

David J Greaves – University of Cambridge.

Further Multi-cycle and Sub-cycle
Schedulling for Bluespec

Dr David J Greaves

University of Cambridge
Computer Laboratory

Memocode 2019, UCSD, La Jolla, San Diego

David J Greaves – University of Cambridge.

Bluespec – Elaboration + Rules
● In the last decade Bluespec has received attention and raised

the level of abstraction available for RTL design.

● A structural elaboration language creates a flat collection of
parameterised FU instances.

● A flat list of exported methods and declarative rules is
generated as well.

● Exported methods are for external invocation.

● Rules:

● Fire atomically,
● Fire at most once per clock cycle, and
● Rule duration is less than one clock cycle.

● Rules are allocated a static schedule at compile time and some
that can never fire are reported.

David J Greaves – University of Cambridge.

Baseline Bluespec: Further Details

● The synthesised scheduller is stateless.
● The mapping of operations to FU instances is manual.
● Syntactic sugar goodies:

● An embedded FSM sub-language with SEQ/PAR
constructs expands to regular rules,

● rr <= rr + 1 expands to rr.write(rr.read() + 1).

● The commercial compiler must be licensed.
● In 2012 DJG wrote an open-source `toy’ compiler.

David J Greaves – University of Cambridge.

Talk Outline

1) Tiny overview of how a Bluespec compiler works,

2) Report on several new fundamental extensions,

3) Mention of ongoing development.

You might then:

1) Download and try yourself,

2) Join the development repo,

3) Help prove correctness when all the semantic
extensions are deployed at once!

David J Greaves – University of Cambridge.

Baseline
Synthesis
Scenario

● Leaf component methods
are shared by rules

● Enable is disjunction

● Arg sources are
muxed

● Schedulling conflict if
two rules try to use a
method at once

● Synthesised scheduller
avoids conflicts.

Notes:
 - leaf methods are non-pipelined,
 - dotted boundaries show an FU,
 - many FUs, (RAMs, ALUs) typically are pipelined!

David J Greaves – University of Cambridge.

Basic High and Low-level Views

module mkTb (Empty);

 Reg#(int) x <- mkReg ('h10);
 Pipe_ifc pipe <- mkPipe;

 rule fill;
 pipe.send (x);
 x <= x + 'h10;
 endrule

 rule drain;
 let y = pipe.receive();
 $display (" y = %0h", y);
 if (y > 'h80) $finish(0);
 endrule

We have a TLM-style invocation of each method of an FU.
This is non-blocking TLM.

Each TLM call must be complete within a clock cycle.
(The put/get interface type class nicely encapsulates the pair.
Ideal for FIFOs. Not ideal for pipelined operators...)

David J Greaves – University of Cambridge.

Memocode’19 Bluespec
Enhancements

● Automatic instantiation of run-time arbiters for fairness,

● Multiple invocations of certain Action Methods (especially
updates to registers) per clock cycle,

● Forwarding paths for efficient and easy use of pipelined
operators,

● Multiple firing of rules within a clock cycle.

● Dynamic binding of operations to stateless FUs,

● Rule fire count and arbiter shares set from a target firing rate.

Ongoing work

Available for download at the moment:

David J Greaves – University of Cambridge.

A First Bluespec Shortcoming

● The standard scheduller is stateless.
● It does not generate multi-cycle schedules.
● It does report definite rule starvation.
● Arbitration mechanisms must be engineered manually.
● No global analysis or report of likely relative/abs firing

rates.

David J Greaves – University of Cambridge.

Rule Starvation Example
interface BarFace;
 method Action orderDrink(int which, int no);
endinterface

module mkTest1iBench();

 BarFace fbar <- mkBarTender();

 rule drinkBeer;
 fbar.orderDrink(1, 2);
 endrule

 rule drinkWine if (True);
 fbar.orderDrink(2, 10);
 endrule

endmodule

module mkBarTender(BarFace);

 Reg#(Bit#(10)) beerdrink <- mkReg(20);
 Reg#(Bit#(10)) winedrink <- mkReg(12);

 method Action orderDrink(int which, int no);
 if (which == 1) beerdrink <= beerdrink + no;
 if (which == 2) winedrink <= winedrink + no;
 endmethod

 rule shower if (True);
 $display("Beer is %1d and wine is \
 %1d", beerdrink, winedrink);
 endrule

endmodule

One rule would normally be starved
under separate compilation. (If both
halves compiled together, orderDrink
would not be an external method and
would not present a structural hazard).

David J Greaves – University of Cambridge.

Example Output (with & w/o arbiter).

New simulation output:
Beer is 22 and wine is 12
Beer is 24 and wine is 12
Beer is 24 and wine is 22
Beer is 26 and wine is 22
Beer is 26 and wine is 32
Beer is 28 and wine is 32
Beer is 28 and wine is 42
Beer is 30 and wine is 42
...

Starvation detected:
rule mkTest1iBench.drinkWine
** rules being greedy are
mkTest1iBench.drinkBeer

An arbiter has been instantiated
providing fairness between the rules.

Style of arbiter and number of shares
per rule is currently by manual pragma.

And simulation demonstrates that
wine is never consumed owing to
beer hogging:

Beer is 22 and wine is 12
Beer is 24 and wine is 12
Beer is 26 and wine is 12
Beer is 28 and wine is 12
...

Baseline compiler behaviour Enhanced compiler behaviour

assign Test1i_mkTest1iBench_drinkBeer_FIRE = RST_N && Test1i_mkTest1iBench_fbar_orderDrink_RDY &&
 (32'sd0==ARXshedtree1_10);
assign Test1i_mkTest1iBench_drinkWine_FIRE = RST_N && Test1i_mkTest1iBench_fbar_orderDrink_RDY &&
 (32'h1/*1:AUTB12*/==ARXshedtree1_10);

David J Greaves – University of Cambridge.

Further Bluespec Shortcomings

● Pipelined FUs are accessed via put/get interface.
● No support for infix use of pipelined operators.

● Consider HLS of
– foreach (i in 0..9) { ss += i * A[i] }
– We typically need a synchronous array read and

a pipelined multiplier.
● BSV requires named FUs and has no automatic load

balancing over anonymous, stateless FU instances.
● Moreover, pipelined operators must have an output

FIFO instantiated in case get() method is invoked late.

This is NOT Bluespec.

David J Greaves – University of Cambridge.

Solution: Specific FU Migration to
Compiler Core

Certain functions and classes of method already call have
support or are entirely hard-coded in the standard compiler
instead of operating on regular leaf FUs, eg:

● Built-in functions (eg. sizeOf, $bitstoreal(), $finish),
● Combinational Wires (eg. PulseWire, Rwire).

We extend the categories to include:

● Multi-updateable (ephemeral history) registers,
● Synchronous read, stafeful components (RAMs, register files),
● Multiple writes to one location (per port) of such an SRAM,
● Anonymous, stateless, latency=1 ALU operations.

David J Greaves – University of Cambridge.

 Register Modelling within Compiler
Core

We use the same technique used in Verilog logic synthesis where
expressions are evaluated in a committed assignment environment
and pending writes are copied there at end of rule.

Paper has details: σc is the committed updates, and σ
p
 is the un-

committed (pending write) assigns/updates/writes.

From the paper:

David J Greaves – University of Cambridge.

Multiple Action Method Invocations
Notes

Commercial compiler has this behaviour for registers flagged as `ephemeral’.

In our approach, the multiple invocation can be applied to any FU who’s behaviour
can be modelled inside the main body of the compiler up to the extent that there
is sufficient hardware write-back bandwidth to flush to real hardware at end of cycle.

For instance, it works with our SRAM extension (next section) provided
the number of concurrently written addresses is statically determinable to be no
greater than the number of write ports on the SRAM.

In the future it can be applied to FIFOs that have a multi-word broadside interface
where queue or dequeue of two or more words per clock cycle is supported.

(We also have an extension where writes of the same value by different
rules to the same location or RAM location do not conflict. In general
we mark up Action Methods of idempotent or not … cannot go into detail here)

David J Greaves – University of Cambridge.

Multiple Action Method Invocations
(eg. register writes) in One Clock Cycle.

module mkTest1f2();

 Reg#(Bit#(10)) vodka <- mkReg(30);
 Reg#(Bool) grd <- mkReg(0);

 rule test_1f_inc1 if (True);
 vodka <= vodka + 1;
 endrule

 rule test_1f_inc3 if (grd);
 vodka <= vodka + 3;
 endrule

 rule shower if (True);
 grd <= !grd;
 $display("Vodka is %1d", vodka);
 endrule
endmodule

This code fragment has two rules writing
to one register.

Normal scheduller will assign the inc3
rule higher priority than inc1 since it has
a tighter guard condition:

Enhanced compiler overcomes write
conflict on shared variable with both
updates committing where possible:

Vodka is 31
Vodka is 35
Vodka is 36
Vodka is 40
Vodka is 41
...

Vodka is 31
Vodka is 34
Vodka is 35
Vodka is 38
Vodka is 39
...

David J Greaves – University of Cambridge.

Super-scalar Rule Firing

Standard semantic is a rule fires at most once per clock cycle.

Ability to write a register more than once or do two FIFO reads/writes
on a single FIFO within a clock cycle makes super-scalar rule firing
attractive.

Currently we manually attach rule repeat count to a rule using a
pragma, but are exploring replication that aims to hit rule firing rate
targets.

Compiler essentially copies out the parsed rule (or group of rules with
wire resets) as though macro-expanded in a preprocessor.

David J Greaves – University of Cambridge.

Super-scalar SimpleProcessor (1)
SimpleProcessor is a standard Bluespec demo.

The instruction set looks very nice in Bluespec, using its tagged
union and associative structure constructs.

// ---- Instructions
typedef union tagged {
 struct { RegNum rd; Value v; } MovI; // Move Immediate
 InstructionAddress Br; // Branch Unconditionally
 struct { RegNum rs; InstructionAddress dest; } Brz; // Branch if zero
 struct { RegNum rd; RegNum rs1; RegNum rs2; } Gt; // rd <= (rs1 > rs2)
 struct { RegNum rd; RegNum rs1; RegNum rs2; } Minus; // rd <= (rs1 - rs2)
 RegNum Output;
 void Halt;
} Instruction deriving (Bits);

The implementation is a simple pattern match against these forms.

David J Greaves – University of Cambridge.

Super-scalar SimpleProcessor (2)
SimpleProcessor uses simple register files for I and D memory.

Hence easy to go super-scalar by repeating the fetch_and_execute
rule.

Sadly, overall performance goes down on this example – but useful
in general we hope!

David J Greaves – University of Cambridge.

Forwarding Paths: Motivation 1
Put/Get is not always a good interface for BRAMs or fully-pipelined FUs.

Consider a 3-cycle multiplier with II=1.

Without clock-enable, an additional 3-entry FIFO is needed.
With clock-enable, one-entry FIFO is needed.

David J Greaves – University of Cambridge.

Forwarding Paths: Motivation 2
Consider the following RTL style code in a rule/method
body, where A and B are arrays held in different, latency=1,
SSRAMs:

Observations:
 - The values read are minimally processed before storing in pp.

- The value in pp will at earliest be used in the next clock cycle if
code runs in the next cycle, otherwise later still.

- Value forwarding can be used so that readers of pp sometimes
use the XOR of the read busses of the two SSRAMs instead of pp
contents.

Term `minimally processed’ can relate to anything that is `free’ in
FPGA. This is any logic function (identity, bit-range-select, AND,
OR, XOR, NOT).

if (gg) pp <= A[qq] ^ B[rr]
ss <= pp + ss

David J Greaves – University of Cambridge.

Forwarding Paths: Implementation
1) A static scan of rule/method bodies after all static elaboration finds:

- Array subscriptions of SSRAMs (stateful)

- Pipelined stateless operators with latency=1

2) Pattern matching checks that results are `minimally processed’ and then stored in a
register.

3) A score-board flip-flop is instantiated to name and record activation of the associated
forwarding path.

4) Values to be written in next cycle, guarded by such flops, are simply always pre-
added to the committed updates environment.

5) As mentioned before, readers read values from committed updates in preference to
real FU result bus.

● Multiple forwarded and non-forwarded expressions are storable in a single register,

● Each result that needs forwarding can be stored in more than one register and with
arbitrary surrounding control flow.

Consequences:

David J Greaves – University of Cambridge.

Open-Source
Bluespec
Compiler

● Called ‘Toy Compiler’

● Uses HPR L/S
framework

● Written in F#.

● Has significant
language coverage.

● Hundreds of downloads
since 2012.

● Basis for today’s work.

David J Greaves – University of Cambridge.

Conclusions

● Various mechanisms for multi-cycle schedulling
demonstrated on open-source toy compiler.

● Support for more natural use of certain infix operators.

● Access to pipelined FUs, but without II degradation
(cf Karczmarek and Arvind 2008).

● Output FIFOs can be avoided.

● Automatic insertion of arbiters.

● Super-scalar rule firing.

● Assertion: Our extensions can all be applied at once
without conflicts (further testing/formal proof required).

David J Greaves – University of Cambridge.

Thank you for you attention.

 www.cl.cam.ac.uk/~djg11/wwwhpr/toy-bluespec-compiler.html

Source Tarball Link

http://www.cl.cam.ac.uk/~djg11/wwwhpr/toy-bluespec-compiler.html

David J Greaves – University of Cambridge.

Bluespec: Tiny Example

module mkTb (Empty);

 Reg#(int) x <- mkReg (23);

 rule countup (x < 30);
 int y = x + 1;
 x <= x + 1;
 $display ("x = %0d, y = %0d", x, y);
 endrule

 rule done (x >= 30);
 $finish (0);
 endrule

endmodule: mkTb

But, imperative expression using a conceptual thread is
also useful to have, so Bluespec has a behavioural sub-
language compiler built in.

Functional
Units

As well as simple arithmetic
and logic for back-end
synthesis, HLS tool makes
structural instantiation of
major FUs in output netlist.

For each FU, scheduller needs
basic data:

 - EIS
 - Ref-transparent
 - Speculatively harmless
 - Fixed/Vari delay
 - Average Latency
 - Re-initiation interval
 - Costs Area/Energy.

David J Greaves – University of Cambridge.

A varadic Priority Arbiter in Chisel
class genPriEncoder(n_inputs : Int) extends Module
 {
 val io = new Bundle { }
 val terms = (1 to n_inputs).map
 (n => ("req" + n, "grant" + n))

 terms.foldLeft (Bool(false))
 { case (sofar, (in, out)) =>
 val (req, grant) = (Bool(INPUT), Bool(OUTPUT))
 io.elements += ((in, req))
 io.elements += ((out, grant))
 grant := req & !sofar
 val next = new Bool
 next := sofar | req
 next
 }
 }

H/W components extend Module.
They do their I/O via a Bundle.
All the standard operators & | ! are overloaded for h/w generation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

