
Layering RTL, SAFL, Handel-C and Bluespec

Constructs on Chisel HCL.

David J Greaves

Computer Laboratory, University of Cambridge, UK.

0
req 0

req 1

req 2

grant 0

grant 1

grant 2

Fig. 1: Example circuit, a static-priority arbiter.

Abstract—Chisel is a hardware construction language that
supports a simplistic level of transactional programming via its
Decoupled I/O primitives. In this paper we describe extensions
that layer popular design paradigms on the Chisel substrate. We
include RTL, SAFL-style functional hardware description, Handel-
C message passing and Bluespec rules. We then briefly discuss
interworking between these design styles.

I. INTRODUCTION

A Hardware Construction Language is here defined as a
programming language for programs that ‘print out’ the circuit
diagram, or netlist, for a hardware design. They can vary
greatly in their expressive power. Of interest are those that
ensure the generated netlist is not only syntactically correct but
also semantically correct. The latter implies that design rules
such as no two gate outputs are directly connected are obeyed,
or that the widths of two busses being multiplexed is the same.
Two notable recent players are Chisel [1] and HardCaml [2].
An earlier language was Lava [3], [4]. All three make great use
of the standard combinators and paradigms found in functional
programming languages, such as ML and Haskell. Bluespec,
another recent language, also leverages this paradigm, but
differs in a couple of ways. The first difference is that it re-
implements the functional language itself with its own syntax
and parser, whereas the other three are DSLs (domain-specific
languages) that are embedded in a powerful host language.
Chisel is embedded in Scala, Lava was embedded in Haskell
and HardCaml is embedded in OCaml. We shall cover the
second Bluespec difference later on. All of these processing
systems generate syntactically-correct RTL that abides with port
binding rules.

The two everyday RTL languages, Verilog and VHDL, em-
body ‘generate statements’ and ‘generate variables’ which
provide the hardware construction aspect just defined. These

languages have staged execution (or embody metaprogram-
ming) where part of the program is run at compile time and the
remainder at run time. The compile-time execution is known
in the field as the ‘elaboration’. All generate statements and
genvars only exist during elaboration and only influence the
amount of hardware generated. The generated hardware, when
switched on and clocked, provides the run-time execution.
Sometimes it is a little tricky to work out whether something
is executed entirely at compile time or else embodies some
run-time behaviour (e.g. a function invoked with constant
parameters that makes use of a run-time free variable in its
body), but generally it is obvious.

The execution of the combinators and functional program-
ming we find in the hardware construction languages already
mentioned is constrained to the elaboration stage. They all gen-
erate a finite amount of hardware with static allocation of user
variables to registers - there is no run-time dynamic storage
allocation. Nonetheless, both stages of execution potentially
embody ‘if’ statements and other control flow statements such
as case or switch. When one of these statements alters which
others get executed we have ‘data-directed control flow’.

As a concrete example, in Chisel, the following Scala
fragment creates a static-priority arbiter with n inputs and
n outputs. By extending the Module class it becomes a
separate hardware component (Verilog module) in the RTL

output from Chisel. All Chisel modules have an I/O Bundle
which commonly has a fixed set of terminals, but in this
example all of the I/O pairs are generated by the higher-order
functions map and fold, both of which are fully executed at
compile time (elaboration time). The ‘&’, ‘|’ and ‘!’ symbols
are overloaded to generate real AND, OR and NOT gates and the
‘new Bool’ generates the wire from one level to the next.

class genericPriEncoder(n_inputs : Int) extends Module

{

val io = new Bundle { }

val terms = (0 until n_inputs).map (n => ("req" +

n, "grant" + n))

terms.foldLeft (Bool(false)){ case (sofar, (in,

out)) =>

val (req, grant) = (Bool(INPUT), Bool(OUTPUT))

io.elements += ((in, req))

io.elements += ((out, grant))

grant := req & !sofar

val next = new Bool

next := sofar | req

next

}

}

108978-1-5090-0237-5/15/$31.00 ©2015 IEEE

A semantic difference between hardware construction
languages (like HardCaml, Lava and Chisel) and standard
RTL logic synthesis is that hardware construction languages
(mostly) lack behavioural flow. This becomes a clearly distinc-
tive differentiator when we consider infinite loops: hardware
generally lasts for ever, repeating the same behaviour over
and over. In standard RTLs this is expressed directly as a
behavioural infinite loop in the source code. On the other
hand, HCLs execute once with all loops exiting at compile time.
A related distinction is the presence of a packing transform
that combines multiple updates expressed sequentially into a
parallel update of all of the left-hand sides at once (on a
clock edge). This conversion at compile to a set of parallel
register assignments is also known as behavioural elaboration
or symbolic evaluation. It is done by collating the assignments
to variables and array locations. This process is exactly the
procedure used to formally define imperative languages using
denotational semantics. Richer behavioural expression uses
program-counter inference, where each compile-time eternal
loop pauses at a number of different places in its path, each
requiring a code point in a run-time (hardware) program
counter.1

None of Lava, HardCaml or Chisel provides data-directed
control flow, although Chisel, at least, supports relatively
usable synthesis of multiplexor trees from nestable constructs
using its ‘when’ statement. Instead, in these hardware construc-
tion languages, the user must manually instantiate a finite-state
machine to get this effect, whereas in our RTL layer of §II-A
and with with HLS (high-level synthesis) tools, such as LegUp
[5] and Kiwi [6], this is their natural behaviour.

II. BUILDING POPULAR EXPRESSION STYLES ON TOP OF

CHISEL

We now give some examples of richer coding styles that
can usefully be constructed on top of the netlist generation
facilities of Chisel.

A. RTL-style: Using eternal process loops containing data-
dependent control flow.

The main feature of behavioural register transfer language
(RTL) is a thread of execution inside an infinite (or eternal)
process loop. The behaviour of the hardware mirrors the
behaviour of the thread. Synthesis standards and house styles
in individual companies may restrict the coding styles used,
but in general, any variable can be updated in any number of
places in the loop and, flow of control can take conditional
branches and the loop can be explicitly paused at any point
waiting for the next clock edge. The most recent update to
each variable at that point is presented to the D-inputs of the
registers and they take on that value at the clock edge. In
Verilog, the pause is typically denoted with ‘@(posedge clk)’.
Chisel provides an analogous ‘step(n)’ method in its testbench
stimulus language but does not provide such a construct in
its synthesisable subset: it is an HCL and not an HDL. This
is because synthesisable code extends Chisel.Module but the
step method is unbound inside Module. To avoid confusion

1Older Verilog compilers would support state machine inference from the
Verilog’s control flow, but this was discontinued (or at least made to flag
warnings) when the synthesisable subset was defined.

between testbench and application code, we used upper case
to define ‘STEP()’ and ‘STEP(n)’ to pause for 1 and n clock
cycles respectively in application code.

Turning now to the process of finding the most recent
assignment to a variable, the packing transform, we find
the Chisel internal mechanisms already fully support guarded
updates in order to provide its ‘when/else/otherwise’ and
‘switch’ statements. However, when a succession of these are
normally placed in a Module body (or nested inside each
other) they behave in parallel, with only the WaW (write
after write) hazards being resolved according to the elaboration
thread’s program order with the last write having the highest
priority. Of course, this contrasts with everyday imperative
programming where they act in serial with the most recent
write being the value used when reading the variable or array
location. The same difference, with respect to the value of a
variable occurring on the right-hand side of an assignment in an
expression, is manifested by Verilog’s two different assignment
operators, blocking and non-blocking.

Owing to Scala’s wonderful extensibility, it is rather easy
to introduce some ‘always’ syntax that introduces a run-time
process loop. The keyword ‘always’ is used in Verilog to define
a thread that infinitely loops: it is short for ‘initial while (1)’.
The necessary Scala to essentially define a new keyword is

object always

{

def apply(codeBlock: => Unit) =

{

rtl_compile(codeBlock)// csyn-style RTL compiler call

}

}

where the ‘object’ keyword defines the static methods of a new
class, called ‘always’, that can be directly applied to a parsed
but uncompiled block of source code. Also, to enable Scala’s
own if statement to still be freely used during the elaborate
phase, we defined our own IF, ELIF and ELSE constructs for
use inside always blocks for run-time, data-dependent control
flow. Again, each takes a block of code and the first two
additionally take a preceeding Chisel.Bool curried argument
that is the normal guard expression for a conditional block.

This now enables us to write, for example, the following
RTL-style Chisel module. It generates an alternate pattern of
1 and 2 on its output that is interspersed with the number 3
for two cycles after the 2 when the input is asserted.

class RtlExample extends Module {

val io = new Bundle {

val din = Bool(INPUT)

val mon = UInt(OUTPUT, 3)

}

always {

io.mon := UInt(1)

STEP()

io.mon := UInt(2)

STEP()

IF (io.din) { io.mon := UInt(3); STEP(2); }

}

}

109

Fig. 2: Timing diagrams from RTL-style demonstration.

600

200

Targer_AX

ax(x) = x+10

Targer_AX

ax(x) = x+10

Targer_DX

dx(x,y) = x+y

610

210

820

Fig. 3: Example, trival TLM calling structure.

The apply method for always contains an RTL compiler
along the lines of CSYN [7]. This is similar to many other
software-to-hardware compilers. It uses a one-hot encoding of
the program counter for each region of code that starts after a
STEP call. At the hardware level, each region of code has an
activate input that makes it run. Using the same mechanisms
that Chisel already uses for its ‘when’ statement, the side
effects of assignments are only enabled when the appropriate
region is active.

The ‘IF’ statements fork and join the activate path around
the conditional code. With a suitable stimulus on the din

input, a simulation of the generated RTL gives the expected
waveform on the mon output, as shown in Figure 2. The
program counter uses four additional flip-flops, not manifest
in the source code. FPGA tools or Design Compiler might
typically re-encode the one-hot state machine to a more
optimum form for the target technology, so there is probably
little point putting more optimisation effort into our extensions.

B. SAFL-style: Statically-Allocated Functional Language

In this subsection we report on a DSL extension to Chisel
that generates SAFL-like transactional circuits.

SAFL [8] is a hardware synthesis language that uses a
subset of ML syntax; in particular, any recursion used must
be tail recursion. This ensures finite circuits are generated.
(Ghica’s Geometry of Synthesis IV [9] is also functional but
added a stack to the generated hardware to support recursion.)
SAFL is best described as a synthesis language, rather than a
construction language, since the function applications and the
IF statements are projected through to the execution phase. It
uses its own compiler and, in contrast to HardCaml, is not a
DSL embedded in ML. The language was described as ‘resource
aware’ meaning that the engineers know exactly how much
hardware they will generate with each statement they write.
Being functional, it is highly-ameanable to time/space folding

since, without imperative updates, there are no RaW hazards
that might get re-ordered.

In the SAFL-style, there are two baseline rules that control
the amount of hardware generated:

1) Leaf operators, such as ‘+’ and ‘*’, occurring textu-
ally in the souce code are freshly instantiated in the
hardware for each occurrence.

2) The same goes for function definitions, which means
function applications of a named function are seri-
alised over the shared body with argument and return
value multiplexors.

Time-to-space folding can be implemented in SAFL-style
languages with a uniquify operator, called UF . In the follow-
ing example, this replicator provides a fresh, identical copy
of the complex multiplier, thereby enabling both arguments of
function g() to be run at once.

fun cmult x y = (* SAFL-ML complex multiplier *)

let ans_re = x.re*y.re - x.im*y.im

let ans_im = x.im*y.re + x.re*y.im

in (ans_re, ans_im) // 4 multipliers, 2 adders.

let use_time = g(cmult a b, cmult c d)

(* uses 4 multipliers, 2 adders + resources for g *)

let use_space = g(cmult a b, (UF cmult) c d)

(* uses 8 multipliers, 4 adders + resources for g *)

Chisel has an underlying datatype for generated hardware
called Bits. Chisel also provides the ‘Valid’ and ‘Decoupled’
interface wrappers in its library that add request and ready
signals to an interface. But these wrappers do not automate
the wiring inside a leaf copmponent; they only help with
inter-module wiring. For a SAFL-style portion of a circuit
description, every expression needs to be associated with
handshake wires. Accordingly, we work at the Chisel.Bits
level and implemented a guardedBits class that adds handshake
wires to every subexpression in an expression. One might think
this will force us to redo all of the work in the Chisel library
that already overloads every arithmetic and logic operators,
but owing to Scala’s facility of ‘implicit functions’ to provide
automatic coercion from one form to another when appropriate,
this has not been a problem so far. For instance, a constant
expression, such as UInt(42), can be freely used as a guarded
expression provided the appropriate implicit coercion has been
imported with ‘using SAFL._’ at the head of the file. When
used, on a simple constant, the implicit coercion will add an
‘always ready’ acknowledge output signal, that is wired to logic
1, and a request input signal that is simply ignored.

SAFL-style operators, including simple primitives like addi-
tion, are treated as function calls. This is already how Chisel

110

Fig. 4: Timing diagrams from SAFL-style example.

works. SAFL uses strict call-by-value, so all function calls can
only execute their bodies when all of their input arguments are
ready.

By defining a transactional bundle that extends the net-
level bundle of Chisel, and performing operations on that,
we can enrich the language so that the compiler performs
automatic synthesis of handshaking nets. Callable components
are generally either fully-pipelined, meaning they can start
a new operation on every clock cycle, but have some fixed
latency, or else go busy while internally processing for some
potentially variable number of cycles. We support both styles
of component in the same framework. To wrap up a simple
Chisel function with a fixed delay of one clock cycle, making
its I/O is fully transactional, we can use the style of the
following example:

// An example TLM callable Module: One method,

// fully-pipelined with delay of one.

class Targer_AX extends Module

{

val io = new TLM_bundle_lc

{ // Register TLM callable function with one pipeline

delay.

tlmBind_a1(ax_fun _, 1)

}

def ax_fun(x:UInt) = Reg(UInt(32), x + UInt(10))

}

The function ax_fun has been registered as a callable method
in the module Targer_AX. It can now be called as ‘x1’ in the
following fragment. It can also be called as ‘ax_fun’ owing
to Scala’s introspection. The ‘_a1’ suffix on the bind denotes
that it is a function of one argument (monadic). The second
argument to bind of unity denotes the fixed pipeline latency
of one clock cycle. The ‘Reg’ call in the function body is
Chisel’s standard way of delaying a result one clock cycle.
Note that operations as simple as 32-bit addition of a constant
would typically not warrant a pipeline delay in contemporary
technology; we are just using addition as a simple example.

Having multiple methods on an instantiated object has no

semantic meaning in a purely functional setting, but most real
designs use RAMs or otherwise contain state and then the
association of methods to objects makes sense. Therefore we
allow more than one function to be exported from a given
Module (multiple bind calls), thus supporting overloading and
so on, which means that ‘x1’ would become ambiguous when
more than one monadic function is registered as TLM-callable.

We can now compose transactional modules such that they
can makes calls on each other with syntax such as:

val target_a = Module(new Targer_AX())

val target_d = Module(new Targer_DX())

val ... = target_d.io.x2(target_a.io.x1(e1),

target_a.io.x1(e2))

The above fragment illustrates a key aspect of SAFL seman-
tics, that the target_a is called twice, potentially in parallel,
before target_d’s TLM-method of arity two is invoked. Note,
SAFL is strictly call by value. But with only one instance
of Targer_AX, the executions of target_a are automatically
serialised in the time domain. A holding register is tacitly
generated to store the output of the first execution, but visible
in the generated RTL.

As is now apparent, in our SAFL-on-Chisel implementation
we do not need a special uniquify combinator. Instead, the
number of instances of a callable target is controlled, in the
obvious way, by the number of times Scala’s new operator
is applied to the target class. When different instances are
specified in a parallel context, they are invoked in parallel,
but when an instance reference is repeated the operation
is automatically serialised, despite it being in a potentially
parallel context.

Because guardedBits is used for each argument, under the
hood, each call site has its own req and valid handshake pair
to a wrapper around an instance of the target class. In the
wrapper, a priority encoder selects one contending call site
requester for service and acknowledges that call site when the
callee completes.

111

Registering completely constant values is a waste that
should be cleaned up in back-end tools by constant folding
optimisation, but this may not be the case for FPGA where
the unavoidable global/power-on reset has an observable con-
sequence. Therefore we implemented AlwaysReady flagging,
where the guardedBits class has an indication of expressions
that, although not constant, are permanently live and can
always be read without a handshake. User variable register
outputs are the main example. By propagating this information
inside the Chisel/SAFL system we avoid relying on the backend,
as well as usefully simplifying the circuit which helps with
debugging owing to less complex handshake wiring. Specifi-
cally, it helps with our policy for argument synchronisation,
presented in the next paragraph.

At a call site, there are various possible implementations
for how long the argument resources are tied up — are they
released at the start of the body computation or at the end of
it? For variable delay callees, the choice of this matter will
affect the user’s coding style - he may need to register the
input arguments if the framework is not going to hold them
steady and he needs to refer to them beyond his first clock
cycle.

class Targer_DX extends Module {

val io = new TLM_bundle_lc

{ // Register TLM callable diadic function with two

pipeline delays.

tlmBind_a2(dx_fun _, 2)

}

def dx_fun(x:UInt, y:UInt)= Reg(Reg(UInt(32), x + y))

}

-- snip --

val unit_a = Module(new Targer_AX())

val unit_b = Module(new Targer_BX())

val unit_d = Module(new Targer_DX())

// Diadic - single use test

// val a0 = unit_d.io.run2(unit_a.io.run1(arg1K),

unit_b.io.run1(arg2K)

// Diadic - reuse of same component AX

val a1 = unit_d.io.run2(unit_a.io.run1(arg1K),

unit_a.io.run1(arg2K))

// Invoke and down convert to unguarded for rest of

design

val a2 = SAFLImplicitx.

ex_drop_chisel_data_from_guarded(answer)

io.z := a2

io.v := a2.isValid()

Envisioning FPGA targets, that are register rich, we imple-
mented the following default strategy. The activate request
is forwarded to all argument expressions in parallel. If the
valids come back in differing clock cycles then the results
from the earlier ones are registered locally and the requests de-
asserted. This ensures that any resources that may be tying up
completion of the others in the parallel composition are freed,
avoiding deadlock. AlwaysReady expressions are ignored in
this consideration since they always come back immediately
and would be registered unnecessarily. When all inputs are
ready, the callee is triggered and the callee cannot rely on
the input arguments being held beyond the first clock cycle

since the argument resources are then freed (their requests
de-asserted). This makes those resources available for use
elsewhere, such as in the body of our function.

In the above example, AX is a method with a fixed
delay of one pipeline stage and DX has two stages of
delay. As stated, one would normally encapsulate a much
richer computation than the simple additions used for example
purposes. Figure 4 shows the timing waveforms as the two
calls to AX get serialised, including the inputs and outputs
to its priority arbiter. It shows the answer 820 finally being
generated, after the single instance of AX is used in turn
for each sub-expression. The top-level request is invoked by
the ex_drop_chisel_data_from_guarded method which here
is explicitly called but could be inserted by Scala’s implicit
mechanism.

Finally we show the coding style for TLM callbacks that
have variable delay. We make explicit connection to the
underlying handshake nets, but this is now the exceptional case
(compared with Chisel’s Valid/Decoupled). These connections
are made by reading from and assigning to the results of
getValid() and get getReq(). Here we supply -1 for the fixed
latency operand to the tlmBind methods, thereby informing the
TLM subsystem not to generate its own timing shift register
between the request and valid handshake wires.

class GCDunit extends Module {

val io = new TLM_bundle {

tlmBind_a2(gcd_fun _, -1)

}

def gcd_fun(arg_a :UInt, arg_b :UInt):UInt = {

val x = Reg(UInt())

val y = Reg(UInt())

val p = Reg(init=Bool(false))

when (io.getReq() && !p) {

x := arg_a

y := arg_b

p := Bool(true)

}

when (p) {

when (x > y) { x := y; y := x }

.otherwise { y := y - x }

}

when (!io.getReq()) { p := Bool(false) }

io.getValid() := (y === Bits(0) && p)

x

}

}

C. Supporting Seq/Par and Handel-C-like Channel Communi-
cation

In this section we demonstrate Handel-C-like Seq/Par and
Channel Communication on top of Chisel.

Handel-C [10] is a parallel programming language for
hardware design based on Occam [11] and CSP [12]. Process
loops are again used to define eternal hardware. It uses explicit
message passing between each process using a flat, global
namespace of channels. Shared variables are banned, giving a
pureness and amenability to time/space folding, as also found
in Erlang [13].

A notable feature of Handel-C is the PAR block constructor
that places statements in parallel. There is also the SEQ

112

constructor which provides conventional sequential execution
of statements, like a begin/end construct in RTL processes and
other imperative programming languages. Power arises from
the ability to arbitrarily nest these blocks inside each other.
Handel-C had originally a very strict and easy-to-implement
approach to projecting these statements into hardware. Each
leaf assignment statement, to a local variable or output channel,
consumed exactly one clock cycle. PAR blocks nested inside
other PAR blocks have no effect and can be flattened. The same
applies for SEQ blocks nested inside SEQ blocks. Therefore,
the outer process loop, without loss of generality can be
considered always to start in SEQ mode and the RTL process
loop compilation strategy, already described, can be borrowed.
This supports SEQ and IF. An extension is required for PAR. As
in previous Occam-to-hardware transforms [14], when a PAR

block is encountered, the surrounding SEQ block activity net
is wired to the activate inputs of all sub-blocks within the PAR

statement. A hardware barrier is placed at the exit from the PAR

block that waits for the last arriving thread before proceeding
with the next SEQ statement. The hardware barrier requires one
flip-flop, but otherwise follows the same control flow paradigm
as the all-inputs-ready block for the SAFL TLM arguments.

Our implementation, being based on the RTL elaborator,
implements the RTL assignment packing transform, where
more than one update is made per clock cycle. This is an
optimisation with respect to standard Handel-C which could
be disabled when desired.

Handel-C has blocking send and receive primitives opera-
tors which each take a named channel as an argument. The
output operation is diadic, taking also the value to be sent.
The input operator is monadic and is a leaf expression. The
conventional syntax is to use the exclamation mark for output
and the question mark for input. For embedding in Scala we
used straightforward overloading of the channel class, with
‘chan.send(val)’ for output and ‘chan()’ for input. The channels
behave as FIFOs and, in our implementation, their depth is set
in the constructor.

We defined the class HChan to serve as Handel-C’s chan-
nels. They are a wrapper around the Decoupled Queue FIFO
found in the standard ChiselUtil library. Unlike the Chisel
queues, they do not have net-level connections in their I/O
bundle, since the queue and dequeue are method calls.

Here is an example of Handel-C coding style using just
one channel that is written in one process and read in a second
process. The body of the sending process is a SEQ block as
that is the default for processes. It first sends the number on
the channel and then sends vv. It increments vv in parallel.
In strict Occam, by doing the increment in parallel we save a
clock cycle, whereas the packing transform, when in its default
enabled condition, will do this anyway and the PAR construct
makes no difference in this tiny example. The variable vv

could be operated on by both processes using this coding style,
leading to potential race conditions. Better style would be to
restrict the scope of all variables by defining them inside the
always blocks.

class HandelExample extends Module {

val io = new Bundle { val mon = UInt(OUTPUT, 3) }

val porta = new HChan(UInt(32), 1)

val vv = Reg(UInt(32), init=UInt(0))

always {

porta.send(UInt(4))

PAR { porta.send(vv)

vv := vv + UInt(1)

}

STEP() // Please eliminate me!

}

always {

io.mon := porta() & UInt(7);

STEP() // Please eliminate me!

}

}

No ‘STEP()’ calls should be required in the always blocks
owing to the I/O operations being blocking. However, our
current, first draft implementation, suffers from a fantom
combinational loop without them, owing to the possibility, for
instance, that the blocking channel read in the second process
is always ready. Handel-C would not suffer that owing to
the assignment to io.mon taking one clock cycle by itself.
We could change the implementation of the I/O primitives to
always require one clock cycle. Better, in the long run, would
be to use a post processor that makes a global retiming of the
design, inserting the clock control at points which are balanced
in terms of critical path.

D. Supporting Bluespec-like Guarded Atomic Rules

The same infrastructure, with a little tweaking can also
provide the guarded atomic updates of Bluespec logic synthesis
[15]. Bluespec also provides a global scheduller that avoids
resource starvation when updates contend: we see no problem
implementing that within our framework in the future.

Although SAFL and Bluespec both automatically generate
bi-directional handshake wires for every callable method, the
time-domain semantics are completely different. Bluespec
proactive behaviour all originates from Bluespec rules and all
code is enclosed in the body of a rule or the body of a method
that is called from a rule, or indirectly via further methods. Ad-
ditionaly, Bluespec associates every expression with an implicit
guard that is the conjunction of the implicit guards of all the
sub-expressions within it. Leaf terms in expressions are either
‘AlwaysReady’ with implict guard always holding, or else can
have an explict guard which is an arbitrary Boolean expression
(that itself may have implict guards). Further guards arise from
language-intrinsic conditions which include a register can be
written at most once in a clock cycle and a rule can fire at
most once in a clock cycle. A method call is only executable
when the implicit guard of the method itself holds and also
the guards of all the argument expressions passed in. Hence,
in the following fragment, in regular Bluespec, the guards for
e1 and e2 must simultaneously hold, together with the guards
for all the resources used in the bodies of the three methods
mentioned, then the rule which embodies this code can fire.

A Bluespec rule is an unordered list of commands to be
fired in parallel (atomically) and an optional explicit rule guard
that is added to the conjunction of all the implicit guards

113

tlm1_rdy

tlm1_req

tlm1_arg1

tlm1_arg2

clock

reset

tlm0_rdy

tlm0_req

tlm0_data

x y

rule
"swap"

rule
"subtract"

registers

method
 "gcd_start"

method
"gcd_result"

Fig. 6: Block diagram of GCD unit with Bluespec-style
handshake nets for each method.

of the commands. The principle idea of Bluespec is that a
rule fires atomically and this has a natural parallel in the
generated synchronous hardware where all flip-flop master
sections within a clock domain are simultaneously applied to
their slaves. The updated values all become visible atomically.
Additionally, the parallel composition of components in the
rule body is the same as the default paradigm for a Chisel
Module body, hence we do not need the SEQ/always process
abstraction.

val ... = target_b.io.x2(target_a1.io.x1(e1),

target_a2.io.x1(e2))

Bluespec-like rules can be embedded in Scala following
the concrete syntax illustrated in the right-hand-side of Fig. 5.
This generated I/O nets are illustrated in Fig. 6. If a method
is registered in a BSV_bundle with a bsvBind callback, the
Bluespec semantics are used. Standard Bluespec embodies a
scheduller that packs operations into a clock cycle, but which
does not make multi-cycle schedules. Hence all method calls
must be non-blocking so that execution never extends beyond
one clock cycle.

As with SAFL, a bi-directional pair of handshake wires is
automatically generated for each method or sub-expression.
The ‘request’ input is the same for both systems, but the
‘valid’ output that indicates a SAFL function call is complete
is replaced with a Bluespec ‘ready’ output that indicates an
expression or method can be invoked. The Bluespec ‘ready’
nets rise upwards in the design hierarchy and contribute to
a conjunction over all the resources used in a rule and the
request net is a broadcast downwards to all those resources
to fire at once. In both the SAFL and Bluespec systems, the
downwards nets controls multiplexors that route the arguments
to the resources. We defined the Scala DSL extension ‘rule’
and extended the Chisel I/O Bundle with suitable methods for
registering Bluespec methods. The Chisel ‘when’ conditional
assignments are already semantically correct for Bluespec’s
conditional execution owing to their parallel composition.

We thought that the introspection features of Chisel (a
sugaring of the Java Reflection API) would enable us to
explore the abstract syntax tree of the arguments used in a rule
and its descendant methods to form the implicit guard. Indeed,
Chisel already relies on introspection; for instance, for when
it infers the name for registers and other structural resources.
However, all of the operators in these expressions are already
overloaded by Chisel’s DSL to build the hardware circuit as

an abstract syntax tree. Chisel provides tree folding walker
methods for such trees. So the conjunction of such guards is
readily computed and ANDed with the explicit guard of the
rule (and the implicit guard of the explicit guard!).

Bluespec supports a number of pragmas that can annotate
rules and methods to alter the behaviour of its global scheduller.
For instance, it provides two alternate semantics for reverse
multiplexing the intrinsic guards of sub-expressions in different
branches of a conditional expression: split or combined. Also,
Bluespec implements a packing transform on complete rules,
running many in the same clock cycle. This follows the same
principle as the one we implemented for RTL. Further work
on the Bluespec layer is needed to implement these features,
but simple designs, like the GCD illustrated work fine without
them.

III. INTER-PARADIGM COMPATIBILITY

It is interesting to consider what interworking restrictions
exist between the various styles we have discussed. Table I
summarises the language features so-far mentioned. For max-
imum expressibility we might consider the enabling of all of
these dialects at once. All preserve the structural hardware
construction language Chisel in its entirety so that it can
continue to be used and mixed at fine grain with the new
paradigms. The RTL style introduces the ‘always’ block which
is the same a Handel-C outermost ‘SEQ’ block, provided we are
happy to enable the packing transform (denoted as ‘multiple
resolved assignments per clock cycle’ in the table). The PAR

construct is not incompatible with RTL-style design expression:
in Verilog, for instance, all of a sequence of a non-blocking
assignments to different left-hand sides are essentially put
in parallel and Verilog has a fork/join construct which is
synthesisable when the left-hand sides assigned are disjoint
over forks (although there is more than one way to interpret
the affects of blocking assigns in one branch on the right-hand
sides of other branches).

Although Handel-C officially bans global variables, there
is no incompatibility when they are present: they just cause
RaW hazards as usual. The named channels are no different
from statically-instantiated FIFOs and there is no problem if
the interface paradigm at one end of a FIFO is different from
that at the other.

SAFL’s automatic insertion of holding registers to overcome
structural hazards is a desirable feature in the purely functional
context, but when global variables are present as well, then
unpredictable timing changes after a minor edit will tend to
resolve races on them differently, as was the case with the
combination of Handel-C and global variables. Avoiding global
variables and combining Handel-C’s channels with SAFL’s
schedulling and TLM modelling looks like a particularly attrac-
tive design style. It would be readily amenable to time/space
folding.

Bluespec’s TLM calls cannot directly invoke SAFL methods
unless the SAFL code always completes in one clock cycle.
This is because of Bluespec’s insistence that every rule should
take at most one clock cycle. For multi-cycle work, Bluespec
decouples the ‘put’ and ‘get’ operations as separate methods on
a structural instance. On the other hand, SAFL code can invoke
a Bluespec rule without restriction, provided the handshake

114

//http://csg.csail.mit.edu/6.375

//A simple example Euclid’s algorithm for computing

//the Greatest Common Divisor (GCD):

module mkGCD (I_GCD);

Reg#(int) x <- mkRegU;

Reg#(int) y <- mkReg(0);

rule swap ((x > y) && (y != 0));

x <= y; y <= x;

endrule

rule subtract ((x <= y) && (y != 0));

y <= y - x;

endrule

method Action start(int a, int b) if (y==0);

x <= a; y <= b;

endmethod

method int result() if (y==0);

return x;

endmethod

endmodule

//The same code with minor syntax changes for

//construction on top of Chisel.

class GCDunitBSV extends Module {

val x = Reg(init=UInt(192, 32)) // 32-bit regs.

val y = Reg(init=UInt(222, 32)) // With initial work.

val x = Reg(outType=UInt(32))

val y = Reg(outType=UInt(32))

rule ("swap") ((x > y) & (y != UInt(0))) {

x := y

y := x

}

rule ("subtract") ((x <= y) & (y != UInt(0))) {

y := y - x;

}

def gcd_start(arg_a :UInt, arg_b :UInt) =

WHEN(y === UInt(0)) { x := arg_a; y := arg_b

}

def gcd_result():UInt = WHEN(y === UInt(0)) { x }

val io = new BSV_bundle {

bsvBind_a2v(gcd_start _) // 2 args, void return

bsvBind_a0(gcd_result _) // 0 args, data return

}

}

Fig. 5: GCD using guarded atomic actions in the original Bluespec (left) and as adapted to be built on Chisel (right).

RTL SAFL Handel-C Bluespec HLS
Eternal process loops (always-style) YES YES YES YES YES

Shared Variables YES no no YES YES

Data-dependent control flow YES YES YES YES YES

Channel Msg Passing no no YES no YES

Guarded Atomic Rules no no YES no YES

Seq/Par Constructs no no YES no YES

Multiple resolved assignments per clock cycle YES n/a no YES YES

Compile-time Scheduller no YES no YES YES

TABLE I: Comparison of Language Features

protocol is adapted: automation of the adaption looks to be
relatively easy, triggered by the type system using Scala’s
implicit methods. But we have not automated it yet. We might
also want to import additional, foreign, explicit guards into
Bluespec rules and methods to stop Bluespec firing under
fairness or safety conditions which it would not if it were
controlling a regular Bluespec resource.

We now quickly report on one experiment where all
the styles presented were used within a single design. Our
implementation allows each Chisel module to use its own style.
Interworking between styles is mostly seamless, except where
we manually wrote the glue required to call between SAFL

and Bluespec. The example system checks that calls to GCD

are commutative in their arguments by trying them both ways
around. Fig. 7 shows the following components:

1) The GCD computation uses the Bluespec module
already described. Owing to the multi-cycle Bluespec
computation, the argument and result must be con-
veyed using separate methods.

2) The GCD component is invoked twice by the ‘Check-
Commutative’ code in the SAFL-style. SAFL function
calls are blocking with the ‘thread’ not returning until
the answer is ready. Therefore, our manually-coded
‘transactor’ shim is required to convert between the

BSV/non-blocking to

SAFL/blocking transactor.

T

I
BSV
style

Put

Get
exported

method

SAFL style

Fig. 8: Typical configuration where a Bluespec component
invokes methods in a SAFL-style subsystem.

blocking SAFL style and the non-blocking Bluespec
style. The SAFL-style code itself is written in a
parallelisable form, but there is only one instance of
the GCD unit provided, so our library invokes it twice
in the time domain with the first answer cached in an
automatically generated holding register.

3) The work and result collection from the SAFL section
is implemented by a behavioural-RTL style that is
also blocking and where the thread pauses at multiple
STEP points.

4) The results are conveyed to a Handel-C printing
process over a blocking Handel-C channel.

115

Handel-C
Output Process

Bluespec-style
GCD implementation

SAFL-style
commutative equivalence

check

Behavioural
RTL-style
argument sequencer

SAFL/Blocking
 to

BSV/non-blocking
transactor

x y

Put

Get

Swp

Sub

T

I

class CheckCommutative extends Module {

 val gcd = Module(new GCDunitBSV())

 val xacted = Module(new GCDtoSAFL(gcd))

 def check_fun(a0:U32_t, a1:U32_t):Bool =

 xacted.io.run2(a0, a1) ===

 xacted.io.run2(a1, a0)

 val io = new SAFL_bundle {

 tlmBind_a2(check_fun _)

 }

}

Handel-C
channel

class HandelMonitor(ch1: HChan[UInt])

 extends Module {

 val io = new Bundle {

 val mon = UInt(OUTPUT, 32)

 val toggle = Bool(OUTPUT)

 }

 val toggle = Reg(Bool(false))

 io.toggle := toggle

 SEQ { io.mon := ch1()

 toggle := !toggle

 }

}

class Test9_toplevel() extends Module {

 val checker = Module(new CheckCommutative())

 val ch1 = new HChan(UInt(32), 1)

 val monitor = Module(new HandelMonitor(ch1))

 val inputs = List((48, 32), (7, 3), (100, 10))

 always {

 val r0 = checker.io.run2(inputs(0)_1, inputs_(0)._2)

 ch1.send(r0)

 STEP()

 val r1 = checker.io.run2(inputs(1)_1, inputs_(1)._2)

 ch1.send(r1)

 ... snip ...

 }

}

1

2

3

4

Fig. 7: Interworking demonstration: four styles combined relatively seamlessly, except for SAFL/BSV interworking that requires
transactors.

An alternative transactor structure (Fig. 8) would be re-
quired to call from Bluespec to SAFL or from Bluespec to
a Handel-C style blocking channel. This transactor would
provide a non-blocking target pair of put/get methods and it
would then initiate a blocking call on the other side. The put
method would not be ready if the blocking side is busy and
the get method would not be ready until at least one result is
queued within the transactor. For Bluespec interworking with
subsystems that are known to be non-blocking or that have no
result (e.g. a posted write), a single Bluespec-style method is
all that is needed.

IV. CONCLUSION AND FURTHER WORK

We have shown how various high-level synthesis tech-
niques can be built on top of Chisel and conveniently em-
bedded in Scala alongside Chisel as domain-specific language
extensions. Implementing libraries to support these constructs
required a deep understanding of Chisel’s internal mechanisms,
but, in return, the richer forms of expression provided should
make end user code easier to write. In both stages, we gained
great power by building on a flexible hardware library and
embedding as a DSL within a very powerful language like Scala.
Specifically, we avoided having to re-implement a parser and
we had free access to all the elaboration combinators that lead
to great productivity. Re-implementing most of Haskell inside
a hardware compiler was a great deal of the work required
when implementing a public-domain Bluespec compiler [16].

The SAFL-style function definitions of hardware are elegant
owing to being purely functional, yet allow the user or the
compiler to flexibly and safely trade execution time for silicon
area, but are severely limited in practical applicability owing
to the RAM being a very important component in real hardware
and the imperative array not being a first-class aspect in pure
functional languages.

The manual allocation of work to instances may not be
desirable, but the server farm paradigm is easily encoded in
all of the presented styles. Servers with state are the only
obstacle, as always. To support a future optimising scheduller,
an estimated latency can also be supplied for the blocking
instances.

Our prototype implementations of all of these exten-
sions have not, so far, required any modification to the
current Chisel distribution, 2.3; they are just additional li-
braries. The implementations are available for download
on www.cl.cam.ac.uk/users/djg11/cbgboc. In further work we
could add another main paradigm used for hardware design:
synchronous languages such as Esterel and Lustre [17]. Their
atomic synchronisation primitive (the ‘emit’ statement) re-
quires the same interlock infrastructure that we need to add
for Bluespec to stop a rule firing more than once. We see no
problems with that.

Syntax-directed generation of hardware from high-level
constructs tends to suffer from either having too many registers
or too few, especially on the control flow arcs. Even with a
simple adder, it is well known that ripple carry and full look-
ahead are both poor design points. A global re-balancing phase
is generally required. Back-end tools perform some degree of
D-type migration, but this does not alter the overall number
of pipeline stages (even if precise quantity of D-types varies
owing to, e.g. being moved from the one output of an AND gate
to its two inputs). This would likely be useful for all Chisel
users if it provided low-level extensions that tune the level of
pipelining being generated, perhaps in an iterative way. The
HCL frameworks, like HardCaml and Chisel provide an ideal
basis for such an orthogonal development, but a suitable API

needs to be proposed.

Of course, whether one really wants to mix styles at a fine
grain is a good question.

116

REFERENCES

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic, “Chisel: Constructing hardware in a
scala embedded language,” in Design Automation Conference (DAC),

2012 49th ACM/EDAC/IEEE, June 2012, pp. 1212–1221.

[2] A. Ray. (2014) HardCaml: a DSL embedded in OCaml for
designing and testing RTL hardware designs. [Online]. Available:
http://www.ujamjar.com/open-source/ocaml/2014/06/17/hardcaml.html

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: Hardware
design in haskell,” New York, NY, USA, pp. 174–184, 1998. [Online].
Available: http://doi.acm.org/10.1145/289423.289440

[4] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling,
“Introducing Kansas Lava,” in Proceedings of the Symposium on Imple-

mentation and Application of Functional Languages, ser. LNCS, vol.
6041. Springer-Verlag, Sep 2009.

[5] A. Canis, J. Choi, B. Fort, R. Lian, Q. Huang, N. Calagar, M. Gort,
J. J. Qin, M. Aldham, T. Czajkowski, S. Brown, and J. Anderson,
“From software to accelerators with legup high-level synthesis,” in
Compilers, Architecture and Synthesis for Embedded Systems (CASES),

2013 International Conference on, Sept 2013, pp. 1–9.

[6] S. Singh and D. Greaves, “Kiwi: Synthesis of FPGA circuits from par-
allel programs,” in Field-Programmable Custom Computing Machines,

2008. FCCM ’08. 16th International Symposium on, April 2008, pp.
3–12.

[7] D. Greaves, “The CSYN verilog compiler,” in International Workshop

on Field Programmable Logic, FPL’95., ser. Lecture Notes in Computer
Science, vol. 975, September 1995, pp. 198–207.

[8] A. Mycroft and R. Sharp, “Hardware synthesis using safl and applica-
tion to processor design,” in Correct Hardware Design and Verification

Methods: 11th IFIP WG10.5 Advanced Research Working Conference,

CHARME 2001. Springer Verlag, 2001, p. 2144.

[9] D. R. Ghica, A. Smith, and S. Singh, “Geometry of
synthesis iv: Compiling affine recursion into static hardware,”
in Proceedings of the 16th ACM SIGPLAN International

Conference on Functional Programming, ser. ICFP ’11. New
York, NY, USA: ACM, 2011, pp. 221–233. [Online]. Available:
http://doi.acm.org/10.1145/2034773.2034805

[10] Handel-C Language Reference Manual, Agility, 2007.

[11] D. C. Wood and P. H. Welch, “The Kent retargetable occam
compiler,” in WoTUG ’96: Proceedings of the 19th world

occam and transputer user group technical meeting on Parallel

processing developments. Amsterdam, The Netherlands, The
Netherlands: IOS Press, 1996, pp. 143–166. [Online]. Available:
http://portal.acm.org/citation.cfm?id=270108

[12] A. W. Roscoe, C. A. R. Hoare, and R. Bird, The Theory and Practice

of Concurrency. Upper Saddle River, NJ, USA: Prentice Hall PTR,
1997. [Online]. Available: http://portal.acm.org/citation.cfm?id=550448

[13] J. Larson, “Erlang for concurrent programming,” New
York, NY, USA, pp. 48–56, 2009. [Online]. Available:
http://dx.doi.org/10.1145/1467247.1467263

[14] I. Page and W. Luk, “Compiling Occam into field-
programmable gate arrays,” in FPGAs, Oxford Workshop on

Field Programmable Logic and Applications, W. Moore and
W. Luk, Eds. 15 Harcourt Way, Abingdon OX14 1NV, UK:
Abingdon EE&CS Books, 1991, pp. 271–283. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.7526

[15] R. Nikhil, “Bluespec SystemVerilog: Efficient, correct RTL from high-
level specifications,” Formal Methods and Models for Co-Design (MEM-

OCODE), 2004.

[16] D. J. Greaves. (2014) CBG-BSV toy bluespec compiler. [Online].
Available: http://www.cl.cam.ac.uk/users/djg11/wwwhpr/toy-bluespec-
compiler.html

[17] G. Berry, M. Kishinevsky, and S. Singh, “System level design
and verification using a synchronous language,” Computer-Aided

Design, International Conference on, vol. 0, pp. 433+, 2003. [Online].
Available: http://dx.doi.org/10.1109/iccad.2003.1257813

117

