
The CSYN Verilog Compiler and Other Tools.

David Greaves

University of Cambridge, Computer Laboratory, Cambridge, UK. djg@cl.cam.ac.uk

Abstract. The CSYN Verilog compiler was written by Dr Greaves in
early 1994 as a vehicle for research in logic synthesis algorithms and to
support experimental extensions to the Verilog language to test high-
level specification techniques. A basic version of CSYN is in use at a
number of local companies for industrial FPGA design. This paper de-
scribes CSYN and its use with Xilinx devices for teaching. To extend this
work, we are defining formal semantics for Verilog, both for simulation
and compilation into hardware. This paper reports the performance of
CSIM, an X-windows Verilog simulator based on the formal simulation
semantics and expresses the desire for a general purpose semantics for
Verilog, which can help prove the equivalance of different implementa-
tions of a module.

1 Background

The Systems Research Group of the University of Cambridge Computer Labora-
tory has for ten years or more owned and used a set of CAD tools based around
the ‘Cambridge HDL’ heirarchic net list format [1]. The tools were first written
to support internal research projects, but they have also been commercialised
from time to time and used by a dozen or so local companies and they have been
used extensively in teaching.

In recent years, limited logic synthesis capabilties were added to the tools
using enhanced ABEL as the input specification language. ABEL’s infix oper-
ators for addition and complex combinatorial expressions so became available.
In addition, a local language FDL (functional definition language) was added
to allow behavioural specification of standard, non-synthesised parts, such as
RAMs, FIFOs or clock modules and test wrappers. Hence the human input to
the CAD system was split over three source languages which necessarily resided
in different source files, owing to different parsers and front-end processing.

A few years ago, the author became interested in the Verilog language and so
the process of moving the tools to Verilog began. Like VHDL, Verilog is able to
integrate these three forms of specification using a common syntactic structure,
and indeed the forms can be intermixed at the fine grain of individual declarative
statements within a Verilog ‘module’. The module is the heirachic building block,
and can be anything form a gate to a microprocessor or complete system.

Today the tools run on Unix or other Posix machines (such as Linux) us-
ing an X-windows interface for the simulators and command line or makefile
driven interfaces for the remainder. About half of the designs generated with
the tools are targeted at Xilinx devices and the remainder include standard cell,

PCB board models, MACH devices or abstract designs with their own research
content.

The following programs have been written:

– CSYN - Verilog compiler.
– CSIM - Verilog simulator.
– XSIM - Cambridge HDL/FDL simulator.
– CVAUX - Verilog flattener.
– CVXNF - Verilog to Xilinx net list format convertor.
– LCATOV - Xilinx logic cell array to Verilog convertor.
– CPAL - Verilog to JDEC pal compiler.
– TRANS - Verilog multi-level logic minimiser.

2 CSYN Verilog Compiler

CSYN is described in the CSYN user manual [2]. The input to CSYN is a set
of Verilog files, including the design proper and standard libraries. The libraries
contain reusable building blocks, such as a Huffman or Manchester coder, which
can be compiled for any target technology, and target technology-specific defi-
nitions such as input/output pads or special buffers which drive things such as
the Xilinx global clock nets.

The output from CSYN is a heirarchic Verilog net list known as a vnl file
where each module in the output corresponds to a module in the input source
(CSYN can also generate Cambridge HDL). A vnl file is the subset of Verilog
language obtained by deleting the RTL and behavioural declarations: assign,
initial and always, and disallowing the entity declarations integer, reg,

time, event etc.. This leaves only the wire and tri data types and the only
significant construct is structural instantiation of a submodule.

The heirarchy in a vnl file can be flattened when necessary using an extra
program called ‘CVAUX’. A related program, CVXNF will flatten and generate
Xilinx net list format (xnf) for input into the Xilinx tools. In this mode, it takes
an additional command line argument to specify a technology library, such as
‘xi4000’, which contains appropriate macros which are expanded to generate the
xnf.

Logic synthesised by CSYN is not mapped onto a specific target technology
library. Instead, CSYN converts all RTL and behavioural constructs into a fixed
set of gates, which are AND2, OR2, INV, DFF, TLATCH, MUX2. It is up to the
software which processes the target vnl file to understand these gate types and
fit the logic to the target device. However, the instantiated modules output from
CSYN do not only include these gates, since the source Verilog may contain
structural instantiations of library or other leaf modules such as the pads etc.
mentioned earlier. Attempts to actually synthesise these leaf modules by CSYN

is prevented by flagging their definition with a small extension to the Verilog
language syntax: the keyword primitive may be introduced before the word
module in each such definition, or alternatively the line primitive everything

may be added to a file to mark as primitive all textually subsequent modules.

For primitive modules, CSYN ignores the module’s body, if present, and does
not flag ‘output not driven’ warning messages when the body is absent. However
CSYN does cross-check the input, output and inout port direction statements
for compatibility at each instantiation of the primitive module.

Using CSYN, the designer has control of the logic that will be synthesised
through the way he uses continuous assignments and parenthesis. If part of
the circuit is critical, it must be essentially hand coded in the source file using
the more simple constructs of Verilog which have predictable synthesis paths,
rather than using esoteric for, case or while constructs. Such control might
be termed in-band when compared with other logic synthesisers which accept
complex out-of-band annotations for each input and output, expressing a desire
for low load or late arrival etc.. Advanced minimisation of logic functions using
techniques based on Expreso are not considered appropriate within CSYN since
the best optimisations are target technology specific and best implemented in
subsequent vendor fitter tools.

Infact, CSYN does have a small set of command line parameters which
modify slightly the way it synthesises structures such as adders, but these are
generally left unused. Their use is to trade speed of operation against gate count.

2.1 CSYN operation

CSYN first parses the input Verilog files to build a lisp parse tree. It then selects
the subset of sourced modules that will be present in the output (i.e. are being
used) using a recursive tree walk from a command line specified root name,
which must be one of the sourced modules.

It then uses simple algorithms to convert the supported behavioural con-
structs into continuous and behavioural assignments, generating for them a parse
tree structure similar to that which they would have if they had been specified in
this form to start with. D-type flip-flops or broadside registers are generated and
inserted into the structure as though they had been structurally instantiated in
the source file.

An algorithm which expands all busses into individual signal nets is then
applied, and at the same time this algorithm rewrites the tree to convert all
of the ‘higher-order’ logic functions, such as addition, bus comparison or unary
reduction, into a small set of operators: namely AND, OR, XOR, INVERT and
MUX2.

An algebraic simplifier then runs over the tree, reducing simple tautologies
and applying other Boolean identities, but without applying cubic division or
other more complicated minimisation.

The final stage is a recursive gate generating algorithm which walks over
the tree replacing each node with a gate instantiation and allocating a signal
identifier for its output. Before generating each gate, the gate generator checks
whether it has already produced a gate of the same type and input connection
pattern, and if so, uses the output from that instead. To make this associative
search cheap, the gates are given a normalised input ordering and then hashed
to provide a simple array index.

After this stage, the circuit is composed entirely of structural instantiations
of modules and leaf gates. A port checker cross-checks the input/output/inout
port direction across all submodule instantiations and checks that each signal
has exactly one output driving it, unless it is of type tri.

2.2 CSYN Synthesisable Constructs

No contemporary Verilog compiler can convert every behaviourally expressable
Verilog construct into gates. At the RTL level, CSYN supports the subset of
the Verilog combinatorial operators shown in table 1 together with the unary
reduction operators, bus concatenation and dynamic subscripting of busses.

Symbol Function Resultant width

¬ monadic negate as input width
− monadic complement (*) as input width
! mondaic logic not (*) unit

∗ unsigned binary multiply (*) sum of arg widths
/ unsigned binary division (*) difference of arg widths
% unsigned binary modulus (*) width of rhs arg

+ unsigned binary addition input width plus one
− unsigned binary subtraction input width plus one

>> right shift operator input - shift amount
<< left shift operator input + shift amount

== net/bus comparison unit
! = inverted net/bus compare operator unit
< bus compare operator unit
> bus compare operator unit

>= bus compare operator unit
<= bus compare operator unit

& diadic bitwise and minimum of both inputs

↑ diadic bitwise xor maximum of both inputs
↑ ¬ diadic bitwise xnor (*) maximum of both inputs

| diadic bitwise or maximum of both inputs

&& diadic logical and unit

|| diadic locical or unit

? : conditional expression maximum of data inputs

Table 1. Verilog Operators in order of Binding Power. Asterisked operators are not
supported in current release of CSYN.

In Verilog, behavioural statements must be included within an initial dec-
laration or an always declaration. CSYN (release cv2) ignores the contents of
initial statements, but they may be present and are vital when simulating the
source file with a simulator (to generate resets and so on).

CSYN compiles only the following form of the Verilog always construct. It
has the syntax

always @(<sensitivity-list>) <behavioural-statement>

This statement causes execution of the behavioural statement each time an event
in the sensitivity list occurs. The behavioural-statement is typically a begin-end
block containing other statements. The only sensitivity lists supported are the
posedge or negedge of a single clock net or the full support list of the following
statement (block).1

1
CSYN will next be extended to support asynchronous resets to its behavioural regis-

CSYN compiles behavioural constructs using a function CC(Σ,∆) which takes
a section of source code whose extent is free from event control statements (such
as posedge), a pair (Σ,∆) consisting of a substitution list Σ and an update list
∆ and returns a new such pair. Both the substitution list and the update list
are mappings of each variable (integer, wire or reg etc.) that appears in the
block to an expression. The substitution list gives the mappings of each variable
to expressions at the current point in the program and the update list keeps
track of variables which are to be finally updated on the next clock edge, but
which are not necessarily changed at the current textual execution point. Both
lists are of pairs of the form (v, e) where v is a variable and e is an expression
mapped to it.

At entry to a source block (i.e. after any previous event control) the initial
Σ passed to CC(Σ,∆) is set to map each variable directly to the register, input
pin or other source that drives it. ∆ is empty. CC(Σ,∆) will handle begin-end

sequencing, case, if-then-else, repeat and both blocking and non-blocking
assignments as follows:

– CC(Σ,∆)[[v = x]] = (replace v with EΣ [[x]] in Σ,∆)
– CC(Σ,∆)[[v <= e]] = (Σ, append((v,EΣ [[x]]), ∆)) where the routine append

flags an error to the user if the resulting list has two entries for a given
variable.

– CC(Σ,∆)[[c1 ; c2]] = CC(S)[[c2]] where S = CC(Σ,∆)[[c1]]
– CC(Σ,∆)[[if (e) then c1; else c2]] = (Σ′, ∆′) where

j = EΣ [[e]]

Σ′ = {(v, x) | x = (j)?EΣ1[[v]] : EΣ2[[v]]}

∆′ = {(v, x) | x = (j)?E∆1[[v]] : E∆2[[v]]}

(Σ1, ∆1) = CC(Σ,∆)[[c1]]

(Σ2, ∆2) = CC(Σ,∆)[[c2]] or (Σ,∆) if the else clause is missing.

The questionmark-colon is the usual conditional expression construct (found
in C and Verilog).

– Verilog’s case statement is handled by pre-converting to a series of ifs in
the obvious manner.

– Verilog’s repeat statement is handled by pre-expanding the source parse
tree the specified number of times (which must be a compile-time constant).

The function EΣ [[]] is a function which rewrites an expression where the
variables are replaced with their values in the current substitution set (which
are potentially complex expressions containing only input variables).

The resulting pair of lists returned by CC(Σ,∆) are converted into an ap-
propriate RTL assignments of new values for the variables. The pending update

ters. Currently flip-flops which require this must be structurally instantiated. CSYN

does not yet generate transparent latches when a signal is missing from the support
list, but this is no great loss, since most users of other Verilog systems run with this
option disabled.

list will contain at most one entry for each v (whose type must be reg) and an
error is flagged if it contains an entry for any variable also in the substitution
list (otherwise the signal would be driven twice).

Warnings are issued if any variable is assigned more than once, for instance
via both a blocking and non-blocking assignment in the same section of code.
Assignments to the same variable from separate always blocks results in the
output net being driven by more than one gate or flip-flop, which is spotted and
flagged in the final net list cross-checking phase of CSYN.

2.3 An example of CSYN input and output

Here is an input file:

module ADDER(clock,in1,in2,out);

parameter size = 4;

input clock;

input [size-1:0] in1, in2;

output [size:0] out;

reg [size:0] out;

always @(posedge clock) out <= in1 + in2;

endmodule

Which can be compiled to give the following output

// CBG CSYN Verilog hdl system. Release 2 Beta 5. (May 95)

module ADDER(clock, in1, in2, out);

wire u10057, u10056, u10055, u10054, u10053, u10052, u10051,

u10050, u10049, u10048, u10047, u10046, u10045, u10044,

u10043, u10042, u10041, u10040, u10039, u10038, u10037,

u10036, u10035;

output [4:0] out;

input [3:0] in2;

input [3:0] in1;

input clock;

AND2 u10055(u10055, in1[2], in2[2]);

AND2 u10056(u10056, u10047, u10048);

OR2 u10057(u10057, u10055, u10056);

BUF u10035(u10035, u10057);

XOR2 u10053(u10053, in1[0], in2[0]);

DFF u10054(u10054, u10053, clock, 1, 0, 0);

BUF u10058(out[0], u10054);

XOR2 u10051(u10051, u10044, u10045);

DFF u10052(u10052, u10051, clock, 1, 0, 0);

BUF u10059(out[1], u10052);

AND2 u10043(u10043, in1[1], in2[1]);

AND2 u10044(u10044, in1[0], in2[0]);

XOR2 u10045(u10045, in1[1], in2[1]);

AND2 u10046(u10046, u10044, u10045);

OR2 u10047(u10047, u10043, u10046);

XOR2 u10048(u10048, in1[2], in2[2]);

XOR2 u10049(u10049, u10047, u10048);

DFF u10050(u10050, u10049, clock, 1, 0, 0);

BUF u10060(out[2], u10050);

XOR2 u10041(u10041, u10035, u10037);

DFF u10042(u10042, u10041, clock, 1, 0, 0);

BUF u10061(out[3], u10042);

AND2 u10036(u10036, in1[3], in2[3]);

XOR2 u10037(u10037, in1[3], in2[3]);

AND2 u10038(u10038, u10035, u10037);

OR2 u10039(u10039, u10036, u10038);

DFF u10040(u10040, u10039, clock, 1, 0, 0);

BUF u10062(out[4], u10040);

endmodule

2.4 Two examples of non-synthesisable modules

CSYN cannot synthesise the following useful phase-frequency comparator be-
cause the registered signals are updated in an edge sensitive way by more than
one ‘clock’. A good implementation of this circuit uses just 12 NAND gates, but
the algorithm to generate this type of circuit is a research topic.

module PHASEFREQ(ref, loc, faster, slower);

output faster; // High when local oscillator is slower than ref

output slower; // High when local oscillator us too fast.

input ref; // Reference oscillator

input loc; // Local oscillator

reg faster, slower;

wire idle = ~(faster | slower);

always @(posedge loc)

begin

if (idle) slower <= 1;

faster <= 0;

end

always @(posedge ref)

begin

if (idle) faster <= 1;

slower <= 0;

end

endmodule

In addition, CSYN cannot synthesise the following pattern generator because
there is an implied thread of control. The algorithm which would generate the
flip-flops required for the program counter has not been written, and is perhaps
difficult.

reg din;

initial din = 0;

always

begin

@(posedge clk) din = 1;

@(posedge clk) din = 1;

@(posedge clk) din = 0;

end

2.5 Transduction Minimisation

Philip Abbey of the Computer Laboratory has implemented the ‘Transduction’
technique for multi-level logic minimisation [4]. The input and output to his pro-
gram are vnl files of equivalent functionality but where the output uses fewer
gates (or is optimised under another metric). The transduction technique is ap-
plied heuristically to the combinatorial logic components of a circuit, leaving the
flip-flop structure intact, and operates using the concept of ‘permissible func-
tions’. The permissible function at the output of a logic gate inside a multi-level
logic circuit is simply a truth table indexed by the inputs to the combinatorial
network and contains don’t cares (X’s). Heuristic modifications to the network

are applied to try to increase the number of don’t cares, with the effect of in-
creasing the probability that a given gate’s output can either be covered by one
of its inputs or by the output of another gate in the circuit. In either case, the
gate has become unnecessary and so its output is replaced with a wire to the
appropriate point.

Using the Transduction method seems to reduce the CLB count for a Xilinx
target by about 10 percent. This improvement is on top of the optimisation
already provided by the gate-sharing algorithm described in section 2.1, which
is also about 10 percent. This shows that the tools supplied with the FPGA’s
can sometimes be enhanced using such techniques. I will present some figures at
the workshop.

Table 2 shows parameters for a set of five Xilinx designs, each compiled for
a Xilinx 3000 FPGA.

Design Lines of VNL lines Combinatorial D-types CLBs
Verilog gates

AAL-10 179 2459 1858 32 80
Nasty-J 234 1850 962 70 188
Jaglink 1092 1478 976 126 124
Xcoder 838 1579 963 142 136
Cdxlx 389 1376 563 71 62

Table 2. Parameters for a few Xilinx designs.

3 ECAD Practical Classes

The CSYN compiler has been used for teaching Verilog as part of a second year
course at the Computer Laboratory. The students had available the Xilinx back
end tools via a batch email server. They experienced design turn around times of
about 3 hours on this batch queue, and so it was rather like submitting a design
for foundry fabrication. The Xilinx tools returned to them the lca (logic cell
array) file which they could load into our Xilinx teaching cards [3]. These cards
have an FPGA and switches, LEDs and other peripherals. A local program,
lcatov will convert a lca file into a Verilog module containing detailed post-
layout timing information for each signal. This enabled the students to perform
annotated post layout simulation to see how much slower their designs will run.

The largest designs performed by the students were lift controllers which
required four Xc3064 devices. A typical design was a reaction timer or other
game, using 150 or so CLBs (configurable logic blocks). As a final year project,
one student implemented the ARM microprocessor.

4 The CSIM simulator

To date, the design flow mostly used with CSYN is to compile everything into
Cambridge HDL and then perform simulations using XSIM [5]. The XSIM sim-
ulator consists of 33000 lines of C code and is a robust and easy to use tool.
However, recently, Mike Gordon of the Computer Laboratory conducted a set of
experiments on three commercial Verilog simulators (Verilog-XL from Cadence,
ViperFree from InterHDL and Veriwell from Wellspring Solutions) in order to
deduce a formal semantics for the execution model of Verilog [6]. The IEEE draft
standard was also helpful [7].

The author took these semantics and implemented the CSIM simulator, based
on XSIM. The performance of CSIM was compared against some other simu-
lators for the test program in figure 1 and the resulting execution times on a
SPARCstation 10 Model 30 are given in table 3. CSIM is clearly competitive in
execution speed, but it is also very easy to use with its built-in interactive GUI.

Veriwell and Viperfree do not support the vectored Verilog range expansion
mode which causes the simulator to model a bus as a single number, making
the simulation run faster, but with restrictions on assignments to just parts of
busses. However it is possible with all of the simulators to change the definition
of ctr to be an integer. This reduced the simulation time by about 10 percent
for Veriwell and Viperfree.

module CLK1MHz(o);

output o;

reg o;

initial begin o = 0; forever o = #100 ~o; end

endmodule

module SIMSYS();

wire x;

reg [20:0] ctr;

initial ctr = 0;

CLK1MHz clk(x);

always @(posedge x) ctr <= ctr + 1;

initial #10_000_000 $finish;

endmodule

Fig. 1. Example program used to compare the simulators.

5 Future Directions

Currently we are using different rules for compiling and interpreting Verilog.
These rule sets cover different subsets of the (richish) Verilog language. However,
we observe that once the semantics of a language are well formulated, it becomes
a fairly simple matter to implement the associated compilers and interpreters,

Simulator Behavioural Gate Level

Verilog XL 9 71
Veriwell 8 301
Viperfree 26 290
Xsim n/a 89
CSIM 7 180

Table 3. Execution time in seconds of the test code before and after compilation on
five simulators.

and so as semantics develop to cover a greater subset of the language, we can
make our tools more powerful.

We have started the Verilog Formal Equivalence Project [8], funded by EP-
SRC to automate equivalence checking between different versions of a module
(in VHDL these would be known as alternative architectures). We are especially
interested in checking the equivalence of the behavioural and gate-level versions
which are perhaps the input and output respectively of a synthesiser, or perhaps
have come from different source files with hand recoding or isolated develop-
ment. Our approach will be to define semantics for the language which can, as
far as possible, be used both for compilation and simulation.

Aknowledgements are due to Olivetti Research Ltd, John Porter, Andy Harter, David Milway, Mark

Hayter, Ian Pratt. Xilinx c© is a trademark of the Xilinx Corporation. Verilog c© is a trademark of

Cadence Design Systems.

References

1. Newson, A., Milway D.: Cambridge HDL and FDL Reference Manual

http://www.cl.cam.ac.uk/users/djg/ecadteach
2. Greaves, D.J.,: The CSYN Verilog Compiler and other tools - Professional Reference

Manual. http://www.cl.cam.ac.uk/users/djg
3. Temple, S.,: The Xilinx Teaching Board

http://www.cl.cam.ac.uk/users/djg/ecadteach
4. Muroga, S., Kambayashi, Y., Lai, H.C., Culliney, J.N.,: The Transduction Method

- Design of Logic Networks Based on Permissible Functions. IEEE Transactions on
Computers, Vol 38 No. 10 October 1989.

5. Newson, A., Milway D.: The ORL XSIM Simulator Manual On
http://www.cl.cam.ac.uk/users/djg/ecadteach

6. Gordon, M.J.C.,: The Semantic Challenge of Verilog HDL. Tenth Annual IEEE
Symposium on Logic in Computer Science (LICS’95), June 26-29, 1995, San Diego,
California. On http://www.cl.cam.ac.uk/users/mjcg/Verilog.

7. IEEE 1364. Section 5 - Scheduling Semantics. Draft Standard Verilog HDL. Draft
standards document. On http://www.cl.cam.ac.uk/users/mjcg/Verilog.

8. Greaves, D.J., Gordon, M.J.C,: Checking Equivalence Between Synthesised Logic and

Non-Synthesisable Behavioural Prototypes. A three year EPSEC research project.
On http://www.cl.cam.ac.uk/users/mjcg/Verilog.

This article was processed using the LATEX macro package with LLNCS style

