
 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Deadlock Avoidance
and 

Combinational Balancing
for High-Level Synthesis

David Greaves
University of Cambridge

Computer Laboratory

David.Greaves@cl.cam.ac.uk

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Abstract

The Bluespec and Kiwi tool chains project 
systems of communicating processes into 
hardware circuits.  When a number of proceses 
are composed, two problems commonly arise at 
the system level: deadlock and excessive 
combinational delay.  Both problems are 
emergent as the system grows and are best 
solved using a global pass of the whole 
assembly, rather than by systematic modification 
to components before composition.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Talk Overview

➲ Design expression using concurrent languages is encour-
aged.

➲ Syntax-driven, one action per clock cycle? Too crude, too 
many registers.

➲ We need automatic heuristic-based retiming/pipeline gen-
eration.

➲ This talk: 
      Outline of an approach being implemented in Kiwi 
compiler but generally suitable.   NEED TO AOVID DEAD-
LOCK.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Bluespec  
Verilog (BSV)

// Asimple rule
rule  rule1 (emptyflag && req);
    emptyflag <= false;
    ready <= true;
endrule  

As we schedule more operations in one clock cycle, 
combinational delay in the guards builds up.

It is counter-intuitive to insert manual pipelining instructions 
at the appropriate granularity in such high-level source code.

Join 
Calculus

//A simple join chord:
public class Buffer 
{
  public async Put(char c);
  public char Get(bool f) & Put(char c) { return (f)?
toupper(c):c; }
}

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

 DATE 2010:  “Automatic Pipelining from Transactional Datapath 
Specifications”  By Nurvitadhi, Hoe, Kam and Lu. 

 -  Automatic generation of scoreboards and forwarding but manual 
allocation of logic to pipeline stages.

Previous Work / State of Art ?

Memocode 2011: “Controller Synthesis for Pipelined Circuits Using 
Uninterpreted Functions” by Georg Hofferek and Roderick Bloem:

  - Builds BDDs for the system but then does not use these to check for 
liveness.

 Bluespec System Verilog Compiler (BSV):  

 -  Designer explicitly instantiates various FIFO stages with 
appropriate balance of combinational and sequential paths.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Kiwi HLS Approach

➲ Use the .net library concurrency primitives

➲ Below a certain level, replace implementa-
tions with our own hardware alternatives

➲ This is ultimately a shared-variable model 
with exclusion locks.

➲ Our implementation of one-place buffers 
gave poor performance compared with BSV 
implementation of the same structures.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

One-place buffer: Write Method

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

One-place buffer: Read Method

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

KiwiC compiler converts basic blocks in 
each thread to a sea of guarded actions.

Using symbolic elaboration we convert each path through a BB to a guarded action block.
This gives an algebraic canonical form amenable to a host of rewrite rules.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Guarded actions: Sequential Composition Rule

There is a vast theory in the literature for composing and decomposing such rules.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Guarded actions: Parallel Composition

Rendezvous can lead to deadlock and increases fan-in in guard 
conjunction.   State space is reduced, especially sometimes.

Here we have forced a rendezvous between two threads.  

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Sequential Compose Write(v)|| Read()

If we compose in the other order, emptyflag is not left at its reset 
value and so does not globally disappear.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Design Space Search: Guiding Heuristic

  

When to compose : use A* or other search algorithm.

Need figure of merit for each trial based on : 

● Composition eliminates registers totalling n bits → f(n)
But might need to eliminate all occurrences 

                   to get the benefit?

● Balances seq/comb logic ratios: espresso-based logic 
            depths are calculated on the fly for each trial
            composition.

● Decreases deadlock chances: later lock, earlier release?
           Do a mini model check after each trial?

● Reduces system latency.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Deadlock from Enforced Synchonicity
        public static void Producer()
        {
           for (uint i = 100; i < 1000; i+=100)
            {   chan1b.Write(i+2); // Write b
                chan1a.Write(i+4); // before a    
            }
        }

        public static void Stage()
        { 
            while (true)
            {   uint i = chan1a.Read();
                uint j = chan1b.Read();
                chan2.Write(100U + i + j);
            }
        }

    class PATHOLOCK2
    {
        [Kiwi.OutputWordPort("fresult")]
        public static uint fresult;

        static Kiwi.Channel<uint> chan1a;
        static Kiwi.Channel<uint> chan1b;
        static Kiwi.Channel<uint> chan2;

 

  

Pathological example:
   If we loose the asynchronous buffer 
within chan1b we cannot make our first 
write to chan1a.

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Main Program (is boring)

        [Kiwi.HardwareEntryPoint()]
        public static void Behaviour()
        {   
            chan1a = new Kiwi.Channel<uint>();
            chan1b = new Kiwi.Channel<uint>();
            chan2 = new Kiwi.Channel<uint>();

            Thread ProducerThread = new Thread(new ThreadStart (Producer));
            ProducerThread.Start();

            Thread StageThread = new Thread(new ThreadStart(Stage));
            StageThread.Start();

            while (true)
            {  
                fresult = chan2.Read();
                Console.WriteLine("Result is " + fresult);
            }
        }
      }

Result is 306
Result is 506
Result is 706
Result is 906
Result is 1106
Result is 1306
Result is 1506
Result is 1706
Result is 1906

Output:

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Can it be that hard ?

  

Consider a system of cogs: 

      “If we insert cog wheel D the system CLEARLY  deadlocks.”

 Our threads are like cogs made of more bendy material.

Do we need a full-blooded modelcheck on every trial ?

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Model check after every trial compositon?

➲ Deadlock check only the SCCs ? Often there 
aren't any...

➲ Integrated BDD-based symbolic model checker?  
Variable order finding... slow … slow …

➲ Aggressive partial order reduction (stubborn sets 
and dynamic POR?) … maybe ...

➲ Use Attie + Chockler conservative algorithms ?

mailto:David.Greaves@cl.cam.ac.uk


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Attie and Chockler's Master Stroke

“Efficiently verifiable conditions for deadlock-freedom of large concurrent 
programs” Paul C. Attie, Hana Chockler (Boston).

In VMCAI'05 Proceedings of the 6th international conference on Verification, Model Checking, 
and Abstract Interpretation.

We present two polynomial-time algorithms for automatic verification of deadlock-freedom of 
large finite-state concurrent programs. We consider shared-memory concurrent programs in 
which a process can nondeterministically choose amongst several (enabled) actions at any 
step...

A generalisation of the standard AND/OR knot finding approach in the wait for graph
(WFG) suitable for general shared-variable action systems.

Build a bi-partite graph relating the edges to the actions.

Only need to check interactions of three machines at a time to determine complete
system's deadlock freeness: polynomial space and time w.r.t. all metrics.  

mailto:David.Greaves@cl.cam.ac.uk
http://dl.acm.org/results.cfm?query=Name%3A%22Paul%20C%2E%20Attie%22&querydisp=Name%3A%22Paul%20C%2E%20Attie%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=68853086&CFTOKEN=76485874
http://dl.acm.org/results.cfm?query=Name%3A%22Hana%20Chockler%22&querydisp=Name%3A%22Hana%20Chockler%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=68853086&CFTOKEN=76485874


 

David.Greaves@cl.cam.ac.uk                         Compiling Complete Programs into Circuits Workshop (CCPC 2012) 4th March 2012, London.

Conclusion

➲ Concurrent expression of design intent is 
good: plenty of parallelism available.

➲ Syntax-directed or manual expression of 
pipeline stages is inflexible/infelicitious.

➲ Automatic balancing while avoiding dead-
lock looks totally feasible since brutal mod-
el-checking can be avoided.

➲ New static schedulers for concurrent spe-
cification languages  shall emerge ...

mailto:David.Greaves@cl.cam.ac.uk

	Title
	Overview
	Slide 3
	Slide 4
	Slide 5
	Long-term goal
	The Present Situation
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Development up to present
	Potential Alternatives
	Recommendation

