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Abstract This paper presents an approach to design-
ing and implementing extensible computational models
for perceiving systems based on a knowledge-driven joint
inference approach. These models can integrate different
sources of information both horizontally (multi-modal
and temporal fusion) and vertically (bottom-up, top-
down) by incorporating prior hierarchical knowledge ex-
pressed as an extensible ontology.

Two implementations of this approach are presented.
The first consists of a content based image retrieval sys-
tem which allows users to search image databases using
an ontological query language. Queries are parsed us-
ing a probabilistic grammar and Bayesian networks to
map high level concepts onto low level image descrip-
tors, thereby bridging the “semantic gap” between users
and the retrieval system. The second application extends
the notion of ontological languages to video event de-
tection. It is shown how effective high-level state and
event recognition mechanisms can be learned from a set
of annotated training sequences by incorporating syntac-
tic and semantic constraints represented by an ontology.

Keywords Ontologies · Perceptual inference · Content-
based image retrieval · Video analysis · Knowledge-based
computer vision

1 Introduction

Visual information is inherently ambiguous and seman-
tically impoverished. There consequently exists a wide
semantic gap between human interpretations of image
and video data and that currently derivable by means of
a computer. This paper demonstrates how this gap can
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be narrowed by means of ontologies. Ontology is the the-
ory of objects in terms of the criteria which allow one to
distinguish between different types of objects and their
relationships, dependencies, and properties. Ontologies
encode the relational structure of concepts which one can
use to describe and reason about aspects of the world.
This makes them eminently suitable to many problems
in computer vision which require prior knowledge to be
modelled and utilised in both a descriptive and prescrip-
tive capacity.

In this paper, terms in the ontology are grounded in
the data and therefore carry meaning directly related to
the appearance of real world objects. Tasks such as image
retrieval and automated visual surveillance can then be
carried out by processing sentences in a visual language
defined over the ontology. Such sentences are not purely
symbolic since they retain a linkage between the symbol
and signal levels. They can therefore serve as a computa-
tional vehicle for active knowledge representation which
permits incremental refinement of alternate hypotheses
through the fusion of multiple sources of information and
goal-directed feedback. A visual language can also serve
as an important mechanism for attentional control by
constraining the range of plausible feature configurations
that need to be considered when performing a visual task
such as recognition. Processing may then be performed
selectively in response to queries formulated in terms of
the structure of the domain, i.e. relating high-level sym-
bolic representations to extracted visual and temporal
features in the signal. By basing such a language on an
ontology one can capture both concrete and abstract re-
lationships between salient visual properties. Since the
language is used to express queries and candidate hy-
potheses rather than describe image content, such re-
lationships can be represented explicitly without prior
commitments to a particular interpretation or having to
incur the combinatorial explosion of an exhaustive an-
notation of all the relations that may hold in a given
image or video. Instead, only those image aspects which
are of value given a particular task are evaluated and
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evaluation may stop as soon as the appropriate top level
symbol sequence has been generated.

This approach is broadly motivated by two notions
of how visual information processing may be achieved
in biological and artificial systems. Firstly, vision can be
posed as knowledge-driven probabilistic inference. Math-
ematical techniques for deductive and inductive reason-
ing can then be applied to deal with two key problems
that make vision difficult, namely complexity and un-
certainty. Recognition is thus posed as a joint inference
problem relying on the integration of multiple (weak)
clues to disambiguate and combine evidence in the most
suitable context as defined by the top level model struc-
ture.

Secondly, vision may be regarded as closely related
to (and perhaps an evolutionary precursor of) language
processing. In both cases one ultimately seeks to find
symbolic interpretations of underlying signal data. Such
an analysis needs to incorporate a notion of the syn-
tax and semantics that is seen as governing the domain
of interest so that the most likely explanation of the ob-
served data can be found. The general idea is that recog-
nising an object or event requires one to relate loosely
defined symbolic representations of concepts to concrete
instances of the referenced object or behaviour pattern.
This is best approached in a hierarchical manner by as-
sociating individual parts at each level of the hierarchy
according to rules governing which configurations of the
underlying primitives give rise to meaningful patterns at
the higher semantic level. Thus syntactic rules can be
used to drive the recognition of compound objects or
events based on the detection of individual components
corresponding to detected features in time and space.
Visual analysis then amounts to parsing a stream of ba-
sic symbols according to prior probabilities to find the
most likely interpretation of the observed data in light of
the top-level starting symbols in order to establish corre-
spondence between numerical and symbolic descriptions
of information.

This paper presents two concrete implementations of
the approach discussed above which demonstrate its util-
ity for solving relevant research problems.

2 Related work

2.1 Visual recognition as perceptual inference

An increasing number of research efforts in medium and
high level video analysis can be viewed as following the
emerging trend that object recognition and the recogni-
tion of temporal events are best approached in terms of
generalised language processing which attempts a ma-
chine translation [15] from information in the visual do-
main to symbols and strings composed of predicates,
objects, and relations. Many state-of-the-art recognition
systems therefore explicitly or implicitly employ a proba-

bilistic grammar which defines the syntactic rules which
can be used to recognise compound objects or events
based This idea has a relatively long heritage in syntactic
approaches to pattern recognition ([66],[7]) but interest
has been revived recently in the video analysis commu-
nity following the popularity and success of probabilistic
methods such as Hidden Markov models (HMM) and re-
lated approaches adopted from the speech and language
processing community.

While this approach has shown great promise for ap-
plications ranging from image retrieval to face detection
to visual surveillance, a number of problems remain to
be solved. The nature of visual information poses hard
challenges which hinder the extent to which mechanisms
such as Hidden Markov models and stochastic parsing
techniques popular in the speech and language process-
ing community can be applied to information extraction
from images and video. Consequently there remains some
lack of understanding as to which mechanisms are most
suitable for representing and utilising the syntactic and
semantic structure of visual information and how such
frameworks can best be instantiated. The role of ma-
chine learning in computer vision continues to grow and
recently there has been a very strong trend towards us-
ing Bayesian techniques for learning and inference, espe-
cially factorised graphical probabilistic models [27] such
as Dynamic Belief networks (DBN). While finding the
right structural assumptions and prior probability distri-
butions needed to instantiate such models requires some
domain specific insights, Bayesian graphs generally offer
greater conceptual transparency than e.g. neural network
models since the underlying causal links and prior beliefs
are made more explicit. The recent development of vari-
ous approximation schemes based on iterative parameter
variation or stochastic sampling for inference and learn-
ing have allowed researchers to construct probabilistic
models of sufficient size to integrate multiple sources of
information and model complex multi-modal state dis-
tributions. Recognition can then be posed as a joint in-
ference problem relying on the integration of multiple
(weak) clues to disambiguate and combine evidence in
the most suitable context as defined by the top level
model structure.

As illustrated by [13] and [60], concurrent probabilis-
tic integration of multiple complementary and redun-
dant cues can greatly increase the robustness of multi-
hypothesis tracking. In [54] tracking of a person’s head
and hands is performed using a Bayesian Belief network
which deduces the body part positions by fusing colour,
motion and coarse intensity measurements with context
dependent semantics. Later work by the same authors
[55] again shows how multiple sources of evidence (split
into necessary and contingent modalities) for object po-
sition and identity can be fused in a continuous Bayesian
framework together with an observation exclusion mech-
anism.
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An approach to visual tracking based on co-inference
of multiple modalities is also presented in [69] which de-
scribes an sequential Monte Carlo approach to co-infer
target object colour, shape, and position. In [9] a joint
probability data association filter (JPDAF) is used to
compute the HMM’s transition probabilities by taking
into account correlations between temporally and spa-
tially related measurements. [22] presents a method for
recognising video events using a tracking framework and
Bayesian networks based on shape and trajectory infor-
mation. Composite events are analysed using a semi-
hidden Markov Model exhibiting better performance than
standard HMMs on noisy sequences.

2.2 Linking language to visual data

In the area of still image descriptions, Abella and Kender
([2,1]) demonstrated a method for generating path and
location descriptions from images such as maps and spe-
cialist medical images. Spatial prepositions are repre-
sented using predicates in fuzzy logic and combined with
prior and task specific knowledge to generate natural lan-
guage expressions concerning spaces and locations.

[68,59] describe a system that uses Bayesian networks
to integrate verbal descriptions of objects (colour, size,
type) and spatial relationships in a scene with features
and classifications resulting from image processing. The
network is generated from the two forms of represen-
tation by matching object properties and relations ex-
tracted from the visual and speech processing.

In a similar vein, [52,53] uses machine learning to es-
tablish correspondences between objects in a scene and
natural language descriptions of them. Words in the vo-
cabulary are grounded in a feature space by computing
the KL-divergence of the probability distribution for a
given word conditioned on a particular feature set and
the unconditioned distribution. Co-occurrence frequen-
cies and word bigram statistics are used to learn se-
mantic associations of adjectives (including spatial re-
lationships) and noun order respectively. The training
process relies on human descriptions of designated ob-
jects. Perhaps a larger corpus of such data would make
an approach such as [4] feasible which matches still im-
age annotations with region properties using hierarchical
clustering and EM.

Learning associations between visual keywords and
image properties is of particular interest for content-
based image retrieval [50,34,71,63] where keyword as-
sociations can be acquired using a variety of supervised
(e.g. neural network) and unsupervised (e.g. latent se-
mantic analysis) learning schemes. These methods are
generally restricted to fairly low-level properties and de-
scriptors with limited semantic content. Such informa-
tion can also be acquired dynamically from user input
[26] whereby a user defines visual object models via an
object-definition hierarchy (region, perceptual-area, ob-
ject part, and object).

Recent work [5,3] has shown some promising results
with methods using hierarchical clustering to learn the
joint probability distribution of image segment features
and associated text, including relatively abstract descrip-
tions of artwork. This uses a generative hierarchical method
for EM (Expectation Maximisation, [51]) based learning
of the semantic associations between clustered keywords
(which are high-level, sparse, and ambiguous denoters
of content) and image features (which are semantically
poor, visually rich, and concrete) to describe pictures. In
order to improve the coherence in the annotations, the
system makes use of the WordNet [36] lexical database.
This is an interesting approach that is currently being ex-
tended to work with natural language image descriptions
and more advanced image segmentation and feature ex-
traction.

In [23], information from the WordNet is used to anal-
yse and annotate video sequences. Visual information
obtained using face detection, scene classification, and
motion tracking is translated into words. These words
are then used to generate scene descriptions by perform-
ing a search over the semantic relationships present in
WordNet. Thus video analysis relies on searching Word-
Net for concepts jointly supported by video evidence and
topic context derived from video transcription.

[29] describes some preliminary work on integrating a
novel linguistic question answering method with a video
surveillance system. By combining various approaches to
temporal reasoning and event recognition from the artifi-
cial intelligence community, the authors are proposing a
common visual-linguistic representation to allow natural
language querying of events occurring in the surveillance
footage. A similar problem is considered in [30] which
presents a spatio-temporal query language that can be
used for analysing traffic surveillance scenarios. The lan-
guage features unary and binary relations over attributes
such as distances, orientations, velocities, and temporal
intervals. Queries consisting of trees of such relations are
matched to the output of a tracking framework by con-
sidering all possible ways of binding tracked objects to
leaf nodes in the tree and evaluating relations to assess
whether all constraints are matched. In [44] a system
for generating verbal descriptions of human movements
is presented. The method makes use of a hierarchy of
human body parts and actions in order to generate the
most plausible and succinct description of movements
observed from video sequences.

2.3 Ontologies and hierarchical representations

Many classical methods for representing and matching
ontological knowledge in artificial intelligence (descrip-
tion logics, frame-based representations, semantic nets)
are coming back into vogue, not least because of the “se-
mantic web” initiative. However, many problems remain
when such approaches are applied to highly uncertain



4 Christopher Town

and ambiguous data of the sort that one is confronted
with in computer vision and language processing. Much
research remains to be done in fusing classical syntac-
tic approaches to knowledge representation with modern
factorised probabilistic modelling and inference frame-
works.

Early work by Tsotsos [67] presents a mechanism for
motion analysis (applied to medical image sequences)
based on instantiation of prior knowledge frames repre-
sented by semantic networks. The system can maintain
multiple hypotheses for the motion descriptors which
best describe the movement of objects observed in the se-
quence. A focus of attention mechanism and a feedback
loop featuring competition and reinforcement between
different hypotheses are used to rank possible interpreta-
tions of a sequence and perform temporal segmentation.

In [10], domain knowledge in the form of a hierarchy
of descriptors is used to enhance content-based image re-
trieval by mapping high-level user queries onto relations
over pertinent image annotations and simple visual prop-
erties (colour and texture).

In [12], an architecture for perceptual computing is
presented which integrates different visual processing rou-
tines in the form of a “federation of processes” where
bottom-up data is fused with top-down information about
the user’s context and roles based on an ontology.

The use of such an ontology for information fusion
is made more explicit in [31] which uses the DARPA
Agent Markup Language (DAML) that was originally
developed to facilitate the “semantic web”. Their paper
considers more of a “toy problem” and doesn’t really ad-
dress problems with description logics of this sort (such
as brittleness and the frame problem).

A more robust approach is presented in [43] which
describes an event recognition language for video. Events
can be hierarchical composites of simpler primitive events
defined by various temporal relationships over object
movements. Very recently [42], there have been ongoing
efforts by the same authors and others to produce a stan-
dardised taxonomy for video event recognition consisting
of a video event representation language (VERL) and a
video event markup language (VEML) for annotation.

[35] uses an ontology of object descriptors to map
higher level content-based image retrieval queries onto
the outputs of image processing methods. The work seems
to be at an early stage and currently relies on several
cycles of manual relevance feedback to perform the re-
quired concept mappings. Similar work on evaluating
conceptual queries expressed as graphs is presented in
[16] which uses sub-graph matching to match queries to
model templates for video retrieval. In application do-
mains where natural language annotations are available,
such as crime scene photographs [46], retrieval can also
gain from the extraction of complex syntactic and se-
mantic relationships from image descriptions by means
of sophisticated natural language processing.

Ontologies have also been used to extend standard-
ised multimedia annotation frameworks such as MPEG-7
with concept hierarchies [25]. They also play an impor-
tant role in improving content-based indexing and access
to textual documents (e.g. [19], [32]) where they can be
used for semantics-based query expansion and document
clustering.

3 Proposed approach and methodology

3.1 Overview

We propose a cognitive architectural model for image
and video interpretation. It is based on a self-referential
probabilistic framework for multi-modal integration of
evidence and context-dependent inference given a set of
representational or derivational goals. This means that
the system maintains an internal representation of its
current hypotheses and goals and relates these to avail-
able detection and recognition modules. For example, a
surveillance application may be concerned with record-
ing and analysing movements of people by using mo-
tion estimators, edge trackers, region classifiers, face de-
tectors, shape models, and perceptual grouping opera-
tors. The system is capable of maintaining multiple hy-
potheses at different levels of semantic granularity and
can generate a consistent interpretation by evaluating
a query expressed in an ontological language. This lan-
guage gives a probabilistic hierarchical representation in-
corporating domain specific syntactic and semantic con-
straints from a visual language specification tailored to
a particular application and for the set of available com-
ponent modules.

From an artificial intelligence point of view, this can
be regarded as an approach to the symbol grounding
problem [20] since sentences in the ontological language
have an explicit foundation of evidence in the feature
domain, so there is a way of bridging the semantic gap
between the signal and symbol level. It also addresses
the frame problem [14] since there is no need to exhaus-
tively label everything that is going on, one only needs to
consider the subset of the state space required to make
a decision given a query which implicitly narrows down
the focus of attention.

The nature of such queries is task specific. They may
either be explicitly stated by the user (e.g. in an image
retrieval task) or implicitly derived from some notion
of the system’s goals. For example, a surveillance task
may require the system to register the presence of peo-
ple who enter a scene, track their movements, and trigger
an event if they are seen to behave in a manner deemed
“suspicious” such as lingering within the camera’s field
of view or repeatedly returning to the scene over a short
time scale. Internally the system could perform these
functions by generating and processing queries of the
kind “does the observed region movement correspond to
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a person entering the scene?”, “has a person of similar
appearance been observed recently?”, or “is the person
emerging from behind the occluding background object
the same person who could no longer be tracked a short
while ago?”. These queries would be phrased in a lan-
guage which relates them to the corresponding feature
extraction modules (e.g. a Bayesian network for fusing
various cues to track people-shaped objects) and inter-
nal descriptions (e.g. a log of events relating to peo-
ple entering or leaving the scene at certain locations
and times, along with parameterised models of their vi-
sual appearance). Formulating and refining interpreta-
tions then amounts to selectively parsing such queries.

3.2 Recognition and classification

Ontologies used in knowledge representation usually con-
sist of hierarchies of concepts to which symbols can refer.
Their axiomatisations are either self-referential or point
to more abstract symbols. As suggested above, simply
defining an ontology for a particular computer vision
problem is not sufficient, the notion of how the terms
of the ontology are grounded in the actual data is more
crucial in practice.

This paper argues that in order to come closer to
capturing the semantic “essence” of an image, tasks such
as feature grouping and object identification need to be
approached in an adaptive goal oriented manner. This
takes into account that criteria for what constitutes non-
accidental and perceptually significant visual properties
necessarily depend on the objectives and prior knowl-
edge of the observer, as recognised in [6]. Such criteria
can be ranked in a hierarchy and further divided into
those which are necessary for the object or action to
be recognised and those which are merely contingent.
Such a ranking makes it possible to quickly eliminate
highly improbable or irrelevant configurations and nar-
row down the search window. The combination of indi-
vidually weak and ambiguous cues to determine object
presence and estimate overall probability of relevance
builds on recent approaches to robust object recognition
and can be seen as an attempt at extending the success
of indicative methods for content representation in the
field of information retrieval.

Fig. 1 The Hermeneutical cycle for iterative in-
terpretation in a generative (hypothesise and test)
framework.

3.3 Self-referential perceptual inference framework

In spite of the benefits of Bayesian networks and related
formalisms, probabilistic graphical models also have lim-
itations in terms of their ability to represent structured
data at a more symbolic level [48,47] and the require-
ment for normalisations to enable probabilistic interpre-
tations of information. Devising a probabilistic model is
in itself not enough since one requires a framework that
determines which inferences are actually made and how
probabilistic outputs are to be interpreted.

Interpreting visual information in a dynamic context
is best approached as an iterative process where low-
level detections are compared (induction) with high-level
models to derive new hypotheses (deduction). These can
in turn guide the search for evidence to confirm or reject
the hypotheses on the basis of expectations defined over
the lower level features. Such a process is well suited to a
generative method where new candidate interpretations
are tested and refined over time. Figure 1 illustrates this
approach.

Fig. 2 Sketch of the proposed approach to goal-
directed fusion of content extraction modules and in-
ference guided by an attentional control mechanism.
The fusion process and selective visual processing are
carried out in response to a task and domain defini-
tion expressed in terms of an ontological language.
Interpretations are generated and refined by deriv-
ing queries from the goals and current internal state.

However, there is a need to improve on this method-
ology when the complexity of the desired analysis in-
creases, particularly as one considers hierarchical and
interacting object and behavioural descriptions best de-
fined in terms of a syntax at the symbolic level. The sheer
number of possible candidate interpretations and poten-
tial derivations soon requires a means of greatly limiting
the system’s focus of attention. A useful analogy is selec-
tive processing in response to queries [8]. Visual search
guided by a query posed in a language embodying an
ontological representation of a domain allows adaptive
processing strategies to be utilised and gives an effective
attentional control mechanism.

This paper demonstrates that an ontological content
representation and query language could be used as an
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effective vehicle for hierarchical representation and goal-
directed inference in high-level visual analysis tasks. As
sketched in figure 2, such a language would serve as a
means of guiding the fusion of multiple sources of vi-
sual evidence and refining symbolic interpretations of
dynamic scenes in the context of a particular problem.
By maintaining representations of both the current in-
ternal state and derivational goals expressed in terms
of the same language framework, such a system could be
seen as performing self-referential feedback based control
of the way in which information is processed over time.
Visual recognition then amounts to selecting a parsing
strategy that determines how elements of the current
string set are to be processed further given a stream of
lower level tokens generated by feature detectors. The
overall structure of the interpretative module is not lim-
ited to a particular probabilistic framework and allows
context-sensitive parsing strategies to be employed where
appropriate.

As shown above, ontologies are gaining popularity
for tasks such as multimedia and document annotation.
At the same time, many ideas from artificial intelligence
and knowledge engineering are being re-formulated us-
ing recent advances in probabilistic inference and ma-
chine learning, especially as regards the use of Bayesian
networks. There has also been recent interest in com-
bining ideas from language processing, information re-
trieval, and computer vision. This paper builds on many
of these ideas and presents a framework for performing
visual inference using ontologies. While ontologies often
play a passive taxonomic role, the work presented in this
paper considers ontologies as an integral part of an ac-
tive inference framework for computer vision. Further-
more, the ontologies presented here embody both struc-
ture (syntax) and meaning (semantics), thus giving rise
to the notion of an ontological language. Sentences in
such a language are linked to visual evidence by iter-
atively using the ontology as a structured probabilistic
prior to tie together different recognition and processing
methodologies. By repeatedly matching and generating
ontological sentences, this process becomes increasingly
self-referential. The following sections present two com-
puter vision applications that illustrate these concepts.

4 Ontological query language for content-based

image retrieval

This section presents a system which allows users to
search image databases by posing queries over desired vi-
sual content. A novel query and retrieval method called
OQUEL (ontological query language) is introduced to fa-
cilitate formulation and evaluation of queries consisting
of (typically very short) sentences expressed in a lan-
guage designed for general purpose retrieval of photo-
graphic images. The language is based on an extensible
ontology which encompasses both high-level and low-

level concepts and relations. Query sentences are pre-
scriptions of target image content rather than descrip-
tions. They can represent abstract and arbitrarily com-
plex retrieval requirements at different levels of concep-
tual granularity and integrate multiple sources of evi-
dence. Further details on OQUEL are available in [65,
61].

Fig. 3 Model of the retrieval process using an on-
tological query language to bridge the semantic gap
between user and system notions of content and sim-
ilarity.

The retrieval process takes place entirely within the
ontological domain defined by the syntax and semantics
of the user query. It utilises automatically extracted im-
age segmentation and classification information, as well
as Bayesian networks to infer higher level and compos-
ite terms. The OQUEL language provides an effective
mechanism of addressing key problems of content based
image retrieval, namely the ambiguity of image content
and user intention and the semantic gap which exists be-
tween user and system notions of relevance (see figure 3).
By basing such a language on an extensible ontology, one
can explicitly state ontological commitments about cat-
egories, objects, attributes, and relations without having
to pre-define any particular method of query evaluation
or image interpretation. The combination of individually
weak and ambiguous cues can be seen as an attempt at
extending the success of indicative methods for content
representation in the field of text retrieval.

4.1 Syntax and semantics

OQUEL queries (sentences) are prescriptive rather than
descriptive, i.e. the focus is on making it easy to formu-
late desired image characteristics as concisely as possi-
ble. It is therefore neither necessary nor desirable to pro-
vide an exhaustive description of the visual features and
semantic content of particular images. Instead a query
represents only as much information as is required to
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discriminate relevant from non-relevant images. In or-
der to allow users to enter both simple keyword phrases
and arbitrarily complex compound queries, the language
grammar features constructs such as predicates, rela-
tions, conjunctions, and a specification syntax for image
content. The latter includes adjectives for image region
properties (i.e. shape, colour, and texture) and both rela-
tive and absolute object location. Desired image content
can be denoted by nouns such as labels for automatically
recognised visual categories of stuff (“grass”, “cloth”,
“sky”, etc.) and through the use of derived higher level
terms for composite objects and scene description (e.g.
“animals”, “vegetation”, “winter scene”). The latter in-
cludes a distinction between singular and plural, hence
“people” will be evaluated differently from “person”. The
following gives a somewhat simplified high level context
free EBNF-style grammar G of the OQUEL language as
currently implemented in the ICON system:

G : {

S → R

R → modifier? (metacategory | SB | BR)

| not? R (CB R)?

BR → SB binaryrelation SB

SB → (CS | PS) + LS ∗

CS → visualcategory | semanticcategory |

not? CS (CB CS)?

LS → location | not? LS (CB LS)?

PS → shapedescriptor | colourdescriptor |

sizedescriptor | not? PS (CB PS)?

CB → and | or | xor;

}

The major syntactic categories are:

– S: Start symbol of the sentence (text query).
– R: Requirement (a query consists of one or more re-

quirements which are evaluated separately, the prob-
abilities of relevance then being combined according
to the logical operators).

– BR: Binary relation on SBs.
– SB: Specification block consisting of at least one CS

or PS and 0 or more LS.
– CS: Image content specifier.
– LS: Location specifier for regions meeting the CS/PS.
– PS: Region property specifier (visual properties of re-

gions such as colour, shape, texture, and size).
– CB: Binary (fuzzy) logical connective (conjunction,

disjunction, and exclusive-OR).

Tokens (terminals) belong to the following sets:

– modifier: Quantifiers such as “a lot of”, “none”, “as
much as possible”.

– scene descriptor: Categories of image content char-
acterising an entire image, e.g. “countryside”, “city”,
“indoors”.

– binaryrelation: Relationships which are to hold be-
tween clusters of target content denoted by specifi-
cation blocks. The current implementation includes
spatial relationships such as “larger than”, “close to”,
“similar size as”, “above”, etc. and some more ab-
stract relations such as “similar content”.

– visualcategory: Categories of stuff, e.g. “water”, “skin”,
“cloud”.

– semanticcategory: Higher semantic categories such as
“people”, “vehicles”, “animals”.

– location: Desired location of image content matching
the content or shape specification, e.g. “background”,
“lower half”, “top right corner”.

– shapedescriptor: Region shape properties, for exam-
ple “straight line”, “blob shaped”.

– colourdescriptor: Region colour specified either nu-
merically or through the use of adjectives and nouns,
e.g. “bright red”, “dark green”, “vivid colours”.

– sizedescriptor: Desired size of regions matching the
other criteria in a requirement, e.g. “at least 10%”
(of image area), “largest region”.

Fig. 4 Examples of OQUEL query sentences and
their syntax trees.

The precise semantics of these constructs are dependent
upon the way in which the query language is imple-
mented, the parsing algorithm, and the user query itself,
as will be described in the following sections. Figure 4
shows some additional query sentences and their result-
ing abstract syntax trees.

4.2 Visual content analysis

The OQUEL language has been implemented as part of
the ICON content-based image retrieval system [63,64].
ICON extracts various types of content descriptors and
meta data from images. The following are currently used
when evaluating OQUEL text queries:

4.2.1 Image segmentation

Images are segmented into non-overlapping regions and
sets of properties for size, colour, shape, and texture
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are computed for each region [56,57]. Initially full RGB
edge detection is performed followed by non-max sup-
pression and hysteresis edge-following steps akin to the
method due to Canny. Voronoi seed points for region
growing are generated from the peaks in the distance
transform of the initial edge image, and regions are then
grown agglomeratively from seed points with gates on
colour difference with respect to the boundary colour and
mean colour across the region. A texture model based
on discrete ridge features is also used to describe re-
gions in terms of texture feature orientation and den-
sity. Features are clustered using Euclidean distance in
RGB space and the resulting clusters are then employed
to unify regions which share significant portions of the
same feature cluster. The internal brightness structure of
“smooth” (largely untextured) regions in terms of their
isobrightness contours and intensity gradients is used to
derive a parameterisation of brightness variation which
allows shading phenomena such as bowls, ridges, folds,
and slopes to be identified. A histogram representation
of colour covariance and shape features is computed for
regions above a certain size threshold.

Fig. 5 Example architecture of the neural networks
used for image region classification.

4.2.2 Stuff classification

Region descriptors computed from the segmentation al-
gorithm are fed into artificial neural network classifiers
which have been trained to label regions with class mem-
bership probabilities for a set of 12 semantically mean-
ingful visual categories of “stuff” (“Brick”, “Blue sky”,
“Cloth”, “Cloudy sky”, “Grass”, “Internal walls”, “Skin”,
“Snow”, “Tarmac”, “Trees”, “Water”, and “Wood”). The
classifiers are MLP (multi layer perceptron) and RBF
(radial basis function) networks trained over a large (over
40000 exemplars) corpus of manually labelled image re-
gions. Figure 5 shows an example of the MLP network
structure. Evaluation results from the test set were used
to obtain the classifier confusion matrix shown in table

1. The numbers along the main diagonal represent the
probabilities of correct classification P (ci|ci) while the
other entries give the probability P (cj |ci); i 6= j of a re-
gion of class ci being erroneously classified as belonging
to class cj .

Automatic labelling of segmented image regions with
semantic visual categories [63] such as grass or water that
mirror aspects of human perception allows the imple-
mentation of intuitive and versatile query composition
methods while greatly reducing the search space. The
current set of categories was chosen to facilitate robust
classification of general photographic images. These cat-
egories are by no means exhaustive but represent a first
step towards identifying fairly low-level semantic prop-
erties of image regions that can be used to ground higher
level concepts and content prescriptions.

4.2.3 Colour descriptors

Nearest-neighbour colour classifiers were built from the
region colour representation. These use the Earth-mover
distance measure applied to Euclidean distances in RGB
space to compare region colour profiles with cluster tem-
plates learned from a training set. In a manner similar
to related approaches such as [37], colour classifiers were
constructed for each of twelve “basic” colours (“black”,
“blue”, “cyan”, “grey”, “green”, “magenta”, “orange”,
“pink”, “red”, “white”, “yellow”, “brown”). Each region
is associated with the colour labels which best describe
it.

4.2.4 Face detection

Face detection relies on identifying elliptical regions (or
clusters of regions) classified as human skin. A binarisa-
tion transform is then performed on a smoothed version
of the image. Candidate regions are clustered based on a
Hausdorff distance measure and resulting clusters are fil-
tered by size and overall shape and normalised for orien-
tation and scale. From this a spatially indexed oriented
shape model is derived by means of a distance trans-
form of 6 different orientations of edge-like components
from the clusters via pairwise geometric histogram bin-
ning. A nearest-neighbour shape classifier was trained to
recognise eyes. Adjacent image regions classified as hu-
man skin in which eye candidates have been identified
are then labelled as containing (or being part of) one or
more human faces subject to the scale factor implied by
the separation of the eyes. This detection scheme shows
robustness across a large range of scales, orientations,
and lighting conditions but suffers from false positives.

4.2.5 Content representation

After performing the image segmentation and other anal-
ysis stages as outlined above, image content is repre-
sented at the following levels:



Ontological Inference for Image and Video Analysis 9

P (cj|ci)

ci cj

i ci label c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0 Skin 0.78 0 0.01 0 0 0 0 0 0.12 0 0.09 0
1 Blue sky 0 0.80 0.12 0 0 0 0 0 0 0 0 0.08
2 Cloudy sky 0 0 0.75 0 0 0.04 0 0.05 0 0 0.12 0.04
3 Snow 0 0.07 0.06 0.87 0 0 0 0 0 0 0 0
4 Trees 0 0 0 0 0.83 0.14 0 0.01 0 0.02 0 0
5 Grass 0 0.03 0.01 0 0.22 0.73 0 0.01 0 0 0 0
6 Tarmac 0.04 0 0.02 0 0.02 0 0.59 0.11 0 0.04 0.12 0.06
7 Water 0 0.03 0.05 0.08 0.01 0.06 0.01 0.64 0 0.02 0.06 0.04
8 Wood 0.02 0.01 0 0 0 0 0.02 0 0.71 0.02 0.22 0
9 Brick 0.02 0 0 0 0.05 0 0.02 0 0.04 0.79 0.08 0
10 Cloth 0 0 0 0 0 0 0 0.10 0.07 0.03 0.76 0.04
11 Int.Walls 0.04 0 0.04 0 0 0 0 0 0.02 0.08 0 0.82

Table 1 Region classifier confusion matrix Cij = P (cj |ci).

– Region mask: Canonical representation of the seg-
mented image giving the absolute location of each
region by mapping pixel locations onto region identi-
fiers.

– Region graph: Graph of the relative spatial relation-
ships of the regions (distance, adjacency, joint bound-
ary, and containment). Distance is defined in terms
of the Euclidean distance between centres of gravity,
adjacency is a binary property denoting that regions
share a common boundary segment, and the joint
boundary property gives the relative proportion of
region boundary shared by adjacent regions.

– Grid pyramid: The proportion of image content which
has been positively classified with each particular la-
bel (visual category, colour, and presence of faces) at
different levels of an image pyramid (whole image,
image fifths, 8x8 grid). For each grid element there
consequently is a vector of percentages for the 12 stuff
categories, the 12 colour labels, and the percentage
of content deemed to be part of a human face.

Through the relationship graph representation, match-
ing of clusters of regions is made invariant with respect
to displacement and rotation using standard matching
algorithms. The grid pyramid and region mask represen-
tations allow an efficient comparison of absolute position
and size.

4.3 Grounding the vocabulary

An important aspect of OQUEL language implementa-
tion concerns the way in which sentences in the languages
are grounded in the image domain. This section discusses
those elements of the token set which might be regarded
as being statically grounded, i.e. there exists a straight-
forward mapping from OQUEL words to extracted image
properties as described above. Other terminals (modi-
fiers, scene descriptors, binary relations, and semantic

categories) and syntactic constructs are evaluated by the
query parser as will be discussed in section 4.4.

– visualcategory: The 12 categories of stuff which have
been assigned to segmented image regions by the neu-
ral net classifiers. Assignment of category labels to
image regions is based on a threshold applied to the
classifier output.

– location: Location specifiers which are simply mapped
onto the grid pyramid representation. For example,
when searching for “grass” in the “bottom left” part
of an image, only content in the lower left image fifth
will be considered.

– shapedescriptor: The current terms are “straight line”,
“vertical”, “horizontal”, “stripe”, “right angle”, “top
edge”, “left edge”, “right edge”, “bottom edge”, “polyg-
onal”, and “blobs”. They are defined as predicates
over region properties and aspects of the region graph
representation derived from the image segmentation.
For example, a region is deemed to be a straight line
if its shape is well approximated by a thin rectangle,
“right edge” corresponds to a shape appearing along
the right edge of the image, and “blobs” are regions
with highly amorphous shape without straight line
segments.

– colourdescriptor: Region colour specified either nu-
merically in the RGB or HSV colour space or through
the colour labels assigned by the nearest-neighbour
classifiers. By assessing the overall brightness and
contrast properties of a region using fixed thresholds,
colours identified by each classifier can be further de-
scribed by a set of three “colour modifiers” (“bright”,
“dark”, “faded”).

– sizedescriptor: The size of image content matching
other aspects of a query is assessed by adding the ar-
eas of the corresponding regions. Size may be defined
as a percentage value of image area (“at least x%”,
“at most x%”, “between x% and y%”) or relative to
other image parts (e.g. “largest”, “smallest”, “bigger
than”).
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Fig. 6 Simplified Bayesian network for the scene de-
scriptor “winter”.

4.4 Query evaluation and retrieval

This section discusses the OQUEL retrieval process as
implemented in the ICON system. OQUEL queries are
parsed to yield a canonical abstract syntax tree (AST)
representation of their syntactic structure. Figures 4, 7,
8, 9, and 10 show sample queries and their ASTs. The
structure of the syntax trees follows that of the grammar,
i.e. the root node is the start symbol whose children rep-
resent particular requirements over image features and
content. The leaf nodes of the tree correspond to the ter-
minal symbols representing particular requirements such
as shape descriptors and visual categories. Intermediate
nodes are syntactic categories instantiated with the rel-
evant token (i.e. “and”, “which is larger than”) which
represent the relationships that are to be applied when
evaluating the query.

In the first stage, the syntax tree derived from the
query is parsed top-down and the leaf nodes are evalu-
ated in light of their predecessors and siblings. Informa-
tion then propagates back up the tree until one arrives
at a single probability of relevance for the entire image.
At the lowest level, tokens map directly or very sim-
ply onto the content descriptors via SQL queries. Higher
level terms are either expanded into sentence representa-
tions or evaluated using Bayesian graphs. For example,
when looking for people in an image the system will anal-
yse the presence and spatial composition of appropriate
clusters of relevant stuff (cloth, skin, hair) and relate this
to the output of face and eye spotters. This evidence is
then combined probabilistically to yield an estimate of
whether people are present in the image.

Matching image content is retrieved and the initial
list of results is sorted in descending order of a prob-
ability of relevance score. Next, nodes denoting visual
properties (e.g. size or colour) are assessed in order to
filter the initial results and modify relevance scores ac-
cording to the location, content, and property specifica-
tions which occur in the syntax tree. Finally, relation-
ships (logical, geometric, or semantic, e.g. similarity) are

assessed and probability scores are propagated up the
AST until each potentially relevant image has one asso-
ciated relevance score. Relations are evaluated by con-
sidering matching candidate image content (evidence) .
A closure consisting of a pointer to the identified content
(e.g. a region identifier or grid coordinate) together with
the probability of relevance is passed as a message to
higher levels in the tree for evaluation and fusion. Query
sentences consist of requirements which yield matching
probabilities that are further modified and combined ac-
cording to the top level syntax.

At the leaf nodes of the AST, derived terms such
as object labels (“people”) and scene descriptions (“in-
doors”) are either expanded into equivalent OQUEL sen-
tence structures or evaluated by Bayesian networks inte-
grating image content descriptors with additional sources
of evidence (e.g. a face detector). Bayesian networks tend
to be context dependent in their applicability and may
therefore give rise to brittle performance when applied
to very general content labelling tasks. In the absence
of additional information in the query sentence itself,
it was therefore found useful to evaluate mutually ex-
clusive scene descriptors for additional disambiguation.
For example, the concepts “winter” and “summer” are
not merely negations of one another but correspond to
Bayesian nets evaluating different sources of evidence.
If both were to assign high probabilities to a particular
image then the labelling is considered ambiguous and
consequently assigned a lower relevance weight. Figure
6 shows a simplified Bayesian network for the scene de-
scriptor “winter”. Arrows denote conditional dependen-
cies and terminal nodes correspond to sources of evidence
or, in the case of the term “outdoors”, other Bayesian
nets.

Due to the inherent uncertainty and complexity of
the task, query evaluation is performed in a way that
limits the requirement for runtime inference by quickly
ruling out irrelevant images given the query. The over-
all approach relies on passing messages (image struc-
tures labelled with probabilities of relevance), assign-
ing weights to these messages according to higher level
structural nodes (modifiers and relations), and integrat-
ing these at the topmost levels (specification blocks) in
order to compute a belief state for the relevance of the
evidence extracted from the given image for the given
query. There are many approaches to using probabili-
ties to quantify and combine uncertainties and beliefs in
this way [45]. The approach adopted here is related to
that of [33] in that it applies notions of weighting akin
to the Dempster-Shafer theory of evidence to construct
an information retrieval model which captures structure,
significance, uncertainty, and partiality in the evalua-
tion process. The logical connectives are evaluated us-
ing thresholding and fuzzy logic (i.e. “p1 and p2” corre-
sponds to “if (min(p1,p2)<=threshold) 0 else min(p1,p2)”
). A similar approach is taken in evaluating predicates
for low-level image properties by using fuzzy quantifiers
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Fig. 7 Search results for OQUEL query A “bright red and stripy”.

Fig. 8 Search results for OQUEL query B “people in centre”.

[18]. Fuzzy logic offers a principled way of mapping lin-
guistic terms to probabilities via fuzzy sets and has been
successfully applied to CBIR in the past ([18,41,34]).
Image regions which match the target content require-
ments can then be used to assess any other specifica-
tions (shape, size, colour) which appear in the same re-
quirement subtree within the query. Groups of regions
which are deemed salient with respect to the query can

be compared for the purpose of evaluating relations as
mentioned above.

Relevant images are those where one can find suffi-
cient support for the candidate hypotheses derived from
the query. Given enough redundancy and a manageable
false positive rate, this will be resilient to failure of indi-
vidual detection modules. For example, a query asking
for images containing people does not require the system
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Fig. 9 Search results for OQUEL query C “some water in the bottom half which is surrounded by trees and
grass, size at least 10%”.

Fig. 10 Search results for OQUEL query D “winter”.

to solve the full object recognition challenge of correctly
identifying the location, gender, size, etc. of all people
depicted in all images in the collection. As long as one
maintains a notion of uncertainty, borderline false detec-
tions will simply result in lowly ranked retrieved images.
Top query results correspond to those image where the

confidence of having found evidence for the presence of
people is high relative to the other images.

4.5 Qualitative and quantitative evaluation

While most evaluation of CBIR systems is performed on
commercial image collections such as the Corel image
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Fig. 11 Plots of relative percentages for precision versus recall for the retrieval experiments. As can be seen,
results obtained using OQUEL (red) generally outperform those achieved using query-by-example (green)
or a combination of sketch and feature based retrieval (blue).

sets, their usefulness is limited by the fact that they
consist of very high quality photographic images and
that the associated ground truth (category labels such as
“China”, “Mountains”, “Food”) are frequently too high-
level and sparse to be of use in performance analysis [38].
Therefore a set of images consisting of 670 Corel images
augmented with 412 amateur digital pictures of highly
variable quality and content were chosen. Manual rele-
vance assessments in terms of relevant vs non-relevant
were carried out for all 1082 images over the test queries
described below. Twelve retrieval requirements were cho-
sen, which have the following expressions in the OQUEL
language:
Query A “bright red and stripy”

Query B “people in centre”

Query C “some water in the bottom half which is surrounded

by trees and grass, size at least 10%”

Query D “winter”

Query E “artificial stuff, vivid colours and straight lines”

Query F “indoors & people in foreground”

Query G “some vividly coloured vegetation in the centre

which is of similar size as clouds or blue sky at the top”

Query H “city or countryside”

Query I “artificial stuff and tarmac”

Query J “people or animals”

Query K “[blue sky at top] and [trees centre] and grass lower”

Query L “some sky which is close to buildings above”
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Fig. 12 Plots of total number of images retrieved versus number of relevant images retrieved for left: OQUEL
queries, right: query-by-example (QBE). In each case, results are shown for an initial query and two iterations
of query refinement.

These are not meant to constitute a representative sam-
ple over all possible image queries (no such sample ex-
ists) but to illustrate performance and user search ef-
fort for conceptually different retrieval. For the first four
OQUEL queries, top ranked search results are shown in
figures 7, 8, 9, and 10. For each OQUEL query a fur-
ther two queries embodying the same retrieval need were
composed using the other search facilities of the ICON
system:

– Combined query (“Comb.”): a query which may com-
bine a sketch with feature constraints as appropriate
to yield best performance in reasonable time.

– Query-by-example (“QBE”): the single image max-
imising the normalised average rank metric was cho-
sen as the query. This type of query is commonly used
to assess baseline performance.

To quantify performance, graphs of precision versus
recall were computed using manual relevance assessments
for each test query as shown in figure 11. In each case,
OQUEL query results are shown together with results
for the two other query modalities described above, i.e.
a combined query (“Comb.”) and a query-by-example
(“QBE”) designed and optimised to meet the same user
search requirements. It can be seen that OQUEL queries
generally yield better results, especially for the top ranked
images. In the case of query A, results are essentially the
same as those for a query consisting of feature predicates
for the region properties “stripy” and “red”. In general
OQUEL queries are more robust to errors in the segmen-
tation and region classification due to their ontological
structure. Query-by-example in particular is usually in-
sufficient to express more advanced concepts relating to
spatial composition, feature invariances, or object level
constraints.

As recommended in [39], the normalised average rank

was also computed (see table 2) which is a useful stable

Rank∼

Query OQUEL Comb QBE

A 0.2176 0.2175 0.3983
B 0.2915 0.3072 0.3684
C 0.2628 0.3149 0.3521
D 0.1935 0.2573 0.2577
E 0.2152 0.2418 0.3324
F 0.1969 0.1816 0.2475
G 0.3147 0.3766 0.2831
H 0.3312 0.2947 0.2952
I 0.1863 0.2123 0.2105
J 0.2170 0.2113 0.2020
K 0.3151 0.4078 0.3377
L 0.2367 0.2558 0.3351

Table 2 Results of the query experiments indicat-
ing the normalised average rank measure for each
of twelve query experiments (A..L) and for each of
three methods of query composition (OQUEL, “com-
bined”, and “query-by-example”).

measure of relative performance in CBIR:

Rank∼ =
1

NNrel

[

Nrel
∑

i=1

Ri −
Nrel (Nrel + 1)

2

]

(1)

where Ri is the rank at which the ith relevant image
is retrieved, Nrel the number of relevant images, and N
the total number of images in the collection. The value
of Rank∼ ranges from 0 to 1 where 0 indicates perfect
retrieval.

4.6 Scalability and query refinement

In order to investigate the scalability of the OQUEL re-
trieval technology, an image collection consisting of over
12000 high-resolution photographic images was compiled.
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The images were taken by 11 different amateur photogra-
phers and represent a very diverse range of subject mat-
ter, focal lengths, lighting conditions, and picture qual-
ity. Many of the images were taken indoors, are poorly
lit, or blurred. Several of them are upside down or ro-
tated by 90o, which can cause additional problems for
CBIR systems which rely on spatial composition.

An important goal of CBIR is to allow users to iden-
tify sets of images which are semantically related yet
disparate in their visual properties and composition. In
order to test the suitability of the OQUEL language for
such a task, a retrieval requirement for images of archae-
ological sites was chosen as a test case. The collection of
12000 images does indeed contain several images which
meet this broad description, taken at diverse locations
across the globe and featuring a variety of different styles,
periods, and surroundings (e.g. ancient buildings in a
modern city, ruins in the desert or jungle). The retrieval
requirement was translated into an initial OQUEL query
which was subsequently modified twice in light of search
results. This allows the ease and effectiveness of query re-
finement within the OQUEL framework to be assessed.
In order to avoid the prohibitive effort of manually as-
sessing and ranking every image in the collection, only
the top 100 images returned by each query were analysed
and rated as being either relevant or not relevant with
respect to the task of finding pictures of archaeological
sites. Most users are unlikely to view more than the top
100 results [49] and this method is sufficient for quanti-
tative comparison of the relative merits of different ap-
proaches. The following OQUEL queries were searched
on using the ICON system:

– OQUEL1 (initial query): “brick and (grass or trees)”
– OQUEL2 (first refinement): “[outdoors] and brick”
– OQUEL3 (second refinement): “[outdoors] and [sum-

mer] and brick”

Note that the OQUEL language does not currently fea-
ture semantic terms characterising buildings and hence
the query had to be re-expressed in simpler terms. In
order to quantify precision by means of the cumulative
frequency of relevant images returned by each query, fig-
ure 12 shows results in terms of the number of images
retrieved versus number of relevant images retrieved for
the top 100 search results. It can be seen that even simple
refinement of the OQUEL queries leads to improvements
in performance without requiring complicated queries.
In order to contrast the performance of OQUEL on this
task with another retrieval method, queries were also
composed by selecting example images. Results for these
are also shown in figure 12. After some manual browsing,
a relevant image was found and used as a single positive
example forming the first query (QBE1). Subsequently
one non-relevant image was selected from the QBE1 re-
trieval results and added to the query to form a new
query (QBE2). Finally, an additional relevant image was
added to the query set to form QBE3. As can be seen,

absolute performance is significantly lower and even the
refined QBE queries fail to adequately capture the se-
mantics behind the retrieval requirement, even though
all queries have access to the same set of image descrip-
tors.

4.7 Conclusions

Comparisons with other query composition and retrieval
paradigms implemented in ICON (sketch, sample im-
ages, property thresholds) show that the OQUEL query
language constitutes a more efficient and flexible retrieval
tool (see table 2). Few prior interpretative constraints are
imposed and relevance assessments are carried out solely
on the basis of the syntax and semantics of the query it-
self. Such queries have also generally proven to be more
efficient to evaluate since one only needs to analyse those
aspects of the image content representation that are rel-
evant to nodes in the corresponding syntax tree and be-
cause of various possible optimisations in the order of
evaluation to quickly rule out non-relevant images.

Future work will seek to extend the ontology and in-
crease the scope for quantitative analysis by adapting the
OQUEL framework to work with emerging CBIR eval-
uation efforts. For example, TRECVID1 has specified a
number of data collections and search tasks suitable for
CBIR evaluation. It features a collection of several thou-
sand video keyframes and a set of search tasks and rele-
vance judgments for evaluation. Most target queries are
formulated as user requirements (e.g. “I need some clips
showing Glen Canyon dam”) and therefore need to be
translated into the chosen query modality. At the mo-
ment, queries generally require one to search for a spe-
cific object or person (e.g. “David. J. Nash.”), category
(e.g. “Football players”), or activity (e.g. “leisure time
at the beach”). Many such queries therefore require very
specific factual knowledge that is best obtained through
associated data such as closed-captions or speech tran-
scription (which is provided by recent TRECVIDs). At
the same time, OQUEL provides relational constructs
(e.g. “larger than”, “similar colour”) that are not gen-
erally required by TRECVID queries at present. Ulti-
mately, there is no such thing as a typical CBIR query,
but OQUEL is able to span the gamut between factual
keyword-based queries and more complex queries with
a rich syntax. It is likely that query languages such as
OQUEL will prove useful as image and video retrieval
methods merge with text-based information retrieval in
order to keep up with ever increasing user demand for
easy access to today’s vast document and multimedia
collections.

1 http://www-nlpir.nist.gov/projects/trecvid/



16 Christopher Town

5 Ontology-guided dynamic scene understanding

This chapter presents work showing how the process of
creating recognition systems for high-level analysis of
surveillance data can be largely automated, provided suf-
ficient quantities of training data (ground truth) which
has been annotated with descriptors from the desired
analysis specification are available. Such a specification
may usefully be regarded as an ontology which provides
a prior description of the application domain in terms of
those entities, states, events and relationships which are
deemed to be of interest. The hierarchical organisation
and relational constraints imposed by the ontology can
then be used to guide the design of a complete visual
analysis system.

In this chapter, video sequences and ground truth
from the CAVIAR project2 were used to define an ontol-
ogy of visual content descriptors arranged in a hierarchy
of scenarios, situations, roles, states, and visual proper-
ties. The latter properties were defined by choosing ob-
ject attributes such as translational speed and appear-
ance change which could easily be computed by means
of a visual tracking and appearance modelling frame-
work. The CAVIAR training data was then automat-
ically re-labelled with this extended set of descriptors
by instantiating the tracking framework with the indi-
vidual objects in the ground truth and computing the
selected visual attributes for all frames in the sequences.
The resulting data was then used to learn both the struc-
ture and parameters of Bayesian networks for high-level
analysis. Evaluations were performed to assess how eas-
ily the categories of the ontology could be inferred on
the basis of the chosen visual features and on the basis
of preceding layers in the hierarchy. The former allows
one to assess the (in)adequacies of a set of given visual
content extraction and representation methods, which is
an important tool in designing the computer vision com-
ponents of a surveillance system in order to maximise
their utility for high-level inference in light of the do-
main ontology. Conversely, one can use the probabilistic
scoring methods applicable to Bayesian networks to eval-
uate how well-defined e.g. the pre-defined set of situation
descriptors are in terms of the labels for object roles and
states which appear in the ground truth. Further imple-
mentation details can be found in [62,61].

5.1 Visual analysis and tracking

The tracking system maintains a background model and
foreground motion history (obtained by frame differenc-
ing) which are adapted over time using an exponential
rate of decay to determine the decreasing influence of
previous frames imi−1 in the history. The motion his-
tory Mi is used to identify a background image bimi of

2 EC Funded CAVIAR project/IST 2001 37540,
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

Fig. 14 Bayesian network for occlusion reasoning and
prediction of object interactions.

pixels undergoing sufficiently slow change which can then
be used to reliably update the background model Bi and
estimate its variance:

Bi = α ∗ bimi + (1 − α) ∗ Bi−1; B0 = im0 (2)

where bimi = |imi − Mi| < τ ; α = 1 − e−1/λB (3)

Pixels are deemed to be part of the dynamic foreground if
they exceed a difference threshold which is a multiple of
the background variance σB

i and if they are not deemed
to be part of a shadow as determined by a simple test
over luminance vs hue and saturation changes.

After performing some morphological clean-up oper-
ations, foreground pixels are clustered using connected
components analysis to identify moving regions (“blobs”).
Blob positions are tracked using a Kalman or particle
filter with a second order motion model. Tracked ob-
jects are matched to detected blobs using a weighted
dissimilarity metric which takes into account differences
in predicted object location vs blob location and changes
in object appearance. Colour appearance is modelled by
histograms in RGB space and Gaussian Mixture models
in HSV space, with distance metric computed through
the Earth Mover’s distance and likelihood computation
respectively. Object arrivals, departures and occlusions
are inferred using a Bayesian network (see figure 14).
Figure 13 illustrates the approach.

In order to parameterise object motions and defor-
mations, we have adapted a sample-based edge tracking
method due to Smith [58]. The method samples points
along edges, tracks them over subsequent frames, and
estimates a parameterised motion model for the whole
edge.

In order to model and track the shape of objects in
terms of their closed boundaries, approaches based on
active contours have been very prominent in the vision
community. We have adapted the Gradient Vector flow
(GVF) method of Xu and Prince [70] in order to make
the transition from tracked edges to closed boundary
contours. The snake’s external force is computed as a
diffusion of the gradient vectors of an edge map derived
using our edge detector.
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Fig. 13 Tracking results (from left to right): Original frame; Model of the background variances; Results of
background subtraction; Detected blobs after morphological operations; Resulting tracked objects (outlined
in green) with ground truth data and results shown in yellow.

After fitting a motion model to the edges of each
object by means of the edge tracker and also fitting the
GVF active contour to the object’s outer boundary, the
shape of that boundary is parameterised. The approach
chosen here uses the first four of the seven affine invariant
moments φi proposed by Hu [24]. In the present case, the
invariant moments are calculated over object boundary
pixels only, i.e. f(x, y) is an indicator function which is
1 for a given object’s boundary pixels and 0 elsewhere.
All x, y values are transformed such that they lie in the
range [0; 1] by normalising with respect to the object’s
bounding box. In order to reduce the range of the φi, the
logarithms log(φi) of the actual values are used.

Fig. 15 CAVIAR ontology

5.2 Ground truth and domain ontology

Video sequences and ground truth from the CAVIAR
project 3 comprise 28 annotated sequences taken by a
surveillance camera in the entrance lobby of the INRIA
Rhone-Alpes research laboratory in France. They con-
sist of six scenarios of actors performing different activ-
ities such as walking around, browsing information dis-
plays, sitting down, meeting one another and splitting
apart, abandoning objects, fighting and running away.
The CAVIAR annotations can naturally be organised
into a hierarchical ontology as shown in figure 15. This
arrangement offers guidance for the design of Bayesian
inference networks. For example, one would expect an
individual’s state to depend primarily on their current
role, their current role to depend on the situation they
are facing, and their situation to depend on the scenario
in which they are participating. These relationships can
be used as a structural prior for the training of Bayesian
networks as described below.

In order to ground the terms of the ontology, we ex-
tend it with appropriate descriptors computed from the
tracking and appearance modelling framework described
in section 5.1. These visual descriptors (see table 3) are
not claimed to constitute the best choice for the analysis
task at hand. They are merely properties of tracked ob-
jects which can be simply and robustly defined using the
techniques described in section 5.1 and offer a reasonable
basis for studying the requirements for low-level analysis
mechanisms which result from the pre-defined ontology
of higher-level terms.

5.3 Learning Bayesian network structure and
parameters

There are a variety of methods for learning both the pa-
rameters and structure of Bayesian networks from data,
see e.g. [28]. In this paper, the goal was to learn the
structure and parameters of a static directed Bayesian
network given fully observed data, i.e. the values of all
nodes are known in each case from the ground truth
(augmented as required with the information gathered

3 EC Funded CAVIAR project/IST 2001 37540, see
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Name Explanation
CVx Relative x-position
CVy Relative y-position
CVv Speed
CVa Absolute acceleration
CVm Relative mass
CVn Relative change in mass
CVt Major axis orientation
CVrx Direction of movement relative to positive x-

axis
CVry Direction of movement relative to positive y-

axis
CVf Motion flow (exponentially smoothed history

of the object’s motion)
CVl Object lifetime
CVs Combined appearance measure difference score
CVo Occlusion status
CVbm Six element (CVbm1..CVbm6) vector of mo-

tion model parameters corresponding to the
projective deformations of x- and y-translation,
rotation, dilation, pure shear, and shear at 45o

CVbs Four element (CVbs1..CVbs4) vector of shape
model parameters corresponding to the invari-
ant moments (φ1, φ2, φ3, φ4)

Table 3 Extended set of computer vision derived
nodes

Fig. 16 Bayesian network structure trained using the
K2 algorithm from the extended ontology.

by the computer vision techniques). The variables in ta-
ble 3 were discretised by choosing a number of quantisa-
tion levels (usually 3 or 4) and quantising by sub-dividing
the range [µ − 2σ; µ + 2σ] (where µ and σ are the mean
and standard deviation respectively of the observed val-
ues of the variable as computed over the entire data set)
into the corresponding number of subranges. Each value
of the variable in the data set is then quantised by as-
signing it one of the quantisation values according to
the subrange which it occupies. Making the reasonable
assumption that the values are approximately normally
distributed, this quantisation method accounts for about
95.5% of the variation in the data while reducing the

Fig. 17 Bayesian network structure trained using the
K2 algorithm with a structural prior from the ex-
tended ontology.

effect of outliers that may occur due to discontinuities
caused by imperfect visual analysis.

Learning the network structure requires a means of
searching the space of all possible DAGs over the set
of nodes X and a scoring function to evaluate a given
structure over the training data D. Two different learn-
ing algorithms were chosen and implemented by means
of the Bayes Net Toolbox for Matlab [40].

The K2 algorithm [11] is a greedy search technique
which starts from an empty network but with an initial
ordering of the nodes. A Bayesian network is then created
iteratively by adding a directed arc to a given node from
that parent node whose addition most increases the score
of the resulting graph structure. This process terminates
as soon as none of the possible additions result in an
increased score.

Markov Chain Monte Carlo (MCMC) is a family of
stochastic search methods. As described in [17], MCMC
can be applied to Bayesian network structure learning
without the need for a prior node ordering (although
such orderings can be employed to speed up conver-
gence). The Metropolis-Hastings sampling technique is
applied to search the space of all graphs G by defining
a Markov Chain over it whose stationary distribution is
the posterior probability distribution P (G|D). Following
Bayes’ rule, P (G|D) = P (D|G)P (G). The marginal like-
lihood of the data P (D|G) can be computed by means
of an appropriate scoring function (see below) and the
prior P (G) may be left uninformative (i.e. a uniform dis-
tribution over the set of possible DAGs G). Candidate
structures are then sampled by performing a random
walk over the Markov chain. The highest scoring net-
work structure can then be inferred by averaging over a
sufficiently large number of samples.

In order to compute the score of a candidate net-
work over the training data while avoiding overfitting,
two scoring functions were considered:
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– The marginal likelihood of the model

P (D|G) =

∫

θ

P (D|G, θ)P (θ|G)

where D is the training data, G is the graph struc-
ture, and θ are the network parameters.

– The Bayesian Information Criterion (BIC), which ap-
proximates the marginal likelihood using a Minimum
Description Length (MDL) approach. Following [21],
the Laplace approximation to the parameter poste-
rior can be written in terms of the likelihood and
a penalty term d

2
log M to explicitly penalise model

complexity:

log P (D|G) ≈ log P (D|G, θ̂G)−
d

2
log M = BIC(D, G)

where M is the number of training cases in D, d is the

number of free parameters, and θ̂G is their maximum
likelihood estimate.

MCMC was largely found to provide inferior results and
required many thousands of iterations to converge to
a solution. Furthermore, the K2 method directly ben-
efits from the prior structural information contained in
the ontology. Although the BIC score is a more crude
approximation than that inherent in the computation
of the marginal likelihood shown above, there was very
little difference in resulting network performance using
the two scoring methods. Once the network structure
has been trained, parameters can be estimated easily us-
ing maximum likelihood estimation using Dirichlet priors
(pseudo-counts).

Fig. 20 Bayesian network structure trained using the
K2 algorithm with random initial ordering of the
nodes.

5.4 Results

Figure 16 shows a Bayesian network trained in the man-
ner described in section 5.3 using the K2 algorithm with-

Fig. 21 Bayesian network structure trained using the
MCMC algorithm initialised with a structural prior.

out a structural prior. The network structure looks some-
what erratic but captures some of the hierarchical rela-
tionships between variables that one would expect from
their semantics. Some nodes in the network (siM, siIS,
rLV, tIN) remain unconnected. That is because their val-
ues are almost constant in the data set and hence can in
most cases be inferred trivially through a purely deter-
ministic prior.

The network shown in figure 17 was trained using
K2 and a structural prior specifying that nodes which
are part of the same semantic level in the ontology (e.g.
all situation labels) should be treated as equivalent in
terms of the ordering of nodes. The resulting network
structure encompasses many of the causal relationships
one would expect from the semantics and shows that
there are strong dependencies between the computer vi-
sion derived terms and the states and roles in particular.
Figure 18 shows classification rates achieved by this net-
work given different sets of evidence. As shown in figure
19, this network achieves better recognition rates than
the one trained without a structural prior. The average
recognition rates (computed over an independent testing
set) over all elements of the CAVIAR ontology are now
0.911 and 0.882 respectively for the Bayesian network
with and without a structural prior.

Even without the structural prior (which groups vari-
ables in the same level of the ontology into an equivalence
class), the ontology has thus far still been used to define
an ordering of the nodes in the Bayesian network. Fig-
ure 20 shows an example of a Bayesian network which
was trained using K2 without any such ontological infor-
mation, i.e. with a random initial ordering of the nodes.
The performance of this network is worse than the two
discussed before, with the average recognition rate now
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Fig. 18 Plot of recognition rates achieved by the Bayesian network shown in figure 17 for the variables in the
CAVIAR ontology given different evidence. Top: given only the computer vision derived nodes as evidence;
2nd from top: given only the states (tAP, tDI, tO, tIN, tAC, tWK, tR); 3rd from top: given both the states and
computer vision information; Bottom: recognition rates for the states given the computer vision derived nodes
as evidence. It can be seen that some nodes in the ontology are insufficiently grounded using the computer
vision components alone but that embedding them in an ontology derived structure improves recognition.

Fig. 19 Plot of Bayesian network recognition rates for the variables in the CAVIAR ontology given only the
computer vision derived nodes as evidence. The rates achieved by the network in figure 17 are shown in red
(top line), those for the network in figure 16 are shown in blue (bottom line). It can be seen that the use of
an ontological prior improves accuracy.

being 0.865. This implies that the use of an ontological
prior has reduced the expected error rate from about
14% to about 9% (i.e. a 36% reduction) even though the
same data set, image processing, and learning method
are being used.

It is also possible to provide a structural prior for
MCMC learning by initialising the search with a par-
ticular network structure. Figure 21 shows a network
trained using a MCMC process whose starting point was
the network structure shown in figure 17. The result-
ing average recognition rates for the CAVIAR ontology
are 0.642 (MCMC without ontological prior) and 0.659
(search initialised with a prior, figure 21).

6 Conclusions

6.1 Summary

This paper presents research in the area of high-level
computer vision which shows how ontologies can be used
as effective computational and representational mecha-
nisms that allow one to relate semantic descriptors to
their parametric representations in terms of the under-
lying data primitives. A particular focus of this work is
on the role of ontologies as a means of representing struc-
tured prior information and of fusing different kinds of
information in an inference framework.

Section 4 presents a novel approach to content-based
image retrieval founded on an ontological query language,
OQUEL. The problems of expressing, representing, and
matching user queries are thus solved through a prescrip-
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tive ontology of image content descriptors which is hier-
archically decomposed using a language which embodies
a general syntax and semantics for query composition
and representation of target image content. Unlike most
conventional “query-by-example” or “query-by-sketch”
retrieval interfaces, OQUEL does not require users to
select or generate a concrete instantiation of the desired
image content and concepts. The language is concise and
abstract without being inflexible or overly formal. Query
sentences are grounded through a range of image analy-
sis methods that represent image content at low, inter-
mediate, and high semantic levels. This is realised using
segmented region properties, classifiers built upon the re-
gion parameterisation, and Bayesian inference networks
respectively.

It is shown how the ontological query language pro-
vides a way of narrowing the semantic gap between users
and the retrieval system by providing a shared language
and hierarchy of concepts for both. Rather than attempt-
ing to describe image content in terms of the language,
this approach recognises that the meaning attributed to
a given image by a user relative to some current retrieval
need (and therefore its relevance to a given query) is
only discernable through the composition of the query
itself which defines the ontological domain over which
relevance assessment is carried out. Inference of image
content thus occurs only directly in response to the user
query and terminates as soon as the relevance or irrel-
evance of each image has been established. The central
role of the ontology is to provide a means for users to
define the ontological domain of discourse and for the
system to execute the query by grounding and assess-
ing the particular ontological sentence with respect to
the actual image data. The syntactic and semantic rela-
tionships and redundancies of the ontology, the OQUEL
queries, and of image content provide a basis of infer-
ence and contextual disambiguation through which the
ontological language can be extended with new terms.

In section 5, the problem of building reliable high-
level recognition systems for dynamic scene analysis (in
particular that of surveillance video) is addressed by a
combination of pre-annotated training data, a set of au-
tomatically derived visual descriptors, and an extended
ontology incorporating both of these. The section de-
scribes how Bayesian networks can be trained from this
data to perform inference over the terms of the ontol-
ogy. Moreover, an analysis of the composition and per-
formance of different Bayesian recognition networks can
lead to insights into the coherence, utility, and grounded-
ness of the ontology itself in terms of the basis vocabulary
derived by the visual analysis.

Ontology in this case is used in a descriptive capacity
with grounding of the higher level descriptors occurring
through statistical learning from the annotated exam-
ples and additional features derived by a range of com-
puter vision tracking and visual analysis methods. The
hierarchical organisation of the ontology directly adds

value to the process by serving as a structural prior
which improves the performance of the Bayesian net-
works. As in section 4, knowledge about the domain is en-
coded both intensionally through the syntactic relation-
ships between terms of the ontology, and extensionally
by means of the visual processing modules and Bayesian
inference networks that were trained to recognise these
terms from annotated ground truth.

6.2 Discussion

A central problem in the development and application of
ontologies is that of grounding their terms and relations
in the underlying data. One way in which this may be
achieved is to hierarchically decompose and re-express
the terms of the ontology until they are all defined in
terms of primitives which the system can readily recog-
nise. Another way is to provide sufficient training data
such that the system can be made to internalise an ap-
propriate definition of the concept by means of machine
learning. Both of these approaches are investigated in
this work.

Furthermore, the notion of ontology based languages
is introduced as a powerful means of creating computa-
tional vehicles for knowledge representation and match-
ing which incorporate the syntactic and semantic struc-
tures characterising a given domain. A further approach
put forward is the concept of visual analysis as a dy-
namic process of self-referential inference whereby a sys-
tem maintains representations of both its current state
and overall goals. Bayesian networks are identified as a
mathematically well-founded method for learning, rep-
resenting, and inferring ontological knowledge. In par-
ticular, the Bayesian process of “explaining away” is an
effective and principled way of integrating and jointly
disambiguating evidence from a set of modalities to de-
termine the most likely state of a given entity without
a need for ad-hoc thresholds. The notion of reliability of
observations, the integration of prior beliefs and obser-
vations, and a focus of attention mechanism allow this
to be done efficiently and in a scalable fashion.
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