to a specific language and the Kiwi system can process
descriptions written in other languages like F#, VisualBASIC
and Ada or any other language with a compiler that targets
.NET bytecode.

VII. CONCLUSIONS

We have developed a preliminary experimental infrastruc-
ture where

1) DLLs generated from C# and other .NET languages
can be developed and debugged using standard soft-
ware tools on an unmodified workstation,
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2) users are encouraged to use multi-threaded C# to
express parallelism that can be exploited during ex-
ecution in a distributed system,

3) a run-time infrastructure (also in C#) that provides a
‘Farmable’ interface, where application servers written
to that interface can be placed on the local workstation,
remote workstations or in FPGA,

4) a hardware infrastructure where separately-compiled
DLLs can be allocated to FPGA platforms using
Makefiles and the like,

5) a vision for assembling the pre-compiled application
servers on to the FPGA after the time-consuming place
and route step.

We are advocating the use of a hardware, net-level API
for binding components that has a software dual in the .NET
system. The interface between the application and its server
is defined by our Farmable abstract interface which translates
into a concrete electronic API consisting of those nets. The
marshalling code that packs and unpacks the frame is part of
the application code and so the interface remains the same
even if the arguments to the user’s distributed functions vary.
At a future stage, we would like to move to some auto-

mated farming scenario, perhaps based on load balancing.
We can envision dynamically loading FPGAs with pre-
compiled bit streams and dynamically generating the bit
streams in the way we currently concatenate the RTL files
from separate KiwiC compilations.
Our methodology also supports access to the FPGA

DRAM, but again with static allocation of compiled DLLs
to regions of address space. Automating the memory map
allocation (as in LEAP [11]) and providing run-time alloca-
tion/sharing is future work.
It may be argued that automatically generating n-way ar-

biters on demand inside the KiwiC compiler would be better
than writing a specific Dispatcher C# class and compiling
it with the required number of customers that register. The
contrary argument is that the Dispatcher class needs writing
only once, but being in C# it is easy to modfiy if required and
compiling it with the required number of customers adds no
complexity beyond what is already needed to automate the
top-level assembly and wiring configuration for the FPGA
(as done with Makefiles, Perl/Python etc.).
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