Using Simple Pushlogic

David Greaves;

Daniel Gordon

University of Cambridge, Computer Laboratory

Abstract

Pushlogic is a scripting language for a dynamic popula-
tion of devices (sensors/processors/actuators) and dynamic
number of concurrent applications in a reliable or safety-
critical system. System stability is assured by idempotency
constraints and intrinsic error recovery capabilities arise
from the reversible nature of Pushlogic rules.

It is a constrained language amenable to automated rea-
soning. It defines ‘re-hydration’ for dynamic binding of
rules to new device instances and a load-time model checker
that runs before a new bundle of rules may join a domain of
participation. In a typical application of Pushlogic, com-
plex embedded devices are partitioned into passive compo-
nents known as ‘pebbles’. API reflection is then used to ex-
pose the interfaces offered by the pebbles. All proactive and
interactive behaviour between pebbles or over the network
must then be implemented with Pushlogic and ‘code reflec-
tion’, as we call it, exposes this behaviour for automated
reasoning. This paper illustrates parts of the language us-
ing a heating controller and other fragments.

1 Introduction

In this paper, we introduce a new scripting language,
called Push Logic, that generates declarative byte code. The
code can be canned to ROM for embedded applications, or
run on server platforms (e.g. a PDA) for reliable interaction
with a dynamic population of devices and other application
scripts.

In software terms, a ‘script’ is a collection of commands
to be performed in a particular order under various con-
ditions. Imperative programming languages, such as as-
sembly language, Java and the unix shell language are fre-
quently used for scripting. These languages are used to
control a collection of devices or to otherwise automate a
process. They are unrestricted in expressibility and hence
reasoning about their behaviour or their interaction with
other such scripts is hard. When a script phrased in a de-
cidable language controls and reacts to objects containing
undecideable code (or exhibting unpredicatable behaviour),
the system becomes undecidable as a whole. Nonetheless,
it is our belief that there are significant benefits from using

*David.Greaves @cl.cam.ac.uk

Display
Pebble Pushlogic
Keypad Interpreter
Pebble \
User Pus_hlogic
Remote Interface 47 Timer
Keypad <« Pebble
Pebble
Storage
with
Universal Access
e.g. Tuple Space Specialised
Hardware
Reﬂechonl
Information Canned
Firmware f ‘\
Ethernet Application HVAC DVD
and Posix Sockets I Pebble Mechanism
Pebble

Controllgr User I/F

Pushlogic Pushlogic

Bytecode Bytecode

Figure 1. Components of a device in the Au-
toHAN architecture.

decidable code at the highest levels - the level of application
scripting.

There are a number of technologies that enable devices
to publish their APIs and to receive commands over the net-
work, such as XMLRPC and UPnP [Microsoft, 2000]. We
embrace them, but in this work we also provide means for
a device to publish its proactive behaviour, that is, to an-
nounce what it will do when introduced to an environment.
To enable automated reasoning about the behaviour (using
model checking and so on), we force the embedded code in-
side devices to be implemented via a declarative bytecode.
For execution, this code may be interpreted or further com-
piled to native code. For checking, it must be inspectable
over the network - a facility we call ‘code reflection’.

In our approach, complex, autonomous or undecidable
behaviour is partitioned and placed in ‘pebbles’ that interact
using a constrained, declarative controlling language called
Pushlogic. Push Logic object level is a declarative byte
code, designed as an intermediate code for automated rea-
soning using model checkers. Push Logic source level is
a relatively-unconstrained, imperative, multi-threaded OO-
like language where the partitioning between decidable and
undecidable constructs is not immediately apparent to the
programmer.

Pushlogic object is held in bundle files containing rules.
Rules are either temporal logic assertions or else executable

rules that define a finite state machine or ‘mechanism.” Bun-
dles run inside a domain of participation (DOP). Dynamic
storage allocation only occurs when new bundles of rules
are loaded into a running DOP. Bundles arrive either when
anew pebble that requires control arrives, or when a new ap-
plication is started, expressed in Pushlogic. Before a bundle
can join, the union of the rules in the new bundle is formed
against those already in the domain. If any of the rules are
inconsistent or any of the temporal logic rules (existing or
new) will not hold under the combined mechanism, the bun-
dle cannot be loaded.

We use the term ‘mechanism’ for our combination of
FSMs because it models not only the effect of inputs on out-
puts and internal state, but because a mechanical system of
levers and cogs can sometimes be operated in reverse, with
pressure applied to an output causing an ‘input’ to change.
Pushlogic supports such reverse execution of its rules, and
we believe this greatly reduces the effort required to handle
errors and failures. Firstly, less code needs to be written,
but the real win is that error recovery procedures then add
little overhead to the automated rule checking.

A user-level device, such as a DVD player, is consid-
ered to consist of some number of physical or logical de-
vices, called ‘pebbles’. Pebbles only interact with each
other through an application program coded as one or more
bundles of Pushlogic. Pebbles provide input and output to
various sensors, actuators and other interfaces. Pebbles are
like device drivers, except they are first-class entities on the
network that can register their command API and capabili-
ties, so that they are a resource to be used by any number of
applications.

Pushlogic has been developed for a year or so, and its
first compiler and run time system are becoming stable. We
are now implementing the DOP manager, that provides real-
time checking of bundles joining the DOP and DOP merg-
ing. Pushlogic therefore provides a scripting language for
for a dynamic population of sensors, actuators and applica-
tions suitable for safety-critical systems.

Figure 2 shows the Pushlogic toolchain. Source bundles
are compiled with libraries to generate dry object bundles
that do not refer to specific pebbles by name. A subsequent
re-hydration stage implements such bindings, and a given
bundle may join the DOP more than once, as illustrated, but
using different bindings for each instance. Several bundles
may run on a single execution platform, but the behaviour
of the system is, as far as possible, the same as though they
were distributed over the network. For a self-contained de-
vice using ROM’d code, such as the Heating Controller pre-
sented later, part of the re-hydration can be performed be-
fore canning the code to ROM, so that the code is bound
to the local pebbles, and part of it can be done later, for in-
stance to bind to other devices encountered in the domain at
run time.

Also appearing is a GTK GUI/debug interface to the
Pushlogic interpreter. This may be connected to any run-
ning DOP to allow variables to be viewed and edited over
the network. Alternatively, it can be run standalone, on

[=[o]x]

7 autside =7 hal [> Bundielnfo
outside#lantem hali#light b Local
-
=7 mains .
hali#Switch
mains#supply
off | %
off |

inout hall#light 1 foff @ on3:
output. outsicde#lantern ¢ foff : on3:

input mains#supply @ foff 1 oni:
inout hall#Switch { foff : on3:

local light_on ¢ €0 3 13:

local light_mot_on 2 £1 & 032

light_on := {hall#Switch==on 2& mains#szupply==oni;
light_rot_on = 1 - light_ong

outside#lantern 3= {light_not_on} 7 off : on:
hall#light := {light_not_on} 7 off : on:

Figure 3. Lanterns - An Example of Pushlogic
under GTK GUI

a workstation, with a number of bundles loaded from the
command line. It creates a gtk _label for output and local
variables, which are updated with an upcall from the tuple
substrate. For inputs it creates either a gtk_scale if the do-
main is an integer range, or a gtk_combo_box (i.e. a menu)
for an enumerated type.

Our implementaion holds all run-time variables as fields
in the tuples of a distributed tuple space. Fields range
over constant values, local tuples or remote tuple pointers.
Communication between pebbles and bundles is through
shared fields. The tuple space is navigated using URIs and
heirarchic names with hash symbols as separators. Net-
work traffic uses our own temporary protocol, called ETC
(evolving tuple core protocol), that is essentially UDP ver-
sions of SOAP RPC and GENA eventing, found in UPnP
[Microsoft, 2000].

Figure 3 shows a bundle called Lanterns under the
GUI, The output ‘outside#lantern’ is a label and cannot be
changed directly with the GUL. It is updated when the value
of this variable changes. The input ‘mains#supply’ has a
menu from which the user can select ‘on’ or ‘off’. The in-
out variables ‘hall#light’ and ‘hall#Switch’ can be changed
by the user as well as by a Pushlogic program. Program
counters and other local variables are stored in tuples held
under the ‘Local’ tab, in a unique sub-tuple for each bundle
instantiated on the platform. We also have a locally-written
universal UPnP control point, that can perform roughly the
same function for a subnet of UPnP devices. We will shortly
merge the functionality of these two GUIs.

In previous work, formal validation of Ladder Logic and
timed transition systems has received significant attention
[Glasser, 1995]. Commercial products for formal validation
of reactive control systems against safety standards are be-
coming available. e.g. [ReactiveSystems, 2003]. Cypress

Universal
Rule
Library

Compile
Time
Checker

Bundle
Checker

Source Source Source
Bundle Bundle Bundle

Source
/ Library

Object
Bundle

ANVAN

Expert Script
User Interface Creation
(emacs) Phase

Compilation
Phase

Canned
Storage

Ob‘ec‘ Phase

Bundle

XML reflection

information - Binding

via UPnP and
Loading

Re-
Hydration

Re-
Hydration

Domain

Phases
[—— Device

Re-
Hydration

Re-
Hydration

standing
rules

Domain
Manager
and

Bindings

Execution
Phase

Checker

Execution
Platform

Execution

Platform

Execution

Platform DBG

A

u

Domain of Participation|

DP Broadcast Subnet

ETC: UDP SOAP GENA

Figure 2. The write/compile/re-hydrate/execute toolchain for Pushlogic

has just released a synthesiser for embedded controller soft-
ware to eliminate hand-crafted device drivers and network
stacks [Pearson, 2005]. Formal specification of web re-
sources and services using ontologies and assume/guarantee
reasoning is advancing [Monika Solanki, 2003], as are
proof-carrying imperative code tool chains. However, our
practice of converting imperative code to declarative inter-
mediate form seems novel.

2 Execution Semantics

Each executable rule in Pushlogic object is an assign-
ment of the form

f:=exp: pbind

where f is a variable in a global, heirarchic name space (the
tuple space paradigm) and exp is a Pushlogic object expres-
sion and pbind is information that assists in reversing the
operation of the rule. Fields may be local to a bundle or
shared between the current bundle and other bundles and
pebbles. Where shared, they are declared as input, output
or inout. Input fields are only changed by external bundles
and pebbles. Output fields are changed only by the current
bundle. Inout fields are changed by the current bundle and
by other bundles and pebbles and also by timeouts in net-
work protocols.

Each field ranges over a set of constant values, certain
of which may be declared as the safe values of that field.

The values are integers or strings, or the reserved constants
‘true’ and ‘false’.! Where a bundle alters the value of a field
held on a remote resource, the run time system generates
network traffic using the ETC protocol. Where a bundle is
sensitive to changes on remote resources, it uses a periodic
soft-state registration protocol within ETC that causes it to
receive notification of changes for a period (e.g. one hour).
An inout field may be set to one of its non-safe values by at
most one bundle or pebble.

The reference execution model for an executable Push-
logic rule is that all sub-expressions occurring in the expres-
sion are re-evaluated whenever there are changes to any of
their support. Likewise, changes to the result of the top ex-
pression become scheduled as updates to the assigned field.
Updates are gated, by which we mean that all updates to
fields held on the same execution platform as the Push Logic
that arise owing to a single event are batched and made at
once (atomically). Further changes arising from a batch of
gated updates are collected and deferred to the next batch.
Our current interpreter is a direct implementaion of the ref-
erence execution model, but it is RAM-hungry, and in the
future we will develop the native compiled C back end.?

'Multimedia is supported using the notion of third-party setup, where a
field in a source pebble is set to the same value as a field in a sink pebble,
where the value acts as a virtual circuit identifier.

2The cost of RAM is several times the cost of ROM in system-on-a-chip
embedded systems, so the current approach of expanding canned bytecode
to a RAM structure before interpreting is highly undesirable. Converting
a bundle of declarative bytecode to imperative ROM code can be done by

A push logic expression may generate a special value,
backstop (L). When backstop is assigned to a field, the
field’s value is unchanged. When multiple rules assign to
the same field, static analysis must show that they either
generate a common value or else backstop.

The gated nature of updates to fields held on a common
platform enables certain rule combinations to operate deter-
ministically when they would not otherwise. Consider the
following pair of rules where d, d1, and d2 are held on the
same execution platform:

dl:=d; d2:=(d&&!d1)?71:L
This pair will reliably set d2 to one whenever d starts to
hold. Without the gated-update constraint, the second rule
might always be executed after the first rule and hence the
guard would never hold.

The reference execution model implies that the union of
executable rules for a DOP may be thought of as an asser-
tion over the system state. The assertion holds at all times
that the system is passive, and when any event occurs that
breaks the assertion, the mechanism implements corrective
action so that the assertion once again holds. Inout fields
are essentially outputs that can unilaterally change back to
one of their safe values. The interpreter contains a second
set of rules to evaluate every operator or function applica-
tion in reverse, so that a change of an inout can be ‘pushed
back’ to another inout or local field, so that once again, a
consistent state prevails. This is known as compensation.
The pbind provides information to specify the compensa-
tion behaviour where there is more than one possible way
to interpret a rule in reverse. For example, with logical NOT,
no indication is required, because the new value is obvious
at push back time. On the other hand, for the comparison
operator, when pushed back to true, it is sufficient to spec-
ify one operand to push back on, since it must be pushed
back to the current value of the other operand. For compar-
ison, when pushed back to false, a value and operand must
be specified, since, in general, there are many possible val-
ues that will make a comparison not hold. For logical AND,
when pushed back to false, which operand to push on must
be specified, since either will do, whereas to push logical
AND to true may require both its arguments to be changed.
For the conditional expression operator, the condition may
have to be changed and also the value of that side of the
operator may have to be changed.

For model checking, the next state relation must be con-
structed from the executable rules. In this relation, a hidden
input variable is created for every possible pushback, which
is every safe value of every inout field. This is called a push-
back input. Additional clauses are added to the next state
relation to represent that at most one of the pushback inputs
of each inout may hold at any one time, and that when it
holds, the variables altered by that pushback have the con-
stant values determined by the union of pbind fields. The
temporal logic assertions are checked at compile time for

using symbolic traces of all possible execution paths through the interpeter.

the bundle in isolation. In future, they will also be checked
by the domain controller as it loads the bundle into an exist-
ing DOP.

To ensure that all states are stable (and not oscillators),
the system also implements an ‘Idempotency Constraint’ .
This states that any Pushlogic program will result in no fur-
ther output changes if ‘executed’ more than once without
change of any input field. (This rule is the basis for the
loop unwinding in the source compiler.) A rule such as
track := (p)?track + 1 : track would not generally be ad-
missable, because the number of increments executed while
p holds is not defined, but carefully-constructed integration
is allowed. For example, anything that is tantamount to the
following differentiate/integrate rule pair is permissible:

dl:=d; track := (d&&\dl)?track + 1 : track

The idempotency constraint is checked in our source com-
piler by symbolic evaluation (described below), and will
be checked by the domain manager. The differentiation
construction is required sufficiently frequently that it is
built into the Pushlogic Source Compiler, described next.
The above two object rules are then written as if (]d)
track := track+1l; , with the automatic allocation
of a hidden variable to replace d1.

3 Pushlogic Source Compiler

Although rules are frequently a useful way to express
desired behaviour, many applications are most easily coded
in an imperative programming style. Rather than expect-
ing the user to manually convert his notions of applica-
tion behaviour into Pushlogic object rules, a compiler for
imperative-style expression of applications is used. We note
that imperative programs deal essentially with sequential
changes of state, whereas logical predicates over applica-
tion programs deal in terms of the visible, accumulated re-
sults of these changes.

‘Pushlogic Source’ is a block-structured, imperative-
like, programming language, but with no dynamic storage
allocation and currently no arrays. It is less fundamental
to our approach than the object form, because a variety of
source forms could be envisaged that would generate com-
patible object for various niche applications. The Pushlogic
constraints on a bundle are designed primarily to be imple-
mented at bundle load time, but, as far as possible, are also
checked by the compiler to give advanced warning.

A Pushlogic Source program is an unordered list of dec-
larations, function definitions and executable statements.
The statements are all started in parallel when the compiled
object bundle is loaded. A statement may be a sequential
block, thereby providing an escape to the normal impera-
tive programming paradigm.

It is our goal to support as many features found in com-
mon OO imperative high-level languages as possible, while
still producing output that can be represented as Pushlogic

Source
Code

Library
Code

Expand
and Compile

Temporal
Assertions

NULL ENV
Create Binary
. Encodings
Repeat Parallel
until Elaboration
closure l

___|Eaquivalence| | BDD
? Checker . | Package
S
’

Create 2
£ Push Back Paths S

Subexpresion 7 Model
Sharer ’ Checker

Consistency

Checkers

""""""""" Compile

Time
toC H Assert
""""""""" Failures
Bundle
Q Natlve Code

Figure 4. Structure of the Pushlogic Compiler

object rules and checked automatically at load time. The
currently available forms are summarised in Figure 5.
Executable sequences are composed in parallel. Each
sequence may be considered to be enclosed in an infinite
while loop that has its own thread that executes the rule as
fast as possible, but with all such threads performing their
assignments in synchronism. Sequential composition of be-
havioural statements is introduced with the block construct,
denoted with C-like open and close braces. A further level
of parallelism is possible inside a sequential block because
parallel assignment is supported: e.g. (a,b) := (el, e2).
The internal flow of the compiler is shown in Figure 4.
The input is parsed and converted to imperative intermedi-
ate code using conventional compiler techniques. Function
calls are expanded in line. For each sequence in the source
code a section of I-code is generated. I-code consists of la-
bels, gotos, waits, assignments, resultis statements (used for
returned values in the middle of inlined tasks and functions)
and conditional branches. For each sequence, a run-time
program counter is defined. At the object code level, these
program counters act just like other local variables, and their
values range over the labels in that sequence. There is no

The statements used are

e Sequential block: a number of statements executed in
order.

e Field assignment: all fields range over strings in the
current implementation, as is common in 4G languages
like Perl/Python (Fields do not require declaration be-
fore first assignment),

e Forever, while and for loops, with break and continue.
e Case statement.
o Conditional statement : if/then/else,

e Non-blocking remote
device! (...),

procedure call: e.g.

e Expression as statement: Side-effecting expression
evaluation with result discarded.

e Fuse statement: stmt fuse exp.
e Wait statement: wait exp.
e Live assertion: 1ive exp, ...
e Never assertion: never exp,
e Always assertion: always exp,
e Pebble alias: pebble id=exp.
and the expressions consist of
e String constants (quotes optional): e.g. "hello",
e Reserved key values: true, false,
e Local heiratchic field names: a#bi#c,

e Remote heiratchic field names:
tup://128.232.1.22/a#bic,

e Function call: f(a,b,c...)

e Vector of expressions (, ,)

e Comparison predicates: <><=>===| =FQGT
o Integer arithmetic: + - */

e Differentiation: T exp,

e Conditional expression: (¢g)7S: : Sy,

e Blocking remote

rc=device! (...),

procedure call: e.g.

e String catenation operator: e.g. "nice"T"girl",

e Attribute access with constant tag string e.g. var . ID,

Figure 5. Pushlogic Source Language

run-time spawning or joining of threads (although the illu-
sion of this could be provided from a static set of threads us-
ing pre-processing techniques). Temporal logic assertions
in the source code are split off and held separately. Liveness
assertions may be guarded by nested if statements and by
the current value of the program counter.

The I-code is embedded in a binary-decision diagram
(BDD) package by generating binary encodings of every
variable (field), constant and operator. This then enables an
equivalence checker to be used to compare any pair of ex-
pressions or check that a predicate is a tautology. Currently,

everything is converted to a binary encoding and a BDD
checker is used, but in the future other forms of checkers can
be tried, based on a mix of normal forms, Presburger Arith-
metic [Presburger, 1929] or CVC [David Dill, 2004]. Un-
decidable arithmetic and other uncheckable constructs are
currently just considered as non-deterministic inputs to the
system, augmented with so called fairness constraints that
force both options to be considered in liveness analysis. In
the future, we may add additional markups to the source
language to explicitly delineate the undecidable code.

An entry point is defined as any entry point to a sequence
of I-code or the location immediately after any wait instruc-
tion. Parallel symbolic evaluation is then conducted, un-
til closure, or failure if more than 100 iterations is needed.
This consists of starting in a null environment and evalu-
ating from each entry point to collect symbolically the as-
signs to every variable, including program counters, up until
a wait statement or the thread loops back to its initial entry
point.

While more than one assign is made to a variable, by dif-
ferent threads, such as v := el; v := e2;, the assignments
are combined in pairs using the following rule

v:= (el =1)?%2: el;check(el = e2Vel =1 Ve2 =1);

This gives a single expression for every assigned variable. If
the check fails, the compilation fails because the operations
are incompatible.

After the first elaboration from all entry points, the pro-
cess is repeated using the environment created by the first.
Code guarded by differentiators will not have any conse-
quences on the second or subsequent elaborations. After
each elaboration, the equivalence checker is used to detect
any changes in any symbolic value, and if there are, then
another iteration is commenced. Before each new iteration,
occurrences of _L in the expression for a variable in the envi-
ronment are replaced with the symbolic value for that vari-
able calculated on the iteration before. This exactly models
the behaviour of the runtime interpreter, which holds (or
gates) all assignments until every subexpression has been
recomputed, and then performs a commit.

After a closed set of symbolic assignments has been
computed, push back paths are created through the right-
hand-side expressions from any field whose mode is ‘in-
out’. For each safe value of an inout field, a path is traced
backwards through the expression tree that will cause gen-
eration of that value. These paths extend back though local
variables used as intermediate values in any computation.
For all safe values of all bearing inouts, the same path must
work for each local variable. This constraint can cause some
novel error messages. The paths are stored in the push back
indication section of each rule.

The resulting object-level executable rules are optimised
by spotting common subexpressions and inserting cross-
references to allow the evaluations to be shared at runtime
on the interpreter. The output code is stored in a bundle file,
along with the assertions. It is also written to a C struct file

that contains some initialised C arrays, for direct canning
into ROM. In the future, the declarative byte code can also
be converted to C to be run as native ROM code instead of
being interpreted on the execution platform (thereby saving
expensive RAM on embedded devices).

The BDD package is used as a compile-time model
checker to test the embedded assertions. Assertions that fail
at compile time when a bundle is checked in isolation, or
against a standard library and testbench should normally be
corrected before attempting to load the code into a live DOP.
The BDD package used is the original C code from SMV
[McMillan, 2000] ported as a shared object to be loaded
by Moscow ML. The fixed-point iterations used in model
checking are all recoded in ML. The compiler amounts to
9K lines of ML and 15K lines of C.

3.1 Fuse Statements

Where a section of code does not intrinsically support a
push back operation, it may be associated with a fuse vari-
able by enclosing it in a fuse statement. For example, con-
sider the following invalid code, that uses an enumeration
type with one safe value and two unsafe values:

sort set mytype = { S: US1l US2 };
input x : mytype;

inout y : mytype;

y @ = %Xj

The problem is that if y makes a unilateral change from
USI, say, to S, which it is free to do, since it is an ‘inout’,
then no push back is possible because x is an ‘input’ that

cannot be changed from inside the bundle.
The solution is to enclose the rule inside a fuse. This fuse
is able to ‘blow’ should y make a push back.

input x : mytype;
inout y : mytype;
fuse F1;

{y :=1x; } fuse Fl;

forever { wait F1l; sleep_secs(5);
Fl := false; }

The fuse declaration defines a boolean variable with both
values safe and to be set false on bundle load. The fuse
statement is just syntactic sugar, because the line ‘{ y : = x;
} fuse F1;’ is rewritten during initial expansion as ‘if (If1) y
: =x;’. The fuse declaration, however, does have a special
effect: during pushback path creation, the fuse is chosen at
last resort and only marked for push back update if there is
no other pushback path available. Only the inner-most fuse
of any nested fuse blocks acts on the enclosed code.

The reset behaviour is enclosed inside a forever state-
ment, equivalent to ‘while (1)’ and not needed since all push
logic sequential sections are enclosed inside an implied for-
ever. It resets the fuse five seconds after it has blown (see
later for more detail of sleep_secs). If y refuses to ac-
cept the current value at this time, the fuse blows again.
Other code can be sensitive to this fuse. In the future, we
may add further markups to the source language that help

Display
Mode

Pushbuttons

o
Ad b d L dhd L4 (O Hot Water LED
o OVERRIDE O Heating LED

HH BH i

FAST DOwWN FAST
up DOWN

A

Keypad
Pebble

Embedded OS

Canned Application Bundles

Display <
Pebble

Molly: H8S Embedded Processor

Ethernet/Flash/ROM/RAM/

Pushlogic Interpreter ETC
UDP
Control Timer CPU Stack
Pebble Pebble Counter/timer A
} I
A 4 Ethernet
Hardware
Interlock Power MAC/PHY
HVAC INTERFACE Supply Interface
Furnace |e»| Fumace Room Pump Tank 1
Thermostat Relay Thermostat Relay Thermostat
(Home
Ethernet)

Figure 6. Heating Controller Components

specify the programmer’s preferred pushback route (cur-
rently the compiler chooses one and writes it to a report
file).

4 Heating Controller

As a first example, Figure 6 shows the structure of our
Heating Controller. This has been built and is about to be in-
stalled in a real house. It consists of a processor with ROM,
RAM, Ethernet and Power Supply, a display and keypad,
and a HVAC interface block. The HVAC interface has solid
state relays to control pump and furnace, input from tank
and room thermostats and a hardware interlock that disables
the furnace if both the tank and room thermostats are open.

Network systems suffer from errors as the result of inten-
tional and unintentional arrival and departure of new entities
(devices or interacting applications that control the devices)
and from network errors and disconnects. The BPEL4WS
[Schlingloff et al., 2005], and StAC [Chessell et al., 2002]
languages were designed to provide reliable completion of
business transactions in this environment. They both pro-
vide Compensation mechanisms that allow the programmer
to structure additional code to be executed should compo-
nents of a partial transaction need to be rolled back. Pro-
grams in these languages have been subjected to automated
formal analysis, for instance using Petri Nets, but they are
not any more restricted than C or Java in their expressive-
ness, and so automated solutions encounter the usual prob-
lems (decidability etc.). Pushlogic does not require the pro-
grammer to provide his own compensation code because
only reversible programs are allowed.

The software architecure of the Heating Contoller ac-
cords with our AutoHAN design principals[Greaves, 2004].
In this approach, as shown in Figure 1, each device or ser-

vice must be architecturally componentised into some num-
ber of passive passive components proactive and interactive
behaviour is described by some form of code reflection. In
the heating controller, code reflection is implemented by
holding all of the proactive behaviour in Pushlogic object
form and allowing this to be read over the network inter-
face using UPnP-style reflection, as is used to export the
API to the pebbles. The Heating Controller has control,
timer, display and keypad pebbles. The Heating Controller
application is coded as a pair of Pushlogic object bundles.
The HC-Control bundle, listed in Figure 8, contains code to
drive the output relays at the programmed times, whereas
the HC-UI bundle (Figure 9) enables times to be inspected
and edited via the front panel. Remote adjustment of the
heating times is possible over the network, for instance, by
running a second instance of the HC-UI on another plat-
form, either with a second physical display and keypad, or

under the GTK GUI.

There are multiple levels of interlock that ensure safe op-
eration of the system (see Figure 7). At the lowest level,
the furnace thermostat is hardwired in series with the fur-
nace gas valve, outside the controller. The controller hard-
ware interlock contains logic gates that disable the furnace
if both the tank and room thermostats are open. The control
pebble (device driver) mirrors the interlock, causing a push-
back on the furnace control field when both thermostats are
open. The embedded application software, in the form of
the canned Pushlogic script, can be seen not to operate the
furnace until one or other of the thermostats is closed. Fi-
nally, the script contains the following saftey statement that
is checked at compile time, that goes further than the hard-
ware interlock, because it also asserts about the Pump relay.

always (Heating#Sense#RoomThermostat==0 &&
Heating#Sense#TankThermostat==0) =>
Heating#Control#Furnace==0 &&
Heating#Control#Pump== 0;

When the two bundles of the heating controller are
checked together, a number of small BDDs are formed
and discarded during the elaboration phase of the compiler,
which takes about two seconds on a 1GHz laptop running
linux The consistency check generates a BDD that treats
each executable rule as an assertion. This BDD has 58 pri-
mary inputs, and uses about fifty-thousand nodes. The next-
state relation used for model checking has over 100 inputs
because of the primed versions of each state variable, but
is about the same size. These currently each take S5 sec-
onds to form. Once formed, a number of liveness, safety
and reachability assertions can be checked in rapid succes-
sion. A profile agent that handles both the ML and shared
libraries has been implemented, so we have a firm grasp of
where the time is being used.

A remote process running on a server keeps the local
timer accurate, using the ETC protocol writes over the net-
work.

S Second Example

We illustrate liveness checking using the Pushlogic
source listing of Figure 10. This causes a variable called

Embedded Safety
Assertion

PushLogic Programmed

Behaviour
«——————— —
Device Driver
Interlock
«——————— —
Controller Hardware
Interlock
«——————— —

Furnace Hardware
Interlock

Figure 7. Levels of Interlock in the Heating
Controller

locked to be false for 5 seconds after a variable called but-
ton holds. It makes a call to the timer library function (listed
in Figure 11), that blocks the thread for a period, using the
timer pebble provided on all execution platforms. As ex-
plained, there is no notion of thread in the final bytecode
because all function calls are inlined during compilation and
all thread constructs are converted to executable rule form.
The live statement is an assertion that the locked variable
should never become stuck at one value permanenty.

The timer code places the unblocking time in the local
variable until and then blocks. The FQGT operator is
builtin and performs a greater-than comparison that behaves
sensibly as the arguments overflow in their field provided
their initial difference is less than half the range. In the fu-
ture, we would like to use a wider field than seconds (0 to
59) so that we can sleep, say, for many thousand millisec-
onds. However, larger fields consume more BDD primary
inputs and BDD nodes, which are currently at a premium.
We shall also consider automatic switching to a lifted form
for modelling the sleep call, where it is held as a single wait
statment on a fresh variable. This is simpler to model, pro-
vided there are few of these constructs, but complexity will
eventually mount up in meta-constraints over the fresh vari-
ables that model the firing order.

Figure 12 shows a bundle that is incompatible with the
bundle of Figure 10. Both cannot be loaded into the same
DOP. To explain this, first we must mention that we have not
fully implemented the re-hydration stage yet, and so hard-
coded identifiers, such as the IP address of the other bun-
dle’s platform are currently hardcoded in the source files.
The button variable was originally free to change at any
time but becomes constrained by the second bundle to only
change while the unlocked variable holds. The system can-
not be unlocked without the button being pressed, and hence
the live assertion in the Button listing fails. This will in fu-
ture be spotted by the DOP manager, but currently can only
be spotted by the compiler checking against pre-compiled
bundles that are to hand.

inout Heating#Control#Furnace ;o {0: 1};

inout Heating#Control#Pump : {0: 1};
input Heating#Sense#TankThermostat : {0: 1};
input Heating#Sense#RoomThermostat : {0: 1};
output HVAC#Control#Lightl : {0: 1};

// This constraint is physically implemented by the hardware interlock, but

// it is a good idea to state it in the Pushlogic as well.

// The hardware interlock is mirrored as a software interlock that pushes

// back on the Furnace and Pump control fields.

always (Heating#Sense#RoomThermostat==0 && Heating#Sense#TankThermostat==0) =>
Heating#Control#Furnace==0 && Heating#Control#Pump== 0;

// Communication with the timer Pebble:

input _ local_timer#time_now#hour : {0..23};
input _ local_timer#time_now#minute : {0..59};
input _ local_timer#time_now#second : {0..59};
input _ local_timer#time_now#csecond : {0..99};

// Heating/Water on/off times

input Times#Heating_OnO#Hour : {0..23}, Times#Heating_OnO#Minute : {0..59};
input Times#Heating_OffO#Hour: {0..23)}, Times#Heating_ OffO#Minute: {0..59};
input Times#Heating_Onl#Hour : {0..23}, Times#Heating_Onl#Minute : {0..59};
input Times#Heating_Offl#Hour: (0..23}, TimeskHeating_Offl#Minute: {0..59);
input Times#Water_OnO#Hour : (0..23}, Times#Water_OnO#Minute : {0..59});
input Times#Water_OffO#Hour : (0..23}, TimeséWater_OffO#Minute : {0..59);
input Times#Water_Onl#Hour : (0..23), Times#Water_Onl#Minute : (0..59);
input Times#Water Offl#Hour : (0..23), Times#Water Offl#Minute : (0..59);
output HEATING : {0:1}, WATER : {0:1};

with __local_timer#time_now

{
macro heating_on =
(Times#Heating_OnO#(Hour, Minute) == #(hour, minute)) ||
(Times#Heating_Onl#(Hour, Minute) == #(hour, minute));

macro water_on =
(Times#Water_On0#(Hour, Minute) == #(hour, minute)) ||
(Times#Water_Onl#(Hour, Minute) == #(hour, minute));

macro heating_off =
(Times#Heating_Off0# (Hour, Minute) == #(hour, minute)) ||
(Times#Heating_Off1#(Hour, Minute) == #(hour, minute));

macro water_off =
(Times#Water_Off0#(Hour, Minute)
(Times#Water Off1#(Hour, Minute)

#(hour, minute)) ||
#(hour, minute));

}
input Remotefoverride : {0:1};

{
// Front panel override button
if ("Remote#override && Remotefoverride=="1")
HEATING := (1 - HEATING);
else
// Give priority to off if off and on times are the same.
if (heating_off)
HEATING:=0;
else
if (heating_on)
HEATING:=1;
if (water_off)
WATER:=0;
else
if (water_on)
WATER:=1;
}

// Main output controls
fuse F1;
with (Heating)

{

#Control#Furnace := ((HEATING==1) && (#Sense#RoomThermostat==0)) ||
((WATER==1) && (#Sense#TankThermostat==0));
#Control#Pump := (HEATING==1) && (#Sense#RoomThermostat==0);
} fuse F1;

Figure 8. Listing of Heating Controller Con-
trol Bundle

6 Conclusion

This work was carried out under the CMI Goals/Pebbles
project [Umar Saif, 2003]. It has produced a strawman ap-
plication scripting language that supports code reflection.
The current interpreter runs on unix, bare PC motherboard,
our embedded CPU cards and linux. A native-compiler that
generates PIC assembler code and operates over the CAN
bus (instead of Ethernet) is also being implemented. This
will be less RAM hungry. We have implemented various

// Annunciator leds:

output Display#leds#HotWater : {0: 1};
output Display#leds#CentralHeating : {0: 1};
output Display#leds#Hour : {off: 0..23};
output Display#leds#Minute {off: 0..59};

input Keypad#Keys#index
input Keypad#Keys#override
input Keypad#Keys#ModeSelect :

: up down fast_up fast_down};
1};

CurrentTime Heating_Onl_Time Heating_On0
Heating_Offl_Time Heating Off0_Time
Water_Onl_Time Water_OnO_Time
Water_Offl_Time Water_Off0_Time };

// Communication with the timer Pebble:

input __local_timer#time_nowf#hour
input _ local_timer#time_now#minute
input __local_timer#time_now#second

input __local_timer#time_nowf#csecond :

// Heating/Water on/off times

inout Times#Heating_OnO#Hour : {0..2
inout Times#Heating_ OffO#Hour: {0..2
inout Times#Heating_Onl#Hour : {0..2
inout Times#Heating_Offl#Hour: {0..2
inout Times#Water_OnO#Hour {0..2
inout Times#Water_OffO#Hour {0..2
inout Times#Water_Onl#Hour {0..2
inout Times#Water_Offl#Hour {0..2
input HEATING : {0:1}, WATER : {0:1)
output Remote#override : {0:1};
Remote#override := KeypadéKeys#overr
// Annunciators
with (Display#leds)

{

#HotWater := WATER;
#CentralHeating := HEATING;

}
// Up/Down Buttons
macro key_up = (Keypad#Keys#index =
macro key_down = (Keypad#Keys#index
macro key_fast = (Keypad#Keys#index

fun updown (hour, minute, up, down)

{

if (down)
if ((hour == 0) && (minute == 0)
(hour, minute) := (23, 59);
else if (minute == 0)
(hour, minute) (hour - 1, 5
else minute := minute - 1;
else if (up)
if ((hour == 23) && (minute == 5
(hour, minute) := (0, 0);
else if (minute == 59)

(hour, minute) (hour + 1, 0
else minute := minute + 1;

}
if (°__local_timer#time_now#second |
(key_fast && "__local_timer#time
"key_up || “key_down)
switch (Keypad#Keys#ModeSelect)
{
case Heating_On0_Time:
updown (Times#Heating_On0#Hou
case Heating_Off0_Time:
updown (Times#Heating_OffO0#Ho
case Heating_Onl_Time:
updown (Times#Heating_Onl#Hou
case Heating_Offl_Time:
updown (Times#Heating_Off1#Ho
case Water_On0_Time:
updown (Times#Water_OnO#Hour,
case Water_ Off0_Time:
updown (Times#Water_Off0#Hour
case Water_Onl_Time:
updown (Times#Water_Onl#Hour,
case Water_Offl_Time:
updown (Times#Water_Off1#Hour
}

// LED display
switch (Keypad#Keys#ModeSelect)
{
case CurrentTime:
Display#leds# (Hour,Minute)
case Heating_Off0_Time:
Display#leds# (Hour,Minute)
case Heating_Offl_Time:
Display#leds# (Hour,Minute)
case Heating_On0_Time:
Display#leds# (Hour,Minute)
case Heating_Onl_Time:
Display#leds# (Hour,Minute)
case Water_Off0_Time:
Display#leds# (Hour,Minute)
case Water_ Offl_Time:
Display#leds# (Hour,Minute)
case Water_On0_Time:
Display#leds# (Hour,Minute)
case Water_Onl_Time:
Display#leds# (Hour,Minute)
default:
// Better would be a five seco
Display#leds# (Hour,Minute)

Figure 9. Listing of the Heating Controller Ul

Bundle

{0..23};
{0..59};
{0..59};
{0..99};

3}, Times#Heating_OnO#Minute : {0..59};
3}, Times#Heating OffO#Minute: {0..59};
3}, Times#Heating_Onl#Minute : {0..59};
3}, Times#Heating_ Offl#Minute: {0..59};
3}, Times#Water_OnO#Minute {0..59};
3}, Times#Water_ OffO#Minute {0..59};
3}, Times#Water_Onl#Minute {0..59};
3}, Times#Water_Offl#Minute {0..59};
ide;
up) || (Keypad#Keys#index == fast_up);
= down) || (Keypad#Keys#index == fast_c
== fast_up) || (Keypad#Keys#index ==
)
9);
9))
)i
|
_now#csecond) ||
r, Times#Heating_OnO#Minute, key_up,
ur, Times#Heating_OffO0#Minute, key_up,
r, Times#Heating_Onl#Minute, key_up,
ur, Times#Heating_Offl#Minute, key_up,
Times#Water_OnO#Minute, key_up,
, Times#Water_OffO#Minute, key_up,
Times#Water_Onl#Minute, key_up,
’ Times#Water_Offl#Minute, key_up,

__local_timer#time_now# (hour,minute);
Times#Heating_Off0# (Hour,Minute);
Times#Heating_Off1#(Hour,Minute);
Times#Heating_On0# (Hour ,Minute);
Times#Heating_Onl#(Hour,Minute);
Times#Water Off0# (Hour,Minute);
Times#Water Off1#(Hour, Minute);
Times#Water_OnO# (Hour,Minute);
Times#Water_Onl#(Hour,Minute);

nd delay before going blank.
(off, off);

_Time

down) ;

fast_down) ;

key_down) ;
key_down) ;
key_down) ;
key_down) ;
key_down) ;
key_down) ;
key_down) ;

key_down) ;

def bundle ButtonLock()
{
input v#keysfbutton : { false:true};
output v#locks#unlocked : { false:true
forever {
wait (button
unlocked :
sleep_secs
unlocked :
wait (!butto
}
local locked
live unlocked,

'unlocked;
locked;

Figure 10. Button code listing

def bundle __ std_lib()

{
input __local_timer#time_now
#(hours : {0..23},
minutes : {0..59},
seconds : { 0..59},
cseconds : { 0..99 }
)i
fun sleep_secs(t)
{
local until : { 0..59 };
until := (__local_timer#time_now#second + t);
wait(__local_timer#time_now#second FQGT until);
}
}

Figure 11. Part of the standard library

def bundle B2()

{

pebble r = tup://128.232.1.45/v;

input d#g : bool;

r#keys#button := r#locks#unlocked && di#qg;
}

Figure 12. An Incompatible Bundle

hardware and software devices, including an alarm clock,
DVD player, various HiFi components, switches and lamps.
Work is ongoing on larger programs, such as TiVo PCR
and voice mail. Our language has a number of novel fea-
tures, including idempotent execution and the mechanism
concept, where reverse execution is used to help handle net-
work errors or device self-reset. Arrays and RPC are shortly
to be tested out.

Future work is needed to analyse temporary error states
during network races and to provide break-before-make
form guarantees where Pushlogic is used to disable one
server or device while enabling another.

The domain checker concept is well developed, but prac-
tical implementation is only just starting. We also plan to
work on federation of DOPs based on known obligations

and constraints of adjacent domains [Lupu E, 1997].

Our temporal logic assertions currently do not contain
quantifiers that range over devices or possible values of
fields. As new devices and new versions of devices with
extended variable domains can be inserted into a live DOP,
certain negated existential forms will have to be restricted
in order to preserve monotonicity.

Finally, we are seeking collaboration with an indus-
trial partner where we can put our ideas into practice and
combine them with conventional safety-critical approaches,
such as coverage testing.

References

[Chessell et al., 2002] Chessell, M., Griffin, C., Vines, D., Butler,
M., Ferreira, C., and Henderson, P. (2002). Extending the con-
cept of transaction compensation. /BM Syst. J., 41(4):743-758.

[David Dill, 2004] David Dill, S. B. (2004). CVC lite. Technical
report, Stanford University.

[Glasser, 1995] Glasser, U. (1995). Systems level specification
and modeling of reactive systems: Concepts, methods, and
tools. In EUROCAST, pages 375-385.

[Greaves, 2004] Greaves, D. (2004). AUTOHAN project. Tech-
nical report, University of Cambridge, UK.

[Lupu E, 1997] Lupu E, S. M. (1997). Conflict analysis for man-
agement policies. In 5th Int Symp Integrated Network Manage-
ment IM’97. Chapman Hall.

[McMillan, 2000] McMillan, K. (2000). The smv language man-
ual. Technical report, Carnegie-Mellon University.

[Microsoft, 2000] Microsoft (2000). Universal plug and play de-
vice architecture, version 1.0. Technical report, Microsoft.

[Monika Solanki, 2003] Monika Solanki, e. a. (2003). Introduc-
ing compositionality in webservice descriptions. In Proceed-
ings of 3rd ANWIRE workshop on adaptable services, DAIS-
FMOODS.

[Pearson, 2005] Pearson, J. (2005). Embedding systems at a
higher level. Electronic System Design.

[Presburger, 1929] Presburger, M. (1929). Ober die vollstndigkeit
eines gewissen systems der arithmetik ganzer zahlen, in
welchem die addition als einzige operation hervortritt. Comptes
Rendus du I congrs de Mathmaticiens des Pays Slaves, pages
92-101.

[ReactiveSystems, 2003] ReactiveSystems (2003). Model-based
testing and validation of control software with reactis. Techni-
cal Report 2003-1, Reactive Systems.

[Schlingloff et al., 2005] Schlingloff, B.-H., Martens, A., and
Schmidt, K. (2005). Modeling and model checking web ser-
vices. Electronic Notes in Theoretical Computer Science: Issue
on Logic and Communication in Multi-Agent Systems, 126:3—
26.

[Umar Saif, 2003] Umar Saif, S. W. e. a. (2003). A case for goal-
oriented programming semantics. In UbiComp 03, System Sup-
port for Ubiquitous Computing Workshop at the Fifth Annual
Conference on Ubiquitous Computing.

10

