
Structured Hardware Design

6L 1A Easter 2005.

Dr David Greaves

May 3, 2005

1 Building Blocks for Hardware Systems.
2 Further Blocks. Arithmetic and Micro-sequencers.
3 Finite State Machines, IO and Clock Domains.
4 Technology, Speed, Power and Delay.
5 Hardware, Software and Design Partition.
6 Further Example Designs and Circuit Structures.

Further copies of these notes can be printed from the Web page. Copyright for these notes is owned
by DJ Greaves. c© 2001-05.

Preface

These six lectures are to the part 1A 50 percent candidates in the Easter Term. This course con-
centrates on system-level design issues, but nonetheless, a good knowledge of the digital electronics
course is required as background material.

Together with the reading below, the best preparation for this course is to look around at electronic
equipment, from cell-phones, to toys, disco lights, to lifts to teletext televisions: ask yourself about
their structure: what components these items are made from, how were they designed, what is
done in hardware and what in software ?

These printed notes follow roughly the same structure as the material lectured but are not a
primary reference in terms of defining the syllabus for this course.

Bibliography (Book list)

Books related to the course are:

Bignell & Donovan. ‘Digital Electronics’ Delmar Publishers.

W.Ditch. ‘Microelectronic Systems, A practical approach.’ Edward Arnold. The final chapters
with details of the Z80 and 6502 are not relevant to this course.

Floyd. ‘Digital Fundamentals’ Prentice Hall International.

T.J. Stoneham. ‘Digital Logic Techniques’ Chapman and Hall. This is a basic book and relates
more directly to the Digital Electronics course.

Randy H Katz. ‘Contemporary logic design.’ Benjamin Cummings ISBN 0 8053 2703 7

Texas Instruments. ‘System 74 Series Logic Family.’ Texas Instruments.

‘IEEE Transactions on Consumer Electronics’.
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Glossary of jargon and acronyms.

ALU Arithmetic and logic unit.
ASIC Application specific integrated circuit.

BICMOS A process with both CMOS and bipolar transistors on one die.
CAD Computer aided design.
CAE Computer aided engineering.
CAM Computer aided manufacture.
CLB Configurable logic block.
CRC Cyclic redundancy check (added to end of a data frame).

CMOS Complementary metal oxide of silicon.
DRAM Dynamic random access memory.
DMA Direct memory access.
DSP Digital signal processor/ing.
EDO Extended Data Out for DRAMS.
ECL Emitter coupled logic.
EDA Electronic Design Automation (CAD tools).
EMC Electromagnetic compatibility.
EMI Electromagnetic ingress or i(m)missions (sic).
FET Field effect transistor.
FSM Finite state machine.
FFT Fast Fourier Transform.

FPGA Field-programmable gate array.
GaAs Gallium Arsenide.
Gbps Giga-bits per second
HDL Hardware description language.
IDE The bus used for connecting hard drives and CD roms

IEEE Institute of electrical and electronic engineers.
IPR Intellectual Property Rights.

IRDA Infra-red data association
JTAG Joint technical advisory group

LSI Large scale integration (say about 5000 gates, 10000 transistors).
LAN Local Area Network.
LCA Logic cell array.
LCD Liquid-crystal display.
LED Light-emitting diode.
Mbps Mega-bits per second
MBPS Mega-bytes per second
MAC Media Access Control.
MCM Multi-chip module.
MSI Medium scale integration (i.e. the larger TTL devices).
NRE Non recurring engineering costs. i.e paid once per design.
OTP One-time programmable
PAL Programmable array logic.
PIO Programmed Input and Output.
PHY Physical Layer (of a LAN).
PCB Printed circuit board.
PLL Phase-locked loop.
PLA Programmable logic array.
PIN Personal identification number.
RTL Register transfer level.
SoC System on a chip.

SRAM Static RAM.
SIMM Single in-line memory module.

SSI Small scale integration (i.e. about 4 gates on a chip).
TTL Transistor-transistor logic.

UART Universal asynchronous recevier and transmitter.
USB Universal serial bus.
UWB Ultra wide band radio.

Verilog An HDL language in wide use (not an acronym).
VHDL VHSIC Hardware Description Language.
VHSIC Very High Speed Integrated Circuit.
VNL Verilog netlist.
VCO Voltage controlled oscillator.
VGA Video graphics adaptor.

VLISW Very long instruction word.
VLSI Very large scale integration (big chips).
XNF Xilinx netlist format.
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Figure 1: Structure of a small company with hardware products that use its own hardware, software
and chips.

Introduction

A good hardware design works the first time. A structured approach to its design is required
if the system is complicated. Simulation and formal verification of the system behaviour before
fabrication is also vital to help get it right. Multiple prototypes are normally tested in real situa-
tions before production runs commence. As Figure 1 shows, the final product relies on successful
inter-working between custom chips and the other parts on the circuit boards, together with the
software.

Most designs today are held in a database which contains details of custom circuits, printed circuit
boards, other chips, software, part numbers and so on. The database can help automate every
part of the design process, except for the initial design decisions. These decisions define the basic
structure of the product and they are what this course is about.

To create a new hardware design, as with software, it is important to use a top-down approach,
starting with an accurate capture of the requirements specification and then decomposing the
system into modules. As with software, the module must have well-defined functions and well-
defined interfaces and the modules must be suitable for individual testing. However, two big
differences are 1. that the modules in hardware are often made of different technology from one
another, and 2. that the desirability of using pre-existing modules is much greater.

Providing closer integration of software and hardware design processes is the main
research area in EDA (Electronic Design Automation).
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1 Building Blocks in Hardware Systems.

Learners’ Guide: What you should learn from this section is:

• Hardware designs are made of modules - used to be physical but now virtual.

• Modules are made of modules.

• Modules have easy to describe functions which could be tested in isolation
from the rest of the system.

• Modules could be gates, collections of gates, chips, boards etc..

• Modules are designed to be re-usable.

• Examples of typical MSI modules and exposure to Verilog descriptions.

This section introduces a number of building blocks that are frequently used in hardware designs.
A block may be an AND gate or it may be a PC. In times gone by, some blocks were refered to MSI
(medium scale integration) and LSI (large scale integration) subsystems. Today, many of these
blocks rarely exist as separate components: instead they are placed inside custom (or semi-custom)
application-specific, integrated circuits (ASICs). Putting a PC inside a custom chip is not far off
from being an everyday design step.

Verilog is a hardware description language (HDL). Certain fragments of Verilog are given through-
out these notes. Verilog is not examinable for part Ia but is for Ib. There is more material in these
notes than is given in the syllabus. Only the syllabus material is examinable.

1.1 Combinatorial (Combinational) Logic (Revision)

Figure 2 shows a four input priority encoder. A basic encoder with N inputs has log2(N) outputs.
If N is a power of 2, one of the inputs is a don’t care or else an extra output is implemented that
holds when any input is asserted.

module priencoder(d, Q);

output [1:0] Q;

input [3:0] d;

assign Q = d[3] ? 2’d3: d[2] ? 2’d2: d[1] ? 2’d1: 2’d0;

endmodule
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Figure 4: Multiplexor

Figure 3 shows a two-to-four binary to unary decoder. When there are N inputs, there are (upto) 2N

outputs. In this figure, the inputs are called ’Q’ and the outputs are called ’d’: this unusual naming
is given to aid visualisation that a chain of encoders and decoders could be formed, converting
between binary and unary at every other stage.

module decoder(Q, d);

input [1:0] Q;

output [3:0] d;

assign d0 = (Q==2’d0); assign d1 = (Q==2’d1);

assign d2 = (Q==2’d2); assign d3 = (Q==2’d3);

endmodule

Figure 4 shows a four-input multiplexor. When there are N inputs, there are log2(N) selector
inputs and a single output bit.

module multiplexor(d, S, y);

input [1:0] S;

input [3:0] d;

output y;

assign y = (S==2’d3) ? d[3]: (S==2’d2) ? d[2]: (S==2’d1) ? d[1]: d[0];

endmodule

Note how the truth table for the multiplexor has been compressed using X to denote ‘don’t care’
on the input side. Without using X’s, 64 rows would be needed. The same notation was used for
the priority encoder.

The multiplexor component can be implemented in a broadside fashion (as described in the next
section). For instance, instead of taking N single bit inputs, it would take N words, each of some
width x bits, and produce a single x-bit output word. There would still be log2(N) selector inputs
however.

Figure 5 shows tri-state buffers. When the enable input is deasserted, the output pin is in the
high-z state, which is as though the buffer was removed from the circuit. The tri-state buffer is used
to produce a distributed multiplexor. Each tristate-buffer, and hence input to the multiplexor, can
be placed on a separate printed circuit board and the interconnecting wire can be a trace on a
motherboard. Examples are given later (e.g. in the small computer figure, figure 46 we see that
each source driving the data bus is one input to a distributed multiplexor).

Figure 6 shows a general ‘wired-or’ structure. A wire is pulled up to the logic one voltage by a
resistor. A number of open-drain drivers are connected to it. Each driver may be on a different
circuit card. When any driver turns on, it pulls the wire to logic zero. Overall, the output function
Y is the OR of the driver gate signals ai. Wired-or gates are often used where a number of bus
slots exist where each slot may or may not have a device plugged in. Any device that desires
attention (such as signalling a processor interrupt) may turn on its driver to request attention.
Although there can be multiple wires (e.g. IRQ1 though IRQ15 on a PC), frequently a number of
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devices may be sharing one of them, and so the the system controller must use other means, such
as polling, to find out which of the sharing devices sourced the request.

module BarrelShifter(d, sh, q);

input [2:0] sh;

input [7:0] d;

output [7:0] y;

assign y = (d << sh) | (d >> (8-sh));

endmodule

Figure 7 shows an eight input barrel shifter or rotator. When there are N inputs, there are log2(N)
shift amount input bits. There are four forms of shift commonly used in computing: the rotate, the
left shift, the logical shift right and the arithmetic shift right. Some barrel shifters might accept a
further input to select which form of shift they implement.

Exercise: Draw out circuits, at the gate-level, for every component shown in this subsection. For
the barrel shifter, a transistor-level circuit using pass transistors might be easier.

Exercise: The opposite to a multiplexor is a demultiplexor. Why is the demultiplexor not given
a combinatorial circuit ?

1.2 Sequential Logic (Revision)

Figure 10 shows a pair of inverters in tandem. When the switch connects to a voltage source, the
Vout/Vin plot can be taken. When the switch closes the loop, it is clear there are three points
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Figure 9: Adding inputs to the bistable: the RS latch.
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where Vout=Vin. Two of these are stable, and hence this device is called a ‘bistable’. The third
point is metastable.

Figure 10 shows a transparent latch. When its enable input is high, the Q output follows the D
input after a small internal delay, but when the enable input is low, the internal RS latch maintains
a stable output value. This is a ‘level-sensitive’ device.

Figure 11 shows a pair of transparent latches in tandem to form an edge-triggered master slave,
D-type flip-flop.

Figure 12 shows an improved D-type made of only six gates that also has asynchronous reset and
preset inputs, and figure 13 shows the addition of active-low, asynchronous reset and preset inputs.

Exercise: Show how to convert an edge-triggered D-type into a transparent latch by enclosing it in
a combinatorial circuit that uses a multiplexor. Sometimes we must resort to this approach when
a transparent latch is needed in a technology that only makes available edge-triggered flops, such
as in many FPGA families.
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Figure 12: Six Gate, Master-Slave Flip Flop
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1.3 Clock Enables

Sometimes we do not wish a flip-flop to change its value every clock cycle. Thus we require
something that performs a ‘clock enable’.

Figure 14 shows a D-type with a clock enable input and the equivalent circuit. The complexity of
the additional multiplexor is sometimes not present in an implementation, since it can be adsorbed
into the gate or transistor-level circuit that forms the D-type.

1.4 Broadside Ideas

A bus is a number of signals that operate in parallel to carry a binary number. In the schematics,
a thicker line is used, and the number next to the slash is the number of signals in the bus.

Figure 15 demonstrates the concept of a broadside component, in this case, a broadside set of
D-types. To form a broadside component, the building block is instantiated a number
of times with the data inputs and outputs connected to the member lines of input
and output busses. The control connections are put in parallel and driven from a single external
source. A broadside set of flip-flops is a register.

A broadside register of N bits is made out of N D-types with a commoned clock input. It can

Data in D Q

clock

Figure 15: Broadside Register
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hold 2N different values.

parameter N = 8;

reg [N-1:0] br_q;

always @(posedge clk) begin

br_q <= data_in;

end

In large designs, broadside registers with clock enables are very frequently used. When the clock
enable does not hold, the contents of the register are not changed on the clock edge. Rather than
gating the clock signal in anyway, this can be physically implemented by a signal routing that
stores the previous data back in the register again. In RTL (register transfer level) HDLs, such as
Verilog, a clock enable is inferred from an ‘if’ statement. Any variables that are not assigned on
a clock edge are required to hold their values, and are physically stored with their previous values.

reg [N-1:0] br_q;

always @(posedge clk) if (cen) br_q <= data_in;

This Verilog fragment has the same behaviour as

always @(posedge clk) br_q <= (cen) ? data_in: br_q;

Figure 16 shows the schematic and a suitable circuit implementation for a broadside, two-input
multiplexor. Most logic systems provide two input multiplexors as a fundamental building block
implemented at the transistor level, rather than forcing users to build them from gates.
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Figure 18: An n-bit Shift Register:Schematic Symbol and Internal Circuit

The following Verilog fragment swaps the values between a pair of registers if the guard is false,
but a broadside multiplexer introduces a new value into the loop when the guard is enabled. The
circuit for this is shown in figure 17.

reg [7:0] reg1, reg2;

always @(posedge clock) begin

reg1 <= (g) ? din: reg2;

reg2 <= reg1;

end

It is the fundamental tenet of synchronous logic design that only one signal, the clock, needs to
be distributed with tight timing tolerances, and that the sequential logic updates on the clock to
a new state based on the current state.

1.5 Shift Register

In a shift register, on each active edge of the clock, the existing bits all move along one place and
another bit enters from the serial input.

module ShiftReg8(Q, clk, din);

input din, clk;

output [7:0] Q;

always @(posedge clk) Q <= (Q<<1) | din;

endmodule

A synchronous parallel load can be added to a shift register using an additional number of mul-
tiplexors. A synchronous load occurs on a clock edge when the load signal holds, otherwise the
existing data shifts as normal. An asynchronous parallel load was commonly used in older designs
(known as a jam load).
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parameter N = 8;

reg [N-1:0] Q;

always @(posedge clk) begin

Q <= (PL) ? P: (Q << 1) | D;

end

1.6 Register File

A register file of M locations by N bits is internally implemented as M broadside registers of N
bits each. Figure 20 shows a register file with one read and one write port. Log2(M) bits of write
address are required to select which port is written on the clock edge. A similar width address bus
selects which register drives the output bus.

// Verilog for a dual-read ported register file.

input [3:0] write_address, read_address_a, read_address_b;

reg [7:0] regfile [15:0]

always @(posedge clk) begin

if (wen) regfile[write_address] <= din;

end

wire [7:0] data_out_a = regfile[read_address_a];

wire [7:0] data_out_b = regfile[read_address_b];

Figure 21 shows the schematic symbol for a dual-port register file. This device internally contains
a number of broadside registers and multiplexors, but they are grouped into the register file for
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convenience of abstraction. Such a file is a key part of all current computers. The illustrated
dual-port file has two reading ports and one writing port, so might be considered a triple-ported
file. On the positive edge of the clock, the data on the write port is stored in the addressed register.
The read process is identical to an SRAM: at any time the read address may be changed and the
output data will change shortly afterwards.

Exercise: Sketch the circuitry that would turn a collection of clock-enabled broadside registers into a
dual-port file.

1.7 Read Only Memories

Figure 22 shows the logic symbol for a read only memory (ROM). The contents are non-volatile and
are placed in the ROM during manufacture using a fabrication mask or with a special programming
step in the field. In figure 22, the ROM holds M words of size N bits. The word addressed on the
A-bit address input port selects one of the M = 2A internal stored words and delivers it to the
output port provided chip select and output enable are asserted (i.e. low since they are active low
signals). When not enabled, the output pins are in the high-z state. In terms of schematic symbol,
the ROM is essentially the RAM, but it has no write input.

The techniques for storing field programmed information are:

• W-Sn fuse: PROM (programmable read only memory) A one-time programmable technology
that operates by melting selected tiny fuses on the surface of the chip. This is an old
technology which is not very reliable or dense.

• Floating gate technology with ultraviolet erase. A floating gate is a transistor gate that has
no direct electrical connection to any other conductor. Hence, a static electric charge will
remain on the gate indefinitely. Hence, like the fuse, the transistor is permanently on or
off. To make a ROM cell, an electrical charge is placed the selected floating gate using a
super-voltage that causes electron tunnelling or other breakdowns in the insulator. Discharge
is achieved using intense ultraviolet illumination to make the charge leak away. When used
for a ROM, gives an EPROM.

A variant on EPROM is an OTP-EPROM (one-time-programmable) which the same device
packaged in a windowless package at much lower cost.

• Electrically reprogrammable floating gate devices: EAPROM or EAROM. Again charge is
stored on the gate, but electrical techniques used for programming can be applied for erasing
in large blocks. Used widely in personal organisers and memory cards and in most modern
PAL devices. Today, Intel’s Flash memory is the most widely used EAROM and we tend to
call it simply ‘Flash’.

Mask programmed ROMs of several megabytes may cost sub 50 pence each in quantities of tens
of thousands. Flash memory may be more than 100 times more expensive. The choice of which
technology to use depends on the number of units that are going to be made and the expected
number of reprogramming cycles required.
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1.8 Non-Volatile Memories

A non-volatile may be written by the user and retains its contents without external power.

EAPROM/EAROMs (electrically erasable programmable read only memories) include ‘Flash’
memory. These can be programmed and erased electrically and are used in PCMCIA memory
cards and USB memory sticks, digital cameras and so on. Modern flash memory has read access
times similar to SRAM, but write times may be several orders slower and erase times are much
slower. The erase and write times can be limited by the startup times of internal power supplies
that produce the special programming voltages from the single supply rail used when only reading.

Figure 23 gives the general structure for a one bit wide ROM that is implemented as a square
array of bit cells. Half of the address lines are used to enable one horizontal row line and all bits
on that row that are zero pull down their column line. The remaining column lines are pulled to
one by the pullup resistors. For a masked ROM, each bit cell would either contain a transistor or
not, depending on whether a zero is wanted or not. For a FLASH memory, each cell contains a
pair of transistors, one with a floating gate. A floating gate that is charged with respect to the
substrate of the chip will be result in a the bit cell being zero, whereas if there is no charge on
the gate, the transistor will be always off and a one will be read. The two transistor cell can be
implemented using a single composite transistor. Recent technologies use three or four different
charge quantities on the transistor and analog readout techniques to increase density. The circuitry
to get charge on and off the gate is not shown in the figure.

Magnetic bubble memory is also used for non-volatile storage. It is strongly resilient against
radiation and so is attractive to for military applications.

BB-RAM: Battery back up of the supply to a small SRAM is also widely used instead of EAROM
for non-volatile storage. There is then no write cycle limitation (total cycles or speed). A small
lithium battery is found in many phones, motherboards and PDAs because there is a requirement
to maintain the real-time clock when main power is removed. This battery also feeds a small RAM
to hold settings and data when system supply is removed.

Name Persistence Read Speed Write Rate Erase Time Comment

RAM Volatile Same as SRAM Same as SRAM not needed
BB-RAM Non-volatile Same as SRAM Same as SRAM not needed Battery Life issues

Mask PROM Non-volatile Same as SRAM Not possible Not Possible
EPROM Non-volatile Same as SRAM 10 us/byte 20 Mins Needs UV window

Sn-W PROM Non-volatile Same as SRAM 10 us/byte Not possible
EAROM Non-volatile Same as SRAM 10 us/byte 100 ms/block write cycle limit

1.9 RAM memories

Figure 24 shows a random access memory or RAM. It is as equally random access as a ROM, so is
a misnomer. RAM is normally volatile, meaning it loses its contents when power is disconnected.
Static RAM (SRAM) normally uses one flip-flop per bit stored. A transparent latch suffices, so it
is not as complicated as having a D-type per bit. A possible internal structure for an SRAM is
shown in Figure 27. However this would lead to a long, skinny chip. In practice, a square array of
storage elements is used, meaning that the on-chip tri-state bus is much wider than the external
data bus. The on-chip bus will have width approximately equal to the square root of the number of
bits stored in the device. Very large RAM chips will have multiple smaller square arrays. Modern
SRAM devices have an access time of 20 nanoseconds and have capacities of about half a megabyte.
Price is about six pounds per megabyte, but depends greatly on the access time required. Second-
level cache chips for PCs are SRAMs and produced in high volume, so are currently a good way
to purchase SRAM, even for other designs or uses.

A property of the SRAM, shared with the ROM, is that there is no clock and, during read, the
output is essentially a combinatorial logic function of the address input value.

When writing, the address must not change and the data present on the data pins at the back
edge of the (active low) write pulse is the data actually written.

A Static Random Access Memory (SRAM) of M words of size n bits each has a bidirectional n bit
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data port and an A-bit (A = log2(M)) address input port. The write enable and output enable
control inputs are normally active low. The chip select input (also active low) must be asserted
(ie logic zero) before the device will recognise a read or write cycle. The address input may be
changed during a read, but should not be changed during a write cycle.

RAM is made from RS latches not D-types. This is possible because the RAM device does not
have a clock input and is not edge-triggered on any of its inputs. This saves half the transistors
compared with a master-slave (clocked) memory, such as the earlier register file.

Memory size is often given in kilobytes (kB) or megabytes (MB).
1 kB = 1024 bytes
1 MB = 1024 kB

Within modern ASICs, registered RAM is frequently used. This is RAM that has broadside
registers on its address and data inputs or data outputs or both. Functionally, it is identical, but
there is a delay in implementing any operation. In essence, latency is traded for throughput using
pipelining (ref section 3.8).

1.10 DRAM

Figure 28 shows the schematic symbol for a dynamic RAM. DRAMs store their data not in bi-
stables, but in small capacitors. The value stored leaks away over time unless refreshed. It is also
destroyed by readout: after readout, the device always performs an internal write-back cycle to
restore the voltages on the capacitors. This means that the external logic must not start a new
cycle immediately. Therefore the cycle time and access times of DRAM are different. Typically,
today, DRAM cycle and access times are 60 and 120 nanoseconds and capacity of a single chip is
2 to 4 megabyte.

All DRAMs are accessed by applying the address in two halves. First a row address is presented
and RAS taken low, then a column address is applied, and CAS is taken low. These row and
column addresses originally corresponded to the actual physical topology of the rectangular array
of bits on the device, but today the high order CAS bits select one of many internal arrays on the
silicon chip. In external view, some DRAMs are one bit wide and others are four.

DRAM is much cheaper than SRAM owing to the smaller silicon area needed per bit. Smaller
packages are also possible, owing to the multiplexed address bus.

Refresh cycles do not transfer data in or out of the chip, but must be performed sufficiently often
anyway. A typical specification is that 512 refresh cycles are executed every 4 milliseconds. Since
DRAM consumes most of its power when being refreshed, a designer who puts all of the refresh
cycles in one batch at the end of every 4 millisecond period makes the design of power supplies
much more difficult.

DRAMs are often packed on SIMMs (single in line memory modules). or DIMMS. Capacities of
SIMMs are upto 512 Mbyte.

A few advances have occurred in recent years. EDO (extended data out) DRAMs guaranteed that
the data will be valid on the output for a period after CAS is deasserted, thereby easing system
timings and helping the designer. High performance systems today use synchronous DRAMs
(SDRAM) which have a clock input and include broadside registering on the address or data
paths. This gives a pipeline delay (section 3.8). The latency is increased in return for greater
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Refresh Cycle - must happen sufficiently often!

A DRAM has a multiplexed address bus and the address is presented in two halves, known as row and
column addresses.  So the capacity is 4**A x D.  A 4 Mbit DRAM might have A=10 and D=4.

When a processor (or its cache) wishes to read many locations in sequence, only one row address
needs be given and multiple col addresses can be given quickly to access data in the same row.  This
is known as ‘page mode’ access.

EDO (extended data out) DRAM is now quite common.  This guarantees data to be valid for
an exteneded period after CAS, thus helping system timing design at high CAS rates.
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Figure 28: Dynamic RAM (DRAM).
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Figure 29: Forming a Larger Memory Bank from Multiple Smaller Devices.

throughput (e.g. 100 or 200 Mwords per second). Most recently, double rate SDRAMs have been
introduced, that transfer data on both edges of the clock signal. However, DRAM performance
has lacked growth compared with microprocessor performance.

1.11 Memory Banks.

Commonly, multiple, identical memory chips are wired in arrays to form a memory bank. This is
done to increase performance and storage capacity with respect to the individual chip.

By wiring a number of chips with their address and control lines all commoned, we obtain a wider
data bus that has greater bandwidth.

Alternatively, by wiring a number of chips with their data lines commoned we can use a binary
to unary decoder to gain additional, high-order address lines that drive the individual chip-select
inputs. This just increases capacity.

Figure 29 shows an example of constructing a larger ROM memory using a bank of multiple devices
that uses banking in both dimensions.

In certain specialist applications, for instance high speed data capture from a radar or UWB
receiver, memory arrays are arranged in temporal banks such that all their inputs are delayed by
different fractions of a write cycle. This form of banking gives increased effective write rate and
increased capacity.

Exercise: When would you use SRAM and when DRAM ?
Exercise: Sketch the circuitry that could be put around a bank of DRAM to make it appear like an
SRAM with a single, non-multiplexed address bus and similar control signals. What aspects of the
DRAM would you not be able to ‘hide’ in your circuitry?

1.12 FIFOs

Figure 30 shows a schematic symbol for a FIFO. This has M -bit input and output ports. Internally,
it can store some number of M -bit words. It has two clock inputs. On the positive edge of the write
clock, if the write enable holds and the device is not full, a new word is stored. On the positive
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Figure 31: A crystal oscillator clock source.

edge of the read clock, if the device is not empty and read enable holds, then the oldest word from
inside is presented at the output pins. Three flag outputs show full, half-full and empty status.
Internally, the FIFO can be implemented as an SRAM with read and write pointer registers, or it
can be implemented as a chain of broadside registers with a controller made of an asynchronous
logic.

1.13 Miscellaneous Components

Figure 31 shows a circuit frequently used as a clock source. A carefully cut slither of quartz
crystal is used as the timing reference. Quartz is piezoelectric, so can be made to change
shape by applying an AC signal across metal coatings applied to its sides. Also, as it changes
shape, it generates an equivalent electrical signal. Since the speed of sound in quartz is very high,
a slice about 100 microns thick will resonate at several MHz. The details of the circuit are beyond
the scope of this course, but suffice to note that the sine waves generated by the crystal become
good quality square waves, suitable for use as a clock, after passing through a few inverters. A
crystal might cost many cents to add to a design, but is accurate to about 50 parts per million in
frequency, so is highly useful when compared with the RC oscillator, that can drift by percentage
points with age, temperature and supply voltage.

Quartz crystals are comparatively expensive to manufacture. Figure 32 shows a cheaper circuit
that serves as a clock when accuracies of only a few percent are needed. This is the RC oscillator.
The first inverter must be a special Schmitt inverter with abrupt switching and hysteresis for the
circuit to work. Hysteresis is a property, illustrated in the Vout/Vin characteristic whereby the
forward trace is different from the reverse trace: there are two switching voltages. The capacitor
is the only component that is hard to make on an integrated circuit, so a single pin on the device
serves to connect the external capacitor. The crystal oscillator always needs two pins - another
cost distinguisher.

Figure 33 shows the typical arrangement of clock distribution inside a large, modern IC. The clock
is actually provided from a lower-frequency external reference and multiplied up internally with
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a phase-locked loop. The clock is brought on to the chip at a lower frequency than
required since it is easier to handle lower frequency signals on PCBs and the lower
frequency may be one that can be directly generated by a crystal. Skew in the delivery
to the various parts of the device is minimised by using a balanced clock distribution tree. The
physical layout can be as a fractal of H’s, ensuring equal wire length to every destination. Inverters
are used instead of non-inverting buffers to minimise pulse shrinkage (duty-cycle distortion).

Figure 34 illustrates digital input from switches and output to LEDs. When a switch is closed,
it connects a net to ground, the logic zero voltage. Current flows through the pull up resistor to
ground and is wasted. When the switch is open, the pull-up resistor pulls the net to the logic one
voltage. For most types of logic, once the net is at that voltage, no further current flows in the
resistor. A value of 10 to 100 Kohms is used for such a pullup resistor.

The LEDs are wired so that when a logic one is produced, they have no current flowing and so
are off. When a logic zero is produced, current flows from the VCC supply into the output of the
logic gate. The current limiting resistor limits the current to a suitable value, such as 20 mA. It
is usual to wire LEDs in this negative logic fashion because many logic families are more able to
sink current that source it at their outputs.

Figure 35 shows a circuit that is often used to generate a reset signal when a system is switched on.
When power is applied, the capacitor is initially discharged, so has zero volts across it. Therefore
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the output is a logic one. The resistor charges the capacitor and after an interval of time the
input to the inverter crosses the switching threshold of the Schmitt input and the output from the
circuit is deasserted. Typical delay times used are about half a second, which is sufficiently long
for the power supply to become stable and for oscillators to settle down. The diode discharges
the capacitor into the supply rail when power is removed. On most devices, a reset switch is also
fitted, which discharges the capacitor when pressed, therefore starting the device as from power
up. The reset signal is normally arranged to reset every flip-flop in every chip (except
for static RAM cells).

Figure 36 shows a typical structure used to drive a high power load from a logic signal. The
semiconductor processing used to fabricate logic devices may be too expensive to waste on large
transistors or may not be able to tolerate the higher voltages required to control the load. There-
fore, external driver transistors in individual packages or in power driver ICs are used. Typical
applications are motor, loudspeaker, solenoid, relay, and print head driving.

The EMF diode protects the transistor from the large voltage (so-called back EMF) produced
when the current in an inductive load is suddenly removed.

A power MOSFET may have an on resistance of 0.01 ohms and an active channel area of several
square centimetres. It is therefore millions of times larger than the sub micron gate’s used in logic
circuits.

Figure 37 shows the circuit sometimes used to get a clean signal out of a mechanical switch. In
such a switch, when one contact hits another, it bounces off with a supersonic ping, which means
that the circuit is made and broken a few thousand times for each switching operation executed.
Using a double-throw switch and an RS latch formed from a pair of cross-coupled NAND gates,
a clean output is generated. The systems works on the basis that the first time the commuting
contact hits the stator contact, the latch changes state, and stays there until the switch is moved
all the way back to the other side, where the reverse happens. A single-throw switch must be
de-bounced using a timer.
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2 Further Blocks. Arithmetic and Micro-sequencers.

Next we consider the blocks used specifically for arithmetic, computation and computers.

2.1 Arithmetic Logic Unit and ALU circuits

The arithmetic and logic unit (ALU) is a fundamental block of all digital computers. Figure 38
shows the schematic symbol for an ALU. The ALU itself is combinatorial, but it is shown connected
to a flag register, that possesses a clock input. For a detailed example, look at the 74181 in the
Texas System 74 databook or online.

The illustrated ALU has a pair of N -bit inputs and a 4 bit function code input. The output is
also N-bit. The function code determines what function of the two inputs is computed. Typical
functions are add, add with carry, bitwise AND and OR, subtract and identity functions of the two
inputs. The instruction set for the ARM microprocessor contains 16 data manipulation instructions
that serve as a good example of the 16 most useful functions that an ALU can perform.

Like all combinatorial logic functions, the ALU is guaranteed to compute its output within a fixed
time interval from the last input change. The value of this delay is typically dependent on the carry
chain speed inside the ALU and it will set the maximal clock frequency of a simple microprocessor.

input [7:0] A, B;

input [3:0] fc;

output [7:0] Y;

output C, V, N, Z;

always @(A or B or fc)

case (fc)

0: { C, Y } = { 1’b0, A }; // A

1: { C, Y } = { 1’b0, B }; // B

2: { C, Y } = A+B; // A+B

3: { C, Y } = A+B; // A+B

4: { C, Y } = A+B+cin; // A+B+Carry in

5: { C, Y } = A-B // and so on

...
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endcase

assign Z = (Y == 0);

assign N = y[7];

Question: Suggest why ALU’s typically only support addition and subtraction as arithmetic op-
erations and not multiplication or division ?

A register file with two read ports is often used in conjunction with an Arithmetic Logic Unit
(ALU). A counter can be used to index through ‘function generator’ ROMs that contain settings
for the various control wires. Such an arrangement is called a micro-sequencer. As we shall see,
a similar such arrangement also forms a central processor unit (CPU) or microprocessor, except
that the function generator ROMs are then programmable rather than fixed.

Figure 39 is an illustrative circuit showing the interaction of an ALU and a register file. These
two units together form the heart of the execution unit of a computer. In this circuit,
since it is relatively straightforward, the addressed register is both read and written at the same
time. Even though the address is incremented each time, it is important to understand that the
old value read is updated in the ALU and written back to the same location. Accordingly, the
only possible interference between one register and another is through the carry flip-flop, which
will allow the output of one ALU operation to affect the behaviour of the next.

A pair of function generators are illustrated. These are just combinatorial blocks and could be
considered as ROMs. To achieve some particular function these could be hardwired or programmed.
In very early computers plugboards were used for such functions.

Exercise: If the ALU function code generator is programmed to specify ‘A+B’ when the input
is one and ‘B+Cin’ otherwise, and the A input function generator is programmed to produce a
constant value of 1, what have we produced overall? Hint: Register zero is incremented each time
and the others only when a carry is generated in the previous addition. Will this unit complete its
cycle this universe lifetime ?

2.2 Multiplier

Multiplication is a combinatorial function of quadratic complexity and for small numbers of bits it
may be implemented as a combinatorial function that executes in less than a system clock cycle.
Interested readers should consult Google about Wallace Trees and Carry-Save Adders. Such a
multiplier is called a ‘flash’ multiplier (not to be confused with Intel’s EAPROM technology of the
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Figure 41: Simple Sequential Multiplier: Schematic symbol and Internal Structure

same name) and can consume considerable chip area. More commonly, a sequential multiplier is
used.

A simple sequential multiplier is implemented with the following long-multiplication algorithm

RA=A

RB=B

RC=0

while(RA>0)

{

if odd(RA) RC=RC+RB;

RA = RA >> 1;

RB = RB << 1;

}

Figure 41 shows a hardware architecture suitable for performing long multiplication. A finite
state machine serves as the sequencer to manage the handshake signals and to control the internal
multiplexors and ALU function code. The user must set up the values on the input busses before
asserting the start signal, and then wait for the ready output before reading the result from the
output bus. The internal datapath can be readily generated by considering for each register the
sources it can be stored with, and providing multiplexors accordingly. An ALU that implements
identity functions also serves as a multiplexor for this purpose. Note that left and right shifts by
a constant amount are implemented using just wiring.

Custom datapaths along with their micro-sequencer, are today often synthesised automatically
from imperative source code like that shown (lookup custom VLISW CPU Synthesis on the web).

Exercise: Design the sequencer for the simple multiplier shown.

Most sequential multipliers actually use Booths algorithm. Booth uses a single adder/subtractor
to implement a base-four long multiplication.
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(* Call this function with c=0 and carry=0 to multiply x by y. *)

fun booth(x, y, c, carry) =

if(x=0 andalso carry=0) then c else

let val x’ = x div 4

val y’ = y * 4

val n = (x mod 4) + carry

val (carry’, c’) = case (n) of

(0) => (0, c)

|(1) => (0, c+y)

|(2) => (0, c+2*y)

|(3) => (1, c-y)

|(4) => (1, c)

in booth(x’, y’, c’, carry’)

end

;

(* Booth’s multiplier is twice as fast as binary long multiplication

but still only uses a single adder. The trick is that the adder is

sometimes used as a subtractor, using the identity 3=4-1. The

multiplication and division and modulus by powers of 2 are all

performed with wiring and so require no gates to perform. (The

fixed-width addition of the carry to form n is considered part of the

control logic, rather than counting as a datapath adder.)

*)

Exercise: Design a datapath based around an ALU and register file, together with some control
logic, that implements Booth’s algorithm.

Exercise: The motivation for two’s complement representation is that the same adders and sub-
tractors can be used as for unsigned. Decide whether two’s complement helps in this way for
multiplication.

Exercise: A so-called ‘quarter-squares’ flash multiplier is implemented using ROMs that have been
pre-programmed with the function q = a2 and some adders or subtractors. The solution uses a
rearrangement of the identity (a+ b)2 = a2 + 2ab+ b2. Draw a block diagram of such a multiplier.

A flash divider is rarely implemented in hardware owing to its enormous complexity. On the
other hand, sequential circuits for long division are not much more complex than those for long
multiplication using this algorithm. However, in general, designers avoid division and instead
prefer to multiply by reciprocals or use logarithmic data and subtractors.

2.3 Microprocessor Circuits

Figure 42 shows the schematic symbol and internal block diagram for a microprocessor. The
internal block diagram is beyond the scope of this course, since it is coupled with a subject known
as programming, but the external view is fair game.

The main features of the microprocessor are that it has a clock and reset input and it has an
address bus output and a bi-directional data bus. The microprocessor generates read and write
cycles on its busses and these are essentially identical in form to the waves shown in figure 24 for
the SRAM.

The microprocessor places addresses on the address bus and sets the read/write signal to show
the direction of the intended transfer on the data bus. It then raises its operation request output
(opreq) and either places the data to be written on the data bus (for a write) or expects the
addressed device to drive the data bus with its information (for a read).

The behaviour of the microprocessor is to fetch an instruction from the reset location
and execute it. If the instruction is a jump, then the next instruction may not be
the one following it. Executing an instruction either modifies internal registers in the
microprocessor or loads or stores data to the devices connected on the address and
data bus.
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grammed IO (PIO) to a microprocessor.

Figure 43 shows how to connect some LEDs and switches to a microprocessor for simple pro-
grammed input and output. Only the low order data bits are used, so when reading from the
switches, random values may appear on the higher order bits. Conversely, when writing to the
LED registers, the higher order bits are ignored.

2.4 Central Processor and Microprocessor

In the early days of computing, the CPU (central processor unit) was a large box containing the
following

• Control Unit

• Execution Unit (Arithmetic Logic Unit plus register file)

• Main Memory

The breakthrough that was the invention of the microprocessor was to put the first two of these
three on a single chip. (Today it is also possible to also put nearly a megabyte of main memory
on the same chip, but this is frequently used as a cache.)

The microprocessor makes bus cycles. A bus cycle happens as follows:

• It places the address on the address bus and sets read/writebar low if this is to be a write
cycle and high if it is a read cycle.

• If this is a write cycle, it drives the data to be written out to the data bus. If it is a read, it
makes the data bus high-impedance ready to accept data.

• It asserts operation request (i.e. it puts it to logic 1).

• It waits half a clock cycle.
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• If the wait input is asserted, it waits whole clock cycles until wait is not de-asserted.

• If this is a read cycle, the processor copies whatever value has been driven onto the data bus
to its internal destination

• It de-asserts operation request.

2.5 Memory Map

In a Von Neumann computer, the program and data share a single address space. The memory is
a collection of binary digits (ones and zeros) or bits.

If there are a address lines, then the address space contains 2a locations. In a byte-addressed
machine, the bits in the memory are grouped into eight bit bytes for addressing. Each byte has its
own address and each bit may be addressed via a byte address and an offset (from 0 to 7) within
a byte. Figure 46 is the circuit of small, microprocessor based computer. The microprocessor can
address 216 locations of eight bits (65536 bytes) and some of these are filled in with devices.

For example, the address space (memory map) might be organised as follows

------- ----- -----------------------

Start End Resource

------- ----- -----------------------

0000 03FF EPROM

0400 3FFF Unused images of EPROM

4000 7FFF RAM

8000 BFFF Unused

C000 C001 Registers in the UART

C002 FFFF Unused images of the UART

------- ----- -----------------------

The processor makes access to the various resources in the machine by generating addresses on the
address bus. Address decoding logic matches patterns on the high-order address lines to generate
enable signals for each particular device. This logic sets the memory map (or address map) of the
computer. The low-order address line are fed to each device to distinguish access to individual
locations within the device.

module address_decode(abus, rom_cs, ram_cs, uart_cs);

input [15:14] abus;

output rom_cs, ram_cs, uart_cs);

assign rom_cs = (abus == 2’b00); // 0x0000

assign ram_cs = (abus == 2’b01); // 0x4000
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assign uart_cs = !(abus == 2’b11);// 0xC000

endmodule

Exercise: If the address bus is 16 bits, how many addresses are consumed by the switches and LEDs
in figure 43. If the data bus is 8 bits, what percentage of addressable bits have been wasted and is this
a sensible design ?

Exercise: What would happen if the microprocessor tried to write to the read only memory ?

2.6 The PC as a component.

The PC motherboard has evolved in a backward-compatible way for 25 years. The mounting
holes and connectors and architecture are largely unchanged, and the changes which are not back-
compatible have been controlled and rare. Today, the PC motherboard offers exceptional value for
money: 300 MHz processor, 32 Mbyte RAM and the logic for many useful interfaces (keyboard,
USB, VGA, Floppy, IDE, IRDA, etc.) all for under 50 pounds. A typical PC motherboard is
shown in figure 47. In addition, a huge variety of hardware devices is available to plug in.

Smaller, off-the-shelf, euro-boards containing a PC have dimensions 100 by 160 millimetres and can
easily slot into a rack-oriented hardware design. Putting a PC on a custom chip is a possibility
for the near future, especially if memory and CPU levels are relaxed by 3 to 4 years’ worth of
performance gain.

It is easy to think of a PC as something that always has a screen and a keyboard and runs
Microsoft code. However, the PC motherboard is a general purpose computing platform that,
given the correct software, is just as happy providing, for instance, the processor inside an airport
arrivals VDU cluster. In this example, a video display board and a network board would have to
be fitted.

2.7 Printed Circuit Boards

Nearly all designs require the fabrication of new printed circuit boards. A cheap PCB has just
one layer of wiring, but is not suitable for most of today’s highly-compact electronic devices. Most
digital boards have 4 layers, with the internal pair just used for power. Some high-tech boards
need more layers of wiring. See examples in lectures.
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3 Finite State Machines, IO and Clock Domains.

Learners’ Guide: What you should learn from this section is:

• Systems are made of interconnected modules and have more than one clock.

• Interfaces are standardised and have a long lifetime.

• When signals have to cross from one clock domain to another the design
should accommodate that there will be skew and metastability.

• The maximum clock rate is normally set by the longest path of logic.

3.1 Connecting Boards Together.

When boards are interconnected, some of the main issues are:

• How much data in bits per second needs to flow?

• Will the connection be synchronous or asynchronous?

• Is flow-control needed to limit the rate of data flow?

• How long do the wires or cables have to reach?

• Is it desirable to carry power with the cables ?

• Is hot-pluggable mode needed (plug in/out with power on) ?

• Is the interconnection topology fixed at design time or does the system need to adapt to
various configurations?

• Should we use an existing standard or design a new system ?
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Major electronics issues when connecting boards together is whether the cables will give off inter-
ference and whether the electronics at the ends will be damaged when people with a large static
charge touch the exposed pins.

The bits stored in a data cable per wire is given by the signalling rate multiplied by
the length divided by 200 m/µs = 0.66c.

3.1.1 Parallel Port

With the parallel port, data is transferred at a rate dependent on the slower of the sender and the
receiver, since the transmitter is not allowed to strobe the next byte of data when the busy signal
is asserted.

Modern parallel ports support bidirectional transfer of data, but originally they were just designed
for printer connection.

The reach is potentially dominated by skew of the parallel signals, since they must all be valid at
the receiver before the strobe signal. Flow control is provided by the busy signal.

Exercise: Figure 48 shows the signals involved in a parallel port, as frequently used to connect printers
to computers. The basic operation is that the master places a byte of data on the data bus and then
strobes the strobe signal low until acknowledge is asserted by the device. The master must not present
a new byte to the printer while the printer has put busy high. Design the parallel port interface logic
by drawing on the ideas shown in figure 43. To do this, it is sufficient if the busy signal appears to the
processor like one of the switch inputs and the data output is rather like eight LEDs. Considering that
the processor really does not care about the acknowledge signal or when the strobe signal is deasserted,
you might care to use an RS latch to help the processor generate the strobe signal.

3.1.2 Serial Port

The serial port uses one pin for each direction, whereas the parallel port sends only (in its basic
form) and uses 8 data pins to transfer a byte.

With the serial port, the receiving device must be operated at the same baud rate as the transmitter,
to make sense of the data. With only one signal pin, there is no skew problem, but the maximum
transition rate on the data wires is much faster. The baud rate is the number of signalling
events per second on the line. In a binary two-level coding system, the baud rate is the raw
bit rate. A serial port with a start and stop bit per byte achieves 80 percent of its raw bit rate as
useful throughput.

Flow control is the matter of arranging that no more data is sent than can currently be accommo-
dated at the receiver. Additional signals on the connector are sometimes used for flow control: a
wire in each direction enables transmission in the other direction. Alternatively, flow control may
be implemented using a software protocol where two of the possible byte codes are not used for
data, but instead reserved for flow control. An end sends the Xoff code when it is running low on
space to receive data, and sends an Xon when it has space again.

3.1.3 PS2 and Keyboard port

The original 1977 IBM PC introduced a connector that has become widely used for PC keyboards
and mice. It is a point-to-point connection that carries power, although the total current available
is limited by a fuse or similar protection device. The connection is bidirectional and byte-oriented.
A pair of open drain lines (see figure 6) are used for clock and data. When one end wants to send
data to the other, it pulls down the data line, forming a start bit, the other end then clocks the
data line until a byte has been received.

The PS/2 port is unsuitable for high bit rates or long cables since the cable length
must not be longer than a clock wavelength.
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3.1.4 USB port

The Universal Serial Bus uses similar electrical technology to the PS/2 port, but the protocol for
using the two wires is different. Small hubs, perhaps integrated into the back of a keyboard, allow
a desk-top network to be made. Addressing and topology determination are supported and the
data rate is 12 Mbps, or 1.5 for slow devices.

The Firewire port (P1394) found on many computers operates in roughly the same way as USB at
the physical layer, using a pair of wires. However, it is a true LAN (local area network) in that any
device may transmit a packet at any time, whereas in USB, one device acts as a master controller
for the network.

3.1.5 Ethernet LAN Port

Figure 51 shows the basic structure of a LAN controller, such as Ethernet. The controller has
small FIFO queues for packets just received or about to be sent on the network. The controller
implements a protocol for when to send a packet - the media access control (MAC). The physical
layer frequently used today is known as 100BaseT and uses two twisted-pairs, one for sending and
one for receiving. The PHY component in the figure maps the digital data to and from the analog
waveforms needed on the wire. It also detects collisions when two hosts start to send a packet at
once.

For high performance, most LAN controllers implement DMA (direct memory access) whereby the
address wires are temporarily reversed in direction and the controller generates addresses in the
main system memory for loading and storing data. This is not shown in the figure.

3.2 Combinational Logic Minimisation

There are numerous combinatorial logic circuits that implement the same truth table.

Where two min-terms differ in one literal, they can alway be combined:

(A & ~B & C) + (A & ~B) --> (A & ~B)

(A & ~B & C) + (A & ~B & ~C) --> (A & ~B)

Lookup ‘Kline-McClusky’ for more information. These rules are not sufficient to act as a general
procedure for logic minimisation. Indeed, the following example cannot be simplified in this way.

(A & ~C) + (A & B) + (B & C) -->

(A & ~C) + (B & C)

Karnaugh Maps are convenient to allow the human brain to perform minimisation by pattern
recognition.

Often, there are don’t care conditions, that allow further minimisation. Denote with an X on the
K-map:
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Figure 53: An example Karnaugh Map.

(A & ~C) + (A & B) + (B & C) -->

A + (B & C)

The ‘ESPRESSO’ algorithm is one of the best logic minimisers around, but it is still only a heuristic
approach. There is no algorithm that can achieve as good results as an approach of looking at all
possible expressions of a function and choosing the one that has the best metric.

The above discussion has related to one output only in two-level logic. By two-level we mean one
AND array and then one OR array. Although any function can be expressed in sum-of-products
form, a multi-level gate structure can achieve fewer gates. Where multiple outputs are required,
implicants can be selected so that they are useful for multiple outputs.

The programmable logic array (PLA) uses the idea that any combinational logic function can be
expressed in some-of-products form. During logic minimisation and fitting, one selects implicants
that can be used in more than one sum, where possible.

3.3 Clocking and Synchronous FSM Combination.

This section looks at aspects of clock signals and considers the how, when and why of multiple
clocks in a system. The decisions relating to clocks are fundamental to any hardware design and
are normally taken very early in the process.

3.4 Finite State Machines.

Figure 55 shows a schematic symbol and canonical circuit for a finite-state machine. It is a mantra
among mature hardware designers to consider everything as a collection of finite-state machines.
Beginner hardware designers tend not to have this approach, and instead think nothing of treating
the clock input to a flip-flop as suitable for wiring to anything convenient. They do not get far like
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this, since contemporary CAD tools, design techniques and formal methods will stop providing any
help and circuit bugs will creep up everywhere. (An exception is that there are certain licensed
asynchronous hardware designers, like Dr Simon Moore, who often don’t even have clocks in their
circuits.)

The FSM has inputs and a clock. It has two types of outputs. Moore outputs depend only on the
current state. Mealy outputs may also depend on the current inputs.

Figure 56 shows a D-type flip-flop and its three significant timing specifications. The flip-flop input
must not change at the same time as the positive edge of the clock: indeed it must be stable for a
period before (the set-up time) and remain stable a period after (the hold time). The output will
change after a propagation delay time from the positive edge of the clock. The negative edge of
the clock has no effect. The J and K inputs of JKs and the T inputs of Ts have the same set and
hold requirements.

In a synchronous FSM, the maximum clock frequency is normally determined by the longest path
of logic which ends at the input of a flip-flop. This path is know as the critical path and is illustrated
in figure 57.

3.5 Sequential Logic Minimisation

A finite state machine may have more states than it needs to perform its observable function.

A Moore machine can be simplified by the following procedure

1. Partition all of the state space into blocks of

states where the observable outputs are the same

for all members of a block.

2. Repeat until nothing changes (i.e. until it closes)

For each input setting:

2a. Chose two blocks, B1 and B2.

2b. Split B1 into two blocks consisting of those

states with and without a transition from B2.

2c. Discard any empty blocks.

3. The final blocks are the new states.
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Figure 59: A counter that does not use binary.

A small modification of this procedure allows us to tell if whether a pair of finite state machines
are equivalent in terms of observable external behaviour.

3.6 Speed Increase with Johnson Counter

A Johnson counter is based around a shift register. Figure 59 shows a Johnson counter that divides
by five. The significant features of Johnson counters actually become clearer for larger counters,
but they are twofold: 1. the division ratio is restricted to twice the number of flip-flops (e.g. 5
flip-flops can give a divide by 10 at maximum) and 2. the number of logic gates is always low, and
so the counter is fast.

Exercise: Design a Johnson Counter that also has a control input that makes it divide by six or seven.
Optimise your design for two features: 1. maximum clock speed, 2. that the ratio input can be changed
at any time without causing a hazard. Note: clearly, metastability cannot be avoided, but by being
hazard free, we mean that the state path taken will always be one or the other of the two desired paths,
whatever happens.

3.7 Speed Increase with One Hot Coding

In One Hot coding, at all times, the flip-flops in a counter or FSM are arranged to be all zero
except for one that is one. This clearly minimises the number of gates required to decode the
current state and can greatly reduce the number of gates that determine the next state.

3.8 Speed Increase using Pipelineing

Figure 60 shows a circuit before and after the addition of a pipelining stage. The pipeline stage may
have a fewer or greater number of flops as the input or output. The benefit of the pipeline stage is
that a complex combinatorial logic function is split into two halves, thereby reducing the maximum
length of unclocked logic leading to the inputs of the output flip-flops. The disadvantage of the
pipeline stage is that data takes longer to be processed. This disadvantage is not often a problem:
for instance, if the data has just come down a link in Gbps fibre-optic link, then the additional
delay will be just as if the link were a few meters longer. More than one stage of pipelining can be
inserted if needed.

Some modern logic synthesiser tools will insert pipeline delays where possible, if helpful. Others
will back-propagate them to balance delays when they are manually instantiated at the outputs.

Exercise Sketch the circuit of a large adder with ripple carry and then modify it to include a pipeline
stage. Note, the output signals should always reflect the result of a single addition in any one clock
cycle. Explain or estimate the effect of the pipeline delay on the maximum clock frequency.
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Figure 61: Cascading FSMs to produce larger circuits.

3.9 Derived Clocks.

Figure 61 shows a concatenation of finite-state machines running from the same clock. Of course,
viewed another way, these together simply form one larger FSM. However, the decomposed view is
vital in practice, since the density of wiring between FSMs will be lower than within the FSM and
the functionality, authorship, history and even ownership of the IPR (intellectual property rights)
of the FSMs will be different.

If we feed a Mealy output into another FSM, delays accumulate, reducing maximum clock fre-
quency. This does not happen with Moore outputs. Moore outputs should be used if possible, but
for some designs, a Mealy output is needed in order to reduce processing delay of the unit as a
whole.
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Figure 62: An example that uses (badly) a derived clock: a serial-to-parallel convertor.

reg [2:0] r2;

always @(posedge clock) r2 <= (r2==4)?0:r2+1;

wire bclock = r2[2];

reg [4:0] shift_reg;

always @(posedge clock) shift_reg <= serial_in | (shift_reg << 1);

reg [4:0] p_data;

always @(posedge bclock) p_data <= shift_reg;

Figure 62 shows a typical example of the use of a derived clock. Power consumption is increased
in parts of a circuit where fast clocks are used, and so using lower frequency clocks where needed
is an important design consideration.

The serial-to-parallel convertor can be redrawn as a pair of FSMs as shown in general in figure 66.
It is then clear that the design rule about two Moore outputs from the master not changing at
once cannot be applied (see section 3.13).

Exercise: Give the schematic for a reciprocal parallel-to-serial convertor. Does combining the two
converters result in the identity function ? If not, why not. Note: they can be combined in both
orders.

3.10 Gated and guarded clocks

Sometimes we do not wish a flip-flop to change its value every clock cycle. Clearly, J-K device
support this directly: we can put both the J and K inputs low. For subsystem FSMs or broadside
D-type registers, we need the concept of the clock enable.

Figure 14 showed a D-type with a clock enable input and the equivalent circuit. Gating clocks
is avoided as a general design practice but clocks do have to be gated at times though, most
commonly in powering down complete sections of a system. They are also needed when generating
a write strobe to an SRAM (figure 24) or other level-sensitive register.

Figure 63 shows the safe way to gate a clock. The clock is OR-ed with the negated enable signal.
In this clock gating method, the derived clock is kept normally high, except when a clock pulse is
to be let through. Other arrangements for gating clocks tend to produce glitches in the derived
clock.

Exercise: Design the logic to place in front of a J-K flip flop that turns it into a D-type with clock
enable input.

Given that from Digital Electronics you know that a J-K can be equally as simple as a D-type to
implement from transistors or gates, it is reasonable to assume that a clock enable D-type is also as
simple. Therefore why should we ever use gated clocks instead of clock enable inputs ? The answer
is that if we have a large number of flip-flops that are all to share the same clock-enable expression,
we would have two penalties of using clock enable: 1. we have to route the clock enable signal to
all of them, and 2. we have to make the flip-flops from logic which is capable of being clocked at
every opportunity. We use clock-enable inputs where single or smaller numbers of flip-flops are to
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Figure 63: A ‘safe’ alternative to using clock enables ?

be enabled in unison, such as in a broadside register with clock enable. For single flip-flops, the
clock enable is best considered as just one aspect of the FSM that the flip-flop is part of.

3.11 Clock and Data Skews

Skew is when a signal that is intended to arrive at several places at the same time actually arrives
at various times.

Figure 64 shows a shift register circuit with clock skew. Skew is the enemy of synchronous, finite-
state machines, since in the worst scenario, the output of one flip-flop may have changed, causing
a change in the input to another flip-flop, before that second flip-flop has been clocked itself: this
destroys the FSM behaviour.

If there is considerable delay in both the data and the clock, and these delays are random, then
the shift register is not likely to work well. An example of such a system is where the shift register
is actually a communications medium snaking around a number of circuit boards in a system. The
delays are in the interconnecting cables. Typically, the logic at each station is not simply a D-type,
but is logic which can read and change the data as it passes and the data may be a bus instead of
a single wire. In this case, for low-speeds, the solution is to invert the clock at each hop.

Exercise: Draw a timing diagram for the inverting-the-clock solution and work out the maximum fre-
quency of operation. Use the following figures: conductor delay random between 4 and 9 nanoseconds,
flip-flop set-up time 2 nanoseconds, hold time 1 nanoseconds and propagation time 5 nanoseconds.
Note: in practice you would not run such a system close to the maximum you have just calculated.

3.12 Crossing Asynchronous Boundaries

Figure 65 shows two clock domains with signals crossing between them. There may be signals in
the reverse direction between the clock domains, but these would not demonstrate anything further
that is significant.

The first thing to note is that for a single signal between the domains, there is always the possibility
of metastability and failure of the whole system. However, with careful flip-flop design, a designer
can reduce this to less than the probability of winning the lottery every week for a year: so this
is not a real concern. Since there is more than one clock in the world, we do have to build these
circuits in reality.

The main thing to note is that there will be skew between the lines and in the characteristics of the
individual flip-flops. Therefore it is impossible to be sure of capturing a consistent view of them at
the receiver if they are all changed at once or changed freely by the source. Therefore a protocol
is required. A suitable protocol is to denote one of the signals as a guard or qualifier. Only if the
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guard has its active value is it implied that the data on the remaining signals is valid. The source
must execute or implement a protocol that simply delays the assertion of the guard with respect
to the other wires such that the other wires are sure to be seen as settled if the guard is seen to
hold. The parallel printer port uses this approach (figure 48).

A good way to help avoid metastability is to use two flip-flops in tandem (as shown for the guard).
Even if the first oscillates a while after being violated, it is most unlikely that it is still oscillating
a clock cycle later when transferred to the second flip-flop. The additional delay introduced by the
second flip-flop will result in the guard being presented to the receiver logic later than the signal
lines, thus ensuring that they are stable.

Exercise: Is it possible to use changes of state of a guard signal, rather than its level, to indicate that
the data on the remaining wires is valid? If so, sketch an example circuit and explain the benefits.
What assumptions regarding the relative clock frequencies in use have you made, if any ?

3.13 FSM clocks derived from another FSM

Figure 66 shows a FSM whose outputs are used to clock another FSM. Examples of this are com-
mon, as in the serial to parallel convertor shown in figure 62 and the CFR two-chip decomposition
shown in section 5.4. Such structures must be used carefully. The Mealy output clocking a slave
FSM is probably a bad idea. The Moore output used to clock a slave is normally fine, but the logic
function generating it must be free from hazards, otherwise the clock will glitch. A function of one
state variable is best, and the state assignment should have been considered with that in mind.

The non-clock signals between the master and slave FSM also need attention. The Moore output
from the slave to the master will not cause hazards, but will tend to restrict the maximum frequency
of safe clocking for the system as a whole. The Moore output from the master to the slave needs
careful attention to hazards, since it must never change at the same time as the slave clock signal.
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Exercise (long): Consider an FSM or system which generates a set of output signals that have to be
carried via an intermediate subsystem which uses a separate (asynchronous), faster clock, and then
delivered to a receiving system that must be clocked with a transported version of the original clock. An
example of this would be where a company has fire alarm systems on two sites which are interconnected
on a high speed data link owned by a telephone company, where the link is also carrying many other
services. Sketch the basics of the circuits involved.
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Figure 67: A wafer outline showing where it will be diced (Chips are not always square).
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Figure 68: A chip in its package, ready for bond wires.

4 Technology, Speed, Power and Delay

Learners’ Guide: What you should learn from this section is:

• Most designs for volume manufacture require new chips to be made.

• Field-programmable devices are used when volume does not dictate new
chips or for prototypes.

• Systems are getting faster for a given power consumption, mainly due to
shrinking physical feature size.

• It is sensible to implement systems with chips up to 1 centimetre on a side.

• Because of shrinking, modules which were previously complete chips now
occupy just part of a new chip.

The cost of a system depends on the cost of its parts. There are many ways to design a system
and typically we want to minimise cost. Therefore, before you can design a system, you need to be
familiar with a vocabulary of technologies and pre-existing parts. You also need to know how to
produce new integrated circuits for your application design. Application-specific integrated circuits
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Figure 69: The corner of a typical chip showing IO and power pads.

(ASICs) and make up a large fraction of the IC market by revenue.

4.1 Basics of ICs.

Note: this section is a briefest of introductions to VLSI.

Chips are made of Si or GaAs with layers of Al on top for signal wiring. Chips are laid out as a
rectangular grid on a wafer of the substrate material. Wafers are about 0.3 mm thick and from
3 to 12 inches in diameter. Most of the wafer depth is only present for handling reasons and the
active portion of the chip lies in the top few microns of the wafer or is built up above the top
surface by deposition.

Wafers are processed using ion implantation and photo-resistive etching at elevated temperatures
in the presence of dopant and etchant gasses. Each photo-resist is first exposed to an ultraviolet
or X-ray source under a mask generated by the CAD tools. Between 7 and 25 masks might be
used, depending on the technology. The masks are stepped over the wafer to form the rectangular
array of chips. Masked areas are left with an intact layer of resist and then remain unaffected by
the next processing step, hence successive masks build up complex three dimensional structures
forming the active components and conductors. Typical chips are today made using 0.18 to 0.3
micron feature sizes. The smaller a transistor the faster it operates.

A wafer contains many chips which are diced after wafer testing. The chip is then packaged to
ease handling and to dissipate heat.

A typical chip is 4 to 100 square millimetres.

Wires are connected to chips at bond pads. Bond pads are about 100 microns square and 150
microns apart or half this size (linear dimension) in modern devices. The corner of a typical device
is shown in Figure 69. Most chips have the shown power and ground ‘rings’ around the outside
with the bond pads in between. These rings provide low resistance power supplies to the pad logic.
The pad logic is buffer circuitry to provide high-power drive to off-chip loads and to protect the
internal circuitry from external static discharges.
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Figure 68 shows the chip carrier cavity containing a die. Connections are made from the conductors
in the package to the bond pads around the chip’s perimeter using cold-welded gold wires.

4.2 Will an ASIC be core or pad bound ?

A chip may be either:

• Pad bound if it has many more pins than natural perimeter, or

• Core bound if it has sufficient active core area to dominate.

A pad bound chip is wasteful of area since we have to use a bigger die to get the pads on, but the
body of the die is not fully occupied with gates.

Generally we end up with separate fabrication processes for each of the following sub-
systems:

• memory,

• random logic,

• analogue circuits and analogue to/from digital conversion,

• high speed (e.g. clock rate greater than about 1000 MHz).

Also, we must group together functions which can be implemented in the same technology, so they
can most easily be put on one chip. This is hard if the functions do not otherwise have much to
do with each other: we might prefer to put the two sections of logic further apart.

4.3 Chip cost versus area

The cost of a chip divides into two parts: NRE and per-device cost.

NRE — non-recurring expenditure. NRE is paid once, regardless of how many devices are made.
It consists of:

– design cost (labour, computer time, management overheads),

– mask making cost.

Per device — recurring expenditure consists of:

– cost of basic silicon wafer,

– cost of processing a wafer,

– cost of testing devices,

– cost of device packages and packaging,

– cost of further testing, possibly under stressful conditions.

The per device cost is influenced by the yield — the fraction of working dice.

The fraction of wafers where at least some of the die work is the ‘wafer yield’ and is typically close
to 100 percent for a mature fabrication process.

The fraction of die which work on a wafer (often simply the ‘yield’) depends on wafer impurity
density and device size. Die yield goes down with chip area.

The fraction of devices which pass wafer probe (i.e. before the wafer is diced) and fail post packaging
tests is very low. However, full testing of analog sections or other lengthy operations are typically
skipped at the wafer probe stage.
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Area Wafer dies Working dies Cost per working die

2 9000 8910 0.56
3 6000 5910 0.85
4 4500 4411 1.13
6 3000 2911 1.72
9 2000 1912 2.62
13 1385 1297 3.85
19 947 861 5.81
28 643 559 8.95
42 429 347 14.40
63 286 208 24.00
94 191 120 41.83
141 128 63 79.41
211 85 30 168.78
316 57 12 427.85
474 38 4 1416.89

Table 1: Output from the die cost program.

4.4 Example of CMOS die cost

A six inch diameter wafer has area (3.14r2) = 18000 mm2.

A chip has area A, which can be anything between 2 to 200 mm2 (including scoring lines).

Dies per wafer is 18000/A

Processed wafer cost might be 5000 pounds. (Actually it’s probably about one third this cost to
the silicon foundry, but there are overheads and profit to add on.)

Probability of working = wafer yield × die yield (assume wafer yield is 1.0 or else included in the
wafer cost).

Assume 99.5 percent of square millimetres are defect free. Die yield is then

P (All A squares work) = 0.995A

cost of working dice is
5000

18000
A 0.995A

pounds each.

Here is a program to estimate the cost of a working die given a six inch wafer with a processing
cost of 5000 pounds and a probability of a square millimetre being defect free of 99.55 percent. Its
output is shown in table 1.

#include <math.h>

display(double area)

{

double dies = 18000.0 / area;

double yield = dies * pow(0.995, area);

double cost = 5000.0 / yield;

printf("%.0f %.0f %.0f %.2f\n", area, dies, yield, cost);

}

int main()

{

double area = 2.0; /* area in square mm */

while (area < 500.0)

{

display(area);

area = trunc(area * 1.5);

}

}

Large dies sometimes use redundant design such that a small number of faults can be tolerated.
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Figure 70: A taxonomy of integrated circuits.

Automatic circuitry or else laser or ion beam physical trimming is used to patch out faulty sections
(of say a RAM array) and substitute previously redundant sections.

4.5 Classes of Integrated Circuits

Figure 70 presents a taxonomy of chip design approaches. The top-level division is between stan-
dard parts, ASICs and field-programmable parts. Where a standard part is not suitable the
choice between full-custom and semi-custom and field-programmable approaches has
to be made, depending on performance and cost requirements.

4.5.1 Standard Parts

A standard part is essentially any chip that a chip manufacturer is prepared to sell to someone
else along with a datasheet and EDA models. The design may actually previously have been an
ASIC for a specific customer that is now on general release. However, most standard parts are
general purpose logic, memory and microprocessor devices. These are normally full custom designs
designed in-house by the chip manufacturer to make the most of in-house fabrication line, perhaps
using optimisations not made available to others who use the line as a foundry. Other standard
parts include graphics controllers, LAN controllers, bus interface devices, and miscellaneous useful
chips.

4.5.2 Masked ASICs.

A masked ASIC (application specific integrated circuit) is a device manufactured for a customer
involving a set of masks where at least some of the masks are used only for that device. These
devices include full-custom and semi-custom ASICs.

A full-custom chip (or part of a chip) has had detailed manual design effort expended on its circuits
and the position of each transistor and section of interconnect. This allows an optimum of speed
and density and power consumption.

Full-custom design is used for devices which will be produced in very large quantities:
e.g. millions of parts where the design cost is justified. Full-custom design is also used when
required for performance reasons. Microprocessors, memories and digital signal processing devices
are primary users of full-custom design.

In semi-custom design, each cell has a fixed design and is repeated each time it is used, both within
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a chip and across many devices which have used the library. This simplifies design, but drive power
of the cell is not optimised for each instance.

Semi-custom is achieved using a library of logic cells and is used for general-purpose
VLSI design. Figure 80 shows a cell from the data book for a standard cell library. This device
has twice the ‘normal’ drive power, which indicates one of the compromises implicit in standard
cell over full-custom, which is that the size (driving power) of transistors used in a cell is not tuned
on a per-instance basis.

There are two types of semi-custom devices:

• standard cell (for high volume)

• gate array (for volume < 5K devices).

In standard cell designs, cells from the library can freely be placed anywhere on the device and
the number of IO pads and the size of the die can be freely chosen. Clearly this requires that all
of the masks used for a device are unique to that device and cannot be used again. (Mask making
is one of the largest costs in chip design).

In gate array designs, the silicon vendor offers a range of chip sizes. Each size of chip has a fixed
layout and the location of each transistor, resistor and IO pad is common to every design that uses
that size. A gate array is configured for a particular design by wiring up the transistors (and other
components) in the desired way. Many transistors will be unused. The wiring up is, as usual, done
with the top two or three layers of metal wiring. Therefore only two or three masks need be made
to make a new design.

Silicon vendors will typically have stocks of wafers which have had the bottom 15 to 20 process
steps made and are only awaiting final metallisation to be turned into usable devices. Hence design
time is low. Risk is also low since the finished chip has only a small NRE cost and gate array
technology is intrinsically conservative and hence reliable.

The disadvantage of gate arrays is their intrinsic low density of active silicon.

Standard cell designs use a set of well-proven logic cells on the chip, much in the way that previous
generations of standard logic have been used as board-level products, such as Texas Instruments’
System 74.

A variation on the semi-custom approach is to include full-custom macrocells such as processor
cores in fixed positions on the wafer.

Exercise: Ignoring the title, determine from the data sheet whether the cell in figure 80 is for standard
cell or gate array use ? What other information about the cell is needed to prepare an audit of resources
used in a design which has used this cell ? The audit refered to is typically a report generated by the
CAD tools which gives summary information.

4.5.3 Field-programmable logic

About 25 to 40 percent of chip sale revenue now comes from field programmable logic devices.
These are chips which can be programmed electronically on the user’s site to provide the desired
function. The Xilinx FPGA parts used in the Part 1B E+A classes are one of the most important
examples of field-programmable logic.

Field-programmable devices may be volatile (need programming every time after power up), re-
programmable or one-time programmable. This relates to how the programming information is
stored inside the devices, which can be in RAM cells or in any of the ways mentioned for ROM
devices in section 1.7.

4.5.4 FPGAs

An FPGA (field-programmable gate array) consists of an array of configurable logic blocks (CLBs),
as shown in Figure 71. Not shown is that the device also contains a good deal of hidden logic used
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just for programming it. Some pins are also dedicated to programming. Such FPGA devices have
been popular since about 1990.

Each CLB (Figure 72) typically contains one or two flip-flops, and has a few (five shown) gen-
eral purpose inputs, some special purpose inputs (only a clock is shown) and two outputs. The
illustrated CLB is of the look-up table type, where the logic inputs index a small section of pre-
configured RAM memory that implements the desired logic function. For five inputs and one
output, a 32 by 1 SRAM is needed. Some FPGA families now give the designer write access to
this SRAM, thereby greatly increasing the amount of storage available to the designer. However,
it is still an expensive way to buy memory.

All CLBs within a FPGA generally have the same structure, but FPGAs are available with lower
and higher functionality CLBs. The best size of CLB is not yet clear. Modern designs of FPGA
have a hierarchy of CLB interconnection patterns, giving CLB clusters within clusters.

An FPGA is very like a mask-programmed gate array to use. The design flow and CAD tools are
virtually identical. The expenditure before the designer has the first device in her hands might be
1000 times lower. The cost of further devices is at least 10 times higher than mask-programmed
devices, owing to the programming cost and wasted die area devoted to the programming activities.
Clearly there is a crossover production volume point!

FPGAs also tend to be quite slow, owing to the signals passing through hidden logic used only for
configuration.

Often a designer or company will build prototypes and early production units using FPGAs and
then use a drop-in mask-programmed equivalent once the design is mature and sales volumes pick
up.

Exercise: Attempt to sketch the logic needed inside one of the programmable switch matrix boxes.
You should find this is a vast amount of logic and therefore understand why FPGAs are so expensive
for their functionality. (If you know how to use pass transistors, this will help your design).

4.5.5 PALs

A PAL is programmable array logic device. Figure 74 shows a typical device. Such devices have
been popular since about 1985. The illustrated device has 8 product terms per logic function, and
so can support functions of medium complexity. Such devices are very widely used and can feature
high speed operation with clock rates of above 100 MHz. They are really just highly structured
gate arrays. Every logic function must be multiplied out into sum-of-products form and hence is
achieved in just two gate delays.

Programmable macrocells (Figure 75) enable the output functions to be either registered or com-
binatorial. Small devices (e.g. with up to 10 macrocells) offer one clock input; larger devices with
up to about 100 macrocells are also available, and generally offer several clock options. Often some
macrocells are not actually associated with a pin, providing a so called buried state flip-flop.

Figure 76 shows part of a PAL description for the PAL shown in figure 74, as entered by a designer
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pin 16 = o1;

pin 2 = a;

pin 3 = b;

pin 4 = c

o1.oe = ~a;

o1 = (b & o1) | c;

-x-- ---- ---- ---- ---- ---- ---- (oe term)

--x- x--- ---- ---- ---- ---- ---- (pin 3 and 16)

---- ---- x--- ---- ---- ---- ---- (pin 4)

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

x (macrocell fuse)

Figure 76: Example programming of a PAL showing only fuses for the top macrocell.
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Figure 77: Delay-power style of technology comparison chart.

in a typical PAL language, and part of the fuse map that would be generated by the PAL compiler.
Each product line has seven groups of four fuses and produces the logical AND of all of the signals
with intact fuses. An ‘x’ denotes an intact fuse and all of the fuses are left intact on an unused
product lines in order to prevent the line ever generating a logical one (a gets ANDed with abar
etc.). The fuse map is loaded into a programming machine (in a file format known as JEDEC),
an unused PAL is placed in the machine’s socket and the machine programs the fuses in the PAL
accordingly.

Exercise: How large a binary counter can the illustrated device implement ? (Hint: are there sufficient
product terms for the most-significant bit ?)

PALs achieve their speed by being highly structured. Their applicability is restricted to small
finite state machines and other glue logic applications.

4.6 Delay-power product

Aside from the selection of design methodologies just discussed, the designer must choose the basic
circuit technology to use:

• silicon or GaAs

• bipolar or unipolar

• saturating or non-saturating.

As the size of transistors on chips is reduced with ever improving fabrication equipment, the number
of devices per unit area increases and the delay-power product (power consumption multiplied by
propagation delay) decreases.

We here consider the main three circuit technologies of the 70’s and 80’s using a quad AND gate
chip SSI chip for example (shown generically in Figure 78). In the 90’s, CMOS is dominating most
application areas.
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---------- ------- ------------ ------ --------

technology device propagation power product

delay (ns) (mW) (pJ)

---------- ------- ------------ ------ --------

CMOS 74hc00 7 ns 1 mW 7

TTL 74f00 3.4 ns 5 mW 17

ECL sp92701 0.8 ns 200 mW 160

---------- ------- ------------ ------ --------

The CMOS gate has the property that it consumes virtually no power when outputs are not
changing.

The ECL gate is an old technology, but it is still the fastest.

Gates in the core of an IC tend to be one order better in speed or power when compared with the
SSI gate used in the example (they have reduced drive requirement).

4.7 Fanout and delay estimations.

Figure 79 shows a typical net, driven by a single source. To change the voltage on the net, the
source must overcome the stray capacitance and input loads. The fanout of a gate is the number
of devices that its output feeds. The term fanout is also sometimes used for the maximum number
of inputs to other gates a given gate is allowed to feed, and forms part of the design rules for the
technology.

The speed of the output stage of a gate, in terms of its propagation delay, decreases with output
load. Normally, the dominant aspect of output load is capacitance, and this is the sum of:

1. the capacitance proportional to the area of the output conductor

2. the sum of the input capacitances of the devices fed.

To estimate the delay from the input to a gate, through the internal electronics of a gate, through
its output structure and down the conductor to the input of the next gate, we must add three
things:
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Simulator/HDL Call

NAND4 Standard Cell

4 input NAND gate with x2 drive

Schematic Symbol

NAND4X2(f, a, b, c, d);
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Switching characteristics : Nominal delays (25 deg C, 5 Volt, signal rise and fall 0.5 ns)
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Maximum Maximum Maximum
Technology clock speed gate count pin count

GaAs bipolar 50 GHz 50 5
GaAs fet 3 GHz 300 100
Si ECL 3 GHz 5000 300

Si CMOS 400 MHz 1 E6 500

Within Si CMOS

Full-custom 400 MHz 1 E6 500
Standard cell 200 MHz 40000 500
Gate array 100 MHz 20000 500

PAL 75 MHz 500 68
FPGA 35 MHz 4000 200

Table 2: Approximate limits on contemporary technology (1987).

1. the internal delay of the gate, termed the intrinsic delay

2. the reduction in speed of the output stage, owing to the fanout/loading, termed the derating
delay,

3. the propagation delay down the conductor.

The propagation delay down a conductor obeys standard transmission line formula and depends
on the distributed capacitance, inductance and resistance of the conductor material and adjacent
insulators. For circuit board traces, resistance can be neglected and the delay is just the speed of
light in the circuit board material: about 7 inches per nanosecond, or 200 metres per microsecond.

On a chip, the speed of light can be neglected because chips are physically small, but the resistance
of the aluminium conductors is sufficiently large to have an effect for critical applications, such as
master clock signals.1

The upshot of this is that on a chip, we can mostly neglect the third aspect of delay, whereas on
a circuit board, we need to model certain critical conductors as components in themselves. These
have a simple delay model, whose value can be set by post routing back annotation.

The first two aspects of delay may easily be absorbed into the model for a component. We can use
the following formula

device delay = (intrinsic delay) + (output load × derating factor).

The intrinsic speed of a device is given in its data sheet, as is the derating factor and the loading
factor of its inputs. Typical values for a standard cell array are shown in Figure 80. The output
load is the sum of a track dependent part and the fanout dependent part.

The track dependent part is a library constant times the track area.

The load dependent part is the sum of the input loads of all of the devices being fed.

Exercise: How true is the above model of signal delay when we use field-programmable gate arrays
with high effective track resistance ? The conductors on FPGAs consist of many sections of real metal-
lic conductor interconnected by the user-programmed connection points. We then have considerable
resistances at points along each conductor’s path. How would you estimate the various delays for the
staggered arrival of a signal on each part of the net ?

4.8 Comparative view of digital logic technologies

Table 2 gives some approximate numbers for what can be achieved with today’s (1987) chips. These
numbers are only accurate to about half an order of magnitude. Technology is always advancing,
so these figures soon become way out of date!

1Older technologies used polysilicon interconnections which had significant resistance and so the different gates
connected to a polysilicon net would experience different arrival times of a signal at their inputs.
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Figure 81: Typical Platform Chip

For CMOS technology, the number of transistors on a chip and the clock rate both seem to double
every three years.

4.9 SoC Platform Chips

A platform chip is the modern (2004) equivalent of a microcontroller. The set of components
remains the same, but each has far more complexity: e.g. 32 bit processor instead of 8. In
addition, rather than putting a microcontroller on a PCB as the heart of a system, the whole
system is placed on the same piece of silicon as the platform components. This gives us a system
on a chip (SoC).

The example illustrated in figure 81 has two ARM processors and two DSP processors. Each ARM
has a local cache and both store their programs and data in the same off-chip DRAM.

The left-hand-side ARM is used as an I/O processor and so is connected to a variety of standard
peripherals. In any typical application, many of the peripherals will be unused and so held in a
power down mode.

The right-hand-side ARM is used as the system controller. It can access all of the chip’s resources
over various bus bridges. It can access off-chip devices, such as an LCD display or keyboard via a
general purpose A/D local bus.

The bus bridges map part of one processor’s memory map into that of another so that cycles can
be executed in the other’s space, albeit with some delay and loss of performance. A FIFO bus
bridge contains its own transaction queue of read or write operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such SRAM may dominate the die
area of the chip. If both are fetching instructions from the same port of the same RAM, then they
had better be executing the same program in lock-step or else have some own local cache to avoid
huge loss of performance in bus contention.

The rest of the system is normally swept up onto the same piece of silicon and this is denoted with
the ‘special function peripheral.’ This would be the one part of the design that varies from product
to product. The same core set of components would be used for all sorts of different products,
from iPODs, digital cameras or ADSL modems.
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5 Hardware, Software and Design Partition.

Learners’ Guide: What you should learn from this section is:

• The functions of a system can be expressed in a programming language or
similar form and this can be compiled fully to hardware or left partly as
software

• Choosing what to do in hardware and what to do in software is a key decision.
Hardware gives speed (throughput) but software supports complexity.

• Partitioning of logic over chips or processors is motivated by speed, technol-
ogy and module reuse.

A hardware system can be designed using only hardware or hardware with an embedded processor
and software in ROM. Perhaps several processors are to be used. A design also must be partitioned
into standard components and application specific integrated circuits (ASICs). The choice of which
parts of the design are realised in what technology is the design partition problem.

5.1 Embedded Systems

A processor that is permanently connected to a single ROM which contains all of the software that
the processor will ever execute is called an embedded processor. Here we consider when to use an
embedded processor, and then, when using one, the designer has to chose whether to design a new
one or use an existing one.

The main difference between a hardware solution and a software solution is the degree
of parallelism. Processors typically execute one instruction at a time, re-using the same hardware
components again and again. Hardware solutions tend to have dedicated circuits for each function.
If most of the hardware is likely to be idle for most of the time, a processor is preferred, but
if a processor cannot achieve the throughput required, increased parallelism using hardware is
preferred.

Complex functions normally require a processor, but CAD tools are evolving, allowing complex
functions to be expressed algorithmically and then automatically converted to a logic gate imple-
mentation.

High-speed processing normally requires dedicated hardware. For instance, consider the error
correction performed by a CD player to overcome dirt and scratches. When CD players first came
out, this error correction was done with dedicated hardware, but today, microprocessors have
increased in speed, and so the function can be done using the processor that is already there to
provide other complex functions (e.g. track skip). However, on the latest, x52 speed CD/DVD
drives the error correction must be performed that much faster, and so dedicated hardware is
re-introduced.

Processors can be placed on an ASIC.

Processors give flexibility: if the design is likely to be changed in minor ways to form new models,
or to implement field upgrades, then using a processor that may be given a new software release
is a good technique.

Standard processor chips can be very cheap for a given performance. This is because a very great
deal of effort is put into their design and they are sold in large quantities, thereby reducing price.
Part of the cost of any product is in testing it. A standard processor not only comes with its
own test qualification programme, it is able to execute software to perform tests on the rest of the
system.

The decision to design and use a custom processor for an application should not be taken lightly.
It can be useful, however, when the application is fairly simple or highly specialised. Examples are
found in signal processing, where a particular algorithm needs to be executed at high speed; for
instance, to track a missile or in the stready-cam function of a camcorder.
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Figure 82: Addition of two integers serially, l.s.b. first

5.2 Logic Synthesis and Time/Space Exchange

If one considers an embedded processor connected to a ROM, it may be viewed as one large FSM.
Since for any given piece of software, the ROM is unlikely to be full and there are likely to be
resources in the processor that are not used by that software, the application of a good quality
logic minimiser to the system, while it is in the design database, could trim it greatly. In most real
designs, this will not be helpful: for instance, the advantages of full-custom applied to the processor
core will be lost. In fact, the minimisation function may be too complex for most algorithms to
tackle on today’s computers.

On the other hand, algorithms to create a good static scheduling of a fixed number of hardware
resources work quite well. A processing algorithm typically consists of multiple processing stages
(e.g. called pre-emphasis, equalisation, coefficient adaptation, FFT, deconvolution, reconstruction
and so on). Each of these steps normally has to be done within tight real-time bounds and so
parallelism through multiple instances of ALU and register hardware is needed. The Cathedral
DSP compiler was an early and famous tool for helping design such circuits. Such tools perform
time/space folding/unfolding of the algorithm to generate the static shedule that maps operations
and variables in a high-level description to actual resources in the hardware. Data dependencies can
cause variations in the time for certain steps, so a potentially a dynamic schedule could make better
use of resources but the overhead of dynamic scheduling can outweigh the cost of the resources
saved if the data dependencies are rare.

5.2.1 Hardwired, bit-serial algorithms.

Bit-serial arithmetic is also a key approach in custom signal processing. The adder shown in
figure 82 requires only about 10 gates to add any number of bits. It operates l.s.b. first so that the
carry from one digit is available for the next digit. The clock speed for the calculation does not
need to be reduced if longer words are processed, but the pipeline delay does go up. Multiplication
is also easy in bit serial form, as shown for multiplication by a constant in figure 83. Consider the
same functions implemented in naive, broadside implementations.

A battery operated walkman CD ROM player may implement a great deal of DSP. The printing on
the unit may advertise ‘8 times oversampling D-to-A bitstream convertor and MASH bit mapping’.
The processing power required for this is comparabel to the performance of a desktop computer,
but through the use of bit serial arithmetic and hard-wired algorithms, the processing
cab be implemented with little power or silicon area.

The problem with bit-serial processing for the human designer is that it is very tricky to work out
where individual bits are at any one time, and the optimisations that are possible cannot readily
be seen by the human. Therefore, good quality CAD tools are vital in the design of such systems.
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Figure 83: Bit-serial multiplication of an integer by a hardwired constant

5.3 ASICs

The cost of developing an ASIC has to be compared with the cost of using an existing part. The
existing part may not perform the required function exactly, requiring either a design specification
change, or some additional glue logic to adapt the part to the application.

More than one ASIC may be needed under any of the following conditions:

• application specific functions are physically distant

• application specific functions require different technologies

• application specific functions are just too big for one ASIC

• it is desired to split the cost and risk or reuse part of the system later on.

Factors to consider on a per chip basis:

• pad count limitation (pad density limit of 15 per mm)

• power consumption limitation (powers above 5 Watts need special attention)

• gate count limitation (above 500 kgates is getting big for CMOS)

• speed of operation — influences choice of technology

• will it be core or pad bound ?

• special considerations :

– special static or dynamic RAM needs

– analogue parts - can these also be integrated onto the ASIC ?

– high power handling outputs for load control: e.g. motors.

• availability of a developed module for future reuse

Power dissipation is generally proportional to:

Power ∝ (clock speed) × (number of gates) × (supply voltage squared).

Various technologies can be positioned in the speed-power plane, as shown in Figure 77 and as
time goes by, things get better.
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5.4 Partitioning example: The Cambridge Fast Ring two chip set.

Two devices were developed for the CFR local-area network, illustrating the almost classical design
partition required in high-speed networking. They were never given grander names than the ECL
chip and the CMOS chip. The block diagram for an adaptor card is shown in Figure 84.

The ECL chip clocks at 100 MHz and contains the minimal amount of logic that needs to clock at
the full network clock rate. Its functions are:

• implement serial transmission modulator and demodulator

• convert from 1 bit wide to 8 bits wide and the other way around

• perform reception byte alignment (when instructed by logic in the CMOS chip).

Other features:

• ECL logic can support analogue line receivers at low additional cost so can receive the
incoming signal directly on to the chip.

• ECL logic has high output power if required (1 volt into 25 ohms) and so can drive outgoing
twisted pair lines directly.

The CMOS chip clocks at one eighth the rate and handles the complex logic functions:

• CRC generation

• full/empty bit protocol

• minipacket storage in on-chip RAM

• host processor interface

• ring monitoring and maintenance functions.

The ECL chip has at least 50 times the power consumption of the CMOS chip. The CMOS chip
has more than 50 times the gates of the ECL chip.

Two standard parts are used to augment the CFR set: the DRAM chip incorporates a dense
memory array which could not have been achieved for anywhere near the same cost onboard the
CMOS chip and the VCO (Voltage Controlled Oscillator) device used for clock recovery was left
off the ECL chip since it was a difficult-to-design analogue component where the risk of having it
on the chip was not desired.

PALs are used to ‘glue’ the network interface itself to a particular host system bus. Only the glue
logic needs to be redesigned when a new machine is to be fitted with the chipset. PALs have a
short design turn-around time since they are field-programmable.

For a larger production run, the PALs would be integrated onto a custom variant of the CMOS
chip.

5.5 Partitioning example: An external PC Modem.

Figure 86 shows the block diagram of a typical modem. The illustrated device is an external
modem, meaning that it sits in a box beside the computer and has an RS-232 serial connection to
the computer. It also requires its own power supply.

The device contains a few analog components which behave broadly like a standard telephone,
but most of it is digital. A relay is used to connect the device to the line and its contacts mirror
the ‘off-hook’ switch which is part of every telephone. It connects a transformer across the line.
The relay and transformer provide isolation of the computer ground signal from the line voltages.
Similarly the ringing detector often uses a opto-coupler to provide isolation. Clearly, these analog
aspects of the design are particular to a modem and are designed by a telephone expert.
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Modems from the 1960’s implemented everything in analog circuitry since microprocessors and
DSP were not available. Today, two microprocessors are often used, but as processing power
increases, this can be reduced to one (or sometimes even none, if the main processor of a PC
provides the functions needed).

The reason for two processors are interesting and will be discussed in lectures.

Note that the non-volatile RAM requires a special manufacturing processing step and so is not
included as a resource on board the singe chip processor. Similarly, the RS-232 drivers need to
handle voltages of +/- 12 volts and so these cannot be included on chip without increasing the
cost of the rest of the chip by using a fabrication process which can handle these voltages. The
NV-RAM is used to store the owner’s settings, such as whether to answer an incoming call and
what baud rate to attempt a first connection, etc..

5.6 Partitioning example: A Bluetooth Module.

An initial implementation of the Bluetooth radio was made of three pieces of silicon bonded onto
a small fibreglass substrate with overall area of 3 square centimetres. One application for these
miniature radios is the replacement of wired cables, and so the module has line drivers that are
compatible with the signals on the cables being replaced.

The module was partitioned into three pieces of silicon partly because the overall area required
would give a low yield, but mainly because the three sections used widely different types of circuit
structure.

The analog integrated circuit contained amplifiers, oscillators, filters and mixers that operate in the
2.4 GHz band. This was too fast for CMOS transistors and so bipolar transistors with thin bases
were used. The module amplifies the radio signals and converts them using the mixers down to an
intermediate frequency of a few MHz that can be processed by the ADC and DAC components on
the digital circuit.

The digitial circuit had a small amount of low-frequency analog circuitry in its ADC and DACs
and perhaps in its line drivers if these are analog (e.g. hifi). However, it was mostly digital, with
random logic implementations of the modem functions and a microcontroller with local RAM.
The local RAM holds a system stack, local variables and temporary buffers for data being sent or
received.

The FLASH chip is a large, regular, non-volatile memory array that can hold firmware for the
microcontroller, parameters for the modem and encryption keys and other smart card functions.

Today, the complete Bluetooth module can be implemented on one piece of silicon, but this
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still presents a major technical challenge owing to the diverse requirements of each of the sub-
components.

5.7 Hardware-Software Codesign

Codesign is the name for an approach to system design where both the hardware
and software components are entered in a common language and the selection of
target architecture is specified in other ways, including automatically. New languages
for codesign are a research area. Existing languages like C and Java can also be used provided
program bounds in terms of recursion depth and dynamic storage allocation can be determined
fully at compile time.
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6 Further Example Circuit Structures.

Learners’ Guide: What you should learn from this section is:

• Several further illustrations of design approaches.

• Consider the complexity of providing a user interface to items of hardware.

• A microprocessor often helps with control and the design of the user interface
even if it is not really needed for the actual operation of a device.

• Whether to use custom integrated circuits depends on selling volume and
availability of standard parts.

This section introduces some further, fundamental building blocks and includes examples of real
products. The important points to note are the reasons for the design partition.

6.1 A Microcontroller: A Single Chip Processor

Figure 88 shows the block diagram of a typical single-chip computer or microcontroller. Such
devices are available in 24, 40 or 80 pin packages and can cost around a pound. The device
contains the whole of a computer, requiring externally only a power supply and some clock and
reset components. A number of programmable I/O pins are provided, but generally another basic
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mode of operation is provided where 24 or so of them turn into the processor address and data
busses for connection of external devices, such as further RAM or EPROM.

Programming is performed in all of the ways available for ROMs: today this is mainly mask
programming and Flash.

A Universal asynchronous recevier and transmitter (UART) is normally always provided to help
connect to RS-232 serial interfaces. Other standard interfaces, including Ethernet and USB are
becoming common on microcontrollers.

These devices are found everywhere today, from keyboards, clock radios, mice, telephones, car
window winders, ‘computer controlled’ cassette recorders, cell phones and modems.

6.2 Scan Multiplexing.

When a large number of leds or switches need to connected, as in a display or keyboard, the number
of connections can normally reduced by connecting them in a matrix. Figure 89 shows that 25
LEDs can be connected to just ten signals.

The matrix gives a scan-multiplexed display or keyboard. In the display, one vertical column line
can be driven to logic one at a time and a zero placed on the horizontal lines that should be
illuminated in that column. A circuit to repeatedly read out the contents of a RAM and display it
is shown in figure 91. Clearly, the desired LEDs are not all on at once, but by scanning the display
faster than the human eye can detect flashes (about 50 Hz) and by using sufficiently large currents,
so that the elements are brighter than would otherwise be required, this is overcome. The current
is set by the value of a series current limiting resistor that is not shown.

For a scan-multiplexed keyboard, the switches take the place of the LEDs. Push-to-make, normally
open switches must be used and the user should not press two at once. The scanning circuit must
take one row line low in turn. Pull-up resistors keep the column lines at logic one unless a switch
to a low row line is pressed.

Figure 90 shows the full PCB circuit of a typical infra-red remote controller. The PCB circuit of a
toy electric organ would be identical, but with the IR diode replaced with a loudspeaker: clearly
the chip would be different. A pocket calculator also has roughly the same circuit, except there is
a keyboard and a display to multiplex.

Exercise (long): Sketch the full circuit of the chip in an infra-red remote control handset, as used
for TVs and VCRs etc.. The device should have about 50 push keys. Output is through a pair of
infra-red transmitting diodes which go on or off together. The design must include a ROM which
can be programmed at chip manufacture with the desired sequence of pulses needed. The ROM must
contain 16 bits for each key and these bits must be transmitted in turn through the IR diode using
a 1 millisecond pulse of light for a zero and a 3 millisecond pulse for a one, with a 1 millisecond gap
between each pulse.
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Exercise: For the IR handset, is it necessary for the clock to be running at all times or only when a
key is pressed ? This design aspect will affect battery life greatly.

Figure 92 shows how a multiplexor can be added to allow update of the display RAM from a
processor or similar. The display will briefly show the wrong data while being updated, but
this may be imperceptible to the human. The compromise implied by such psudo-dualporting is
accepted instead of having the cost penalty of truely dual-ported storage. (A second independent
port to a RAM or register file greatly adds to silicon area).

Figure 93 shows the use of a ROM as a function look up table. All electric guitarists use a
distorting amplifier and are pernickety about the exact nature of the distortion. By using a ROM
which contains a function appropriately distorted from the identity function, any desired distortion
can be achieved.

The input A-to-D circuit samples the input signal at 44100 samples per second, which is the CD
sampling frequency. The D-to-A converter on the output reconstructs an analogue signal.

The analog signals will vary both positively and negatively about zero. Two’s complement represen-
tations are therefore normally used. Note that to convert from offset binary to two’s complement,
one just puts an inverter in the most significant bit.

Exercise: Sketch an alternative circuit using a microprocessor instead of the hardwired solution. What
pros and cons do the two approaches have ? How does a processor help with the user interface?

Figure 94 shows the use of a static RAM to achieve a delay. The counter addresses each location
in turn, and at each location, the old contents are read out before the new contents are put back.

76



Pixel
RAM

SCAN
MULTIPLEXED

DISPLAY
MATRIX

N bit
COUNTER

BINARY to UNARY
DECODER

Row

A

D

Broadside
tri-state
buffer

Write
data

Write 
address

WE

Write
strobe
bar

MUX2 N

Figure 92: Addition of psudo dual-porting logic.

A to D
convertor

Look-up table ROM

D to A
convertor

16 16

65536 by 16 ROM

Sample clock 44.1 kHz

12 inch speakers

Amplifer

A D

Figure 93: Use of a ROM as a function look-up table.

77



A to D
convertor

D to A
convertor

16 16

Amplifer

A

D

Static RAM
65536 by 16 bits16 bit

synchronous
counter 16

RAMWE

RAMOE

ADOE

Timing generator
circuit

ADOE

RAMWE

RAMOE

Derived clock, 44.1 kHz

88.2 kHz

Read cycle Write cycle Read cycle

Clock 88.2

Clock 44.1

RAMWE

RAMOE

Counter Output N-1 N N+1

RAM data pins Old sample replay New sample write

Figure 94: Use of an SRAM to make the delay required for an echo unit.

78



DO D1 D2 D3 D4 D5 D6 D7

LOGIC 1

LOGIC 0

Start 
Bit

(zero)

Stop
Bit

(one)

Bit spacing is reciprocal of
31.25 kbaud, which is 
32 microseconds.

+

5V VCC

-

Logic level
output

Open collector
buffer

220R

220R

GND

5V VCC

LED

Photo-
transistor

+

-

Logic level input220R

GND

5V VCC

LED

Photo-
transistor

+

-

Logic level input220R Merged
midi output

Midi input
one

Midi input
zero

Midi 
merge

function
to be

designed

Clock
1 MHz

module MERGER(out, in0,in1, clk);

Figure 95: MIDI interface details and merge unit block diagram. MIDI serial data format.

Audio frequencies up to 20 kHz can be represented digitally by sampling at 40 kHz. A 96 dB signal-
to-noise ratio is achieved with sixteen bits of sampling resolution, therefore 80 bytes of RAM is
needed per millisecond of delay.

Exercise: The circuit shown produces only a delay. For a true echo effect, the original signal must
also appear at the output. To achieve multiple echos, the output must be fed back to the input at
reduced amplitude. Introduce an adder and any additional logic to achieve these results. Use the fact
that division by a constant power of two can be achieved by shifting right while leaving the sign bit
unchanged.

6.3 Midi Design Example.

This section contains a design example. The design example is a MIDI merge unit. No part of this
section is directly examinable.

6.4 MIDI Merge Unit Specification

MIDI is the musical instrument digital interface and it is found on most electronic musical instru-
ments. A MIDI connection is unidirectional and contains both control and real-time traffic. In this
example, we will only concern ourselves with the real-time note data which is sent from a keyboard
to a sound generator as the keyboard is played. A three-byte note command is sent for each key
pressed or released on the keyboard. The three MIDI note commands we are interested in have
the following formats (in hexadecimal)

9n kk vv (note on)
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8n kk vv (note off)

9n kk 00 (note off with zero velocity)

where n is a channel number, kk is a note number and vv is a velocity. The values of n range from
0 to 15 and allow a single MIDI link to carry 16 virtual MIDI channels of data. The values of kk
are in semitones in the range 0 to 127 with 60 being middle ‘C’. The values of vv are from 1 to 127
where 127 is the loudest. Note that these parameters are all less than 80 hex. The first command
(note on) is generated when a key is pressed and the second (note off) when it is released. The
third is an alternative to the note off command when the release velocity is not used (which is
the case for most keyboards). The benefit of the alternative accrues when running status is used.
Running status is an optimisation of the MIDI protocol which brings the average number of bytes
actually sent per note command down from three to closer to two. Since this is a real-time music
playing protocol, and many note commands need to be sent when a large chord is played, reducing
the number of bytes in this way is helpful, but it will impact our merge function. A status byte in
MIDI is a MIDI byte in the range 80 to EF, and so this includes the note on and off commands.
The rule for running status is that if a status byte needs to be sent and it is the same as the last
one actually sent, then it does not need to be sent.

Figure 95 shows the desired configuration of the MIDI merge unit and the format of MIDI bytes
on the wire. The actual MIDI cables operate with two wires carrying the send and return currents:
this is known as a current loop circuit. The current is on for a zero and off for a one. The current
is sufficient to drive a small led which is mounted in a dark space next to a photo-transistor. This
optical link between devices avoids electrical connections which can cause earthing problems in a
studio environment. When light falls on the photo-transistor, it conducts and pulls down the input
wire to close to ground, creating a valid logic zero level. Otherwise the inputs are one. One is the
idle line state. A MIDI bytes starts with a start bit of zero for 32 microseconds, followed by the
data bits, l.s.b. first.

The function of the MIDI merge unit is to merge two streams of MIDI data: e.g. two different
channels of MIDI bytes (different values of n) may need to be merged. The unit must be prepared to
accept arbitrary timing and status relationships between its two inputs. If they are simultaneously
active, then the data from one of the inputs will have to be slightly delayed and sent after the data
from the other. If both are busy to more than 50 percent utilisation, the output cannot cope and
some data must be discarded by the unit. Since this is a real-time system, the output needs to
have as low a delay as possible from the input.

6.5 Top down design.

The next stage of design is to sketch an internal block diagram, as shown in figure 96. The system
will assemble bits into bytes, then assemble bytes into three-byte command words. The command
words will be stored in FIFO (first-in first-out) queues and then read out and merged. The reverse
process is done on the transmit side.

Verilog is a textual language for designing hardware. The blocks in the block diagram are each
suitable for encoding as a Verilog module. Except for the final parallel to serial block, each module
will need an output guard signal which indicates when the data on the output wires of the module
is valid. For most of the blocks we will define this to go high once, each time a new word is valid.
For the FIFO blocks, we will implement a handshake on the output, where the valid signal indicates
that the FIFO has some data in it (and that that data is currently sitting on the output wires)
and a read signal which indicates that we have accepted the data, thereby causing the next data
to move to the output.

We can define the signatures of the verilog modules as follows. First, the serial to parallel convertor

input clk;

output [7:0] pardata; output guard;

The running status remover should be

input clk;
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input guard_in; input [7:0] pardata_in;

output guard_out; output [23:0] pardata_out

For the FIFOs we should have

input clk;

input guard_in; input [7:0] pardata_in;

input read; output guard_out; output [23:0] pardata_out;

input read; output guard_out; output [23:0] pardata_out;

For the merge core unit we should have

input clk;

input guard_in0; input [23:0] pardata_in0; output read0;

input guard_in1; input [23:0] pardata_in1; output read1;

output guard_out; output [23:0] pardata_out;

input read; output guard_out; output [23:0] pardata_out;

And for the running status inserter and parallel to serial unit the signatures will be the reverse of
the reciprocal units.

A full set of Verilog for the design is on the ECAD WWW page http://www.cl.cam.ac.uk/Teaching/1998/InroECAD.

6.6 Software Alternative

The function could be implemented with a microcontroller (single-chip processor) with dual se-
rial ports. A suitable device is a PIC from Microchip and would cost just a pound or so. See
http://www.microchip.com.

Exercise: Consider the pros and cons of the software implementation compared with the hardware
implementation. Consider that the MIDI standard is mature and has not significantly changed in ten
years. Consider the real-time response possible. This exercise might be better undertaken after the
Computer Design course.

6.7 Design Compiler Challenge

Because the MIDI protocol works in real time, for the best performance, the MIDI merge unit
should have a very low delay through it. The minimal possible delay might be just one clock tick,
but the design presented in lectures and above always completely receives each command before
sending it onward. A good part II project would be to write a program which read in the netlist of
the MIDI merge unit and wrote out a netlist of an improved design with lower delay. The program
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would work by applying general purpose transformations on the netlist that can manipulate it to
achieve some goal, such as low delay. The interested reader should study symbolic bi-simulation
algorithms to see how this could be done.

c© DJG 1995, 96, 97, 98.
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Example Exam Questions

Q.An LED display has a diode at each cross point and is easy to scan multiplex because the diode
only conducts in one direction. An LCD display has elements that darken when either polarity of
voltage is applied. Explain why this makes scan multiplexing harder. One way to scan multiplex
an LCD is to use tri-state buffers and to only drive, at any one instant, exactly one row and column
line, with all other lines being tri-state. Design a scan multiplexing circuit for an LCD that works
in this way. Comment on how you would improve the refresh rate of your design.

Q. An FPGA is to be used to generate a sequencer for disco lights. The FPGA will receive some
pulses that are roughly in time with the music (generated by a crude analog circuit or else by a
maniac with some switches) and generate 10 or so output signals to control the lights. There are
also some control inputs to select the basic mode (blackout, strobes, dark, light, pattern select
etc.). Sketch a block diagram of the whole system and sketch the circuitry of the FPGA. Is using
an FPGA a good idea?

Q. A design is required to provide timing and information displays for the international final of the
table-top Grand Prix (Scalelectrix) competition, which is to be televised by Eurovision. The budget
for the system is fifty thousand pounds, including the sums paid to consultants (like yourself) and
the system is expected to last for several years. Cars will be fitted with unique active tags, as used
for counting livestock though gates on farms, and a sensor for the tags, together with light beams
for accurate car detection, will be placed at the start-finish line and two intermediate points on
the track. A number of display panels are needed based on LCD VGAs and a master operator’s
console is needed to control the system. Design the system. Pay attention to the modules needed
and the wires that interconnect them. Give a 100 word instruction manual for the operator. If
microprocessors are used, explain why each one is needed.

Q. What is semi-custom design ? When would you use semi-custom? Why might you use an
FPGA to prototype a design that is later to be built in semi-custom? What cost difference would
you expect between an FPGA and a semi-custom versions and why? How might your partition be
affected by the amount of RAM needed?

Q. A design is required for a wand computer toy. The wand will have a barcode reader which
will scan barcodes found on groceries and other goods and accumulate credit inside the wand in
an unforgeable, non-volatile way. A group of young friends, each with their own wand, will be
able to compete against each other, gathering points from each item scanned, with more points for
rare/valuable goods. Design the wand, including its display and controls and a method for wands
to connect to each other to exchange/swap barcode sightings.

Q. A circuit is needed to divide a very high frequency clock by an average of 21.6. This is to
be done with a counter which accepts a division ratio input to make it divide either by 21 or
22. A further counter, made from slower and cheaper logic, is clocked from the output which
generates the control signal to the divider, such that the ratio of 21 and 22 counts overall gives the
desired target division ratio. Design it. Prove there are no hazards in your design. Estimate the
maximum clock frequency given that the setup time and gate delays of the higher speed logic are
1 nanosecond. (This question is no longer core to this course).
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