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ABSTRACT

Bluespec [12] is a hardware description language where all be-

haviour is expressed in rules that execute atomically. The standard

compilation semantics for Bluespec enforce a particular mapping

between rule firing and hardware clock cycles, such as a register

only being updated by exactly one firing of at most one rule in

any clock cycle. Also, the standard compiler does not introduce

any additional state, such as credit-based or round-robin arbiters

to guarantee fairness between rules over time. On the other hand,

many useful hardware resources, such as complex ALUs and syn-

chronous RAMs, are pipelined. Unlike typical high-level synthesis

tools, in standard Bluespec such resources cannot be invoked using

infix operators in expressions such as A[e] or e1*e2 since binding

to specific instances and multi-clock cycle schedules are required.

In this paper we extend the reference semantics of Bluespec to de-

couple it from clock cycles, allowing multiple updates to a register

within one clock cycle and automatic instantiation of arbiters for

multi-clock cycle behaviour. We describe the new semantic pack-

ing rules as extensions of our standard compilation rules and we

report early results from an open-source, fully-functional imple-

mentation.
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1 INTRODUCTION

Bluespec [12] is a programming language for generating hardware

circuits. The Bluespec language was created at MIT and is now

promoted by Bluespec Inc.. The compiler from that company is

only available under license.

Although there is no accepted taxonomy of high versus low-

level languages for hardware design, we can roughly relate a gate-

level netlist to machine code, RTL to assembly language, hardware

construction languages such as Chisel[1] and Lava[2] as low-level

languages and anything that makes automatic assignment of work

to clock cycles as high-level languages. Accordingly, Bluespec can

be classed as a high-level language. However, it arguably sits at a
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module mkTb1 (Empty);

Reg#(int) x <- mkReg (23);

rule countup (x < 35);
int y = x + 1; // This is short for int y = x._read() + 1;
x <= x + 1; // This is short for x._write(x._read() + 1);
$display ("x = %0d, y = %0d", x, y);

endrule

rule done (x >= 30);
$finish (0);

endrule

endmodule: mkTb1

Figure 1: A short, flat Bluespec programwith two rules shar-

ing one register.

lower level than traditional HLS (high-level synthesis) since Blue-

spec does not make heuristic-guided searches for optimal binding

of operations to FUs (functional units such as ALUs and RAMs) or

multi-cycle static schedules. Programs in a ‘Hardware Construc-

tion Language’, such as Chisel, essentially ‘print out’ an RTL or

structural design. This process is called structural elaboration.
HardCaml from Jane Street and CLaSH[15] are further examples.

The generate statements of Verilog and VHDL form the hardware

construction languages of those RTLs. Bluespec embodies a sophis-

ticated hardware construction language based on functional pro-

gramming combinators. The structural elaboration may contain

loops and other control flow constructs, but the elaboration is per-

formed entirely at compile time. Hence none of the conditional

statements processed in the hardware construction language de-

pends on any run-time data. There is no data-dependent control

flow in the elaboration language.

Bluespec is based around the concept of modules and rules. A

module contains zero or more rules. A module also instantiates

zero or more lower modules. Modules instantiated at the lowest

levels are primitives, such as FIFOs, registers and RAMs. Bluespec

starts structural elaboration at a top-level module. The module hi-

erarchy is nominally flattened during the structural elaboration

process. Once elaboration is complete, we have essentially a flat

collection of interconnected Bluespec rules and primitives.

The standard compilation semantics for Bluespec enforce a par-

ticular mapping between rule firing and hardware clock cycles,

such as a register only being updated by exactly one firing of at

most one rule in any clock cycle.

Fig. 1 presents a small examplewith two rules: one called countup
increments, the other, called done, exits the simulation.

Amodulemay also export methods that can be invoked by other

modules. These are normally re-entrant, being elaborated freshly

for each rule that invokes them. But where the design hierarchy

is partitioned into separate compilation units, which can be done

with compiler directives or annotations embedded in the source

code, a set of terminals is created in the module signature for each

https://doi.org/10.1145/3359986.3361199
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callable method. There is then a variation in semantic in that the

method can be called at most once per clock cycle.
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Figure 2: Overall structure of the Open-Source Compiler.

In this paper, we extend Bluespec by: 1) allowing multiple up-

dates to registers within one clock cycle, 2) allowing rules to be

fired more than once per clock cycle, 3) supporting automatic fair

scheduling of rules and 4) register forwarding for multi-clock cycle

operators.

2 FORMALISM

There are several available descriptions of Bluespec reference se-

mantics. The Kami Bluespec project has published reference se-

mantics of a Bluespec subset in Coq [3]. We used the Bluespec

Reference Guide version 3.8 dated April 2004 and and revision, 16

dated June 2010. These were both found online and there is no dis-

cernible change in the core semantics between these editions.

In this sectionwe present the compiler operation and code struc-

ture using a formalism that is identical in behaviour to an open-

source implementation of Bluespec known as the Toy compiler

[9]. This compiler does not have the maturity or all of the features

(such as support for harmonic clocks) of the commercial offering,

but can compile a fair number of publicly available test programs

and was sufficient for proof of concept of our experimental exten-

sions. We believe the commercial Bluespec compiler is coded in

Haskell whereas the toy compiler (Fig. 2) is coded in FSharp using

mainly the OCaml subset.
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Figure 3: General view of the Bluespec wiring between

scheduller, rule logic and leaf components. Each rule con-

nects to some number of leaf components. Dotted outlines

show example component boundaries.

Fig. 3 presents a general sketch of the overall setup. We believe

roughly the same approach is used in the commercial implementa-

tion, as described in [5, 14]. In the next section we will explain the

implementation of our extensions with respect to our formalism.

After elaboration of the generating functions we have the on-

heap representation of the current compilation unit. Note thatmod-

ule boundaries are not shown since they have disappeared during

elaboration. Similarly, which interface or component a method is

part of has also largely disappeared (see §2.1 where the compo-

nent is relevant for re-entrance management). There are five main

forms on the heap:

Rule definitions Ri (д, [Ai ,0,Ai1...]) y

Exported methods XMi (CMi ,0,CMi ,1...]) -

External method references EMi ([ri ,ai ,0,ai ,1...]) -

Leaf component methods CMi ,0,CMi ,1... y

Local method definitions LMi () ... -

Pragmas/Directives ... -

A ‘y’ in the third column denotes that the form is illustrated

in Fig. 3. The exported methods are not shown since they can be

converted to rules. The external method references are not shown

since they are no different from the leaf/imported methods. The

main compilation step is essentially to convert the abstract syntax
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Currency Field Symbol Dir Initial Value

Method unique name CMi - iname.mname

Enable net eni in 0

Ready expression rdyi out "CMi_rdy"

Argument list expressions argi , j in [x,x,...]

Result bus name option rvi out "RVi_en"

Table 1: Fields present for each method in the currency.

trees inside each rule into wiring that connects up the leaf methods

and then to generate a custom scheduller.

After elaboration, every method has a unique textual name. It

is represented by a tuple that has four further fields that are RTL

expressions. We call this tuple the currency of the method, denoted

Σ. In this table, the direction of the connection on the method im-

plementation is shown, but this is reversed on a method reference

to enable one-to-one wiring.

Some methods take no arguments or return no results, so the

resulting fields are empty. Some methods are always_ready or

always_enabled which respectively means that the ready expres-

sion need not be represented since it always holds and that both

ready and enable need not be represented since they both always

hold. Fig.4 shows an interface definition and its hardware form.

Clock

mkPipe
details

Bluespec Compiler
Synthesis Tool

Reset

interface Pipe_ifc;
    method Action send(int arg);
    method int receive();
endinterface

send_EN

send_RDY

send_arg

receive_EN

receive_RDY

receive_RV

32

32

pipe

Figure 4: Typical manifestation of a Bluespec component at

the net level.

For an imported method, the name is given by a concatenation

of its simple string namewith themodule instance names or formal

name in the imported interface list. For a leaf method, the prefix is

the component instance name. For an exported method, the prefix

is a dummy. Where methods are part of named sub-interfaces, the

interface instance names are included. Overall we have a hierarchic

path name to a method that is henceforth opaque.

Our first compilation step is to create the initial currency for

each callable method. This currency is generated by a tree walk of

all instantiated components and external method references. The

RTL expressions are initialised as shown in Tab. 1. The enable is

logical false, the arguments are don’t-care and the ready and result

fields are the net names that are connected to the components. For

leaf components we also need to generate the actual component

implementations, but details of that are out of scope for this paper.

The components are typically registers, FIFOs, RAMs or callouts

to third-party RTL (or other output language such as SystemC).

The external method references are the flattened contents of the

top-level module’s interface. Each exported method EM() is an en-

try point invokable at the net level by rules in parent compilations

or testbench or pad ring etc.. For all other methods, we are respon-

sible for driving the enable input, but for an exported method, the

enable signal will be an input to the current compilation. The oppo-

site applies for the ready signal. Exported methods can be treated

as rules in most respects. They are converted to rule form that has

a phantom external method call, treating its arguments as results,

result as arguments and swapping over ready and enable. This re-

quires handling a method with multiple results, but this is trivial,

since in RTL terms, this is just a wider result bus. A problem some-

times arises from the allowable causality between ready and enable

that is orthogonal to the work presented here.1

There is no difference in treatment required between external

method references and child component methods. This is why they

are not shown on Fig. 3. We need not mention external method

references further.

The final structure present after elaboration is local method def-

initions. These have the same type and form as exported methods

but they are not listed in the exported interface. Instead, they are

only called by the local rules and, as mentioned earlier, they are

elaborated on-the-fly during rule compilation.

Each rule, Ri , has a name, an explicit guard, д and the action

from its body. The explicit guard is a user-provided Boolean ex-

pression (such as x<35 in the ‘countup’ rule). The rule body is

an unordered list of actions to be performed atomically. Actions

are mainly method invocations in the currency, but there can also

be a few invocations of built-in primitives, such as diagnostics, so-

called wires, such as PulseWire, and PLI calls, none of which we

shall explain herein. Register assignments syntax, such as myreg
<= exp; has already been de-sugared tomyreg._write(exp) and
register reads have likewise been converted to myreg._read().

The set of rules is first put in a linear order called the execution

order. This is sorted according to the textual order encountered

during elaboration that has been conservatively sorted to respect

any execution_order partial ordering directives from the user2.

Where the superscalar extension is used, §3.3, rules may be repli-

cated in the list. Rules are named by the user when defined and

their full name becomes the instance name of their module suf-

fixed with that user name (and then suffixed with a natural num-

ber under superscalar issue). Each rule name is extended with two

suffixes to give the names of the two nets that connect it to the

scheduller. These nets are called ready and fireguard.

Rule compilation is then performed on each rule in turn in the

chosen order. Each rule compilation results in an expression to be

continuously assigned to the rule’s ready net and also in rewrites of

the method currency. The currency rewrites add further disjuncts

to the enable field and additional inputs to multiplexors for the

argument busses.

1A combinational loop between the schedulers present at different levels of an in-
cremental compilation will arise in certain circumstances. The commercial compiler
does not support incremental compilation whereas the Toy compiler does not check
the causality problem, so back end tools can sometimes flag a warning.
2Sorted also to obey certain causality requirements from additional annotations, such
as on the so-called wires which must be written before they are read to send combi-
national data between rules.
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[[ const_expression ]]α ,Σ,σ ,ρ = (const_expression, Σ, ρ) (constant expression)

[[ v ]]α ,Σ,σ ,ρ = (σ (v), Σ, ρ) (variable r −mode)

[[ e1 op e2 ]]α ,Σ,σ ,ρ = let (v1, Σ
′
, ρ ′) = [[ e1 ]]α ,Σ,σ ,ρ and (v2, Σ

′′
, ρ ′′) = [[ e2 ]]α ,Σ′,σ ,ρ′ in (v1 opv2, Σ

′′
, ρ ′′) (primop/function)

[[ [e1; e2...] ]]α ,Σ,σ ,ρ = let (v1, Σ′, ρ ′) = [[ e1 ]]α ,Σ,σ ,ρ let (v2,α, Σ′, ρ ′) = [[ e2 ]]α ,Σ′,σ ,ρ′ ... in ([v1,v2, ...], Σ∗, ρ∗) (expression list)

[[ method_name(e_list) ]]α ,Σ,σ ,ρ = let (e_list′, Σ′,σ , ρ ′) = [[ e_list ]]α ,Σ,σ ,ρ (leaf method app)

let (en, rdy, args, rv) = Σ(method_name)

let args′ = (α) ? e_list′ : args

in (rv, Σ′[(α ∨ en, rdy, rv, args′)/mname], ρ ′ ∧ rdy)

[[ method_name(arg) ]]α ,Σ,σ ,ρ = let (actual, Σ′, ρ ′) = [[ arg ]]α ,Σ,σ ,ρ (local method app)

let (bound_var, body) = Σ(method_name)

let σ ′
= σ [actual/bound_var]

let (rv, Σ′′, ρ ′′) = [[ body ]]α ,Σ′,σ ′
,ρ

in (rv, Σ′′, ρ ′′)

[[ c1; c2 ]]α ,Σ,σ ,ρ = let (Σ′, ρ ′) = [[ c1 ]]α ,Σ,σ ,ρ in [[ c2 ]]α ,Σ′,σ ,ρ′ (parallel composition)

[[ if (д) c1 ]]α ,Σ,σ ,ρ = let (д1, Σ′, ρ ′) = [[ д ]]α ,Σ,σ ,ρ in [[ c1 ]]α∨д1, Σ′,σ ,ρ′ (control flow)

Figure 5: Basic Compilation Rules for Expressions, Actions and Rules.

Fig. 5 gives the rule compilation procedure in denotational style.

The FSharp implementation is identical. Every expression has a so-

called intrinsic-guard which is the conjunction (ANDing) of the

intrinsic guards of its sub-expressions. The enable for a command

is denoted with α and the intrinsic guard is denoted with ρ. The

initial enable expression for a rule is its fireguard which is its ‘go’

signal from the scheduller.

The evaluator function for a command varies from the evalua-

tor function for expressions in that it does not return a value. Both

evaluator functions can augment the currency, Σ and add new con-

juncts into ρ.

Actions may be conditional within a rule body, guarded with

control flow statements such as ‘IF’ and non-strict operators such
as ‘? :’. Control flow is handled by guarding the enable expression

with the control flow predicate. At entry to a conditional control

flow region, the enable (here known as the activation expression),

α is ANDed with the control flow guard expression. 3

For leaf method invocations, the activation expression needs to

be connected to the enable input of the calledmethod and the ready

net of the calledmethod is its intrinsic guard. Constant expressions

are always ready and all expressions that are always_enabled re-

quire no fireguard. The rewrite to the currency when a method is

invoked is to first evaluate the arguments in a call-by-value style,

to OR-in the current fireguard, α , to its enable field, to mux in the

3There are strict and non-strict versions of control flow supported by both compilers:
The presentation here is of the strict form, but non-strict does not require the intrinsic
guard of un-executed code to hold.

actual args to the arg bus expressions, guarded by α and to return

the value of its result bus when not void. The intrinsic guard of

the method call is the conjunction of the intrinsic guards of all the

arguments and the method’s ready net. Hence, as method calls are

compiled, their bodies are represented as augmented symbolic ex-

pressions stored in the currency. For each leaf method invocation,

a write is made to a conflict log (not shown in the semantics) read

when schedulling. The entry is the name of the rule, the name of

the method, the memoising heap tag for each argument expression

(§4) and the activation expression, α .

For local method invocations, the method body is looked up

at compile time, the actual arguments are evaluated as for a leaf

method call and the resulting expressions are bound in the envi-

ronment, σ , as formal/actual pairs and finally the body is compiled.

The local method definitions are held in Σ as a variant form and

our presentation for only one argument is generalised in the real

implementation. Note that everyday runtime variables do not ex-

ist: they have been elaborated into read and write TLM calls on the

corresponding static instance.

Arithmetic operators and built-in functions are preserved sym-

bolically or executed straightaway when applied to constant ex-

pressions.

The contents of all of the actions in a rule body are flattened and

treated as a single un-ordered list. This is because for all common

components, the required atomicity of rule firing is guaranteed by

their hardware representation. For instance, RTL registers can be

read and written in the same clock cycle, with the current value
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being returned and the next value queued as a pending update to be

committed on the next clock edge in the RTL simulator or master

section of a master-slave flip-flop in real hardware.

What would be the sequencing operator, in a normal imperative

language, denoted with semicolon, is in fact parallel composition

owing to the underlying RTL-like blocking assignment semantics.

After all rules are compiled, the argument and enable expres-

sions can be written out as RTL continuous assignments to the

argument busses and enable connections of the leaf components.

As a result of the rule compilation, there is a multiplexor tree in the

RTL for each leaf method argument that is driven from more than

once place. The logic also contains all of the in-line arithmetic and

logic operators found in the language (apart from the pipelined

ones we mention later). The Toy compiler is built on the HPR L/S

library that intrinsically implements constant propagation, subex-

pression sharing and logicminimisation using Espresso, so the gen-

erated RTL is not overly verbose.

The Toy compiler also implements other parts of the language

that are not relevant here, such as mutable vectors that can elabo-

rate to register files and the Bluespec FSM sub-language.

As a final step in compiling a rule, the explicit guard expres-

sion is compiled with the expression compiler. This returns both a

condition and an intrinsic guard. These two are AND-ed together

and then AND-ed with the ρ intrinsic guard of the rule body and

returned as the ready condition for the rule as a whole.

2.1 Re-entrant Leaf Components

The only time that it matters which component a method is of is

when there are re-entrancy restrictions. For instance, the imple-

mentation of a component may share resources between exported

methods such that both cannot be invoked in the same clock cycle.

Such conflicts are recorded as markup in the interface definition

files for these components. They are copied into the conflict log

as the component is instantiated where the prototype entries are

extended with the full component instance name.

2.2 The Bluespec Scheduler

Each leaf component represents a structural hazard where the in-

put multiplexor is non-trivial (ie. has one or more argument in-

puts). Rules that need to drive different expressions into the argu-

ment of a leaf component are said to conflict. Conflicts are com-

puted by collating the conflict log entries. In the absence of firing

rate targets (§3.6), it is the scheduler’s job simply to prevent the

firing of conflicting rules and to try to avoid rule starvation.

As mentioned, all method applications have a unique tag af-

ter flattening and each argument expression has a natural num-

ber heap index. Hence all potential operations on a leaf compo-

nent have a unique composite name. They also have logged against

them activation expressionswithin the rule (theα expression at the

point where logged) as a side effect of rule compilation. A conflict

candidate is now defined as a single application tag with differ-

ing heap indecies guarded by a rule name and activation expres-

sion. The intrinsic guard and explicit guard also need to be con-

juncted with the activation expression to give the final might-be-

invoked expression for a conflict candidate. A rule conflicts with

another one if any of their conflict candidates differs in argument

expressions and the intersection of the two might-be-invoked ex-

pressions is not false, as determined by the proof techniques em-

bodied in the memoising heap.

As said earlier, where application tags apply to methods on com-

ponents where those methods are flagged as non-reentrant, the ap-

plication tags are considered to identify (hold true under equality)

for this purpose.

Rules that do not conflict with anything can fire as often as they

are ready and the output from the scheduler for such rules is a

combinational assignment of the fireguard from the ready guard.

We call this the rule tie off.

The schedulling problem can be phrased as a graph where the

rules are nodes and arcs exist between rules that conflict. Each rule

has a ready guard and conflicts are arcs between rules. Arcs with

disjoint (cannot both hold) ready guards can be disregarded and

this could be the basis of a schedulling algorithm. The approach

used in the Esposito scheduler [5] is instead to convert rules such

that they no longer conflict with anything and then tie them off.

The principle transform is to merge a pair of conflicting rules into

one. Where they had disjoint ready conditions, as can be seen from

the compilation semantics, treating them as one or two rulesmakes

no difference.

Where the ready conditions are not disjoint, one of them may

imply the other. The approach then is to give static priority to

the one that may be ready less than the other, unless overriden

by decreasing_urgency mark up. If no such implication exists, a

static priority given by textual position in the source files, overri-

den by decreasing_urgency directives is applied. The higher pri-

ority rule is schedulled first and its conflicts are removed from the

remainder by adding its negated fireguard to the ready-to-fire con-

dition of the remainder.

Where one rule conflicts with another, such that they cannot

both be schedulled and static priority will lead to starvation of the

lower priority one, a severe compile time error is issued (§3.1).

Schedulling decisions can also be guided to avoid large combi-

national delay in the control logic, but the Toy compiler does not

do this.

3 EXTENSIONS

In this section we report on some novel feature extensions we have

added to the open-source Toy compiler.

3.1 Automatic Insertion of Stateful Schedulers

Standard Bluespec semantics are that a static schedule is created

that is executed afresh every clock cycle with no schedulling state

carried from one clock cycle to the next. §2.2 explained that some

rules may be starved of service under the static schedule. Manual

instantiation of arbiters and other anti-hog mechanisms is one so-

lution. Our extension is an automated system that inserts stateful

schedulers guided by rule firing rate targets.

We present an example that uses two compilation units that sit

each side of an interface and are separately compiled. A single com-

pilation unit would allow both rules in the parent/master unit to

fire at once, since the method in the interface will be elaborated

separately for each call. But as separate units, we have a structural
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hazard: the method is manifested at the net level in the interface

and can only be invoked once per clock cycle.4

//Interface definition:
interface BarFace;

method Action orderDrink(int which, int no);
endinterface
//Lower unit definition:
module mkBarTender(BarFace);

Reg#(Bit#(10)) beerdrink <- mkReg(20);
Reg#(Bit#(10)) winedrink <- mkReg(10);

method Action orderDrink(int which, int no);
if (which == 1) beerdrink <= beerdrink + no;
if (which == 2) winedrink <= winedrink + no;

endmethod

rule shower if (True);
$display("Beer is %1d and wine is \

%1d", beerdrink, winedrink);
endrule

endmodule

//Upper unit definition:
module mkTest1iBench();

BarFace fbar <- mkBarTender();

// Beer should increase by two every clock cycle.
rule drinkBeer;

fbar.orderDrink(1, 2);
endrule

// drinkWine would normally be starved.
rule drinkWine if (True);

fbar.orderDrink(2, 10);
endrule

endmodule

Compiling with the standard semantics we see a starvation warn-

ing from the compiler:

** Starvation detected: rule mkTest1iBench.drinkWine
** rules being greedy are mkTest1iBench.drinkBeer

And simulation demonstrates that wine is never consumed ow-
ing to beer hogging:

Beer is 22 and wine is 12

Beer is 24 and wine is 12

Beer is 26 and wine is 12

...

This demo is now compiled with our extension that instantiates
run-time arbiters to provide fairness between the rules. The simu-
lation listing now generated is

Beer is 20 and wine is 10

Beer is 22 and wine is 10

Beer is 22 and wine is 20

Beer is 24 and wine is 20

Beer is 24 and wine is 30

...

4More typically, the lower unit would be a leaf component not implemented in Blue-
spec, since we were told the commercial compiler does not really support incremental
compilation, but it is nicer to present both halves of the example in Bluespec.

We see the rules have taken it in turns to fire.

In our current approach, arbiters are inserted to gate the firing of

all rules in a conflict group that would otherwise suffer starvation.

Each rule has a number of so-called shares which is typically unity

but which can be overriden with user directives or by a future fir-

ing rate target mechanism (§3.6). An arbiter allocates one share per

clock cycle.5 Two types of stateful scheduler are generated: one is

round-robin where all shares have equal priority and the other is

a static priority that turns into round-robin under heavy load but

resets during an idle cycle where no share is serviced. Examples

are being placed online of generated code and manual control of

share allocation [7].

3.2 Multiple Action Method Invocations Per
Clock Cycle

As an extension to standard Bluespec semantics, we relax restric-

tions on action method calls that previously could only be called

once per clock cycle, such as the _write(exp) method found on

the register primitives. The semantic behaviour of such methods,

and those that interact with them, now needs to be hard-coded in-

side the main part of the compiler and modelled at compile time,

rather than the component just being treated as a black-box. The

commercial compiler has a similar mechanism for registers: the

Ephemeral History Register [13]. In order for an action to be seem-

ingly performed more than once per clock cycle, the intermedi-

ate side effects need to be held symbolically at compile time with

only the final value(s) being committed to the real hardware. This

technique is the same as used for synthesis of blocking register

assignments in Verilog logic synthesis [6], but it can be used for

any primitive provided the actual component has sufficient ports

or bandwidth for the net effect of the composite operations to be

flushed to/from the real hardware in one clock cycle (e.g. a FIFO or

RAM with more ports in reality than made apparent to the user).

We perform the relevant operations in additional compile-time

environments, denoted σx , instead of the net-level/run-time cur-

rency Σ. Bluespec registers observe RTL-like evaluate-commit se-

mantics, so two halves to the new compile-time environment are

needed. These are σp and σc for the pending updates and commit-

ted values respectively The latter also takes on the role of σ in the

baseline formalism and holds local method argument bindings in

a discriminated union.

Both the σp and σc environments start off empty before the first

rule is compiled. Register writes and reads are now performed as

Fig. 6. After each rule, a commit routine is run that copies the up-

dates out of σp into σc . To do this, for each (r ,α, e) entry in σp , if

there is an existing entry in σc , such as (r ,α0, e0), the new one is

given precedencewith a query-mux as (r ,α∨α0, (α)?e : e0). Finally,

after all rules are compiled, σc is committed into Σ in a similar way.

Extending such superscalar behaviour to other devices, such as

hardware RAMs and FIFOs, is a little more complex and requires

additional or wider ports on physical devices to increase the band-

width, but, in the future, this detail can be fully hidden from the

Bluespec user in the same style as for the simple register.

5As future work we need re-abritrate on a super-scalar basis way when super-scalar
rule firing is allowed (§3.3).
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[[ myreg.write(e) ]]α ,Σ,σc ,σp ,ρ = let (v, Σ′,σ ′
c ,σ

′
p , ρ

′) = [[ e ]]Σ,σc ,σp ,ρ

let δ = if (myreg,α1,v1) is present in σp then (myreg,α1 ∨ α, (α)?v : v1) else (myreg,α,v)

in (Σ′,σ ′
c ,σ

′
p [δ/myreg], ρ ′)

[[ myreg.read() ]]α ,Σ,σc ,σp ρ = let (en, true, args, rv) = Σ(myreg)

if (myreg,α,v) is present in σc then ((α)?v : rv, Σ,σc ,σp , ρ)

else (rv, Σ,σc ,σp , ρ)

Figure 6: Supporting multiple writes to a register within a clock cycle.

Rule Cycles Area Freq Speedup

replications needed slices MHz ratio

1 48 575 203 1.0

2 28 3684 97 0.82

Table 2: SimpleProcessor area and performance variation

for GCD computation as fetchAndExecute rule is repeated.

Platform is Xilinx Virtex 7.

3.3 Multiple Rule Executions Per Clock Cycle.

Standard semantics are that a rule is fired at most once per clock

cycle.

Our enhancement to allow multiple action call invocations per

clock cycle facilitates a simple approach to super-scalar perfor-

mance when the same rule is applied more than once per clock

cycle. This is implemented by selectively repeating a rule in the

execution order under manual markup (or with targets from §3.6)6.

Rule repetition needs to be used sparingly since combinational

logic can growquicklywhen operating on vectors of registerswhere

the address equality cannot be determined at compile time. As

rules are repeated, the main parameters of interest are the increase

in performance in terms of clock cycles needed, clock frequency

and execution time when clocked with no timing margin on the

critical path. The SimpleProcessor.bsv test, available online in

numerous places, provides a simple demo. As shown in Tab. 2, it

nearly doubles its IPC when the fetchAndExecute rule is issued

twice per clock cycle, but the maximum clock speed dropped by

just over half.

The SimpleProcessor design offers very few challenges for su-

perscalar operation, since it only uses vectors of registers without

any RAMs. Vectors of registers are converted to register files in the

high-level Bluespec elaboration and do not raise structural hazards.

Where RAMs are used with limited port count, further rule repeti-

tion will not increase performance since the scheduler will starve

the additional rules owing to conflicts. Or if the run-time arbiters

are inserted, the rules will not be starved, but throughput will not

increase either. Measurements of further design points are online.

6 Where so-called wires interconnect several rules, interconnected components of
rules needs to be replicated en masse with a wire reset operation interposed. Static
analysis of which rules use which wires determines and enforces this side condition.

3.4 Simple Access To Pipelined Operators

As another extension to the standard Bluespec semantics, we pro-

vide easy access to pipelined operators where the result is stored di-

rectly in a register without otherwise being used. If the pipeline de-

lay is greater than one, a chain of such storesmust be present in the

source code and the construct starts to become cumbersome (see

comments in our conclusion regarding multi-cycle schedules and

generic pipeline transform). We here present the situation where

the pipeline delay is one stage. This requires an extra bit of compiler-

generated state for each source/destination pair. The extra bit is

the scoreboard forwarding flag denoted as SBdest,t . This flag (a

flip-flop) records that reads of the destination should be forwarded

from the pipelined operator’s read bus instead of being served from

the register were the data is nominally stored.

Fig. 7 shows the two steps needed to implement a forwarding

path. Allmethod invocations have already been taggedwith a unique

identifier t and this is used as part of the name of the forwarding

path by prefixing it with the currently-being-compiled module’s

instance name. A given destination register may be assigned from

more than one source by a single assignment so we name the path

using the tag of the read operation on the pipelined operator in-

stead of the tag in the write operation.

A pre-scan of the elaborated source code makes placeholder en-

tries in a per-compilation forwarding dictionary for all paths that

need forwarding. This is indexed by the destination register name

and lists the forwarding flops and pipelined-operator result bus for

that path where each is indexed by read operation application tag.

The pre-scan ensures that reads of forwarded values encountered

before writes during the main rule compilation are still processed

correctly. The pre-scan needs to look at both operands of an assign-

ment to make its determination and it operates by simple pattern

matching. The matched sites conform to particular use patterns

where the pipelined result is (essentially) immediately stored in

a register. Use of pipelined operators outside of the patterns sup-

ported by pre-scan are flagged as a compile-time errors. A multi-

plex of such reads is also supported because

[[ dreg⇐(д) ?Mt t [e1] : Mt f [e0] ]]

is treated as

[[ if (g) dreg⇐Mt t [e1]; if (!g) dreg ⇐Mt f [e0] ]]

In the real implementation, lightweight, referentially-transparent,

combinational operations, such as negation and bitfield-extract, are

also allowed before storing and are replicated on the forwarding
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Preload of each fwd path item :

σc = if (dreg,α0,v0) is present in σc then

σc [(dreg,α0 ∨ SBdreg,t , (SBdreg,t ) ? rdbus(M) : αo )/dreg]

else σc [(dreg, SBdreg,t , rdbus(M))/dreg]

Write operation :

[[ dreg⇐Mt [e] ]]α ,Σ,σc ,σp ,ρ = [[ dreg._write(M._readt(e)) ]]α ,Σ,σc ,σp ,ρ

= let (ae, Σ′,σ ′
c ,σ

′
p , ρ

′) = [[ e ]]Σ,σc ,σp ,ρ

let (α1, true , [a1], rdbus) = Σ
′[M]

let δ = (α1 ∨ α, true , [(α) ? ae : a1], rdbus)

Din(SBdreg,t ) += α

in (Σ′[δ/M],σ ′
c ,σ

′
p , ρ

′)

Figure 7: Register forwarding modification for pipelined operators: BRAM example.

path. Conditional store in a number of different registers is sup-

ported and those registers can still be assigned elsewhere with con-

ventional and super-scalar writes. Pattern matching is acceptable

since we only intend for limited forms to be supported, albeit with

arbitrary surrounding control flow complexity.

A forwarded write operation, such as [[ dreg⇐tM[e] ]] is not

compiled in the normal way. Instead, it is manifested by the pres-

ence of a pre-loaded entry in the starting committed updates envi-

ronment, σc . This was put there by the pre-scan. The write itself

(second step in Fig. 7) now becomes the process of adding a new

disjunct into the D-input for the scoreboard flop where the new

term is the activation expression α . Also, we need to load the argu-

ments into the pipelined operator, which in the BRAM example is

the compiled address/subscript expression.

The read of the forwarded register requires no handling beyond

what was outlined in Fig. 6. Namely, the value from the forward-

ing in σc will be served when the forwarding flop holds. That value

is a reference to the read bus of the pipelined operator (with the

lightweight forwarding function applied). If any other super-scalar

write has been committed to σc for that register in the meantime,

this will be correctly replacing the forwarded value when its acti-

vation expression holds. The actual update to the destination regis-

ter is committed, as for the super-scalar writes, after all rules have

been compiled.

The pipelined operator paradigm is especially useful for syn-

chronous RAMs. In fact, this is the only resource we have tested

the mechanism with, but it remains generic. In standard Bluespec,

the BRAM is always accessed via the Put/Get interface since the

read address must be handled in a different clock cycle from the re-

trieved data. Moreover, the standard Bluespec BRAM is normally

instantiated with a FIFO on its output, whereas their use through

our new mechanism does not need this overhead. Access via the

old method remains possible but cannot be mixed on a single in-

stance.

We added further concrete syntax to the parser to operate on

BRAMs with a hybrid of the syntax for registers and vectors. The

expansion of the new concrete syntax for the read operation is

shown in Fig. 7. For write operators, M[e] ⇐ v is converted to

M ._write(e,v). BRAM writes are not multi-cycle and require no

forwarding mechanisms: they are the same as register writes as

they have the write data and the address being presented to the

RAM instance in the same clock cycle. A schedulling conflict is is-

sued between two RAM reads if the address expression does not

appear identical and for writes if either the address or the value

do not appear identical. Our test for identical expressions is de-

scribed in §4. (Disagreements on written data could alternatively

be treated as write-after-write events with the former simply being

disregarded.) A conflict between a read and a write does not arise

if the address expressions do not appear identical. Hence, simulta-

neous read and write of a RAM via a single port, as supported by

much actual hardware, is also exploited by the scheduler. This is be-

lieved to be an improvement on the standard Bluespec approach7.

3.5 Static Load Balancing (Proposal)

This section describes experiments that should be ready at the time

of the conference.

The standard Bluespec compiler does not statically load balance

leaf components (here called FUs). The binding of work to hard-

ware resources is either manual, with TLM-style method calls on

the FUs, or can be left to run-time logic using the server pool li-

brary.

But static load balancing should be easy to implement as a Blue-

spec extension by treating the user’s instance names as virtual

nameswhere the scheduler decides the virtual to physicalmapping.

Amapping between virtual and physical resources introduces a set

of schedulling conflicts. Our first approach will be straightforward.

We run the main compile step first with virtual names and then

make a virtual to physical mapping that does not introduce any

rule conflicts. This approach can also spot where two BRAMs can

be stored inside a single larger physical BRAM. In a future version

7Super-scalar writes on RAM arrays are also allowed in the real implementation since
σ entries have an address option field. Only one address expression is allowed per
physical port owing to the undecidable name alias problem: the compiler can gener-
ally not tell if two expressions refer to the same location.
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we will allow the binding to be updated as part of the hill climbing

optimisation (§3.6).

Where an FU is freely instantiatable, such as a stateless ALU, the

number to instantiate can be freely chosen by the compiler. When

a pipelined operator contains state, such as a BRAM, a colouring of

operations to map them to the available ports must be chosen by

the compiler. A BRAM can also be trivially replicated by the com-

piler to increase the read bandwidth, provided the writes are kept

synchronised. These decisions are precisely the same as solved by

HLS tools such as LegUp and Kiwi [4, 10]. Probably a mechanism

for compiler-chosen bindings will benefit from manual overrides

where the designer wishes to exercise tight control, but this is

relatively easy to provide with future mark-ups embedded in the

source code.

Where the Put/Get interface is traditionally used for operations

on a stateless FU, such as a three-cycle multiplier, BlueSpec intro-

duces unfortunate phantom state: the get() operator must be ap-

plied to the same instance that was put(v). Our pipelined operator
extension reduces the need for that coding style, but where it re-

mains, more wanton instantiation of resources should perhaps be

used, with the assumption that the compiler will more than com-

pensate.

3.6 Rule Firing Target Rates

Most of the extensions just described give the compiler greater

freedom to tune the firing rates of rules. The compiler can now

choose how many FUs to instantiate, whether to replicate rules

and whether to throttle rules with arbiter shares. One panoramic

control paradigm for these mechanisms is for the user to specify

relative or absolute rule firing rate targets. The compiler cannot

hope to accurately meet these targets in all but very simple designs

owing to enormous uncertainty about the duty cycles and cross-

correlations of the lowest-level predicates in the explicit and intrin-

sic guards throughout the design. Nonetheless, a fluid flow equilib-

rium model has been used based on default assumptions with the

hope that this will at least respect the real behaviour in terms of rel-

ative firing rates. When there are found to be major discrepancies,

the advanced user can add assertions about leaf predicate rates and

correlations. These may also come from profile-directed feedback.

Target rates are described inside Bluespec pragmas either next

to the rule (alongside other standard rule markup such as nosplit)
or with the name of the rule. Examples supported by the prototype

are:

(* target_rate = 2.0 *)
(* target_rate other_rule = 0.125 *)
(* target_rate third_rule = 2.0 * fourth_rule *)
(* target_rate third_rule = 2.0 when running *)

To use the rate-based approach, some number of leaf compo-

nent methods and external methods should be annotated with con-

straints on their tolerable and expected firing rates. For instance, a

register can support any write density, as can a FIFO, and for the

FIFO the enqueue and dequeue rates should be identical. For an

arbiter, the holding rate of a unary output is its share of the total

share holding for that arbiter. Then, rules for which performance

goals are desired are annotated with target rates as a real number

multiple or fraction of the clock rate or of the rate of other rules.

Finally, arbitrary predicates can be given target holding rates in

the same style.

Often there may bemore than onemajor operatingmode for the

design. The requirements and expectations are commonly different

in each mode. Where the mode is manifest in the hardware state of

the design, a ‘when’ clause, as in the fourth example, can be used.

This rest of section describes future work which should be complete

at the time of the conference.

A hill climbing procedure in the HPR L/S libary then attempts

to minimise the error between the target firing rates and modelled

firing rates as it adjusts the bindings, shares and rule repetitions.

The firing model uses the Zadeh operators [16] from Fuzzy Logic

where AND is MIN and OR is MAX. These are more tolerant to

unknown correlations than the probabilistic alternatives (where

AND is product). Although there are no combinational loops in

the guard expression network, there are sequential dependencies,

so themodel is evaluated until convergence at a given design point,

before navigating to a neighbouring design point.

This rate model has not yet been shown to work or be useful.

Some example output is online. For now the user should rely on

lower-level markup of rule repetition count and the number of ar-

biter shares to allocate.

4 CONCLUSION

We have presented the implementation of several extensions to the

behaviour of the standard Bluespec compiler that we believe will

be generally useful. But these do not change the semantics of the

Bluespec language. Without automatic insertion of arbiters, there

exists a stuttering equivalence between the circuits generated by

our compiler and the standard one. The new arbiters change the be-

haviour of real programs, while strictly keepingwithin the original

guarded-atomic-action paradigm of the Bluespec approach. Our

approach automatically provides greater fairness amongst rules,

whereas the traditional approach is to consider rule starvation an

error that should be manually corrected by the designer. (The de-

signerwill add additional conjuncts to the explicit guard of a greedy

rule to make it fire less often: these clauses could refer to ready sig-

nals from a manually-instantiated stateful arbiter.) Even with that

proviso, the real behaviour of both compilers makes more-or-less

arbitrary decisions about how write hazards should be resolved.

Ultimately it is up to the designer to write ‘clean’ code that uses

FIFO-style interfaces and valid-tagged data so that unwanted write

races are avoided.

Beyond a certain level of rule repetition, exponential logic growth

will become prohibitive and perhaps generic re-pipelining trans-

forms [8] can be applied to the resulting RTL before logic synthe-

sis. This is easily tested within the HPR L/S library, but it would

not exploit the freedom to explore alternative static schedules in

the front end. Previous work extended Bluespec to support multi-

cycle FUs such as infixed use of a divider that goes busy for several

clock cycles or that has a long combinational delay [11]. This pre-

vents the clock frequency being reduced by slow, yet seldom-used,

sub-circuits, but it could only exploit a fraction (eg. one third) of

the processing power of today’s common pipelined FUs, such as

FPGADSP units since the effective initiation interval is the latency.

Future work will extend our register forwarding approach with
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scheduller integration to fully exploit FUs with latency two and

higher.

Building the compiler on top of a normal-form,memoising-heap

logic systemmeans that identity between expressions is often found,

even though they were formed by complex operations applied to

expressions that looked quite different in the concrete syntax. This

means that certain idempotent operations, particularly writes to

registers and RAMs and reads of RAMs, do not conflict when they

are the same operation in reality. The same goes for any leafmethod

that is invoked more than once by a rule or in a clock cycle. Fewer

conflicts means greater parallelism in the final design.We provided

a global switch to enable this new behaviour and a ‘not_idempotent’
optional pragma for method definitions that should not participate,

such as for FIFO queue/dequeue and other counter style opera-

tions.

The multiple-updates facility offers a much richer implementa-

tion space for the compiler. Together with virtual names for load

balancing and rule repetition, we have provided a solid set of mech-

anisms that allow a compiler to trade time for space to achieve per-

formancemetrics. In the future, our rate-based scheduler should of-

fer a sophisticated approach to deploying these mechanisms. But

our currently-supported manual markup of rule arbiter shares and

repetition count is a good start that also preserves full control for

engineers.

You may download an open source tarball of the Toy compiler

with these new extensions from [7].
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HPR L/S Memoising Heap

The Toy compiler is built on a logic synthesis library, called

HPR L/S, that intrinsically implements constant propagation, sub-

expression sharing and logic minimisation using Espresso, so the

generated RTL is not overly verbose.

This library uses a memoising heap that implements many dis-

tributive laws. Laws formultiplexors embody context-sensitive sim-

plification within a multiplexor argument sub-tree. Laws also un-

derstand one-hot encoding and limited numerical ranges. The rules

of the heap aim to put most expressions into a normal form, for

instance, by sorting the operands to commutative and associative

operators. Beyond this normalisaion, every apparently different ex-

pression is given a different natural number called its heap index.

For booleans, negation is represented by negating the heap index.

There are intrinsic limitations to expression identity checking

arising from computability theory. Nonetheless, thememoising heap

is a helpful and cheap tool. So where we need a conservative test

for array subscript equality or whether argument expressions to a

leaf component are equal, we used identity of heap index.


	Abstract
	1 Introduction
	2 Formalism
	2.1 Re-entrant Leaf Components 
	2.2 The Bluespec Scheduler 

	3 Extensions
	3.1 Automatic Insertion of Stateful Schedulers  
	3.2 Multiple Action Method Invocations Per Clock Cycle 
	3.3 Multiple Rule Executions Per Clock Cycle. 
	3.4 Simple Access To Pipelined Operators 
	3.5 Static Load Balancing (Proposal) 
	3.6 Rule Firing Target Rates 

	4 Conclusion
	References

