

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Layering RTL, SAFL, Handel-C and
Bluespec on Chisel HCL.

Dr David J Greaves

University of Cambridge
Computer Laboratory

Presented at
Memocode'15, September 2015, Austin Texas

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Layering RTL, SAFL, Handel-C and
Bluespec on Chisel HCL.

Talk Topics.

●Mainstream hardware description language features,

●Tagged data and Time/Space folding, re-pipelining,

●HCL Concept: Lava, Chisel + HardCaml,

●Metaprogramming: motivation for clean and more
powerful elaboration,

●Four examples of powerful constructs on Chisel,

●Brief discussion of interaction between design styles.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

RTL – Living in the dark age ?

● No denotation of which data is live,
● No modern compiler warnings (uninitialised variable

…),
● No symbol table/bounds checking for layout in RAM,
● All concurrency is in the programmer's head,
● No mutex or FIFO primitives,
● No synthesisable TLM.

Verilog and VHDL:
● Successful because they combine structure,

behaviour and testbench
● Remain 'kingpin' between front-end and back-end flow
● System Verilog a worthwhile step forward.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Staged Evaluation
aka Metaprogramming

● Part of the program runs at 'compile time' – the
elaborate phase.

● The elaborated program consists of a hardware
circuit that runs at run time: the execution
phase.

For example, Verilog and VHDL have
generate statements and generate
variables which disappear during the
first stage.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

RTL – Goodie 1 – Assignment
Packing

An (order-sensitive) imperative program

converts to “pure RTL” (unordered list per clock domain)

Elaborates the denotational semantics at compile time.

if (e1) foo = foo+1;
bar = foo + 2;
foo = 3;

bar <= (e1 ? foo+1:foo) + 2;
foo <= 3;

●But can explode complexity when complex array subscript comparison.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

RTL – Goodie 2 – State
machine PC inference.

converts to “pure RTL”

However state machine synthesis banned in many house

styles and later synthesisable subset definitions.

always @(posedge clk) begin
 foo <= foo + 1;
 if (e1) @(posedge clk)
 foo <= foo + 2;
 end

pc <= e1 & !pc;
foo <= foo + (pc ? 2: 1);

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Hardware Construction Language

● Ensure syntactially well-formed output ?

● Semantically well-formed as well ? E.g. no
two outputs wired together?

● Include simple optimisations?

● Discarding disconnected logic,
● Constant propagation and identity folding:

 Eg: exp && true -> exp

A (rich) language for writing programs that prints
out a circuit diagram.

But does it:

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Lava HCL

Bjesse, Koen, Sheeran, Singh 1998

'Lava Hardware
Design in Haskell'

Make use of all standard
combinators such as
Fold, Map and Zip.

Different instantiations
of the leaf nodes for

- Simulation
- Synthesis
- Verification

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Data-Dependent Control Flow ?

● Lava's elaborate phase is very rich, it certainly
contains 'if' statements.

● But all run-time conditional flow was through
explicitly printed multiplexors.

The 'if' statement is part of any programming
language, but how much conditional execution
does our language support at run time ?

Generally we desire greater expressivity than that...

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Time/Space Flexibility

● We would like to use one entry of the design for
either:

– Fast execution using a lot of hardware
– Slower execution using less hardware

● We should favour languages that are amenable to
rapidly changing between these styles,

● while still being 'resource aware' – engineers
understand roughly how many gates they are
using as they write each line.

Associative assignments such as += are good (amenable).
Functional programs are very good!

VLSI trends increasingly want layout-time re-pipelining.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

SAFL - Statically Allocated
Functional Language

SAFL appeard in ICALP 2000. Alan Mycroft, Richard Sharp.

Used a variant of ML to describe hardware
- We see powerful combinators for hardware generation

- The ML 'if' is the run-time 'if' (could not be a DSL)

- All recursion is tail recursion, hence bounded
stack space – finite state.

- But functional style did not fit comfortably with RAMs

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

SAFL – Resource Awareness

This contrasts with High-Level Synthesis (HLS) where the
designer perhaps only broadly constrains how many ALUs and
RAMs to use, but the amount of random logic is unpredictable...

Baseline rules control the amount of hardware generated:

1. Leaf operators occuring syntactically are freshly
instantiated in the hardware for each syntactic occurence
in the source code.

2. The same goes for function definitions, which means
function applications of a named function are serialised
with argument and return value multiplexors.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Time/Space Folding in SAFL

Server farms etc are also easy to provide provided
everything remains stateless.

fun cmult x y =
 let ans_re = x.re*y.re - x.im*y.im
 let ans_im = x.im*y.re + x.re*y.im
 in (ans_re, ans_im) // 4 multipliers, 2 adders.

A function replicator, such as UF, enables control of time/space
 folding, giving a fresh copy of a function.

 let use_time = g(cmult a b, cmult c d)
 // 4 multipliers, 2 adders + resources for g

 let use_space = g(cmult a b, (UF cmult) c d)
 // 8 multipliers, 4 adders + resources for g

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Chisel HCL (from UCB)
● Chisel is embedded as a DSL in Scala.
● Scala is a wonderful language

● A superb mix of functional, imperative and OO

Scala has flexible overloading syntax that
makes extensions and implicit conversions
simple to deploy.

● Chisel provides all the main basic gates and
memories and powerful wiring up primitives but
not much data-dependent control flow (no
imperative flow or pc inference).

● Scala allows us to build up on top easily.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

A Varadic Priority Arbiter in Chisel
class genPriEncoder(n_inputs : Int) extends Module
 {
 val io = new Bundle { }
 val terms = (0 until n_inputs).map
 (n => ("req" + n, "grant" + n))

 terms.foldLeft (Bool(false))
 { case (sofar, (in, out)) =>
 val (req, grant) = (Bool(INPUT), Bool(OUTPUT))
 io.elements += ((in, req))
 io.elements += ((out, grant))
 grant := req & !sofar
 val next = new Bool
 next := sofar | req
 next
 }
 }

H/W components extend Module.
They do their I/O via a Bundle.
All the standard operators & | ! are overloaded for h/w generation.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Run-time 'if' in Chisel
class Parity extends Module {
 val io = new Bundle {
 val in = Bool(dir = INPUT)
 val out = Bool(dir = OUTPUT) }
 val s_even :: s_odd :: Nil = Enum(UInt(), 2)
 val state = Reg(init = s_even)
 when (io.in) {
 when (state === s_even) { state := s_odd }
 when (state === s_odd) { state := s_even }
 }
 io.out := (state === s_odd)
}

The 'when' key word is Chisel's main run-time IF operator, but there are
other variants including a switch/case statement.
The === operator is used so that Scala's == remains usable.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Adding TLM to Chisel
class Targer_AX extends Module
{
 val io = new TLM_bundle_lc
 { // Register TLM callable function with one pipeline
delay.
 tlmBind_a1(ax_fun _, 1)
 }
 def ax_fun(x:UInt) = Reg(UInt(32), x + UInt(10))
}

class Targer_DX extends Module
{
 val io = new TLM_bundle_lc
 { // TLM callable diadic function with 2 pipeline delays.
 tlmBind_a2(dx_fun _, 2)
 }
 def dx_fun(x:UInt, y:UInt)= Reg(Reg(UInt(32), x + y))
}

We store function entry
points in the I/O bundle

Each function is
annotated with its fixed
pipeline delay or else
can use handshake
nets Request/Valid (not
shown here).
.

TLM = Transaction Level Modelling – although here we are not modelling, but doing.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

TLM in Chisel (2)

 val unit_a = Module(new Targer_AX())
 val unit_b = Module(new Targer_BX())
 val unit_d = Module(new Targer_DX())

// Diadic - single use test
// val answer = unit_d.io.run2(unit_a.io.run1(arg1K), unit_b.io.run1(arg2K)

// Diadic - reuse of same component AX
 val answer = unit_d.io.run2(unit_a.io.run1(arg1K), unit_a.io.run1(arg2K))

// Invoke and downconvert to unguarded for rest of design
 val answer1 = SAFLImplicitx.ex_drop_chisel_data_from_guarded(answer)
 io.z := answer1
 io.v := answer.isValid()

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Running the
TLM Example with
SAFL semantics

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

HardCaml
ML is the perhaps the best-known functional language.

ML + Objects + Better syntax + more advanced types = OCAML

OCAML is the ultimate programming language ?

(Well some think so - Mirage operating system is an OCAML
linux kernel. I'm beginning to prefer Scala ...)

HardCaml: An open-source domain specific language
embedded in OCaml for designing and testing register transfer
level hardware designs. --- The HardCaml library provides an
API roughly consistent with the structural subset of VHDL and
Verilog.

Also: has a snazzy front end embedded in Javascript.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

HardCaml Small Example
/* Verilog counter */
module counter
 #(parameter bits = 8)
 (
 input clock, clear, enable,
 output reg [bits-1:0] q
);

 always @(posedge clock)
 if (clear) q <= 0;
 else if (enable) q <= q + 1;
endmodule

(* HardCaml counter *)
let q = reg_fb r_sync enable bits (fun d -> d +: 1)

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Rule-based hardware generation
(Bluespec)

● Recently Bluespec System Verilog has successfully raised the
level of abstraction in RTL design:

● A Bluespec design is expressed as a list of declarative rules
that fire atomically and which last less than one clock cycle,

● Shared variables are mostly replaced with one-place FIFO
buffers with automatic handshaking,

● Rules are allocated a static schedule at compile time and some
that can never fire are reported,.

● The wiring pattern of the whole design is elaborated using a
powerful embedded functional language (as per Lava).

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Bluespec: Background + Example

module mkTb (Empty);

 Reg#(int) x <- mkReg (23);

 rule countup (x < 30);
 int y = x + 1;
 x <= x + 1;
 $display ("x = %0d, y = %0d", x, y);
 endrule

 rule done (x >= 30);
 $finish (0);
 endrule

endmodule: mkTb

But, imperative expression using a conceptual
thread is also useful to have, so Bluespec has a
behavioural sub-language compiler built in.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Bluespec: Background + Example (2)
module mkTb (Empty);

 Reg#(int) xx <- mkReg ('h10);
 GCD_ifc pipe <- mkGCD;

 rule sendwork;
 dut.gcd_start (xx, 40);
 xx <= xx + 'h10;
 endrule

 rule drain;
 let y = dut.gcd_result();
 $display (" y = %0h", y);
 if (y > 'h80) $finish(0);
 endrule

endmodule

Bluespec uses interface
definitions imported by both
caller and callee with an
established mapping to H/W.
interface GCD_ifc;
 method Action start(int a, int b);
 method int result();
endinterface

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

GCD in Chisel
def gcd_fun(arg_a :UInt, arg_b :UInt):UInt = {
 val x = Reg(UInt())
 val y = Reg(UInt())
 val p = Reg(init=Bool(false))
 when (io.getReq() && !p) {
 x := arg_a
 y := arg_b
 p := Bool(true)
 }
 when (p) {
 when (x > y) { x := y; y := x }
 .otherwise
 { y := y - x }
 }
 when (!io.getReq()) { p := Bool(false) }
 io.getValid() := (y === Bits(0) && p)
 x
 }
}

class GCDunit extends Module {
 val io = new TLM_bundle {
 tlmBind_a2(gcd_fun _, -1)
}

Top is a standard example
from the Chisel tutorial

material.

Bottom is my SAFL TLM
binding thereof.

This makes it
nicely callable.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

//http://csg.csail.mit.edu/6.375
//Euclid's algorithm for computing
//the Greatest Common Divisor (GCD):
module mkGCD (I_GCD);
 Reg#(int) x <- mkRegU;
 Reg#(int) y <- mkReg(0);

 rule swap ((x > y) && (y != 0));
 x <= y; y <= x;
 endrule

 rule subtract ((x <= y) && (y != 0));
 y <= y - x;
 endrule

 method Action start(int a, int b) if (y==0);
 x <= a; y <= b;
 endmethod

 method int result() if (y==0);
 return x;
 endmethod
endmodule

//The same code with minor syntax changes for
//construction on top of Chisel.
class GCDunitBSV extends Module {
 val x = Reg(init=UInt(192, 32)) // 32-bit regs.
 val y = Reg(init=UInt(222, 32)) // With initial work.

 val x = Reg(outType=UInt(32))
 val y = Reg(outType=UInt(32))
 rule ("swap") ((x > y) & (y != UInt(0))) {
 x := y
 y := x
 }
 rule ("subtract") ((x <= y) & (y != UInt(0))) {
 y := y - x;
 }
 def gcd_start(arg_a :UInt, arg_b :UInt) =
 WHEN(y === UInt(0)) { x := arg_a; y := arg_b
 }
 def gcd_result():UInt = WHEN(y === UInt(0)) { x }

 val io = new BSV_bundle {
 bsvBind_a2v(gcd_start _) // 2 args, void return
 bsvBind_a0(gcd_result _) // 0 args, data return
 }
}

Laying Bluespec on Chisel (Bluespec left, Chisel-Bluespec right)

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Bluespec on Chisel: Three GCD runs.

● So, it works!

● Scala/Chisel gave us all the Bluespec elaboration
combinators, and

● The rule/method core h/w generation is relatively
simple to lay on Chisel.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Handel-C
Handel-C uses explicit Occam/CSP-like channels
 ('!' to write, '?' to read):

 // Generator (src) // Processor // Consumer (sink)
 while (1) while(1) while(1)
 { { {
 ch1 ! (x); ch2 ! (ch1? + 2) $display(ch2?);
 x += 3; } }
 }

Using channels makes concurrency explict and allows synthesis to re-
time the design.

Banning shared variables avoids RaW and WaW hazards.

Handshaking wires within a synthesis unit may disappear during
compilation if they would have constant values owing to certain
components being always ready.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Laying Handel-C on Chisel
class HandelExample extends Module {
 val io = new Bundle { val mon = UInt(OUTPUT, 3) }
 val porta = new HChan(UInt(32), 1)
 val vv = Reg(UInt(32), init=UInt(0))
 always {
 porta.send(UInt(4))
 PAR { porta.send(vv)
 vv := vv + UInt(1)
 }
 STEP() // Please eliminate me!
 }

 always {
 io.mon := porta() & UInt(7);
 STEP() // Please eliminate me!
 }
}

Handel-C also supports
SEQ and PAR block keywords
where imperative commands
enclosed run sequentially
Or in parallel.

We use our RTL always for the
outermost SEQ.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Laying RTL on Chisel

RTL primitives added:

 - state machine inference,

 - run time control flow IF
 statements,

 - assignment packing.

class RtlExample extends Module {
 val io = new Bundle {
 val din = Bool(INPUT)
 val mon = UInt(OUTPUT, 3)
 }

always {
 io.mon := UInt(1)
 STEP()
 io.mon := UInt(2)
 STEP()
 IF (io.din) { io.mon := UInt(3); STEP(2); }
 }
}

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Interoperation Issues ?
All fragments show are freely embedded in general Scala source code.

The libraries for all coding styles are enabled all at once.

All Chisel features are also remain available without change.

Q1. Are there any restrictions on how we intermix these design styles?

A1. Hardly any (see next slide).

Q2. Is it a good idea to freely mix them ?

A2a. Horses for courses ?

A2b. Probably not!

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

BSV to SAFL Interworking

● SAFL can freely call Bluespec methods, but
● Bluespec may need a transactor to call SAFL.

Bluespec insists that all rules and methods take at
most one clock cycle to execute.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Combining all four design styles

● 3. State machine stimulus generation

● 4. Handel-C output logging channel.

● 1. Bluespec GCD unit

● 2. Invoked twice from SAFL
via a transactor.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Summary Features

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Do we need HCL's ?

● The Chisel and HardCaml baselines are fairly
simple yet provide all the 'structural' resources
for emitting validated netlists and cycle-
accurate simulation.

● Yet they leverage the full power of their parent
language for elaboration.

● They provide interworking with RTL designs in
Verilog and VHDL.

● They provide a 'power platform' for supporting
your own favourite expression style ...

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Conclusions and Views
● Functional elaboration language gives

expressivity and supports folding – rich and
modern.

● People vary in the expression form they prefer.
● Future hardware languages will be richer,

support concurrency better and amenable to
repipelining post synthesis.

● Future styles will perhaps be more explicit on
state edges and support associative
assignments.

● …

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Thankyou for you attention.

● Chisel: https://chisel.eecs.berkeley.edu

● HARDCAML:
www.ujamjar.com/open-source/ocaml/2014/06/17/hardcaml.html

● Build on chisel http://www.cl.cam.ac.uk/users/djg11/cbgboc

● Kiwi HLS from C#: http://www.cl.cam.ac.uk/~djg11/kiwi

● Toy Bluespec: www.cl.cam.ac.uk/~djg11/wwwhpr/toy-bluespec-
compiler.html

Open Source Links

http://www.ujamjar.com/open-source/ocaml/2014/06/17/hardcaml.html

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

Backup Slides Follow

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

C-to-Gates: Classical HLS

Take one thread and a body of code:
 generate a custom datapath containing registers, RAMs and ALUs
 and a custom sequencer that implements an efficient, static schedule
that achieves the same behaviour.

Creates a precise schedule of addresses on register file and RAM ports
and ALU function codes.

Typically unwinds inner loops by some factor.

All current EDA/FPGA vendors now support C++ to gates.

Leading free tool is LegUp from U Toronto.

Profiling or datapath description hints are needed for a sensible datapath
structure since sequencer states are not equiprobable and we do not want
to deploy resource on seldom-used data paths.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

C-to-Gates: Classical HLS
For example, best mapping of the record fields x and y
to RAMs is different in the two foreach loops:

 class IntPair
 {

public bool c; public int x, y;
 }

 IntPair [] ipairs = new IntPair [1024];

 void customer(bool qcond)
 {
 int sum1 = 0, sum2 = 0;
 if (qcond) then foreach (IntPair pp in ipairs)
 {
 sum1 += pp.x + pp.y;
 }
 else foreach (IntPair pp in ipairs)
 {
 sum2 += pp.c ? pp.y: pp.x;
 }
 ...
 }

The fields x and y could be
kept in separate RAMs or a
common one. If qcond rarely
holds then a common
RAM will serve since there is
little contention. Whereas if
qcond holds most of the time
then keeping x and y
in separate RAMs will boost
performance.

David J Greaves – Computer Lab Cambridge Memocode 2015, Austin Texas.

What is emitted by elaborate ?

● Gates, wires, flip-flops and RAMs (all).
● TLM arg mux and body mutexes (Bluespec +

SAFL).
● Channel FIFOs (Handel-C).
● Current sate PC register + logic enable decoder

(RTL + Handel-C).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

