B.H UNIVERSITY OF
¥ CAMBRIDGE

Concurrency expression in
high-level languages,
Best practice and
amenability to h/w compilation.

(povocative statements for
BoF Panel Discussion !)

David Greaves
University of Cambridge

Computer Laboratory

David.Greaves@cl.cam.ac.uk

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Parallel Programming Disciplines

= Hardware Is parallel (massively).

= Software must go parallel owing to end of
clock frequency growth.

2 Hardware Is software Is hardware — we
need (an) effective expression language(s)
amenable to codesign.

So: three classes of parallelism:

e 1. Embarrassingly parallel — no control or data
Interaction between strands.

e 2. Stream processing — pipelined parallelism —
great If there are no control hazards.

» 3. General, fine-grained parallel programming!

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Eager versus Lazy Dichotomy

Separating control and data flows often

mooted:
It is the key enabler for 'Spatial Computing’

"A New Dataflow Compiler IR for Accelerating Control-
Intensive Code in Spatial Hardware' AM Zaidi and DJ
Greaves @ IPDPS'14.

But why are people happier with OCAML than
Haskell ?

General purpose language must keep them
guite close together — e.qg. call-by-value In
ML/Java/C eftc..

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Von Neumann Imperative Parallelism

Shared-memory imperative programming IS
stupid — how have we got there?

Using strongly typed C/C++/C# we can
compile pointers and abstract data struc-
tures quite safely.

But aliasing problem restricts available par-

a

elism (w.r.t. critical ALU path) by:
~actor of 100 by conservative static analysis

—actor of < 10 in reality (Jonathan Mak's PhD).

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Eliminate shared memory ?

Eliminate it entirely — Erlang, Occam, Pi calculus and so on...
DRAM can still be used (thank god) but
all regions are fully disambiguated and local to a task.

Restrict to Imutable shared memory
— preferably combined with an interlock to avoid RbW
on Initialisation.

Do reference counting on your pointers —
Rust pointer mangament

or linear type systems with an explicit duplicate operator for
sharing

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Kiwi C# High-Level Synthesis

« Compile C# with some language restrictions:

Program can freely instantiate classes but not at run time!
Array sizes must all be statically determinable (ie at
compile time).

Program can use recursion but max depth must be stati-

cally determined.
Stack and heap must have same shape at each run-time

iteration of non-unwound loops.
Program can freely create new threads but creation sites

statically determined too.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Kiwi HLS Concurrency

Use the .net library concurrency primitives

Below a certain level, replace implementations with
our own hardware alternatives

Each thread has classical HLS static schedule. Ar-
biters added to all threadshared resouces.

This Is ultimately a shared-variable model with ex-
clusion locks.

But what about async dispatch? Later.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Kiwi Example: One-place buffer Write
Method.

Write(v)
public class Channel<T> ;‘
{ T datum: g = testandset(this.mutex);

volatile bool emptyflag = true;

~0 @
Pause();
public void Write(T v)

{ lock (this)
{ (this.lock = 1;)
while (lemptyflag) { Monitor.Wait(this); }
datum =v; empty? ~empty l this.mutex := 0;
emptyflag = false; this. ock = 0;
Monitor.PulseAll(this); empty
P>
} datum = v;
} emptyflag:= false; g := testandset(this.mutex);
this.mutex := 0;
} (this.lock := 0;) N
| Pause(); |[¢—— g2 >—3
return;

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Bluespec
Verilog
(BSV)

Design is expressed as guarded atomic actions. So locking
primitives are innate.

- Parallelism comes from rules firing in parallel.

- Performance comes from packing multiple, potentially
Interacting rules into one execution clock cycle.

- All rules gen'd by a rich static elaboration language.

Stuttering is the default semantic — unless ‘must fire' pragma
IS applied: THIS LEADS TO Raw HAZARDS ON RAMs

AND REGs SO MUST USE FIFOs WHEREVER POSSIBLE
OR ELSE PAY ATTENTION TO WARNING MESSAGES.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

O

clEngueueTask Processor1

Open CL

Queuing by the host

Processord

Interest arises owing to wide use on GPGPU.

Each processor retrieves a task
from the queue asynchronously

Programmer manually:
- splits inner loop kernels off for separate compilation.
- allocates storage over a 4-level hierarchy with pragmas
- makes calls to the GPU work queues.

Open Computing Language (OCL)
- IS not much of a language
- IS more of an accelerator API.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

int fib(int n) {

int: x, ;3
if [n< %)
CILK return n;
Y else {
OpenMP #pragma omp task shared(x)
x = fib(n-1); /* A new task x/
& Hpragma omp task shared(y)
WOOL y = fib(n-2); /* A new task x/
#pragma omp taskwait /* Wait for the two tasks

Feturi X = ¥;
}
C)
Programmer inserts parallelism directives in body of C code.

Program still can run single-threaded by just ignoring the
mark up.

Array accesses are essentially unaltered but

- great care over aliasing Is needed, and

- no type-system or language-level assistance for
correctness.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

IIA simple join chord:
) public class Buffer
Join { o Butlchar)
public async Put(char c);
CaICUIUS public char Get(bool f) & Put(char c)
{ return (f)?toupper(c):c; }

Joins are elegant.
Joins substrate implements workqueues and schedullers.

Queue capacity requires careful dimensioning — too small
can deadlock.

A long way from hardware design but probably a good way
forward for general parallel programming targeting FPGA!

Hardware join Java: a unified hardware/software language for

_ _ dynamic partial runtime reconfigurable computing applications -
Mapping the Join Calculus to Kearney,.

Heterogeneous Hardware
Peter Calvert,Alan Mycroft Polyphonic C Sharp — Benton and Cardelli.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Asynchronous Task Calls:
The C#5 / Scala — await primitive.

public async Task<int> SumPageSizesAsync(lList<Uri> uris)
{

int total = O:

foreach (var uri in uris) { AlSo in J
statusText.Text = string.Format("Found {0} bytes ...", total); SO InJava as
var data = new WebClient(). DownloadDataTaskAsync(uri) EECARUCIEIESL
total += data.Length;

}

statusText. Text = string.Format("Found {0} bytes total", total);

return total:

}

A simple version of the full join calculus.

Bounded queue and scheduler overhead => implies =>
practical for engineers (not like Haskell!)

Suitable for large scale systems. Can adapt to different quantities of
execution resource by work stealing etc..

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

} o ve ?

Hume Box checksum
(0,s,n) -> (16,0, ("sum; ",s,"checksum: ",n))
Algebra gl . o g S
c L m

Programs are a multitude of connected stateless boxes.

Classical textual/ASCII language, but...

Can be hierarchic with a complete box graph nested inside a single
parent's box.

Amenable to algebraic manipulations for time/space folding.

Is there a problem, as always, with large data in DRAM ?
No — use the Erlang/Occam localised arrays solution.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

Conclusion

Concurrent expression of HLS design intent is a
good thing: - makes more parallelism available.

Large arrays in (D)RAM are the most important

entity in all types of computing
especially non-stream, non-embarrassingly parallel.

Parallel programming paradigms must eliminate

pointer ambiguity
1. as far as possible,
2. without precluding it for the few algorithms that actually delploy
pointer aliasing (and even they are mostly just read pointers).

Optimising schedulers for concurrent specification
languages shall emerge (but engineers need write-time
handle on complexity).

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2" September 2014, Munich.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

