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Abstract

Delay tolerant networking has received considerable attention from the research commu-
nity in the recent years. Advances in wireless and mobile technologies have enabled new
application scenarios where intermittent disconnections are common and not exceptional.
Examples include communication in sparse mobile ad hoc networks for emergency support,
infostation-based systems for connectivity in remote areas and data collection in sensor
networks for wildlife monitoring. At the same time, most of the existing research work
in mobile networking is based on the assumption that a path exists between the sender
and the receiver. Therefore, new communication paradigms and techniques have to be
designed to make communication possible in these environments.

In this thesis we present the design, implementation and evaluation of the Context-aware
Adaptive Routing (CAR) protocol for delay-tolerant unicast communication in intermit-
tently connected mobile ad hoc networks. The protocol is based on the idea of exploiting
nodes as carriers of messages among network partitions to achieve their delivery. The
choice of the best carrier is made using Kalman filter based prediction techniques and
utility theory. We argue that movement of the nodes and potential future colocation with
the recipient of the messages can be used to make intelligent forwarding decisions.

We then discuss the design of a realistic mobility model based on social network theory in
order to test the routing protocol. An evaluation of the proposed model using real traces
and its mathematical formalisation are also presented.

The performance of the Context-aware Adaptive Routing protocol in terms of delivery
ratio, delay and overhead are evaluated using simulations based on the proposed mobility
model and purely random ones.

Finally, we discuss the implementation of CAR over an opportunistic networking frame-
work (Haggle), outlining possible applications of the general principles at the basis of the
proposed approach.
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Chapter 1

Introduction

Delay is preferable to error.

Thomas Jefferson

1.1 Background

Delay tolerant networking [Fall, 2003] has received considerable attention from the research
community in recent years. Advances in wireless and mobile technologies have enabled
new networked systems where intermittent disconnections are not exceptional. Examples
include sparse mobile ad hoc networks [Li and Rus, 2000], deep space communication sys-
tems [IPNSIG, 2007], infostation-based systems [Frenkiel et al., 2000] and carrier based
data collection in sensor networks [Shah et al., 2003].

In these types of networks, the fundamental assumption of existing TCP/IP based network
model providing end-to-end communication [Saltzer et al., 1984] is not valid, as in those
systems, a path between the sender and the receiver cannot always be assumed and so
any synchronous communication paradigm is likely to show very poor performance.

From a wireless networks perspective, we define communication as being synchronous if
it can only occur between hosts that are part of a set of entities that are all within radio
range of at least one other host in the set1. In other words, synchronous communication

1For simplicity we assume that communication is symmetric.
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Chapter 1 1.1 Background

between nodes can only occur when they are in radio transmission range of one another
or when they can exploit an underlying synchronous routing protocol to communicate.
Synchronous protocols rely on the fact that a connected path exists between the sender
and the receiver of a message; the absence of such a path will, at best, lead to a failure
indication to the originating host. If delivery is important, the best that can be done is
for the sender to continue to poll for the receiver.

Conversely, asynchronous communication does not assume that the parties involved are
located in the same connected portion of the system. Whilst, in the developed world,
synchronous communication (in the form of telephone and Internet) is generally cheap
and easy to come by, there are several real scenarios in less developed parts of the world
in which different portions of a logical network are physically disconnected. Thus, for
example, this is the case in recent projects established to assist nomadic communities
such as the Saamis in Lapland [Doria et al., 2002] or to assist populations in rural areas of
India [International Telecommunication Union, 2003, Seth et al., 2006], like the DakNet
Project [Pentland et al., 2004]. In the latter, a number of villages have their own local
networking infrastructure, but there is no interconnection between them nor to the Inter-
net. A bus containing a wireless node travels between villages, picking up email in one and
depositing it in others on its round. Self-evidently, although there is never a synchronous
connection between sender and recipient, mail can still be delivered.

Other examples of delay tolerant networks are near-Earth satellites systems or deep space
communications [Hooke, 2002] and under-water acoustic links [Partan et al., 2006]. These
systems may be affected by high latencies and unpredictable disconnections based on
environmental factors or predictable ones due to the movements of the entities of the
systems (i.e., planets and satellites dynamics).

Finally, wireless ad hoc networks (including mobile ones and sensor networks) can be
partitioned due to movement of the nodes or the inherent physical distances between the
devices. In these networks, specialised nodes (also called data mules [Shah et al., 2003])
are used to provide a store-and-foward mechanism to collect and deliver data to mo-
bile sinks. In ZebraNet [Liu et al., 2004], wireless nodes attached to animals are used to
monitor wildlife in their habitat; data collected by these devices are transmitted to fixed
stations when these are in reach of base stations.

With respect to mobile ad hoc networking [Perkins, 2001], most of the existing work is
based on the assumption that a path exists between the sender and the receiver. Therefore,
new communication paradigms and techniques have to be designed to make communica-
tion possible also in case of temporarily partitioned networks, due, for example, to host
mobility. Our work addresses specifically the issues of this application domain.

A basic solution is to spread the messages to all hosts using a form of persistent flooding.
In this approach, which is known as epidemic routing [Vahdat and Becker, 2000], a host
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Chapter 1 1.2 Research Problem and Thesis Contribution

floods the message it wishes to send to all hosts within its connected portion of the
network. Each carrier host buffers the message and if, as a result of movement, it comes
into contact with hosts that do not have a copy, it transfers it to them, making them
new carriers. Eventually, the message will reach all nodes in the system, provided that
movement patterns allow for this. Epidemic routing is an effective approach when there
is no information about the likely movement patterns of nodes in the system. In other
words, when there is no basis on which to distinguish the movement pattern of a node
from another, and the movement pattern of each node is individually random, the only
choice is to place messages randomly or to place them everywhere, since there is no more
intelligent basis for making a decision.

A small number of basic approaches have been proposed in the field of asynchronous
communication for mobile ad hoc networks [Li and Rus, 2000, Chen and Murphy, 2001].
As described above, the challenge in producing an algorithm for delivering asynchronous
messages derives from the deceptively simple question of determining the best carrier
or carriers for each message. Clearly, leaving the message with the sender may also be
inappropriate, since sender and receiver may never meet.

More recently, general solutions have been proposed to tackle the prob-
lem of routing in (possibly mobile) delay tolerant networks, based on the
previous knowledge of the routes of the potential carriers [Jain et al., 2004,
Zhao et al., 2004, N. Sarafijanovic-Djukic and Grossglauser, 2006] or on probabilis-
tic approaches [Lindgren et al., 2003, Spyropoulos et al., 2005].

The routing protocol presented in this thesis is part of this effort, that has also led to the
formation of an Internet Research Task Force research group [DTNRG, 2006].

In the next section, we define the research problem more precisely and we outline the
contribution of this work with respect to the state of the art.

1.2 Research Problem and Thesis Contribution

This thesis focusses on the problem of supporting unicast communication in delay toler-
ant mobile ad hoc networks also in presence of intermittent disconnections, by means of
a prediction based routing protocol, the Context-aware Adaptive Routing (CAR) proto-
col [Musolesi et al., 2005].

We argue that it is possible to enable the exchange of messages by exploiting nodes mov-
ing between disconnected groups of nodes (clouds) to transport them from one cloud to
another. In fact, two nodes may never be part of the same connected cloud and, yet,
may still be able to exchange delay tolerant information by making use of predicted mo-
bility patterns as an indicator of which other nodes might make good carriers for this
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information. We argue that prediction techniques can be used for an intelligent selec-
tion of the carrier. We assume that the probability that two hosts will be in reach in
the future is a function of their past colocation history. Relative mobility (i.e., the rate
of new encounters) is also considered in this process. These different aspects describing
the mobile context are then represented by utilities that are composed using results from
multi-criteria decision theory [Keeney and Raiffa, 1976]. We do not assume any previous
knowledge of the routes of the hosts like other approaches, such as the Message Ferrying
project [Zhao et al., 2004], that rely on the a priori knowledge of the routes of the special
hosts carrying the information.

Moreover, our protocol is based on a single copy of the message in the system, instead
of having multiple replicas. Other solutions are predicated on semi-epidemic algorithms
like PROPhET [Lindgren et al., 2003], where the probability of replication is proportional
to the time of the last encounters and their frequency. Finally, we do not exploit any
geographical information such as GPS coordinates.

In general, our approach can be considered the first one exploiting forecasting tech-
niques for carrier selection. Subsequently, in fact, our work has inspired the design of
other protocols based on the study of mobility patterns such as [Leguay et al., 2006]
and [Ghosh et al., 2007].

In order to test the proposed protocol, we needed a model to represent human mobility.
Indeed, the large majority of the existing mobility models, such as the Random Way Point
mobility model [Johnson and Maltz, 1996a], generate purely random movements that are
very different from the ones observed in the real world and produces meaningless colocation
patterns2 [Sharma and Mazumdar, 2004, Chaintreau et al., 2006].

For this reason, we have designed a novel mobility model based on social network theory,
the Community based mobility model [Musolesi and Mascolo, 2006a]. This relies on the
simple observation that mobile networks are social networks after all, since mobile devices
are carried by individuals. The model is able to generate movements that are based on
the strength of the relationships between the people carrying the devices. To evaluate its
realism, we validated it using real traces comparing some key characteristics, such as the
contacts duration and inter-contact times.

To summarise, the contribution of the thesis is twofold:

• We present the design, the evaluation and the implementation of the Context-aware
Adaptive Routing (CAR) protocol. This has been evaluated by means of large-scale
simulations and has been implemented in the Haggle platform [Su et al., 2006].

2However, it is worth noting that CAR exploits not only colocation patterns but also the mobility of
the hosts. Therefore, it shows good performance also in presence of random movements, since it is able
to select the nodes characterised by high mobility, i.e., the ones that have a higher probability of reaching
new hosts, increasing the likehood of establishing communication with the recipient of the message.
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• We define the Community based mobility model using results from mathematical
sociology and complex networks theory. The model has been validated using real
mobility traces and it has been used for the evaluation of the CAR protocol.

The evaluation of the protocol is performed in three ways: we provide a theoretical frame-
work, we discuss the results of simulations used for testing its performance in large scale-
scenario and we present the implementation of a prototype on top of an opportunistic
networking framework.

1.3 Thesis Outline

We firstly discuss the algorithmic aspects and the related mathematical foundation of the
protocol and then its simulation and implementation. At the end of each chapter, we
present the relevant related work, discussing the novelty of our contribution.

The remainder of this thesis is organised as follows:

• In Chapter 2 we present the Context-aware Adaptive Routing in detail, presenting
the key design choices, the theoretical foundation of the protocol and the novel
mechanisms that are at the basis of its implementation.

• In Chapter 3 we discuss the design of the Community based mobility model based
on social networks theory and its validation using real traces.

• In Chapter 4 we offer thorough evaluation of the protocol, also using the proposed
mobility model, discussing the trade-offs in terms of delivery ratio and overhead.

• In Chapter 5 we present the implementation of the protocol in the Haggle platform,
analysing the key design choices and evaluating it in a real testbed.

• In Chapter 6 we summarise the contributions of this work, outlining possible current
research directions.
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Chapter 2

Design of the Context-Aware

Adaptive Routing protocol

Prediction is difficult, especially about the future.

Niels Bohr

2.1 Overview of the Protocol

In this section we give an overview of the Context-aware Adaptive Routing (CAR) proto-
col, presenting the key design choices and the novel mechanisms that are at the basis of
its implementation.

Firstly, we give an overview of the protocol, discussing the key points of its design. Sec-
ondly, we analyse the prediction theory and algorithms at the basis of this. Thirdly, we
discuss its implementation, focussing on the management of routing information for syn-
chronous and asynchronous delivery. Finally, we present the design and implementation
of a component for evaluating the predictability of the time series used to describe and
measure aspects of the mobile context.

As first step, we introduce the assumptions underlining the design of the protocol. We
assume that the only information a host has about its position is related to its logical
connectivity. In particular, we assume that a host is not aware of its absolute geographical
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location nor of the location of those to whom it might deliver the message. Although this
information could potentially be useful, there might also be battery implications of its use
which might be unacceptable (for example, because of the energy requested to operate a
GPS device).

Another basic assumption is that the hosts present in the system cooperate to deliver the
message. In other words, we do not consider the case of hosts that may refuse to deliver
a message or that act in a Byzantine manner. This is a typical assumption of standard
mobile ad hoc routing protocols.

The design goal of CAR is to support communication in intermittently connected mobile
ad hoc networks. Therefore, a path between sender and receiver may not exist when the
message is sent. Store-and-forward mechanisms are necessary to allow for the delivery of
the message to the destination.

The key problem is the selection of the carrier by means of an intelligent forwarding
mechanism. Our solution is based on the application of forecasting techniques and utility
theory for the evaluation of different aspects of the system that are relevant for making
routing decisions.

Let us now consider the key aspects of the protocol. CAR is able to deliver messages
synchronously (i.e., without storing them in buffers of intermediate nodes) and asyn-
chronously (i.e., by means of a store-and-forward mechanism). The delivery process de-
pends on whether or not the recipient is present in the same connected region of the
network (cloud) as the sender. If both are currently in the same connected portion of the
network, the message is delivered using an underlying synchronous routing protocol to
determine a forwarding path.

If a message cannot be delivered synchronously1, the best carriers for a message are those
that have the highest chance of successful delivery, i.e., the highest delivery probabilities.
The message is sent to the host with the highest one using the underlying synchronous
mechanism.

In order to understand the operation of the CAR protocol, consider the following sce-
nario in which two groups of nodes are connected as in Figure 2.1. As in our imple-
mentation, let us assume that the Destination-Sequenced Distance-Vector (DSDV) proto-
col [Perkins and Bhagwat, 1994] is used to support synchronous routing. Host H1 wishes
to send a message to H8. This cannot be done synchronously, because there is no con-
nected path between the two. Suppose the delivery probabilities for H8 are as shown in
Figure 2.1. In this case, the host possessing the best delivery probability to host H8 is

1The recipient may be in the same connected portion of the network, but not reachable using syn-
chronous routing, since the routing information is not available (for example, because the space in the
routing tables is not sufficient to store the information related to all the hosts in the cloud or because the
node has just joined the cloud). In these cases we exploit the asynchronous mechanisms.
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H4. Consequently, the message is sent to H4, which stores it. After a certain period of
time, H4 moves to the other cloud (as in Figure 2.2). Since a connected path between H4

and H8 now exists, the message is delivered to its intended recipient. Using DSDV, for
example, it is worth noting that H4 is able to send the message shortly after joining the
cloud, since this is when it will receive the routing information relating to H8.

Delivery probabilities are synthesised locally from context information such as the rate of
change of connectivity of a host (which, in our model, is used to measure the likelihood of
it meeting other hosts) and its colocation with the message recipients. More specifically,
we define context as the set of attributes that describe the aspects of the system that can
be used to drive the process of message delivery. An example of context information can
be the change of connectivity, i.e., the number of connections and disconnections that a
host experienced over the last T seconds. This parameter measures relative mobility and,
consequently, the probability that a host will encounter other hosts. Since we assume a
proactive routing protocol, every host periodically sends both the information related to
the underlying synchronous routing (in DSDV this is the routing tables with distances,
next hop host identifier, etc.), and a list containing its delivery probabilities for the other
hosts. When a host receives this information, it updates its routing tables. With respect
to the table for asynchronous routing, each host maintains a list of entries, each of which
is a tuple that includes the fields (destination, bestHost, deliveryProbability). We choose to
explore the scenario in which each message is placed with only a single carrier rather than
with a set, with the consequence that there is only a single list entry for each destination.

When a host is selected as a carrier and receives the message, it inserts it into a buffer.
The size of this buffer is fundamental, and represents a trade-off between storage overhead
and likely performance. If the buffer overflows, messages will be lost, since we assume the
existence of a single replica.

What we have described is the basic model behind the CAR protocol. In the following
sections we will describe the details of the algorithm, in particular the techniques exploited
for the calculation of the delivery probabilities.

H1

H4 0.7

H3 0.5

H1 0.2

H2 0.3

H5

H6

H7

H8

Figure 2.1: Two connected clouds, with associated delivery probabilities for message trans-
mission between H1 and H8
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H5
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Figure 2.2: H4, carrying the message, joins the second cloud.

2.2 Prediction and Evaluation of Context Information

The general problem from the point of view of the sender of a message (if we cannot
synchronously send the message to the receiver) is to find the host with the best delivery
probability among the ones in its connected portion of the network, as calculated using
the predicted values describing the future evolution of a range of context attributes. We
observe that it is fundamental to consider the trend of the variation of these attributes over
time rather than their current values. For example, in the case of patterns of colocation,
a host HA currently not colocated with a host HB may be considered of scarce utility for
acting as a carrier for HB if we evaluate only this instant of time. However, HA may have
been colocated with HB for the past three hours and, therefore, its likelihood of being
colocated again, given the assumptions of our model, are high and should be modelled
accordingly. For this reason, we use a method that is able to consider the past history to
make a prediction of the future of an aspect of the system, such as colocation.

In fact, instead of using the available context information as it is, CAR is optimised by
using predicted future values of the context attributes for making routing decisions, so to
have a more accurate estimation of the trend of the time series associated to each context
dimension.

The process of prediction and evaluation of the context information can be summarised
as follows.

• Each host calculates its delivery probabilities for a given set of hosts2. This process
is based on the prediction of the future of the attributes describing the context (see
Section 2.5) and on the composition of these estimated values using multi-attribute
utility theory [Keeney and Raiffa, 1976] (see Section 2.2.1). The calculated delivery
probabilities are periodically sent to the other hosts in the connected cloud as part
of the update of routing information.

• Each host maintains a logical forwarding table of tuples describing the next logical
2We will discuss the management of this set of probabilities in Section 2.3
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hop, and its associated delivery probability, for all known destinations.

• Each host uses local prediction of delivery probabilities between updates of informa-
tion. The prediction process is used during temporary disconnections and is carried
out until a certain accuracy can be guaranteed.

The framework for the evaluation of the delivery probability that we designed for CAR is
very generic and can be extended to any number of context attributes3.

In the remainder of this section, we will analyse more closely how delivery probability
information is predicted, spread in the system, maintained, and evaluated.

2.2.1 Local evaluation of context information

Each host calculates its delivery probability utility locally, given observations related to
the various context attributes. Therefore, the key problem is to measure and combine
the attributes. There are several techniques for assigning an overall utility given the
multiple dimensions of the context. The first possible approach is based on the use of
static priorities. For example, application developers can define an order between the
various attributes. In this case, the choice of the best host is based on a decision tree.
These techniques are largely used in economics and form the basis of decision support
systems [Russell and Norvig, 2002]. If two hosts have the same priority, we apply the
results of multi-attribute decision theory, as described below.

A possible alternative to this method is to use goal programming, exploiting the so-called
preemptive methodology. With respect to a single attribute, our goal is to maximise its
value. The optimisation process is based on the evaluation of one goal at a time such
that the optimum value of a higher priority goal is never degraded by a lower priority
goal [Taha, 1996]. However, in general, the definition of static priorities is inflexible. For
more realistic situations, a simultaneous attempt of maximisation of a range of different
attributes is needed, as opposed to using a predefined hierarchy of priorities.

The priority based technique just mentioned seems too simplistic because, in general, our
decision problem involves multiple conflicting objectives [Keeney and Raiffa, 1976]. For
example, considering both the battery energy level and the rate of change of connectivity,
it may happen that the host characterised by the highest mobility has scarce residual
battery energy and vice versa. In general, maximisation across all parameters will not
be possible and, instead, we must trade off the achievement of one objective (i.e., the
maximisation of a single attribute) against others.

3However, some conditions about the mutual independence of the attributes must be verified as discussed
in Section 2.2.1.
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The context information related to a certain host can be defined using a set of attributes
(X1, X2, ..., Xn). Those attributes denoted with a capital letter (e.g., X1) refer to the set
of all possible values for the attribute, whereas those denoted with a lower case letter (e.g.,
x1) refer to a particular value within this set. Examples of a generic attributes Xi can
be the mobility of the hosts or its battery level; for instance, the value xi of the attribute
battery level may be 0.99 (i.e., battery almost full).

In the remainder of this section we will use the classical notation of utility theory. Our goal
is to allow each host locally to associate a utility function U(x1, x2, ..., xn), representing
the delivery probability, with every other host.

• (x′1, ..., x
′
n) � (x1, ..., xn) means that (x′1, ..., x

′
n) is preferred to (x1, ..., xn).

• (x′1, ..., x
′
n) ∼ (x1, ..., xn) means that (x′1, ..., x

′
n) and (x1, ..., xn) can be chosen indif-

ferently.

• (x′1, ..., x
′
n) � (x1, ..., xn) means that (x′1, ..., x

′
n) is preferred to (x1, ..., xn) or that

they can be chosen indifferently.

Using this notation, we can associate a scalar-valued utility function U(x1, x2, ...xn) with
each set of attributes, as follows:

(x′1, ..., x
′
n) � (x1, ..., xn) ⇔ U(x′1, ..., x

′
n) > U(x1, ..., xn)

(x′1, ..., x
′
n) ∼ (x1, ..., xn) ⇔ U(x′1, ..., x

′
n) = U(x1, ..., xn)

(x′1, ..., x
′
n) � (x1, ..., xn) ⇔ U(x′1, ..., x

′
n) ≥ U(x1, ..., xn)

We use the following definitions:

Definition 1 Given a set of attributes X1, X2, ..., Xn partitioned into two complementary
sets Y = (X1, X2, ..., Xs) and Z = (Xs+1, Xs+2, ..., Xn), we say that y’ is conditionally
preferred or indifferent to y given z if and only if

(y’, z) � (y, z)

Definition 2 The set of attributes Y is preferentially independent of the complementary
set Z if and only if for some z’

[(y’, z’) � (y, z’)] ⇒ [(y’, z) � (y, z)],∀z,y,y’

To understand this definition, consider the case of three attributes X1, X2, X3: two at-
tributes X1 and X2 are preferentially independent of a third attribute X3 if the preference

24



Chapter 2 2.2 Prediction and Evaluation of Context Information

between (x1, x2, x3) and (x′1, x
′
2, x3) does not depend on the particular value x3 for the

attribute X3.

Definition 3 The attributes X1, X2, ..., Xn are mutually preferentially independent if ev-
ery subset Y of these attributes is preferentially independent of its complementary set of
attributes.

Given these definitions, an interesting result of the multi-attribute decision theory is the
following theorem demonstrated by Debreu in 1959 [Debreu, 1959].

Theorem 1 Given attributes X1, X2, ...Xn, an additive function of the following form
exists if and only if the attributes are mutually preferentially independent

U(x1, x2, ..., xn) =
n∑

i=1

Ui(xi)

where Ui is a utility function over Xi.

Thus, in the case of mutually preferentially independent attributes, that is to say those
characterised by the same degree of significance, the sum of the attributes is ade-
quate as a means of combining those attributes. However, the case of attributes that
have different relative importance is more interesting. In this case, we use the the-
ory of goal programming, a branch of mathematics that has been studied since 1960
in the operational research community. More specifically, we use the so-called Weights
method [Keeney and Raiffa, 1976].

Our aim is to maximise each attribute, in other words, to choose the host that presents the
best trade-off between the attributes representing the relevant aspects of the system for the
message delivery. Analytically, considering n attributes, the problem can be reformulated
in terms of n goals where each goal is given as

Maximise{Ui(xi)}, i = 1, 2, ..., n

The combined goal function used in the Weights method can be defined as

Maximise{f(Ui(xi)) =
n∑

i=1

wiUi(xi)}

where w1, w2, ...wn are significance weights reflecting the relative importance of each goal.

We exploit these results for the composition of the utilities in CAR related to the different
context dimensions (given their mutual independence).
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It is worth noting that, in our case, the solution is very simple, since it consists in the
evaluation of the function f(U1, ..., Un) using the values predicted for each host and in the
selection of the host i with the maximum such value.

The detailed description of the calculation of these utilities is presented in the next sub-
section.

2.2.2 Definition of the Attributes of the Utility Functions

Knowledge about the current values of these context attributes is helpful, but only to a
limited extent. What really matters are the values the attributes are likely to assume in
the future.

We compute these predicted values using techniques based on Kalman fil-
ters [Kalman, 1960]. These techniques do not require the storage of the entire past history
of the system and are computationally lightweight, making them suitable for a resource-
scarce mobile setting. The details of the mathematical model for time series forecasting
used in CAR is presented in Section 2.5. In this section, instead, we focus on the use
of the predicted values of the attributes for the calculation of the utility of each host as
message carrier.

In the implementation of CAR, we focus on two attributes, the change degree of con-
nectivity and the future host colocation, because these are the attributes most relevant
to the ad hoc scenario taken into consideration. However, the framework is general
and open to the inclusion of any other context attribute, given the underlying assump-
tion of their mutual independence. For example, in the adaptation of CAR for sensors
(SCAR) [Mascolo and Musolesi, 2006], we also consider an attribute describing the battery
level, a fundamental aspect for that specific application domain.

The change degree of connectivity of a host h is4:

Ucdch
(t) =

|n(t− T ) ∪ n(t)| − |n(t− T ) ∩ n(t)|
|n(t− T ) ∪ n(t)|

where n(t) is h’s neighbour set at time t. The formula yields the number of hosts that
became neighbours or disappeared in the time interval [t − T, t], normalised by the total
number of hosts met in the same time interval. A high value means that h recently changed
a large number of its neighbours.

4In the remainder of the thesis, we simplify the notation used for indicating the utility function that
we adopted in the previous subsection. We omit the attribute from the utility and, instead, we indicate
explicitly the time dependence. For example, Ucdch(xcdch(t)) = Ucdch(t). This choice is motivated by the
fact that the time intervals are essential aspects of the model, especially with respect of the h-steps ahead
prediction that we present in Section 2.5.5.
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The colocation of h with a host i is calculated as follows:

Ucolh,i
(t) =

{
1 if the host h is colocated with host i;
0 otherwise

A value of 1 means that h has been colocated with i at time t.

These values are fed into Kalman filter predictors, which yield the predictions Ûcdch
and

Ûcolh,i
of these utilities at time t + T . These are then composed into a single utility value

using results from multi-criteria decision theory described above, as follows:

Uh,i = wcdch
Ûcdch

+ wcolh,i
Ûcolh,i

which represents how good of a node h is for delivering messages to i.

We observe that the effectiveness of the choice of using predicted values and not current
values of the attributes is evident in the case of colocation. For example, let us consider
two hosts that have disconnected for just ten seconds after being connected for a long
period of time. If we only considered the current status, the value of the utility function
related to colocation would be 0. Instead, since the hosts have been colocated for long time
in the past, according to our assumptions, they will be likely colocated again the future.
The value 0 does not provide a correct measure of the probability of future colocation of
the two hosts. On the contrary, the output of the Kalman filter will be close to 1.

The weights w denote the relative importance of each attribute. Their value depends on
the application scenario, and in Chapter 4 we show their impact on performance. The
values of these weights are the same for every host; in other words, the utility composition
function is the same for all the nodes of the system.

2.2.3 Automatic Adaptation of the Utility Functions

As it stands, the utility function weights are fixed in advance, reflecting the relative im-
portance of the different context attributes. However, such a formulation is still too static,
since it fails to take into account the values of the attributes. Thus, for example, a small
drop in battery voltage may be indicative of the imminent exhaustion of the battery; con-
sequently, it would be useful to reduce the weight of this attribute non-linearly to reflect
this.

In general, we wish to adapt the weights of each parameter dynamically and in ways that
are dependent on the values of those parameters. In other words, we need a runtime self-
adaptation of the weightings used for this evaluation process that could be categorised as
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a typical autonomic mechanism [Bantz et al., 2003]. A simple solution to this problem is
the introduction of adaptive weights ai into the previous formula, in order to modify the
utility function according to the variation of the context.

Maximise{f(U(xi)) =
n∑

i=1

ai(xi)wiUi(xi)}

ai(xi) is a parameter that may itself be composite. For our purposes, we define it to have
three important aspects that help to determine its value, though the model could easily
be expanded to incorporate other aspects deemed to be of importance:

• Criticality of certain ranges of values, arangei(xi)

• Predictability of the context information, apredictabilityi
(xi)

• Availability of the context information, aavailabilityi
(xi)

We now compose the ai weights as factors in the following formula:

ai(xi) = arangei(xi) · apredictabilityi
(xi) · aavailabilityi

(xi)

We now describe each of these aspects in detail.

Adaptive Weights Related to the Ranges of Values Assumed by the Attributes

We can model the adaptive weights arange(xi) as a function in the domain [0, 1]. For
example, with respect to the battery energy level (modelled using the percentage of residual
battery energy), we would use a monotonically decreasing (though not necessarily linear)
function to assign a decreasing adaptive weight that is, in turn, used to ensure that the
corresponding utility function decreases as the residual energy tends towards zero.

Adaptive Weights Related to the Predictability of the Context Information

It may happen that the forecasting model is not able to provide accurate predictions for
a certain time series related to a given attribute. There are many different methods to
evaluate the predictability of a time series [Chatfield, 2004].

apredictabilityi
=
{

1 if the context information is currently predictable
0 if the context information is not currently predictable
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We prefer to adopt an approach based on two discrete values (0 and 1) rather than one
based on continuous values (i.e. an interval between 0 and 1), since the latter would
be only based on a pure heuristic choice and not on any sound mathematical basis. In
other words, it is very difficult to map different scales of predictability into the values of
apredictabilityi

.

The problem of the analysis of the predictability of the time series is discussed in Sec-
tion 2.5.

Adaptive Weights Related to the Availability of Context Information

It is unreasonable to assume that all context attributes have the same degree of availability.
Thus, we expect to have a time-varying set of attributes available whose values are known
or predictable. Attributes may drop out of this set if meaningful values can no longer
be predicted for them, since the information on which the prediction would have been
based is too old. The simplest approach to this problem is to ensure that missing context
information carries an adaptive weight ai equal to 0:

aavailabilityi =
{

1 if the context information is currently available
0 if the context information is not currently available

Formally, to date, we have implicitly assumed that a static set of attributes is defined.
However, it is worth noting that, using this approach, we can dynamically incorporate new
attribute values, simply by assuming that they were always there, but had zero weight for
aavailabilityi

. For example, if an operating system is not able to provide information about
the current battery level of a device, the value of aavailabilityi

is set to 0. This may also be
due to an erroneous reading of a parameter (for example, in the case of the change degree
of connectivity, because the wireless interface has been switched off temporarily).

2.3 Routing Tables

We have seen how each host calculates its delivery probability by assembling predictions
related to different context attributes. We now describe how this information is circulated
in the network.
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2.3.1 Format of the Routing Table Entries

The delivery probability information is piggybacked on the synchronous routing table
information.

Each host maintains a routing and context information table used for asynchronous and
synchronous (DSDV) routing. Each entry of this table has the following structure:

(targetHostId, nextHopId, distance, bestHopHostId, deliveryProb)

The first field is the recipient of the message, the second and the third are the typical
values calculated in accordance with the DSDV specification, whereas the fourth is the
identifier of the host with the best delivery probability, the value of which is stored in the
last field.

It is worth noting that these routing tables are used both for synchronous and asynchronous
delivery. In fact, they store information used for routing messages inside a cloud (i.e., the
fields nextHopId and distance) and for the selection of the best carrier (i.e., the fields
bestHopHostId and deliveryProb). A distance equal to 16 is considered infinite and the
host is treated as unreachable using DSDV. We choose 16 since this is the classic Routing
Information Protocol (RIP) infinite [Malkin, 1999]. However, this is a parameter that can
be tuned according to user requirements. In a scenario characterised by high average host
speed a lower value may be used, since the probability that the route will be broken or
stale is potentially high.

The value of the field deliveryProb is updated using the last received value. However, the
values received by the neighbours are also used to update a corresponding Kalman Filter
predictor, one for each entry of the table. The state of the filter is updated using the last
received utility from the host bestHopHostId (this utility is calculated by bestHopHostId

as described in the previous section).

The filter is used if one or more updates are not received, due for example to a temporary
disconnection, to transmission errors (for example interference) or simply because the host
has moved away. If an update is not received in a given refresh interval of the filter (that
is equal to the routing table transmission interval), the previous output of the filter is used
as input (i.e., the filter is, in a sense, short-circuited). This is predicated on a particular
mathematical property of the Kalman filter, i.e., that it is possible to calculate predicted
values also in case of missing observations as explained in Section 2.5.5.

The entries are removed after a certain number of updates are not received, since the
accuracy of the prediction is clearly decreasing; a discussion about the accuracy of the
estimation of the h-step prediction can be found in [Brockwell and Davis, 1996]. This
technique alleviates the CAR scalability issue in terms of routing table size.
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2.3.2 Local Utilities and Update of Routing Tables

Each node keeps local utilities related to the colocation with other nodes. The routing
tables are exchanged periodically with a given transmission interval. When a host receives
a routing table, it checks its entries against the ones stored in its routing table.

The update of the information related to the synchronous protocol is the standard one
of every table-driven protocol: an entry in the routing table of the host is replaced if
one related to the same targetHostId and a lower or equal distance is received. It is
important to note that we also replace the entry if the distance is the same in order to
have fresh information about the route.

Instead, as far as the asynchronous delivery protocol is concerned, an entry is replaced
only if one related to the same targetHostId and higher or equal delivery probability is
received. As said before, the entry is removed after a number of missing updates: this is
also avoids the problem that entries with high probabilities persist in the routing table
even if they are stale.

When the routing table is full, the entries are replaced starting from the one corresponding
to the nodes that are not in reach anymore (i.e. that have a value of the distance field
equal to 16). Among these entries, the one with the lowest delivery probability is selected.

We now give an example of routing information distribution and management.

2.3.3 Example of Routing Table Management

Let us consider the network scenario depicted in Figure 2.3.

We assume that H1, H2, H4 were in reach of H5 but not of H3 in the past. H3 was in
reach of H5 too.

The routing table stored by H1 is the following:

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H1 0 H1 1

H2 H2 1 H1 0.7

H4 H2 2 H2 0.75

H5 − 16 H4 0.65

The routing table stored by H2 is:
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H2

H1

H3

H4

H5

Figure 2.3: Example of network topology used for explaining routing table management

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H1 1 H2 0.9

H2 H2 0 H2 1

H4 H4 1 H2 0.75

H5 − 16 H4 0.65

The routing table stored by H4 is:

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H2 2 H2 0.9

H2 H2 1 H1 0.7

H4 H4 0 H2 1

H5 − 16 H4 0.65

Let us assume that H3 is approaching the cloud composed by H1, H2 and H4.

Let us also assume that the routing table of H3 before joining the cloud is the following:
targetHostId nextHopId distance bestHopHostId deliveryProb

H3 H3 0 H3 1

H5 − 16 H3 0.3

Then, let us suppose that H3 joins the cloud. The new topology of the network is shown
in Figure 2.4. Please note that it has an entry about H5 (that is currently not reachable)
expressing the fact that it is the best carrier.

Let us assume that H3 receives the routing table firstly from H1. H3 will insert the
information about H1, H2 and H4.

With respect to the asynchronous routing, it receives an update about the best carrier for
H5 and then it replaces the entry with H4 that has a probability higher than its own. The
new routing table is:
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targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H1 1 H2 0.9

H2 H1 2 H1 0.7

H3 H3 0 H3 1

H4 H1 3 H2 0.75

H5 − 16 H4 0.65

Then, H3 receives the routing table from H4 too. It then updates the entry about H4,
since the distance is lower.

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H1 1 H2 0.9

H2 H4 2 H1 0.7

H3 H3 0 H3 1

H4 H4 1 H2 0.75

H5 − 16 H4 0.65

H1, H2 and H4 receives the routing table from H3 inserting the information about this
node for synchronous routing. The value of bestHopHostId is not updated since it is the
same.

2.3.4 Routing Table Transmission Interval

The routing table transmission interval is another fundamental parameter of CAR. In fact,
routing tables are not only used to exchange routing information, but also for discovery.
Routing tables are employed as a sort of beaconing mechanism at application level to keep
information about the presence of neighbours5. In fact, a host is considered colocated
(i.e., the input of the Kalman filter is set to 1), if a routing table related to that host has
been received in the last routing table transmission interval. Therefore, we assume that
the frequency of the transmission of routing tables is relatively high in order to provide
correct information to the colocation predictor.

The update interval of the Kalman filter is set to the routing table transmission interval
in our work. The update interval of the Kalman filter (i.e., its sample interval) is another
fundamental parameter of the protocol: this value should be carefully selected in order
to detect changes in the observed context attribute. For example, in the case of host
colocation, a low sampling interval in a very dynamic mobile scenario may lead to the fact
that hosts passing by will not be detected. For instance, if the relative speed of the two
hosts is 20 m/s and the transmission range is 200 m/s, an update interval greater than
20 s may lead to the fact that some hosts will not be discovered.

5As we will describe in Chapter 5, we integrated CAR in the Haggle platform [Su et al., 2006]. Hag-
gle provides a discovery mechanism so, in that case, routing tables are not used to update colocation
information.
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Since CAR relies on DSDV, it shows the same limitations and potential issues in terms of
routing table convergence. The retransmission interval should be adequately small if the
speed of the hosts is high (i.e., the variations of the topology are frequent). Results about
the impact of the duration of the transmission interval are reported in the evaluation in
Chapter 4.

2.4 Message Delivery

2.4.1 Synchronous Delivery

When a message has to be sent, if the recipient is reachable synchronously (i.e. an entry
with the field TargetHostId exists in the routing table and the associated distance is
less than 16), the message is forwarded to the next hop indicated by nextHopId. This
forwarding mechanism is the typical one of distance vector protocols.

It may happen that the a path to a certain host is broken, but, at the same time, the
routing table has not yet been updated with the information related to this change, given
the propagation delay of routing tables. In this case, the message is forwarded until it
reaches the host that has been already notified about the disconnections. This host will
then check if the message can be sent using the asynchronous delivery mechanism (i.e., an
entry for the selection of the best carrier exists in its routing table). If not, the host stores
the message in its buffer and tries to resend it periodically. We discuss this mechanism in
Section 2.4.3.

2.4.2 Asynchronous Delivery

If a connected path to the recipient does not exist (i.e., the value of distance is equal or
greater than 16), the message is forwarded to the host with the highest value of delivery
probability (expressed by deliveryProb). In order to reach the carrier, DSDV is used. In
other words, the entry having the value of the key targetHostId equal to bestHopHostId

is used to forward the message.

As the network is dynamic, it may happen that the carrier is unreachable, since, in the
meanwhile, it has left the connected cloud. In this case, if the information about the
disconnection has reached the sender, the entry related to the best carrier is removed (set
to an invalid state designated by 0).

If this information has not been propagated yet to the sender, the intermediate host aware
of the topology change will try to resend the message (see Section 2.4.3).
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Figure 2.4: Example of network topology used for explaining routing table management
(H3 joins the cloud composed of H1, H2 and H4).

2.4.3 Retransmissions

Periodically, for each message in its buffer, a host checks its routing table. The message
is then forwarded synchronously to the recipient or to a carrier if a corresponding entry is
present in the routing table. If no entry is present, the message stays in the buffer.

The number of the retransmissions is another key configuration value that we have mea-
sured and tested during the performance evaluation of the protocol. The results are
reported in Section 4.2.6.

Each node also maintains a list of its utilities for a certain set of hosts. In particular,
each node keeps a list of the local utilities related to the colocation with other hosts6 and
one related to its change degree of connectivity. Periodically, these utilities are composed
and the resulting ones are checked against the utilities stored in the local routing table.
If the utility of the host is higher of the one currently maintained in the table, the latter
is replaced. The value of the utilities is updated before comparing it with the entries of
the local routing table.

2.4.4 Example of Message Delivery

In order to provide a detailed description of the mechanisms used to manage and update
the routing tables, we now discuss a toy example considering the scenario depicted in
Figure 2.4 composed of 5 hosts. We assume that H5 was previously colocated with the
other hosts. This fact is reflected in the contents of its routing table.

6The size of this list is another parameter that can be tuned during the deployment. It is important
to note that the memory occupancy of a single Kalman filter predictor is very limited since it consists in
storing the value of the last observation and the current state.
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Let us assume that the routing tables have converged to a stable state. The routing table
stored by H1 contains the following information:

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H1 0 H1 1

H2 H2 1 H1 0.7

H3 H3 1 H1 0.8

H4 H2 2 H2 0.75

H5 − 16 H4 0.65

Let us now consider the other routing tables. The routing table stored by H2 is:

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H1 1 H2 0.9

H2 H2 0 H2 1

H3 H1 2 H1 0.8

H4 H4 1 H2 0.75

H5 − 16 H4 0.65

The routing table stored by H3 is:

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H1 1 H2 0.9

H2 H4 2 H1 0.7

H3 H3 0 H3 1

H4 H4 1 H2 0.75

H5 − 16 H4 0.65

The routing table stored by H4 is:

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 H2 2 H2 0.9

H2 H2 1 H1 0.7

H3 H3 1 H1 0.8

H4 H4 0 H2 1

H5 − 16 H4 0.65

Finally, the routing table stored by the isolated node H5 is the following:

targetHostId nextHopId distance bestHopHostId deliveryProb

H1 − 16 H2 0.6

H2 − 16 H1 0.5

H3 − 16 H5 0.4

H4 − 16 H5 0.68

H5 H5 0 H5 1
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First of all, we observe that the best carrier for H5 is the same for all the hosts in the
connected cloud (i.e. H4). Secondly, we note that the value of nextHopHostId related to
the hosts that are not currently in reach is set to an undefined value (i.e., the value − in
the tables above). It is also interesting to note that, in this example, even if two hosts are
in reach, the deliveryProb field is different from 1, since it is used to store the current
utility that is calculated using the predicted values of the attributes (i.e., the outputs of
the Kalman filter predictors). In fact, the Kalman filter predictors have 1 as asymptotic
value of the outputs.

Let us consider a case of synchronous message delivery. Let us suppose that H1 has to
send a message to H4. The forwarding process is the typical one of table-driven protocol.
H1 will check its routing table and then forward the message to H2. This host will then
forward the message immediately to H4 without storing it temporarily in its buffer.

Let us consider now a more interesting case. Let us suppose that H1 wants to send a
message to H5. H5 is not reachable synchronously, since the field distance is set to 16.
So H1 will forward the message to the best carrier (i.e., H4) synchronously through H2.
More precisely, H1 will retrieve the best carrier identifier and it will check the next hop
to reach it using DSDV. When H4 will receive the message, it will store the message in
its buffer until it will eventually be in reach of H5. More precisely, the final delivery will
happen when H4 will receive the routing table of H5 (i.e., when H4 will realise that H5 is
reachable synchronously).

2.5 Prediction of the Context Information Attributes using

Kalman Filter Techniques

In this section, we present the details of the prediction model used to estimate the deliv-
ery probability of the potential carriers discussed in Section 2.2. We used Kalman filter
forecasting techniques [Kalman, 1960] for the prediction of the future values of the context
attributes and of the delivery probabilities in the local routing tables, if updates are not
received.

2.5.1 Overview

Kalman filter prediction techniques were originally developed in automatic control systems
theory. These are essentially a method of discrete signal processing that provides optimal
estimates of the current state of a dynamic system described by a state vector. The state
is updated using periodic observations of the system, if available, using a set of prediction
recursive equations.
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Kalman filter theory is used in CAR both to achieve a more realistic prediction of the
evolution of the context of a host and to optimise the bandwidth usage. As discussed
above, the exchange of context information that allows the calculation of delivery proba-
bilities is a potentially expensive process, and unnecessarily so where such information is
relatively predictable. If it is possible to predict future values of the attributes describ-
ing the context, we update the delivery probabilities stored in the routing tables, even if
fresh information is unavailable. Fortunately, this prediction problem can be expressed
in the form of a state space model. Starting from a time series of observed values that
represent context information, we derive a prediction model based on an inner state that
is represented by a set of vectors, and to add to this both trend and seasonal compo-
nents [Brockwell and Davis, 1996]. One of the main advantages of the Kalman filter is
that it does not require the storage of the entire past history of the system, making it
suitable for a mobile setting in which memory resources may potentially be very limited.

In the following subsections, we give a general introduction to state space models and
then we present how we have applied these concepts to the analysis and the prediction
of context information, discussing three cases according to the different behaviour of the
time series.

Finally, we also prove the equivalence of our model with EWMA and ARMA mod-
els [Brockwell and Davis, 1996]. In fact, the state space formulation of the prediction
problem can be also recast in these alternative theoretical frameworks posing simple con-
ditions to the values assumed to factors of the model. We also discuss the relationship of
our model with Bayesian forecasting [West and Harrison, 1997]Kto provide a theoretical
comparison with other alternative techniques.

2.5.2 State Space Models

A state space model for a time series Yt consists of two equations. The first one called
the observation equation is the following

Yt = GtXt + Wt t = 1, 2, ...

with Wt defined as 7

Wt = WN(0, Rt)
7WN stands for White Noise, a term that derives from telecommunication engineering. A white noise

is a sequence of uncorrelated random variables Xt, each with the same mean and variance σ2. Therefore,
white noise is also an example of stationary time series. More specifically, the notation WN(0, {Rt})
indicates white noise with zero mean and variance Rt.
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This equation defines the w-dimensional observation {Yt} as a linear function of a v-
dimensional state variables {Xt} and a noise term. The second one is the state equation
defined as follows

Xt+1 = FtXt + Vt t = 1, 2, ...

with Vt defined as

Vt = WN(0, Qt)

This equation determines the state Xt+1 at time t + 1 in terms of the previous state Xt

and a noise term. Let w as the dimension of Yt and v as the dimension of Xt, {Gt} is a
sequence of w×v matrices and {Ft} is a sequence of v×v matrices. We assume that {Vt}
is uncorrelated with {Wt}, even if a more general form of the state space model allows
for correlation between these two variables. Analytically, we can rewrite this condition as
follows

E(WsVT
t ) = 0 ∀ s, t

We also assume that the initial state X1 is uncorrelated with all of the noise terms {Vt}
and {Wt}.

2.5.3 Kalman Filter Prediction

With the notation of Pt(X) we refer to the best linear predictor (in the sense of minimum
mean-square error) of X in terms of Y at the time t. Pt(X) is defined as follows

Pt(X) ≡
[

Pt(X1) ... Pt(Xv)
]T

where

Pt(Xi) ≡ P (Xi|Y0,Y1, ...,Yt)

P (Xi|Y0,Y1, ...,Yt) indicates the best predictor of Xi given Y0, ...,Yt. We can also
observe that Pt(X) has the following form
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Pt(X) = A0Y0 + ... + AtYt

since it is a linear function of Y0, ...,Yt. It is possible to prove [Brockwell and Davis, 1996]
for the state space model discussed in the previous section that the one-step predictor

X̂t ≡ Pt−1(Xt)

and their error covariance matrices

Ωt = E[(Xt − X̂t)(Xt − X̂t)T ]

are determined by these initial conditions

X̂1 = P (X1|Y0)

Ω1 = E[(X1 − X̂1)(X1 − X̂1)T ]

and these recursive equations

X̂t+1 = FtX̂t + Θt∆−1
t (Yt −GtX̂t)

Ωt+1 = FtΩtF
T
t + Qt −Θt∆−1

t ΘT
t

where

∆t = GtΩtG
T
t + Rt

Θt = FtΩtG
T
t
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2.5.4 Estimation Model

As estimation model, we use a basic state space model composed of the following two
scalar equations

Yt = Xt + Wt t = 1, 2, ...

with

Wt = WN(0, Qt)

and

Xt+1 = Xt + Vt t = 1, 2, ...

with

Vt = WN(0, Rt)

With respect to the Kalman filter prediction, we can consider a mono-dimensional system
with

Gt = [1]

Ft = [1]

Therefore, we can derive the recursive equations of the Kalman filter for the prediction
of the values of this series. Given the previous observed value Yt and the predicted value
at time t, X̂t, the recursive equation for the determination of the predicted value at time
t + 1 is

X̂t+1 = X̂t +
Ωt

Ωt + Rt
(Yt − X̂t)

with
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Ωt+1 = Ωt + Qt −
Θ2

t

Ωt + Rt

Since in this case

Ωt = Θt

we can also write

Ωt+1 = Ωt + Qt −
Ω2

t

Ωt + Rt

In Appendix A we present more complex estimation models that take into account local
trends and seasonal behaviour of the time series. The tuning of these models requires a
knowledge of the application scenarios, for example to set the magnitude of the seasonal
period.

2.5.5 Subsequent Predictions

It is also possible to make subsequent predictions, in the case that observation values
are not available, by using the model previously discussed [Brockwell and Davis, 1996,
Durbin and Koopman, 2001]. In other words, we can predict h consecutive estimations
Yt+1, ...,Yt+h, using the predictor calculated at time t without exchanging new context
and routing information8. Now we derive the expression of the h-step prediction of Yt

using recursive equations.

Observing that

X̂t = Pt(Xt+1) = FtPt−1(Xt) + Θt∆−1
t (Yt − Pt−1(Xt))

we can write X̂t+h as
8 We can evaluate the maximum number n of predictions that it is possible to make with a given

required accuracy. However, we do not present these results in detail, since they are outside the scope of
this work.
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X̂t+h = Pt(Xt+h) =
= Ft+h−1Pt(Xt+h−1) =
...
= (Ft+h−1Ft+h−2...Ft+1)Pt(Xt+1) t = 2, 3, ...

and Ŷt+h as

Ŷt+h = Pt(Yt+h) = Gt+hPt(Xt+h)

2.5.6 Relations with Alternative Prediction Models

In this section we discuss how the Kalman filter model that we use in
CAR can be recast and studied using alternative theoretical frameworks, namely
EWMA [Le Boudec, 2006], ARMA [Brockwell and Davis, 1996] and Bayesian forecasting
models [West and Harrison, 1997].

The goal of this analysis is to prove that the model itself can be studied using alternative
popular theoretical frameworks. In fact, our model can be considered as a refined version
of an EWMA or a particular instance of an ARMA model. A comparison in terms of
accuracy or better suitability is unnecessary given the formal results presented in this
section.

Equivalence with ARMA model

We now demonstrate how our model can be considered as a particular instance of ARMA
models. In general, it is possible to prove that all the ARMA models can be interpreted
as state space models [Chatfield, 2004]. In particular, we demonstrate that our model is
equivalent to an ARMA(1,1) model.

Let us reconsider our state space prediction model

Yt = Xt + Wt t = 1, 2, ...

with

Wt = WN(0, Qt)
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and

Xt+1 = Xt + Vt t = 1, 2, ...

with
Vt = WN(0, Rt)

Let us consider a model with the following generic form

Xt+1 = φXt + Vt+1

with φ constant. This can also be written as follows

Vt+1 = Xt+1 − φXt

Let

Dt+1 = Yt+1 − φYt

We can write

Dt+1 = Xt+1 + Wt+1 − φ(Xt + Wt) = Vt + Wt+1 − φWt

The autocorrelations of {D(t)} are 0 at lags greater than 1. So {D(t)} is MA(1) and
{Y (t)} is ARMA(1,1).

Our model can be considered an ARMA model with φ = 1.

Equivalence with EWMA model

We now derive the equivalence of our model with an EWMA model. The derivation of
the equivalence of our model and EWMA models was inspired by an observation by Le
Boudec in [Le Boudec, 2006].

Given the implicit model

Yt = mt + Wt
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the one step predictor m̂(t) = (Yt+1|Y1, ..., Yt) is

m̂t+1 = α
∞∑

s=0

(1− α)sYt−s

with Yt = Y1 for t ≤ 1.

The EWMA model is characterised by the following recursive computation of m̂(t)

m̂t+1 = αYt+1 + (1− α)m̂t

with initial condition m̂1 = Y1.

Let us now consider again the recursive equation used to update the value of the state
{Xt}

X̂t+1 = X̂t +
Ωt

Ωt + Rt
(Yt − X̂t)

This can be rewritten as follows

X̂t+1 = (1− Ωt

Ωt + Rt
)X̂t +

Ωt

Ωt + Rt
Yt

Let

α =
Ωt

Ωt + Rt

we can rewrite the update equation using the same form of the EWMA model

X̂t+1 = (1− α)X̂t + αYt

Kalman Filter prediction models and Bayesian forecasting

Bayesian forecasting [West and Harrison, 1997] relies on the so-called dynamic linear
model that can be considered closely related to the general class of state space models.

According to a Bayesian formulation, Kalman filters are regarded as a way of updating
the prior probability distribution of Xt when a new observation become available to give
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a revised (posterior) distribution. For example, the model used in CAR for the prediction
of the host colocation can be seen a Bayesian model representing the probability of being
colocated with a given host.

The specification of the model in this framework is based on the assumption that the
observations Yt given an unobserved state Xt are independent with specified conditional
distribution. More details about the application of Bayesian forecasting to generalised
state space models can be found in [Brockwell and Davis, 1996].

2.6 Context Predictability

Dealing with the variability and uncertainty is one of the major issues in many networked
systems such as mobile ad hoc and delay tolerant networks [Fall, 2003]. The decentralisa-
tion of the control and the movement of the hosts have a great impact on systems topology
and, more generally, on their conditions.

CAR heavily relies on the accuracy of the prediction model as we show in the evaluation
section (see Section 4.2.7). There are situations, however, where context cannot be pre-
dicted. In these cases, using any prediction based techniques to improve performance of
the system is completely ineffective.

For this reason, we designed a predictability component that is used to measure the ac-
curacy of the prediction of context information [Musolesi and Mascolo, 2006c]. The tech-
nique that we adopted is predicated on the analysis of the time series representing the
context information [Brockwell and Davis, 1996].

2.6.1 Design of the Prediction Component

The component receives in input the observed value (at time t) and the corresponding
predicted value (calculated at time t − 1) of a particular context indicator (such as the
colocation value with a given host) and is able to decide if the prediction model (in the
case of our prototype system, a Kalman filter based predictor [Kalman, 1960]) is able to
forecast the next value of the time series with a given accuracy that can be set by the
developer.

To estimate the predictability of context, we exploit a technique based on the analysis of
the time series of the prediction errors [Chatfield, 2004].
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Residuals Analysis

We are interested in the analysis of the so-called residuals, defined as the differences
between the observed values at time t and the one-step-ahead forecasts for these same
values at time t. More formally, given the observed value y(t) and the predicted value
ŷ(t), we define the residual at time t as follows:

z(t) = ŷ(t)− y(t)

Since we are considering time series, the residuals are ordered in time and can therefore
be treated as a time series too.

In particular, our analysis is based on the correlogram (also called sample autocorrelation
function) of residuals. A correlogram is a diagram in which the sample autocorrelation
coefficients rk are plotted against the lag k for k = 0, 1..., M , where M is usually much
less than the number of samples N taken into consideration.

The autocorrelation coefficient of z(t) at lag k, rk, is defined as follows

rk =
∑N−k

t=1 (z(t)− µ)(z(t + k)− µ)∑N
t=1(z(t)− µ)2

with µ =
∑N

t=1

y(t)
N

Values of rk close to zero indicate that the values of the time series z(t) are scarcely
correlated at a distance k. When the prediction model provides a good estimation of
the future trend of the context information, the standardised forecast errors are serially
uncorrelated. Therefore, the correlogram of forecast errors should reveal insignificant
serial correlation. In other words, if we have a good prediction model, we expect the
residuals to be random (i.e., the time series {z(t)} forms a random process) and close to
zero. If the residuals {z(t)} form a purely random process, their correlogram is such that
each autocorrelation coefficient is approximately normally distributed, with mean 0 and

variance
1
N

for sufficiently large values of N9.

The analysis of the predictability of the time series can be performed periodically. In other
words, it is not necessary to store the last N values of all the time series considered in the
system. The analysis of the predictability of the time series can be performed sequentially,
considering all the time series one after the other, avoiding to store all the values of all

9The accuracy of the calculation increases as N increases. The choice of N is therefore based on the
evaluation of the trade-off between the desired accuracy and the resource consumption in terms of memory.
In our simulations, we set N equal to 60.
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the time series, but only the ones related to a single series10. Storing all the information
would also contradict the design philosophy behind the choice of adopting Kalman filters.

Let us then suppose that z1, z2, ..., zN are observations on independent and identically dis-
tributed random variables with arbitrary mean. It can be shown that rk is asymptotically
normally distributed and that

E(rk) ≈ − 1
N

V ar(rk) ≈
1
N

We can use this result to check the randomness of the time series of the residuals. Let us
suppose that we are interested in 95% confidence interval in our calculation. In this case
the range of the confidence interval is

[− 1
N
− 2√

N
,− 1

N
+

2√
N

]

This interval can be further approximated as

[− 2√
N

,
2√
N

]

Observed values of rk which fall outside these limits are significantly different from 0 at
the 5% level. Therefore, considering a degree of confidence of 95%, no more than 5% of

the values should be outside the range [− 2√
N

,
2√
N

]. For example, if the first 20 values

of rk (i.e., r1, r2, ..., rk) are taken into consideration, one value outside the range may be
expected, even if the data are really random. If we obtain more than one of the values
of rk outside the range, then we can deduce that the time series of the residuals is not
random. Therefore, the prediction model that we are using is not sufficient to forecast
the future behaviour of the time series representing the context information taken into
consideration.

At the same time, the values of z(t) should be close to zero. In order to test this, we
consider the normalised value of z(t) by dividing it by 100. We then define an acceptable
percentage error ζ (for example equal to 0.1%). The value of ζ can be chosen according
to the developer’s application requirements. If the z(t) > ζ, once again we derive that the
prediction model does not provide good forecast results.

10Clearly, considering the available memory space, optimisations are possible: for example, a certain
subset of time series can be stored and evaluated in parallel.
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To summarise, the prediction component will return true if the z(t) > ζ and the time
series of the last M values of the residuals is random. If there are not enough samples,
the component is not able to derive any information about the predictability of the time
series and, therefore, it will notify this fact to the system.

2.6.2 Implementation and Use of the Prediction Component in CAR

Given a certain number of measurements of the predictability of a time series, we define
predictability level of a context attribute as the percentage of samples for which the com-
ponent returns true, in other words, the percentage of samples for which the prediction
model is sufficiently accurate given a predefined acceptable error.

If the predictability level is under a given threshold, alternative protocols can be used for
example pure epidemic approaches or more efficient ones in terms of overhead such as the
one that we presented in [Musolesi and Mascolo, 2006b]. The design of these automatic
selection mechanisms is outside the scope of the present work.

2.6.3 Routing Table Transmission Interval and Predictability

The right choice of the routing transmission interval is of key importance for the pre-
dictability of the time series and, to this end, for the performance of the CAR protocol.

For example, as we show in Section 4.2.6, in presence of a scenario characterised by high
mobility, the routing table transmission interval should be small in order to have frequent
updates of the information. This also ensures a rapid convergence of the filter; moreover,
the routing tables are used to beacon in order to detect the presence of a given host. If
the routing table interval is high, hosts may also get undetected and, therefore, the trend
of colocation may appear as random.

2.7 Related Work

2.7.1 Mobile Ad Hoc Networking

In the context of mobile ad hoc networks, the synchronous routing problem [Perkins, 2001]
is essentially the distributed version of the shortest-path problem [Lynch, 1996]. The
protocols used to solve this problem are usually classified into two main classes: link-state
and distance-vector, depending on how routing information is distributed and route tables
are calculated. Synchronous protocols for mobile ad hoc networks are further classified
into two categories, but these depend instead on when routing information is exchanged
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(i.e, proactively or reactively). This distinction is somewhat simplistic; there are protocols
that do not fit neatly into either category.

Proactive protocols are similar to routing protocols for traditional wired networks in that
they attempt to maintain up-to-date routing tables for the entire network. A large number
of possible solutions have been proposed for this space; the most basic of these is the Desti-
nation Sequenced Distance Vector Routing protocol (DSDV) [Perkins and Bhagwat, 1994],
though there are many others, notably WRP [Murthy and Garcia-Luna-Aceves, 1996],
GSR [Iwata et al., 1999] and FishEye [Pei et al., 2000]. Reactive protocols were de-
signed as an alternative approach for situations of lower call to mobility ratio
(CMR). Routing information is obtained only when one node wishes to initiate a
connection with another; this information is typically cached rather than recalcu-
lated on a per-message basis since, in most situations, routes are not expected
to change significantly over short timescales. Examples of reactive protocols are
the Dynamic Source Routing (DSR)[Johnson and Maltz, 1996a] and Ad Hoc On De-
mand Distance Vector (AODV)[Perkins and Royer, 1999] protocols, which are essen-
tially based on reverse-path techniques, and the Temporally Ordered Routing Al-
gorithm (TORA)[Park and Scott Corson, 1997], based on the Gafni-Bertsekas algo-
rithm [Gafni and Bertsekas, 1981] and on the link-reversal concepts.

There are also hybrid approaches that combines the characteristics of proactive and reac-
tive routing protocols, e.g., the Zone Routing Protocol (ZRP) [Haas and Pearlman, 1998].
An excellent survey about synchronous routing protocols, even if slightly outdated, is
[Royer and Toh, 1999].

Another class of protocols is the one of the position-based routing ones. A complete
survey about these protocols can be found in [Mauve et al., 2001]. Examples of position
based routing protocols are the one used in the Terminodes Project [Blazevic et al., 2001],
DREAM [Basagni et al., 1998] and EASE.

However, the EASE protocol [Grossglauser and Vetterli, 2003] is based not only on geo-
graphical information but also on the history of the encounters and, for this reason, is
quite relevant to our work. Each node maintains a list of the time and location of its
last encounter with every node in the network. This information is used to calculate an
optimal path to a remote host; the authors assume that the probability of finding a host
in a position near the position of the last encounter decreases as the time elapses. In other
words, the elapsed time after the encounter provides a good measure of the reliability of
the stored information about the position of a certain host. This protocol eliminates the
traffic overhead due to this type of messages, relying only on the information that is able
to collect during its movement. This algorithm is loop-free, since each host sends data
towards a specific direction and robust, since messages are transmitted using multiple
paths. Predictions techniques are not used in EASE; each node maintains only the last
positions of the nodes without predicting the future ones.
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However, all the approaches simply fail if a connected path between the sender and the
receiver does not exist since they do not use store-and-forward mechanisms. In the eval-
uation in Chapter 4, we will show a comparison between CAR and the flooding protocol
that provides an upper bound for the performance of this class of synchronous protocols
in terms of delivery ratio.

2.7.2 Delay Tolerant Newtorking

A number of approaches have been proposed to enable asynchronous communication in
intermittently connected mobile ad hoc networks.

The seminal paper analysing the problem and containing a first solution to it
is [Li and Rus, 2000]. The authors propose an approach that guarantees message trans-
mission in minimal time. However, the proposed algorithm relies on the fact that mobile
hosts actively modify their trajectories to transmit messages. The authors developed algo-
rithms that minimise the trajectory modifications under two different possible scenarios,
one in which the movements of all the nodes in the system are known and one in which
they are not.

In [Grossglauser and Tse, 2001], the authors demonstrate that the use of asynchronous
delivery mechanisms, by means of intermediate carriers, increases the performance in terms
of delivery ratio in ad hoc settings. The authors study a model of an ad-hoc network where
n mobile nodes communicate in random source-destination pairs. They examine the per-
session throughput for applications with loose delay constraints, such that the topology
changes over the time-scale of packet delivery. They prove that, under this assumption,
the per-user throughput can increase dramatically when nodes are mobile rather than
fixed.

We give now an overview of the most interesting algorithms for routing in delay tolerant
networks. A survey of routing protocols for intermittently connected delay tolerant mobile
networks can be found in [Zhang, 2006].

Epidemic and Semi-epidemic Approaches

In [Fall, 2003], Fall proposes the Delay Tolerant Network architecture to solve the internet-
working issues in scenarios where partitions are frequent and a connected path between
message senders and receivers may be not present (such as satellite and interplanetary
communication systems).

The simplest way of enabling communication in intermittently connected networks is by
means of replicating messages on all the hosts (epidemic algorithms) or in a certain num-
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ber of them (semi-epidemic algorithms). Epidemic algorithms were first devised in the
context of distributed database systems in an attempt to guarantee data consistency af-
ter disconnections [Demers et al., 1988]. Interesting theoretical results show that, using
random data exchanges, all updates are seen by all the hosts of the system in a bounded
amount of time, given reasonable assumptions about connectivity. The epidemic routing
protocol [Vahdat and Becker, 2000] forms the basis of much of the work in this field, even
if buffer issues are not considered in their solution.

In [Chen and Murphy, 2001] the epidemic protocol was refined, presenting the so-called
Disconnected Transitive Communication paradigm. This approach is based on the use
of utility functions that are calculated evaluating context information, in particular, the
history of the previous connections of the hosts (by storing a certain number of previous
values). The authors provide a general framework rather than a detailed instantiation,
and so the investigation about the aspects related to the composition of calculated delivery
probabilities are almost entirely missing. Moreover, no prediction mechanisms are used.

In [Lindgren et al., 2003] the authors propose PRoPHET, a probabilistic routing proto-
col to enable asynchronous communication among intermittently connected portions of a
network. Their approach is based on the fact that the exploited communication model is
typically transitive and, for this reason, the probability of message delivery must be cal-
culated accordingly: if, for example, a host HA is able to communicate with HB through
HC , the overall delivery probability is derived by the multiplication of the probability that
HA becomes a neighbour of HB, with the probability that HB becomes a neighbour of HC .
The calculation of the delivery probabilities is based on the period of time of colocation
of two hosts, weighted by an ageing factor that is used to decrease the overall probability
with the increasing age of the information on which it was based.

Another typical semi-epidemic approach is Spray&Wait [Spyropoulos et al., 2005]: this
algorithm is based on the dissemination of a certain number of replicas in the system (the
spray phase). Then the messages are finally delivered to the recipients of the messages
when the carriers are in reach of the recipient. The authors claim that their approach
outperforms other semi-epidemic protocols in terms of overhead. However, the design
(and the evaluation) of the protocol does not take into account the overhead due to the
discovery process of the neighbours. Recently, the authors also propose a variation of this
mechanism (Spray & Focus) [Spyropoulos et al., 2007] based on the calculation of delivery
probability along the lines of PRoPHET.

In [Sasson et al., 2003] a possible application of percolation theory (that studies the prob-
ability of transition between two states in fluids) to improve information dissemination
based on the flooding of messages in ad hoc settings is presented. Another interesting
epidemic model for mobile ad hoc networks is presented in [Khelil et al., 2002], where
the similarities between flooding-based approaches for the information dissemination in
mobile ad-hoc networks and the epidemic spreading of diseases are investigated.
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Finally, multiple copies approaches can also benefit from the exploitation of erasure cod-
ing techniques [Byers et al., 1998] to improve the performance of the algorithm in terms
of delivery ratio given a certain degree of redundancy in the system [Wang et al., 2005,
Jain et al., 2005].

With respect to the these approaches, CAR relies on a single copy of the message in the
network, optimising memory space and transmission overhead. For this reason, CAR is
also suitable for scenarios composed of resource-constrained devices, whereas epidemic and
semi-epidemic solutions are too expensive in terms of overhead.

Knowledge-based Routing Protocols

In [Jain et al., 2004] the authors present a set of protocols for routing in ad hoc networks
based on a partial or complete knowledge of the structure of the network using a time-
varying network graph representation. The design of this protocol is based on a modified
version of Djikstra’s algorithm, minimising the delivery delays and queuing times. The
authors use linear programming techniques to derive a solution to this flow problem.

Zhao et alii in [Zhao et al., 2004] discuss the so-called Message Ferrying approach for
message delivery in mobile ad hoc networks. The authors propose a proactive solution
based on the exploitation of highly mobile nodes called ferries. These nodes move according
to pre-defined routes, carrying messages between disconnected portions of the network.
This approach has inspired many works based on similar mechanisms, including some
based on the knowledge of the geographical coordinates of all the potential carriers such
as [Li et al., 2006].

Island Hopping [N. Sarafijanovic-Djukic and Grossglauser, 2006] is another example of
store-and-forward approach for delay tolerant network in a wide-area; in particular, the
authors consider an urban setting and the evaluation of the system is based on traces of
movement of taxis in the city of Warsaw. This protocol is predicated on the assumption
that the network possesses concentration points, that are regions where the node density
is much higher than on average and, consequently, where they have a higher probability
of being in reach with the other hosts. The authors discuss an algorithm to infer the
topology of the graph in a collaborative way and to exploit for efficient mobility-assisted
forwarding of the messages.

Another example of routing protocols based on knowledge about the system is MoVe by
Lebrun et alii [Lebrun et al., 2005]. This protocol has been specifically designed for delay
tolerant vehicular networks. It relies on the evaluation of the geographical coordinates of
the current position and the final destination of the vehicles. In particular, messages are
forwarded to the hosts that are moving towards the closest point to the destination.
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With respect to this class of protocols, we have introduced a general framework for the
prediction of the evolution of the delay tolerant network scenarios which does not rely on
knowledge of the routes of the mobile nodes, but is able to infer them from connectivity
patterns. At the same time, we used lightweight mechanisms, because we believe that
routing algorithms that are complex from a computational point of view are unsuitable
for mobile devices, usually characterised by scarcity of resources. One example is the use
of Kalman filter techniques that do not necessitate storing all the history of the evolution
of the context information. Our techniques could be integrated with these approaches,
since they address orthogonal aspects of the problem.

Data Collection and Delay Tolerant Sensor Networks

Delay tolerant protocols have also been developed for data collection in sparse sensor ad
hoc networks using mobile carriers (or Mules like in [Shah et al., 2003]).

A major research effort in this direction is the ZebraNet Project [Liu et al., 2004,
Juang et al., 2002] at Princeton University: researchers used collars with sensors to collect
environmental information and to study the movement of animals. Data are replicated
using a modified epidemic protocol based on priorities considering the originator of the
information. The data created locally are the last to be deleted.

In [Small and Haas, 2003], Small and Haas describe another very interesting application
of epidemic routing protocols to a problem of cost-effective data collection, using whales
as message carriers. Fixed buoys are used to collect data that are copied epidemically,
stored and spread among the whales.

DTN Technologies for Developing Countries and Rural Communities

Finally, as seen with ZebraNet, some actual deployments of these technologies already
exist. For instance, Daknet [Pentland et al., 2004] is an example of a system for delay
tolerant networking deployed in India and Cambodia. Daknet transmits data over short
point-to-point links between digital kiosks and portable storage devices called MAPs (Mo-
bile Access Points). These are mounted on and powered by buses, motorcycles or even
bicycles with small generators. Wi-Fi transceivers automatically transfer the data stored
in the MAPs, when they are in reach.

A more advanced system for supporting communication in rural areas of India using
vehicles as a mechanical backhaul has been developed and deployed by the group lead by
Keshav at the University of Waterloo [Seth et al., 2006]. Cars and buses are used to carry
data to and from villages and Internet gateways.
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Another project to support communication in areas not covered by traditional telecom-
munication systems is DieselNet [Burgess et al., 2006] that exploits buses to provide inter-
mittent connectivity also outside urban areas by means of buses. To enhance connectivity
between mobile nodes, they designed throwboxes that act as stationary routers. Throw-
boxes are untethered from any power-supply, or backend wireless or wired connectivity.
This makes throwboxes easily deployed ad-hoc into a challenged environment using bat-
teries for short-term deployment, or solar for longer-term use.

CAR could be potentially used also in presence of fixed hosts, possibly equipped with
larger buffer. In fact, the definition and the calculation of the change rate of connectivity
and host colocation are independent form the fact that a host if physically moving. Only
relative movement matters: a fixed host may be relatively highly mobile. This sounds like
an oxymoron, but a similar scenario can be realistic in the case of fixed nodes that get in
reach of many different devices because of their geographical strategic location, such as
the one that may be located in tube or train stations.

2.7.3 Prediction Techniques Applied to Delay Tolerant Systems

In the recent years, prediction techniques have been applied in different areas of com-
puter science and, in particular, in the field of dynamic distributed systems and mobile
networking.

Systems for delay tolerant communication based on the prediction of movements or other
resource indicators include [Lindgren et al., 2003, Wang and Wu, 2006]. However, these
works do not rely on the analysis of time series like CAR and do not take into consideration
the problem of the predictability of the indicators used to improve the system performance.

In [Kim and Noble, 2001] the authors analyse the application of various types of fil-
ters to forecast network performance; however, they do not take into consideration the
problem of evaluating the actual predictability of the observed systems. More recently,
in [Kim et al., 2006], Kalman filter techniques have been used to extract the movement
of the users. Also in this work, the aspects related to the predictability of users’ mobility
are not directly considered.

We believe that these systems based on the movement prediction can benefit from the
integration of our component in order to make alternative decisions when prediction is not
possible. Our approach is lightweight, since it requires to store only a small number of the
past values of the context information. Moreover, it is easy to integrate with virtually all
possible prediction techniques based on the analysis of time series. Furthermore, we believe
that it may be applied in many other fields in computer science where similar prediction
techniques are (or can be) used such as peer-to-peer systems and grid computing.
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With respect to the general problem of designing a prediction model, many techniques
have been proposed in the literature. However, we do not discuss the several approaches
tackling the problem of time series forecasting, since it is outside the scope of this the-
sis. Comprehensive introduction to the field can be found in [Brockwell and Davis, 1996,
Durbin and Koopman, 2001, Chatfield, 2004]. We only remark again here that our choice
was motivated by the fact that the calculation of the Kalman filter models are recursive so
that, although the current estimates are based on the whole past history of measurements,
there is no need for an ever-expanding or, in general, very large memory. The second ev-
ident advantage is that it converges fairly quickly where there is a constant underlying
model, but it can also follow the variations of the observed system when the model is
changing over time [Meinhold and Singpurwalla, 1983, Aoki, 1990].

As far as the predictability problem is concerned, we adopted one of the most widely
used solutions in forecasting based on state space models [Durbin and Koopman, 2001]
Comparison of accuracy with the alternative predictability model called portmanteau
lack-of-fit test can be found in [Davies and Newbold, 1979]. A modified version of
this test that is often used is the Ljung-Box-Pierce statistic [Box et al., 1994]. How-
ever, it has been proven that the performance of this model are in general quite
poor [Davies and Newbold, 1979]. An alternative way of testing the residuals is the
Durbin-Watson statistic [Granger and Newbold, 1986]. This method is usually exploited
for measuring the predictability of auto-regressive models.

2.7.4 Context-aware Systems

Even if, in the recent years, a large number of so-called context-aware platforms have been
presented [Chen and Kotz, 2000], we discuss only two interesting examples of systems,
since these are related to the design and implementation of the autonomic mechanisms in
the CAR protocol.

One of the most famous examples of context-aware systems is Odyssey
[Satyanarayan et al., 1994], a platform designed and implemented at Carnegie Mel-
lon University by Satyanarayan and his group. More specifically, Odyssey provides a
support for the dynamic adaptation to the current level of available resources (memory,
computation power, etc.) in a transparent way. Recently, an extension of Odyssey
[Dushyanth et al., 2000] was proposed in order to improve this kind of adaptation using
the previous context history. The goal of this new release of Odyssey is the optimisation
of the so-called fidelity factor that is defined as the quality of results (for example, the
definition of an image) presented to users using some prediction mechanisms based on
machine learning theory. The technique chosen by the authors is based on the use of
linear regression functions that must be provided by application developers. A drawback
is related to the fact that developers must provide these functions that are usually
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difficult or impossible to define with accuracy. Furthermore, programmers may not have
the necessary know-how to provide them, since they might not know the details of the
devices and the deployment scenario in advance. Finally, Odyssey is not suitable for an
ad hoc scenario, since the architecture is composed of hosts with different capabilities
(i.e., a collection of powerful servers and clients with limited resources.).

In [Poladian et al., 2004] the authors propose a novel approach to provide adaptation to
the context at run time. They exploit optimisation techniques to maximise user’s utility
with respect to a specific task (for example watching a video or buying a product on-
line) in order to configure dynamically the system. Each task requires the use of different
services (such as web-browsing or text-editing). Users must define their utility functions
by means of preference functions that map from a multidimensional capability space that
is correlated to (and constrained by) the available resources. The optimised configuration
is obtained by a search in the space of the possible configurations that are derived taking
in consideration the required services in order to perform the required task. To implement
this computationally complex algorithm, the authors uses a third-part operation research
library to approximate the optimal result.
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Chapter 3

Design of a Social Network

Founded Mobility Model

The sciences do not try to explain, they hardly try to interpret, they mainly
make models. By a model is meant a mathematical construct which, with the
addition of certain verbal interpretations, described observed phenomena. The
justification of such a mathematical construct is solely and precisely that it is
expected to work.

John von Neumann

Of all things the measure is man.

Protagoras

3.1 Introduction

The definition of realistic mobility models is one of the most critical and, at the same
time, difficult aspects of the simulation of applications and systems designed for mobile
environments. Currently, there are very few and very recent public data banks capturing
node movement in real large-scale mobile ad hoc environments.
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For example, researchers at Intel Research Laboratory and the University of Cam-
bridge distributed Bluetooth devices to people, in order to collect data about hu-
man movements and to study the characteristics of the colocation patterns among
people. These experiments were firstly conducted among students and researchers in
Cambridge [Chaintreau et al., 2005] and then among the participants of INFOCOM
2005 [Hui et al., 2005b]. Other similar projects are the Wireless Topology Discovery
project at the UCSD [McNett and Voelker, 2005] and the campus-wide WaveLan traf-
fic measurement and analysis exercises that have been carried out at Dartmouth Col-
lege [Henderson et al., 2004]. At this institution, a project with the aim of creating a
repository of publicly available traces for the mobile networking community has also been
started [Kotz and Henderson, 2005].

Until now, in general, real movement traces have been rarely used for evaluation
and testing of protocols and systems for mobile networks, with the only exception
of [Tuduce and Gross, 2005] and [Hsu et al., 2005], in which the authors used, respectively,
the movement traces collected from a campus scenario and direct empirical observations
of pedestrians in downtown Osaka as a basis of the design of their models.

In general, synthetic models have been largely preferred [Camp et al., 2002]. The rea-
sons of this choice are many. First of all, as mentioned, the available traces are limited.
Second, these traces are related to very specific scenarios and their validity is difficult to
generalise. However, as we will discuss later in the chapter, these data show surprising
common statistical characteristics, such as the same distribution of the duration of the
contacts and inter-contacts intervals. We define contact duration as the time interval in
which two devices are in radio range. We define inter-contacts time as the time interval
between two contacts. These indicators are particularly important in ad hoc networking
and, in particular, in opportunistic mobile networks, such as delay tolerant mobile ad hoc
networks [Musolesi et al., 2005, Harras et al., 2005]: inter-contacts times define the fre-
quency and the probability of being in contact with the recipient of a packet or a potential
carrier in a given time period. Third, the available traces do not allow for sensitivity anal-
ysis of the performance of algorithms, since the values of the parameters that characterise
the simulation scenarios, such as the distribution of the speed or the density of the hosts,
cannot be varied. Finally, in some cases, it may be important to have a mathematical
model that underlines the movement of the hosts in simulations, in order to study its
impact on the design of protocols and systems.

Many mobility models for the generation of synthetic traces have been presented (a
survey can be found in [Camp et al., 2002]). The most widely used of such models
are based on random individual movement; the simplest, the Random Walk mobil-
ity model (equivalent to Brownian motion), is used to represent pure random move-
ments of the entities of a system [Einstein, 1956]. A slight enhancement of this is
the Random Way-Point mobility model [Johnson and Maltz, 1996a], in which pauses
are introduced between changes in direction or speed. More recently, a large num-
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ber of more sophisticated mobility models for ad hoc network research have been pre-
sented [Le Boudec and Vojnovic, 2005, Jardosh et al., 2005, Maeda et al., 2005].

However, all synthetic movement models are suspect because it is quite difficult to assess to
what extent they map reality. It is not hard to see, even only with empirical observations,
that the random mobility models generate behaviour that is most unhuman-like. This
analysis is confirmed by the examination of the available real traces. As we will discuss
later in this chapter, mobility models based on random mechanisms generate traces that
show properties (such as the duration of the contacts between the mobile nodes and the
inter-contacts time) very different from those extracted from real scenarios.

Our model is based on a simple observation. In mobile ad hoc networks, mobile devices
are usually carried by humans, so the movement of such devices is necessarily based on
human decisions and socialisation behaviour. For instance, it is important to model the
behaviour of individuals moving in groups and between groups, as clustering is likely in
the typical ad hoc networking deployment scenarios of disaster relief teams, platoons of
soldiers, groups of vehicles, etc. In order to capture this type of behaviour, we define a
model for group mobility that is heavily dependent on the structure of the relationships
among the people carrying the devices. Existing group mobility models fail to capture
this social dimension [Camp et al., 2002]1.

Fortunately, in recent years, social networks have been investigated in considerable de-
tail, both in sociology and in other areas, most notably mathematics and physics. In
fact, in the recent years, various types of networks (such as the Internet, the World
Wide Web and biological networks) have been studied by researchers especially in the
statistical physics community. Theoretical models have been developed to reproduce
the properties of these networks, such as the so-called small worlds model proposed
in [Watts, 1999] or various scale-free models [Newman, 2003, Vasquez et al., 2003]2. Ex-
cellent reviews of the recent progress in complex and social networks analysis may be
found in [Albert and Barabasi, 2002] and [Newman, 2003].

However, as discussed in [Newman and Park, 2003], social networks appear to be funda-
mentally different from other types of networked systems. In particular, even if social
networks present typical small-worlds behaviour in terms of the average distance between

1These mobility models can also be test other types of networks. Within the emerging field of sensor
networks, mobile hosts are not necessarily carried directly by humans. However, sensor networks are usually
embedded in artefacts and vehicles (such as cars or planes or clothing) or are spread across a geographical
area (such as environmental sensors). In the former case, the movements of the sensors embedded in a car
or in aeroplane, for instance, are not random but are dependent on the movements of the carriers; in the
latter, movement is not generally a major issue.

2Scale-free networks are characterised by a degree distribution that shows the following power law tail
shape:

P (k) = k−γ

A function f(x) is scale-free if it remains unchanged to within a multiplicative factor under a re-scaling of
the independent variable x (i.e., it has a power law form) [Newman, 2003]
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pairs of individuals (the so-called average path length), they show a greater level of cluster-
ing. In [Newman and Park, 2003] the authors observe that the level of clustering seen in
many non-social systems is no greater than in those generated using pure random models.
Instead in social networks, clustering appears to be far greater than in networks based
on stochastic models. The authors suggest that this is strictly related to the fact that
humans usually organise themselves into communities. Examples of social networks used
for these studies are rather diverse and include, for instance, networks of coauthorships of
scientists [Newman, 2001] and the actors in films with Kevin Bacon [Watts, 1999].

We propose a new mobility model that is founded on social network theory. One of the
inputs of the mobility model is the social network that links the individuals carrying
the mobile devices based on these results in order to generate realistic synthetic network
structures [Watts, 1999]. The model allows collections of hosts to be grouped together in
a way that is based on social relationships among the individuals. This grouping is only
then mapped to a topographical space, with topography biased by the strength of social
ties. The movements of the hosts are also driven by the social relationships among them.
The model also allows for the definition of different types of relationships during a certain
period of time (i.e., a day or a week). For instance, it might be important to be able
to describe that in the morning and in the afternoon of weekdays, relationships at the
workplace are more important than friendships and family one, whereas the opposite is
true during the evenings and weekends.

We evaluate our model using real mobility traces provided by Intel Research Laboratory
and we show that the model provides a good approximation of real movements in terms of
some fundamental parameters, such as the distribution of the contacts duration and inter-
contacts time. In particular, the data show that an approximate power law holds over a
large range of values for the inter-contacts time. Instead, contacts duration distribution
follows a power law for a more limited range. These characteristics of distribution are also
very similar to those observed by the researchers at the University of California at San
Diego and Dartmouth College [Chaintreau et al., 2005].

3.2 Design of the Mobility Model

In this section we present the design of the Community based mobility model. The de-
scription of the model, mirroring its conceptual steps, is organised as follows:

• Firstly, we describe how we model social relationships and, in particular, how we use
social networks as input of the mobility model.

• Secondly, we present the establishment of the model : we discuss how we identify
communities and groups in the network and how the communities are associated to
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Figure 3.1: Example of social network.

a geographical space. Our observation here is that people with strong social links
are likely to be geographically colocated often.

• Thirdly, we describe the algorithm that is at the basis of the dynamics of the nodes,
that, again, is based on the strength of social relationships. We argue that individuals
with strong social relationships move towards (or within) the same geographical area.

3.2.1 Using Social Networks as Input of the Mobility Model

Modelling Social Relationships

One of the classic ways of representing social networks is weighted graphs. An example of
social network is represented in Figure 3.1. Each node represents one person. The weights
associated with each edge of the network are used to model the strength of the interactions
between individuals [Scott, 2000]. It is our explicit assumption that these weights, which
are expressed as a measure of the strength of social ties, can also be read as a measure of
the likelihood of geographic colocation, though the relationship between these quantities
is not necessarily a simple one, as will become apparent. We model the degree of social
interaction between two people using a value in the range [0, 1]. 0 indicates no interaction;
1 indicates a strong social interaction. Different social networks can be valid for different
parts of a day or of a week3.

3 Let us consider a family of three people, with one child. During the days, when the child is at school
and the parents at their workplaces, their social relationship is weak (i.e., represented with low values in
the matrix). During the evening, the social ties are stronger as the family members tend to be colocated
(i.e., high values in the matrix). The relationship between two colleagues sharing the same office will be
represented with a value higher than these family relationships during the working hours in week days.
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As a consequence, the network in Figure 3.1 can be represented by the 10× 10 symmetric
matrix M showed in Figure 3.2, where the names of nodes correspond to both rows and
columns and are ordered alphabetically. We refer to the matrix representing the social
relationships as Interaction Matrix.

M =



1 0.76 0.64 0.11 0.05 0 0 0.12 0.15 0
0.76 1 0.32 0 0.67 0.13 0.23 0.43 0 0.05
0.64 0.32 1 0.13 0.24 0 0 0.15 0 0
0.11 0 0.13 1 0.54 0.83 0.57 0 0 0
0.05 0.67 0.24 0.54 1 0.2 0.41 0.2 0.23 0
0 0.13 0 0.83 0.2 1 0.69 0.15 0 0
0 0.23 0 0.57 0.41 0.69 1 0.18 0 0.12

0.12 0.43 0.15 0 0.2 0.15 0.18 1 0.84 0.61
0.15 0 0 0 0.23 0 0 0.84 1 0.65
0 0.05 0 0 0 0 0.12 0.61 0.65 1



Figure 3.2: Example of an Interaction Matrix representing a simple social network.

The generic element mi,j represents the interaction between two individuals i and j. We
refer to the elements of the matrix as the interaction indicators. The diagonal elements
represent the relationships that an individual has with himself and are set, conventionally,
to 1. In Figure 3.1, we have represented only the links associated to a weight equal to or
higher than 0.25.

The matrix is symmetric since, to a first approximation, interactions can be viewed as being
symmetric. However, we are using a specific measure of the strength of the relationships.
It is probable that by performing psychological tests, the importance of a relationship,
such as a friendship, will be valued differently by the different individuals involved; in our
model, this would lead to an asymmetric matrix. We plan to investigate this issue further
in the future.

The Interaction Matrix is also used to generate a Connectivity Matrix. From matrix M
we generate a binary matrix C where a 1 is placed as an entry cij if and only if mi,j is
greater than a specific threshold t (i.e., 0.25). The Connectivity Matrix extracted by the
Interaction Matrix in Figure 3.2 is showed in Figure 3.3. The idea behind this is that we
have an interaction threshold above which we say that two people are interacting as they
have a strong relationship. The Interaction Matrix (and, consequently, the Connectivity
Matrix) can be derived by available data (for example, from a sociological investigation)
or using mathematical models that are able to reproduce characteristics of real social
networks. As we will discuss in Section 3.3.3, the default implementation of our model
uses the so-called Caveman model [Watts, 1999] for the generation of synthetic social
networks with realistic characteristics (i.e, high clustering and low average path length).
However, this is a customisable aspect and, if there are insights on the type of scenarios
to be tested, a user-defined matrix can be used as input.
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C =



1 1 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1



Figure 3.3: Example of a Connectivity Matrix representing a simple social network.

Detection of Community Structures

The simulation scenario is established by mapping groups of hosts to certain areas in
geographical space. After the definition of the social graph described above, groups, i.e.,
the highly connected set of nodes in the graph, need to be isolated. Fortunately, existing
algorithms can be exploited for this purpose.

We use the algorithm proposed in [Newman and Girvan, 2004] to detect the presence of
community structures in social networks represented by matrices, like the Connectivity
Matrix that we have defined in the previous section. This algorithm is based on the
calculation of the so-called betweenness of edges. The value of the betweenness represents
one of the possible ways of evaluating the centrality of an edge. For example, considering
two communities connected by few inter-community edges, all the paths through the nodes
in one community to nodes in the other must traverse one of these edges, that, therefore,
will be characterised by a high betweenness. Intuitively then, one of the possible estimation
of the centrality of an edge is given by the number of shortest (geodesic) paths between all
pairs of vertices that run along it. In other words, the average distance between the vertices
of the network has the maximum increase when the edges with the highest betweenness
are removed.

Therefore, in order to extract the communities from the network, edges characterised by
high values of centrality are progressively detected in subsequent rounds. At each round,
one of the edges of the host with the highest centrality is removed. The final result is a
network composed of (fairly distinguishable) groups of hosts (i.e., the communities).

The complexity of this algorithm is O(mn2), considering a graph with m edges and n

vertices. The calculation of the shortest path between a particular pair of vertices can
be performed using a breadth-first search in time O(m) and there are O(n2) vertices.
However, in [Newman and Girvan, 2004], the authors proposed a faster algorithm with a
complexity equal to O(mn).
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As we said, the algorithm can be run on the graph a number of times, severing more
and more links and generating a number of distinguishable communities. However, a
mechanism to stop the algorithm when further cuts would decrease the quality of the
results is also needed: this would mean that the graph has reached a state when meaningful
communities have already been identified.

We adopted a solution based on the calculation of an indicator defined as modularity
Q [Newman and Girvan, 2004]. This quantity measures the proportion of the edges in the
network that connect vertices within the same community minus the expected value of the
same quantity in a network with the same community division but random connections
between the vertices. If the number of edges within the same community is no better than
random, the value of Q is equal to 0. The maximum value of Q is 1; such a value indicates
very strong community structure. In real social networks, the value of Q is usually in
the range [0.3, 0.7]. The analytical definition of the modularity of a network division can
be found in [Newman and Girvan, 2004]. At each run the algorithm severs one edge and
measures the value of Q. The algorithm terminates when the obtained value of Q is less
than the one obtained in the previous edge removal round. This is motivated by the fact
that Q presents one or, more rarely, two local peaks at most: therefore, the algorithm can
be stopped when the first local peak is reached. This is clearly an approximation since
the value of the other possible local peak (if it exists) may be higher, but it has been
observed that the quality of the division obtained is, in the vast majority of the cases,
very good [Newman and Girvan, 2004]. Also, by adopting this technique, we considerably
simplify the computational complexity of the algorithm.

In order to illustrate this process, let us now consider the social network in Figure 3.1.
Three communities (that can be represented by sets of hosts) are detected by running
the algorithm: C1 = {A,B, C}, C2 = {D,E, F, G} and C3 = {H, I, L}. Now that the
communities are identified given the matrix, they need to be associated with locations.

3.2.2 Establishment of the Model: Placement of the Communities in

the Simulation Space

After the communities are identified, each of them is randomly associated to a specific
location (i.e., a square) on a grid4. We use the symbol Sp,q to indicate a square in position
p, q. The number of rows and columns are inputs of the mobility model.

Going back to the example, in Figure 3.4 we show how the communities we have identified
can be placed on a 3x4 grid (the dimension of the grid is configurable by the user and
influences the density of the nodes in each square). The three communities C1, C2, C3 are

4A non random association to the particular areas of the simulation area can be devised, for example
by deciding pre-defined areas of interest corresponding for instance to real geographical space. However,
this aspect is orthogonal to the mechanisms in this thesis.
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placed respectively in the grid in the squares Sa,2, Sc,2 and Sb,4. Each node of a certain
community is placed in random positions inside the assigned square.

Once the nodes are placed on the grid, the model is established and the nodes move around
according to social-based attraction laws as explained in the following section.

3.2.3 Dynamics of the Mobile Hosts

As described in the previous section, a host is initially positioned in a certain square in
the grid. Then, in order to drive movement, a goal is assigned to the host. More formally,
we say that a host i is associated to a square Sp,q if its goal is inside Sp,q. Note that host
i is not necessarily always positioned inside the square Sp,q, despite this association (see
below).

The goal is simply a point on the grid which acts as final destination of movement like in
the Random Way-Point model, with the exception that the selection of the goal is not as
random.

Selection of the first goal

When the model is initially established, the goal of each host is randomly chosen inside the
square associated to its community (i.e, the first goals of all the hosts of the community
C1 will be chosen inside the square Sa,2).

Selection of the subsequent goals

When a goal is reached, the new goal is chosen according to the following mechanism.
A certain number of hosts (zero or more) are associated to each square Sp,q at time t.
Each square (i.e., place) exerts a certain social attractivity to a certain host. The social
attractivity of a square is a measure of its importance in terms of the social relationships
for the host taken into consideration. The social importance is calculated by evaluating
the strength of the relationships with the hosts that are moving towards that particular
square (i.e., with the hosts that have a current goal inside that particular square). More
formally, given CSp,q (i.e., the set of the hosts associated to square Sp,q), we define social
attractivity of that square towards the host i SA(p,q)i

, as follows

SA(p,q)i
=

∑
j∈CSp,q

mi,j

|CSp,q |
(3.1)
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In other words, the social attractivity of a square in position (p, q) towards a host i is
defined as the sum of the interaction indicators that represent the relationships between i

and the other hosts that belong to that particular square, normalised by the total number
of hosts associated to that square. If |CSp,q | = 0 (i.e., the square is empty), the value of
SA(p,q)i

is set to 0. We consider the average values of the interaction indicators and not
the sum of them, since we want to model the fact that a destination is selected not only
because there are many people with whom the host has relationships (that may also be
weak), but because, in average, the people that are in that square have strong relationships
with it. In other words, by doing this, the selection is based not on the number of people
but exclusively on the strength of the relationships.

The mobility model allows for two alternative mechanisms for the selection of the next
goal that are described in the following two subsections, a deterministic one based on the
selection of the square that exerts the highest attractivity and a probabilistic one based
on probability of selection of a goal in a certain square proportional to their attractivi-
ties. Using the first one, the goals are chosen only inside the squares associated to the
community, whereas with the second, the hosts may also randomly select their goals in
other squares of the simulation area, with a certain non zero probability. In other words,
the second mechanism allows for the selection of the destinations not only based on social
relationships adding more realism to the model.

Deterministic Selection of the Goal in the Area with the Highest Social Attrac-
tivity According to this mechanism, the new goal is randomly chosen inside the square
characterised by the highest social attractivity; it may be again inside the same square
or in a different one. New goals are chosen inside the same area when the input social
network is composed by loosely connected communities (in this case, hosts associated with
different communities have, in average, weak relationships between each others). On the
other hand, a host may be attracted to a different square, when it has strong relationships
with both communities. From a graph theory point of view, this means that the host is
located between two (or more) clusters of nodes in the social network5.

Let us suppose, for example, that host A has reached its first goal inside the square Sa,2.
The new goal is chosen by calculating the social attractivities of all the squares that
compose the simulation space and then by choosing the highest. If, say, square Sc,2 exerts
the highest attractivity (for example, because a host with strong relationship with node
A has joined that community), the new goal will then be selected inside that square.

Probabilistic Selection of the Goal Proportional to the Social Attractivity An
alternative mechanism is based on a selection of the next goal proportional to the attrac-

5This is usually the case of hosts characterised by a relatively high betweenness that, by definition,
means that they are located between two (or more) communities.
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Figure 3.4: Example of initial simulation configuration.

tivity of each square.

In other words, we assign a probability P (s = Sp,qi
) of selecting the square Sp,qi

as follows:

P (s = Sp,qi
) =

SA(p,q)i
+ d∑p×q

j=1(SAp,qj
+ d)

(3.2)

where d is a random value greater than 1 in order to ensure that the probability of selecting
a goal in a square is always non zero6.

The parameter d can be used to increase the randomness of the model in the process of
selection of the new goal. This may be exploited to increase the realism of the generated
scenario, since in real situations, humans also move to areas without people or for reasons
not related to their social sphere.

Social Network Reconfigurations and their Effects on the Dynamics of Mobile
Hosts

Like in everyone’s life, the movement during the day are governed by different patterns of
mobility which depend on the people we need to interact with. For example, most people
spend a part of their day at work, interacting with colleagues, and another part at home

6The role of d is similar to the damping factor used in the calculation of the Google PageR-
ank [Brin and Page, 1998]. In fact, the transitions between squares can also be similarly represented
using a Markov Chain model with P (s = Sp,qi

) as probability of transitions between states (squares).
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with their families. In order to model this, we allow the association of different social
networks to different periods of a simulation.

Periodically, the social networks at the basis of the mobility model can be changed. The
interval of time between changes is an input of the model. When the reconfiguration of the
underlying social network happens, nodes are assigned to the new communities that are
detected in the network using the algorithms described in Section 3.2.1. Communities are
then randomly associated to squares in the simulation space. This assignment does not
imply immediate relocation of the nodes, instead, it conditions the choice of the next goal.
In fact, goals are chosen inside the square of the grid to which the community they belong
to is assigned. So hosts will move towards their destinations gradually. The nodes start
moving towards the geographical region where other nodes that have strong interactions
with them will converge. This mirrors the behaviour, for instance, of commuters who
travel home every evening to join their families.

3.3 Implementation and Evaluation

In order to evaluate our model we have performed a number of tests, in particular, we have
analysed real mobility traces collected by Intel Research. We have then tested our model
using realistic social networks and compared the mobility patterns with the Intel traces.
In this section, we will present and discuss the results of our simulations comparing them
with these data from real scenarios.

3.3.1 Implementation of the model

We implemented a movement patterns generator that produces primarily traces
for the ns-2 simulator [ns2, 2006], one of the most popular tool in the ad
hoc network research community. However, the generator is also able to pro-
duce traces in a XML meta-format that can be parsed and transformed into
other formats (for example, by using XSLT) such as the one used by Glo-
moSim/Qualnet [Zeng et al., 1998]. The model is available for downloading at the fol-
lowing URL: http://ww.cs.ucl.ac.uk/staff/m.musolesi/mobilitymodels.

3.3.2 Validation of the Model using Real Movement Traces

In this section, we present a comparison of the properties of the movement patterns gen-
erated by our mobility model with those of the real traces provided by Intel Research.
The description of this measurement exercise is presented in [Chaintreau et al., 2005]. In
that paper, the authors also compare their results with other publicly available data sets
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Table 3.1: Simulation parameters
Number of hosts 100

Simulation area 5 Km x 5 Km

Propagation model free space

Antenna type omnidirectional

Transmission range (radius) 250 m

Square area 200 m x 200 m

Node speed m/s (unif. distribution)

Number of groups

(Caveman model) 10

Rewiring probabiliity

(Caveman model) 0.0/0.05/0.1/0.2

Simulation duration 1 day (86400 s)

Reconfiguration interval 8 hours

provided from University of California at San Diego [McNett and Voelker, 2005] and from
Dartmouth College [Henderson et al., 2004] showing evident similarities between the pat-
terns movements collected by the three different groups. For this reason, we decided to
compare the traces obtained by using our mobility model only with the data provided by
Intel Research 7.

The traces were collected by Intel researchers using iMotes (a modified version of the
Berkeley Motes) [Balazinska and Castro, 2003] equipped with Bluetooth. The iMotes were
then given to members of the staff of Intel Research and University of Cambridge. The
iMotes were packed in keyfobs in order to make sure that people carried them around. Each
iMotes logged contacts data in a flash memory using the standard Bluetooth Baseband
layer inquiry procedure. Every contact was stored as a tuple composed of three fields,
the MAC address of the other device, the start and the end of the interval of time of the
contact. Every iMotes collected information, not only on the other samplers, but also on
the other Bluetooth devices in reach. The iMotes were programmed to perform an inquiry
for 5 seconds every 2+∆ minutes with ∆ randomly chosen in the range [−12, 12] seconds.
This correction was introduced to avoid undesired synchronisation effects, i.e., to avoid
that the iMotes performed inquiries at the same time. iMotes are not able to perform and
reply to inquiries at the same time.

7The measurement exercise was also repeated among the participants of INFOCOM
2005 [Hui et al., 2005b]. In our comparison, we used the traces related to the first experiment.
However, the results obtained in the two different studies show remarkable similarities.
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ba

Figure 3.5: Generation of the social network in input using the Caveman model: (a) initial
configuration with 3 disconnected ‘caves’. (b) generated social network after the rewiring
process.

3.3.3 Description of the Simulation

We tested our mobility model using several runs generating different mobile scenarios and
we compared the results with the real movement patterns provided by Intel and synthetic
traces generated using a Random Way-Point model.

We tested our model considering a scenario composed of 100 hosts in a simulation area of
5 km×5 km, divided into a grid composed of 625 squares of 200 m (i.e., the numbers of rows
and columns of the grid were set to 25). We chose a relatively large simulation scenario,
with a low population density, in order to better see the differences in the results obtained
with a Random Way-Point model. In fact, in small simulation areas, the limited possible
movements and the higher probability of having two nodes in the same transmission range
may affect the simulation results introducing side-effects that are not entirely due to the
mobility model.

We also assumed that each device was equipped with an omnidirectional antenna with
a transmission range of 250 m, modelled using a free space propagation model. The
speeds of the nodes were randomly generated according to a uniform distribution in the
range [1 − 6] m/s. The duration of the simulation was one day and the reconfiguration
interval was equal to 8 hours. These values were not chosen to reproduce the movements
described by the traces provided by Intel, rather, we were more interested in observing
if similar patterns could be detected in synthetic and real traces. In other words, our
goal has mainly been to verify whether the movement patterns observed in Intel traces
were generated by our mobility model. We ran simulations with both probabilistic and
deterministic selection mechanisms. The resulting distributions of contacts duration and
inter-contacts time are very similar. We show all the results related to the deterministic
selection mechanism, since this one generates longer colocation and inter-contacts time
intervals that are closer to the ones observed in the Intel traces in terms of duration.
However, we also report results obtained using the probabilistic selection mechanism, to
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show that this also produces power-law distributions. The value of the damping factor d

for the probabilistic selection mechanism was set equal to 0.01; this lead to a very small
(but non null) probability of selecting any empty squares in the simulation space. This,
together with the fact the selection of the squares was based on probabilities proportional
to the attractivities, lead, in average, to shorter colocation time.

A key aspect of the initialisation of our model is the selection of the social network in
input. We implemented a generator of synthetic social networks using the so-called Cave-
man Model proposed by Watts [Watts, 1999]. The social network is built starting from
K fully connected graphs (representing communities living in isolation, like primitive men
in caves). According to this model, every edge of the initial network in input is re-wired
to point to a node of another cave with a certain probability p. The re-wiring process is
used to represent random interconnections between the communities. Figure 3.5.a shows
an initial network configuration composed by 3 disconnected communities (caves) com-
posed by 5 individuals; a possible social network after random rewiring is represented in
Figure 3.5.b.

Individuals of one cave are closely connected, whereas populations belonging to differ-
ent caves are sparsely connected. Therefore, the social networks generated using this
model are characterised by a high clustering coefficient and low average path length. It
has been proved that this model is able to reproduce social structures very close to real
ones [Watts, 1999]. We generated social networks with different rewiring probabilities,
also considering the case of disconnected communities (i.e., p = 0).

We also implemented a movement patterns generator based on the Random Way-Point
model. We generated traces with the same simulation scenarios in terms of size of the area
and characteristics of the mobile devices, with hosts that move with a speed uniformly
distributed in the range [1− 6] m/s and stop time equal to [1− 6] s.

3.3.4 Simulation Results

The emergent structure of the network derived by analysing the Intel traces is typically
exponential [Albert and Barabasi, 2002]; in fact, the degree of connectivity shows a local
peak near the average. Our mobility model (indicated with CM) produces a similar type
of distribution as shown in Figure 3.6. The peak shifts to the right as the density of
the squares increases. We analysed two further properties of the movement patterns, the
contact duration and the inter-contacts time. We adopt the same definitions used by the
authors of [Chaintreau et al., 2005] in order to be able compare the results.

Figures 3.7 and 3.8 show the comparison between the inter-contacts time and the contact
duration cumulative distributions8 using log-log coordinates. These distributions are ex-

8Cumulative distributions are generally used instead of frequency distributions to avoid the issues
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Figure 3.6: Distribution of the degree of connectivity.

tracted from the real and synthetic traces generated by the Random Way-Point (indicated
with RWP) and our Community based mobility model with different rewiring probabilities
p.

With respect to the inter-contacts time, our traces (excluding the case with p = 0 that
we will discuss separately) show an approximate power law behaviour for a large range of
values like those extracted from Intel data. A similar pattern can be observed in UCSD
and Dartmouth traces [Chaintreau et al., 2005]. The cumulative distribution related to
Random Way-Point, instead, shows a typical exponential distribution. The same be-
haviour can be observed for the traces generated using our Community based mobility
model with a probability of rewiring equal to 0. In fact, in this case, the only movements
of the hosts outside the assigned square happen when a reconfiguration takes place (i.e.,
a new generation of the social networks takes place and a consequent new assignment
to different squares in the grid are performed). However, the case of disconnected and
isolated communities is not so realistic. As far as the contacts time distribution is con-
cerned, we observe a power law behaviour for a much more limited range of values and,
in general, with a lower angular coefficient of the interpolating line. The traces from
Dartmouth College and UCSD also show a power law distribution with different angular
coefficients [Chaintreau et al., 2005]. It seems that data related to different scenarios are

related to the choice of the bins of the plot. It is possible to prove that if a set of data shows a power law
behaviour using a frequency histogram, its cumulative distribution also follows the same pattern.
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Figure 3.7: Comparison between synthetic and real traces (log-log coordinates) : cumula-
tive distribution of inter-contacts time in seconds.

characterised by different types of power law distributions.

By plotting the same distributions using semi-log coordinates (see Figures 3.9 and 3.10),
the differences between the curves corresponding to real traces and those generated using
the Random Way-Point mobility model are even more evident. The exponential nature of
the cumulative distribution of the inter-contacts time9 extracted by the latter is clearly
reflected by the approximated straight line that is shown in the figure. The results that we
obtained using the probabilistic selection mechanism are shown in Figures 3.11 and 3.12.
As it is possible to observe in Figure 3.12, by using this mechanism, we obtain shorter
contacts durations. This is caused by the higher probability of leaving the current square.

Figure 3.13 and 3.14 show the influence of the speed respectively on the cumulative
distributions of the inter-contacts time and contacts duration. We simulated scenarios
with host speed uniformly distributed in the range [1− 6], [1− 10] and [1− 20]m/s. The
cumulative distributions related to all these scenario can be approximated with a power
law function for a wide range of values.

In many of our experiments, the coefficient of the power law of the distribution of the
Intel traces is different from those related to synthetic traces generated using our model.

9This behaviour has been theoretically studied and predicted by Sharma and Mazumdar
in [Sharma and Mazumdar, 2004].
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Figure 3.8: Comparison between synthetic and real traces (log-log coordinates) : cumula-
tive distribution of contacts duration in seconds.

Different coefficients can be observed in the available sets of real traces. In a sense, it
seems that the values of these coefficients characterise the various mobile settings. It is
worth noting that currently there are not available theoretical models that justify the
emergence of these distributions.

The impact of the density of the population in the simulation scenario is presented in
Figures 3.15 and 3.16. We simulated scenarios composed of 100, 200, 300 nodes with
a starting number of groups for the Caveman model, respectively equal to 10, 20, 30,
and a rewiring probability of 0.2. Also in these scenarios, the inter-contacts time and
contacts duration distributions follow a similar pattern. As discussed previously, our aim
was not to exactly reproduce the traces provided by Intel. However, quite interestingly,
we observe that the inter-contacts time distribution lie in between the curves representing
the scenario composed of 100 and 200 nodes. The number of nodes recorded in the Intel
experiments was in fact 140. Instead, the contacts duration distribution is bounded by
the curves extracted by these two synthetic traces for a smaller range of values. Finally,
in Figures 3.17 and 3.18 we consider a scenario composed of 100 hosts connected by a
social network generated using different initial numbers of groups (i.e., caves) as input for
the Caveman model (with a re-wiring probability equal to 0.1). By varying the number
of groups, the density of the squares of the grid changes. The power law patterns can be
observed in all the scenario, also with a large number of small initial groups.
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Figure 3.9: Comparison between synthetic and real traces (semi-log coordinates): cumu-
lative distribution of inter-contacts time in seconds.

3.3.5 Influence of the Choice of the Mobility Model on Routing Proto-

cols Performance

Simulation Description

In order to show the impact of the choice of this mobility model on the testing of protocols
for mobile ad hoc networks, we simulated a scenario composed of 50 hosts and we compared
the performance in terms of delivery ratio of the AODV [Perkins and Royer, 1999] and
DSR [Johnson and Maltz, 1996a] protocols using the ns-2 simulator (using the reference
implementation provided by the authors). In Chapter 4, we will present a thorough
analysis of CAR and other protocols for delay tolerant communication in detail.

We used a 1000m×1000m simulation area with a maximum node transmission range equal
to 250m. We chose the two-ray pathloss model as propagation model and at the MAC
layer, the IEEE 802.11 DCF protocol was used with a bandwidth equal to 2 Mbps. We
started 10 sessions between randomly chosen hosts10 using CBR traffic with data packet
size and sending rate respectively equal to 512 bytes and 4 packets/second. The simulation

10This kind of traffic can be considered as a worst case scenario; in reality, it is probable that sessions
will be between hosts of the same community. We plan to investigate this aspect in the future, developing
a social networks founded traffic generator.
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Figure 3.10: Comparison between synthetic and real traces (semi-log coordinates): cumu-
lative distribution of contacts duration in seconds.

time was equal to 2 hours.

We studied the influence of the speed on the performance comparing the results obtained
by using the Random Way-Point model and the Community based mobility model. Every
node in the simulation is moving at the same speed. With respect to the Random Way-
Point model, the stopping times are chosen randomly in the interval [1−10]m/s. As far as
our mobility model is concerned, the reconfiguration interval was set to 1 hour. The social
network in input was generated with the Caveman model with 5 groups of 10 individuals
and a re-wiring probability equal to 0.1. The simulation scenario was divided into a 5× 5
grid. We performed a number of runs sufficient to achieve a 10% confidence interval with
an error equal to 5%.

Simulation Results

Using the Random Way-Point mobility model, as expected, and confirming
the results obtained by the authors of these protocols [Perkins and Royer, 1999,
Johnson and Maltz, 1996a], the delivery ratio decreases as the speed increases. The sim-
ulations are presented in Figure 3.19 and 3.20, respectively. Instead, using our model,
the decreasing trend of the delivery ratio is less evident, since the emerging structure is
composed of groups of hosts moving in limited areas (i.e., the square of the grids) that
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Figure 3.11: Comparison between synthetic and real traces (semi-log coordinates): cumu-
lative distribution of inter-contacts time in seconds with probabilistic selection mechanism.

are ‘bridged’ by hosts roaming among them. In other words, the movement of most of the
hosts is constrained in geographical terms so topology changes are less frequent than in
the case of a pure random model. As we observe in Figure 3.20, the difference in terms of
performance using the two mobility models is more evident for the DSR protocol.

In case of fixed hosts (i.e., with a speed equal to 0), the delivery ratio that we obtained
using our mobility model is lower than in the scenarios with a speed greater than 0, since
in the former case, there may be disconnected communities, whereas in the latter, hosts
move between communities, providing a link between them.

3.4 Related Work

3.4.1 Mobility Modelling for Ad Hoc Network Research

There are essentially two possible types of mobility patterns that can be used to evalu-
ate mobile ad hoc network protocols and algorithms in vitro: traces and synthetic mod-
els [Camp et al., 2002]. Traces are a useful method of empirical investigation, but they are
not in general available in large numbers for many reasons: retrieving these information
is extremely difficult from a technological point of view and expensive, since this process
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Figure 3.12: Comparison between synthetic and real traces (semi-log coordinates): cumu-
lative distribution of contacts duration in seconds with probabilistic selection mechanism.

implies that the movements of a representative number of users are traced in large areas
(indoor and outdoor). Moreover, the collection of mobility data is not possible in certain
deployment scenarios such as dangerous environments.

The simplest mobility model is the Random Walk mobility model [Einstein, 1956], also
called Brownian motion; it is a widely used model to represent pure random movements
of the entities of a system in various disciplines. However, it cannot be considered as a
suitable model to simulate wireless environments, since movements are never random in
the real world. Another example of random mobility model is the Random Way-Point
mobility model [Johnson and Maltz, 1996a] that can be considered an extension of the
previous one, with the addition of pauses between changes in direction or speed.

These models and similar existing ones are used to model the movements of single mobile
nodes, however, in some situations the behaviour of mobile hosts that move together, such
as platoons of soldiers, group of students or colleagues and so on also need to be modelled.

Despite the simple intuitions at the basis of these considerations, it is interesting and,
at the same time, surprising to note that even the best solutions and approaches have
only been tested using completely random models such as the Random Way-Point
model, without grouping mechanisms, or using other simple groups mobility models,
like [Hong et al., 1999].
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Figure 3.13: Influence of the hosts speed: cumulative distribution of inter-contacts time
in seconds.

To our knowledge, the only notable example of mobility model founded on the so-
cial relationships between the individuals carrying the mobile devices is presented
in [Hermann, 2003]. This work is based on assumptions similar to ours, but is consid-
erably more limited in scope. Hosts are statically assigned to a particular group during
the initial configuration process whereas our model accounts for movement between groups.
Moreover, the authors claim that mobile ad hoc networks are scale-free, but the typical
properties of scale-free networks are not considered in the design of the model presented
by the authors. The scale-free distribution of mobile ad hoc networks is still not proven
in general, since practical measurements are not currently available and it is worth not-
ing that the scale-free properties are strictly dependent on the movements of hosts and
therefore are dependent on the actual application scenarios [Glauche et al., 2003].

In the recent years, many researchers have tried to refine existing models in order to make
them more realistic. In [Jardosh et al., 2005], a technique for the creation of more realistic
mobility models that include the presence of obstacles is presented. The specification of
obstacles is based on the use of Voronoi graphs in order to derive the possible pathways
in the simulation space. This approach is orthogonal to ours, and our framework can be
modified in order to include the presence of obstacles using similar techniques; only the
equations used to update the positions of the entities need changing.

In [Camp et al., 2002] Camp, Boleng and Davids provide an excellent review of the most
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Figure 3.14: Influence of the hosts speed: cumulative distribution of contacts duration in
seconds.

relevant and popular mobility models used in ad hoc network research.

In recent years, many researchers have tried to refine existing models in order to make
them more realistic by studying the available mobility traces [Kotz and Henderson, 2005].
Various measurement studies have been conducted both in infrastructure-based
and infrastructure-less environments. Extensive measurements about the us-
age of a WLANs have been conducted, for instance, in [Tang and Baker, 2000],
in [Balachandran et al., 2002] and in [Balazinska and Castro, 2003]. A detailed anal-
ysis of the usage of the WLAN of the Dartmouth Campus College is presented
in [Henderson et al., 2004].

In [Tuduce and Gross, 2005] a mobility model based on real data from the campus wireless
LAN at ETH in Zurich is presented. The authors use a simulation area divided into
squares and derive the probability of transitions between adjacent squares from the data
of the access points. Also in this case, the session duration data follows a power law
distribution. This approach can be a refined version of the Weighted Way-Point mobility
model [Hsu et al., 2005], based on the probability of moving between different areas of
a campus using a Markov model. Moreover, Tuduce and Gross’ model represents the
movements of the devices in an infrastructure-based network and not ad hoc settings.
In [Maeda et al., 2005], the authors reproduce the movements of pedestrians in downtown
Osaka by analysing the characteristics of the crowd in subsequent instants of time and
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Figure 3.15: Influence of the density of population: cumulative distribution of inter-
contacts time in seconds.

maps of the city using an empirical methodology. In general, the main goal of these works
is to reproduce the specific scenarios with a high degree of accuracy. We focus, instead, on
the cause of these movements, trying to capture the social dimensions that lead to general
emergent human movement patterns.

In [Lelescu et al., 2006] the Model T++ is proposed, based on a study on the correlation
between the number of sessions per access point and the time spent at each location. The
authors also define the concept of popularity gradient between different access points and
its influence on users’ movement. Similarly to ours, their model is extracted and validated
using real traces of movements, more specifically the Dartmouth College campus traces.

In [Yoon et al., 2006] a model extracted from real traces based on the study of probability
of transitions between different locations is discussed. Connectivity is one of the emergent
properties of the model, rather than an input of the patterns generator. Moreover, the
evaluation of the model is essentially based on the matching of the geographical movements
and density of users, rather than on the analysis of the patterns of connectivity among
them.

In terms of more analytical work, a key study in the field is [Chaintreau et al., 2006], where
the authors analyse the distribution of inter-contacts time and the duration of contacts
considering different data sets from various measurements exercises. All of these exhibit
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Figure 3.16: Influence of the density of population: cumulative distribution of contacts
duration in seconds.

a similar heavy tail distribution that can be approximated using a power-law function
over a large range of values. The work confirms the results from other studies conducted
at Dartmouth [Henderson et al., 2004], UCSD [McNett and Voelker, 2005] and University
of Toronto [Su et al., 2004]. At the same time, it is interesting to observe that these
observed patterns are at odds with the ones that can be extracted from random mobility
models that show an exponential decay [Sharma and Mazumdar, 2004]. In a previous
work [Hui et al., 2005a], similar connectivity patterns have also been observed among the
participants of INFOCOM’05.

3.4.2 Social and Complex Networks Analysis

Since mobile ad hoc networks are usually composed of mobile devices carried by human
beings. Therefore, we can study the formation and the evolution of these network from
social networks analysis point of view.

A social network is a set of people or groups of people with some patterns of contact
or interaction among them [Scott, 2000]. Research studies in the area of social networks
started in the 1920s [Freeman, 1996]. However, the first significant quantitative results
were presented in [Rapoport, 1957] in the 1950s and 1960s in a series of papers in which the
statistics of epidemic diffusion in populations characterised by different social structures
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Figure 3.17: Influence of the number of initial number of groups in input to the network
generator based on the Caveman model: cumulative distribution of inter-contacts time in
seconds.

are analysed. In particular, they focused on the correlation between the average degree of
the network and the general properties of the investigated environment (such as spread
of information and rumours). In social (and in complex) networks theory, the average
degree of a network is the average number of acquaintances of the people present in the
network. Considering a graphical representation, where the individuals are the vertices
and the relationships connecting them are the edges, the average degree of the network is
clearly the average number of edges per node.

Another famous example of empirical investigation of social network is the series of ex-
periments carried out by Stanley Milgram [Milgram, 1967] in the late 1960s. He tried to
reconstruct a portion of the social network of the population of United States using letters
sent to people in Nebraska and Kansas with instructions for the delivery of these to their
actual recipients in Massachusetts, with the constraint that the letters could only be sent
to people that were personal acquaintances and not directly to the recipients (if not known
personally). The intermediate receivers had to record their personal details on the letters.
Using this empirical method, Milgram traced the chain of people between the senders and
the receivers. He claimed that, on average, five intermediates were necessary to deliver
the letter, leading to the popular concept of the six degrees of separation that was coined
decades after by the playwriter John Guare [Guare, 1990].
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Figure 3.18: Influence of the number of initial number of groups in input to the network
generator based on the Caveman model: cumulative distribution of contacts duration in
seconds.

Whilst this was pioneering exploratory work, it was not rigourous from a scientific point
of view. However, in that period, a renewed interest in graph theory led to the definition
of the so-called random graphs [Erdos and Renyi, 1959, Erdos and Renyi, 1960]. These
theoretical studies were applied to many disciplines including, biology, ecology, linguistics
and sociology. This was the beginning of the complex networks research area, investigating
properties such as their topology, average diameter and degree of connectivity, as well as
the presence of clusters. Many analytical models of real networks have been proposed
and interesting experiments have been conducted to assess the validity of the proposed
theories. For example, the so-called scale-free model was used to represent and predict
some properties of very large networks of computers, such as the Internet, with surprising
precision [Vasquez et al., 2003].

With respect to the application of complex network theory to the analysis of so-
cial networks, one of the most interesting approaches is the so-called small world
model [Watts, 1999], that is, in a sense, a formalisation of the results discovered empiri-
cally by Milgram. Watts and Strogatz [Watts, 1999] study, in particular, the characteristic
path length11 of real networks.

11The characteristic path length (L) of a graph G is the median of the means of the shortest path lengths
connecting each vertex v ∈ V (G) to all other vertices.
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Figure 3.19: Influence of the mobility model on the AODV protocol performance (delivery
ratio vs speed).

In the recent years, various types of social networks have been investigated by many
researchers in order to verify the properties predicted by the theoretical models; example of
social networks used for these studies are rather diverse and include the actors in films with
Kevin Bacon [Watts, 1999], the characters of Anna Karenina by Tolstoy [Knuth, 1993] and
the Marvel superheros [Alberich et al., 2002].

Excellent reviews of the recent progress in complex and social networks analysis may be
found in [Albert and Barabasi, 2002] and [Newman, 2003].

Some interesting studies have been recently carried out on the connectivity of ad
hoc networks with respect to complex networks theory. For example, Glauche et
al. in [Glauche et al., 2003] discuss some network properties using percolation the-
ory [Stauffer and Aharony, 1992]; that is, an application of complex networks theory de-
rived by the investigation of physical phenomena such as phase transitions in molecular
lattices. In [Sarshar and Chowdhury, 2003], the authors presents mathematical results
about the possible emergence of scale-free structures in ad hoc networks. However, the
authors consider only fixed ad hoc networks (such as peer-to-peer networks), without
analysing the influence of movement in the definition of their model.
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Figure 3.20: Influence of the mobility model on the DSR protocol performance (delivery
ratio vs speed).
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Chapter 4

Evaluation

It’s clearly a budget. It’s got a lot of numbers in it.

George W. Bush

4.1 Description of the Simulations

In this section, we present the performance evaluation of CAR, discussing the choice of
the parameters of the forwarding algorithm by means of an extensive sensitivity analysis.

One of the classic problems of network research is the evaluation of algorithms and pro-
tocols in large-scale scenarios due to their complexity in terms of number of entities and
interactions. Deployments of large number of nodes are in general not feasible and mul-
tiple experiments aimed at sensitivity analysis of the parameters that characterise and
influence the performance of the protocol are quite hard to carry out. We have decided
to evaluate CAR through simulation in terms of its large-scale performance. In Chapter
5 we also show how we have implemented the protocol into a middleware framework and
tested some functional performance as well.

In the following, we firstly describe the simulation settings and then we discuss the results
that we have obtained.

88



Chapter 4 4.1 Description of the Simulations

4.1.1 Preliminary Considerations

The first step of any simulation exercise is the choice of an appropriate tool to support
the work. Various network simulators are available for the evaluation of protocols and
systems of mobile ad hoc networks; the most popular are ns-2 [ns2, 2006] with the so-
called Monarch extension [Johnson and Maltz, 1996b], Glomosim [Zeng et al., 1998] and
Opnet [OPNET Technologies Inc., 2004]. Another class of tools for simulation of generic
complex systems (not only computer systems, but also economic, biological, industrial,
etc.) are the so-called discrete-event simulators1 that only provide primitives for the con-
current execution of multiple entities and communication among them usually by means
of message passing based paradigms.

We have chosen OMNet++ [Vargas, 2001], an open-source modular discrete-event simu-
lation environment. The reasons behind our choice are several. First of all, it provides
a generic and flexible architecture for experiments. Secondly, many plug-ins and exten-
sions, for example, for the statistical analysis of data are available. Thirdly, OMNeT++
is free for academic use: this is extremely important in order to allow all the researchers
interested in our work to repeat the experiments.

OMNeT++ does not provide any real support for networking simulation, but only a min-
imal set of primitives to schedule events and message passing primitives between entities.
For this reason, we built the abstraction of movement, space and connectivity.

We abstract the mobile scenario at network level: in fact, the aspects that are of our
interest are the colocation and connectivity of the hosts. We do not consider issues related
to radio and MAC layers such as interference or packet loss, since these are secondary
aspects of our problem. The fact of being in reach is the primary element of our study.
We assume that the transmission of messages may happen and be completed when two
hosts are in radio range. We do not model retransmission of packets.

In our simulations, we use values for the parameters generally adopted in the literature2;
1It is worth noting that the results of simulations performed with different simulators may show signif-

icant divergence; this may be explained by the different modelling techniques and assumptions and by the
different levels of details offered by these simulators. In [Cavin et al., 2002] the authors show and discuss
the divergent results obtained by using OPNET Modeler, ns-2 and Glomosim. In general, the choice of a
more sophisticated simulation tool does not increase the accuracy of the simulation results automatically.

2Unfortunately, the choice of values for parameters of simulations for ad hoc networks research is
extremely variable. In fact, the ad hoc and delay tolerant research communities lack of consistent scenarios
to validate and to benchmark the different solutions. For example, in [Kurkowski et al., 2005] Kurkoswski,
Camp and Colagrosso reported an analysis of the performance evaluation of papers published at MobiHoc
from 2000 to 2005, showing evident flaws of a large number of works from a scientific point of view in
terms of simulation methodology. We would like to underline that in this work, we have tried to address
the shortfalls that are usually pointed out by the members of the community, such as the problem of
the repeatability of the experiments (the code of our simulations will be released for comparisons), the
exclusive use of simulations for validation without any implementation (see instead the integration of CAR
in Haggle described in Chapter 5), the use of a sound number of runs of experiments to ensure statistical
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in terms of mobile scenarios, we reproduce possible realistic deployments of our protocol
in small and medium size areas.

4.1.2 Simulation Scenarios Parameters

We considered two simulation scenarios composed of 50 and 100 nodes in a 1 km × 1 km

and 2 km × 2 km areas, respectively. The first one identifies a small and dense scenario
whereas the second is characterised by a lower degree of connectivity. The resulting
topology of the latter is also clearly more sparse. We note that the results related to
these two specific scenarios have not general validity from an absolute quantitative point
of view, but they provide information about the relative performance of the protocols, the
effectiveness of the prediction mechanisms and the limitations of CAR. We also believe
that the results obtained in our simulations help to identify the key parameters of the
protocol and their impact on its performance. Moreover, the evaluation methodology
followed in this chapter is very general and could be adopted to tune the parameters of
the protocol in other scenarios (for example, characterised by different node density or
speed, etc.).

The movements of the simulated hosts were generated using the Community based mobility
model presented in Chapter 3. The speed of the nodes was uniformly distributed in the
range [1 − 6] m/s. The size of the square sides was set to 200 m for both scenarios.
The underlying social network was generated using 5 and 10 communities for the 50 and
100 hosts scenario respectively. The rewiring probability was set to 0.1. The selection
mechanism that we adopted was the probabilistic one with a damping factor equal to 0.01
(i.e., the probability of moving towards a square without hosts is very low).

We also ran simulations using the Random Way-Point model in the same simulation
scenarios, with host speeds in the range [1− 6] m/s and stop times equal to 0 seconds.

In the remainder of this chapter, we assume that the movement of hosts is based on the
Community based mobility model if not otherwise stated (i.e. the expression n hosts
scenario refers to a scenario composed of n hosts moving according to our Community
based mobility model).

With respect to the radio technology, we assumed a free space propagation model with
200 m range and the use of omnidirectional antennas.

We evaluated the performance of each protocol by sending 1000 messages with a simulation
time equal to 2400 seconds for the 50 hosts scenario and 4400 for the 100 hosts scenario.
The messages sent have an expiration time of 2000 seconds for the 50 hosts scenario and

validity to the results, the definition of confidence intervals and a thorough sensitivity analysis, considering
a large number of dimensions of the problem.

90



Chapter 4 4.1 Description of the Simulations

 0

 50

 100

 150

 200

 500  1000  1500  2000

Nu
m

be
r o

f m
es

sa
ge

s

Delay [s]

Delay Distribution

CAR
random

epidemic

Figure 4.1: Delivery delay distribution (scenario with 50 hosts and Community based
mobility model).

4000 seconds for the 100 hosts scenarios.

The message buffer size was set to 1000 slots (i.e., infinite), except for the simulations
related to the study of the impact of the memory size. We assume that each host is
able to store a certain number of messages, one per slot. The messages were sent after
300 seconds, in order to allow for the convergence of the routing tables after the initial
exchanges, the intervals between each message were modelled as a Poisson process, with an
average interval between the generation of two subsequent messages equal to 0.1 seconds.
In other words, all the messages are generated in the first 400 seconds.

The sender and receiver of each message were chosen randomly. This choice is clearly
unrealistic. However, we believe that this is a sort of pessimistic case scenario, where
communication happens between any nodes in the network and not only between people
with strong social ties3. In fact, if communication happens between people that are mem-
bers of the same community, the probability of direct contact is higher and, in general,
the number of potential carriers moving between them is also higher in average. This is
a characteristic of real life settings that is reproduced by our Community based mobility
model.

3We plan to investigate the problem of designing realistic traffic models based on the same principles
on which the mobility model is predicated in the future. The main problem of designing such a model is
the lack of real data for validating it, especially for delay tolerant scenarios.
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Figure 4.2: Delivery delay distribution (scenario with 100 hosts and Community based
mobility model).

The number of runs for each particular configuration was set to 25 for the Community
based mobility model scenarios and 50 for the Random Way-Point scenarios (that present
an inherent higher variance of the results). The diagrams in this section show error bars
corresponding to 5% confidence intervals.

4.1.3 Choice of Parameters of CAR

We implemented all the features of CAR described in Chapter 2 in the simulation code.
We simulated CAR using a utility function based on the evaluation of two attributes: (i)
the change rate of connectivity and (ii) the probability of being located in the same cloud
as the destination.

We assumed that all the possible values in the range had the same importance (i.e, arangei

= 1) and that the values of attributes are always available during the simulation (i.e.,
aavailabilityi

= 1). The values of the weights associated to the change degree of connectivity
(wcdch

) and colocation (wcolh,i
) for all the pair of hosts (h, i) are set to 0.25 and 0.75,

respectively. These values ensure the best performance in terms of delivery ratio in the
scenario based on the Community based mobility model, as we will show in Section 4.2.4.

Each message has a time to live field that is decreased each time a message is transferred
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Figure 4.3: Delivery ratio vs buffer size (scenario with 50 hosts and Community based
mobility model).

to another host (the initial value being 10). Moreover, in this case, we also introduced a
split horizon mechanism to prevent messages from being retransmitted unnecessarily (i.e.,
hosts do not advertise a route back to the node from which it was learned). The buffer
for each node was set to 100 messages, unless otherwise specified.

The number of retransmissions (i.e., the number of times a message is forwarded) for the
50 hosts scenario was set to 10; instead, for the 100 hosts this was set to 20. The values
of the message retransmission and the routing table transmission intervals were set to 30
s. The local utilities and the routing tables are updated every 30 s. The routing table
size was set to 20 and 40 hosts for the 50 and 100 hosts scenarios respectively (i.e., it is
equal to 40% of the number of the hosts and sufficient to store information about all the
hosts of two initial communities). This limited size of the routing table is used to study
the replacement mechanisms in the buffer and to reproduce possible limitations in terms
of memory of small devices.

We set the values of the variances of the White Noise Rt of Yt and Qt of the White Noise
of Xt to 0.1 and 0.01, respectively (see 2.5.2). This choice is motivated by the fact that
the values of the observations and the states of the model are in the range [0, 1]. The value
of Rt corresponds to 10% of the range. There is no univocal and standard way of setting
and tuning the parameters of the filter [Durbin and Koopman, 2001]. The values that we
selected are appropriate and general enough for the range of inputs (and its variations)
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Figure 4.4: Delivery ratio vs buffer size – analysis with very small buffer (scenario with
50 hosts and Community based mobility model).

that we are considering.

Table 4.1 summarises the simulation parameters that are common to all the simulations,
unless otherwise specified. Tables 4.2 and 4.3 report the values of the parameters for the
evaluation of the specific scenarios generated using the Community based mobility model
composed of 50 and 100 hosts, respectively.

4.1.4 Description of the Protocols Used for Performance Comparison

In order to have benchmarks to evaluate the performance of CAR, we also implemented
the flooding routing protocol, an Epidemic one (according to the Vahdat and Becker
definition) and a version of CAR where the selection of the best carrier is not based on
the delivery probabilities but on a random choice. We will refer to the latter as Random
Choice protocol.

We now briefly describe the algorithms and the parameters used in the simulations of
these protocols.
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Table 4.1: Simulation parameters for all the scenarios
Propagation model free space

Antenna type omnidirectional
Transmission range 200 m

Number of messages sent 1000
Message buffer size 1000

Max number of hops DSDV 10
wcdch

0.25
wcolh,i

0.75
Message retransmission interval 30 s

Routing table transmission interval 30 s
Refresh of the routing table interval 30 s

arangei
1

aavailabilityi 1
Rt 0.1
Qt 0.01

Table 4.2: Simulation parameters specific for the 50 hosts scenario
Simulation area 1 Km × 1 Km

Number of communities 50
Square area 200 m × 200 m
Node speed 1-6 m/s

Max number of retransmissions 10
Routing table size 20 entries

Table 4.3: Simulation parameters specific for the 100 hosts scenario
Simulation area 2 Km × 2 Km

Number of communities 5
Square area 200 m × 200 m
Node speed 1-6 m/s

Max number of retransmissions 20
Routing table size 40 entries
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Figure 4.5: Number of messages vs buffer size (scenario with 50 hosts and Community
based mobility model).

Flooding We elected to compare our approach with flooding. This decision may seem
strange, since flooding only works in a fully connected environment. However, since com-
munications patterns are random in the simulations, many messages will be passed between
hosts that are in connected portions of the network, even when assessing the performance
of the epidemic algorithm and of the CAR algorithm. In order to see the difference in
delivery rates that result from the algorithms’ ability to handle partial connectivity, it
is therefore essential to compare against a synchronous protocol with optimum delivery
ratio.

Epidemic Routing The implementation of the epidemic protocol follows the descrip-
tion presented in [Vahdat and Becker, 2000]. The only assumption made by the authors
is a periodic pair-wise connectivity, since the protocol relies on the transitive distribution
of messages for delivery. When two hosts become neighbours (in other words, they are
within each other’s radio range), they determine which messages each possesses that the
other does not, using summary vectors that index the list of messages stored at each node;
they then exchange them. Each message is characterised by a unique message identifier.
The simulation prepared by the authors shows that the algorithm achieves total delivery of
messages sent after a limited period of time, but at the cost of very substantial overheads.

The epidemic approach represents an example of an asynchronous protocol and, in partic-
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Figure 4.6: Delivery ratio vs buffer size (scenario with 100 hosts and Community based
mobility model).

ular, it provides the theoretical upper bound in terms of delivery ratio with infinite buffer.
In this case, given a probability different from zero of having a contact between any pair
of hosts in a non infinite period of time T , the protocol is able to reach 100% delivery.
The retransmission interval of the epidemic routing was set to 30 seconds (like in CAR).

Random Choice We implemented the Random Choice protocol to compare the perfor-
mance of the prediction based best carrier selection mechanism in CAR. This is a modified
implementation of CAR where the selection of the carriers is done randomly instead of
choosing the host with the highest delivery probability in the connected portion of the
network. All the routing mechanisms of the CAR protocol are implemented (routing ta-
ble management and updates, synchronous routing, etc.), except the selection of the best
carrier based on the utility functions.

More precisely, a message is periodically retransmitted to a host in the same cloud or it
is maintained in the buffer according to a uniform distribution: every host has the same
probability of being selected. The delivery to the hosts in the same connected portion of
the network is based on DSDV, like for CAR. The management of the routing table is
identical to CAR and we use the same retransmission interval of CAR, since we want to
isolate the effect of the utility-based selection mechanism.
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Figure 4.7: Delivery ratio vs buffer size – analysis with very small buffer (scenario with
100 hosts and Community based mobility model).

4.2 Simulation Results

In this section, we present several simulations results that describe the performance of the
protocol in large-scale scenarios.

4.2.1 Evaluation Metrics

The metrics used in this evaluation are defined as follows:

• Delivery delay The delay is calculated as the time between the generation of the
message and the delivery to the final recipient of the message.

• Delivery ratio The delivery ratio is given by the ratio between the number of
messages received and the total number of messages sent.

• Number of messages The number of messages indicated in the simulation results
include data and control messages.

• Predictability level As discussed in Section 2.6.2, given a certain number of mea-
surements of the predictability of a time series, we define predictability level of a
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Figure 4.8: Number of messages vs buffer size (scenario with 100 hosts and Community
based mobility model).

context attribute as the percentage of samples for which the component returns true,
in other words, the percentage of samples for which the prediction is sufficiently ac-
curate given a predefined acceptable error. We consider a prediction error of 0.15
as the maximum acceptable error in the current evaluation. This value was chosen
also considering the value of the variance of the White Noise Rt of the observation
in the prediction model is 0.1.

4.2.2 Delay Distribution

The first interesting aspect that we analyse is the distribution of the delivery delays, a
characterising aspect of a protocol for delay tolerant mobile networks.

Figures 4.1 and 4.2 show the delay distribution measured in the 50 and 100 hosts scenarios
respectively. In these simulations, we consider an infinite buffer size. As expected, a
percentage of messages are delivered immediately, since the recipients are in the same
connected portion of the network of the hosts when the message is sent (and the sender
has a routing table entry related to the recipient of the message for synchronous delivery),
whereas the majority of the messages are delivered with a variable, possibly long, delay.
The amount of messages delivered in the time interval considered slowly decreases as
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Figure 4.9: Delivery ratio vs buffer size (scenario with 50 hosts and Random Way-Point
model).

time passes. This is due to the fact that, in the figures, the average number of messages
delivered per time slot is shown. In a single simulation, messages are delivered in particular
instants of time and, in some cases, in batches, when carriers reach the communities of
recipients. The interval between these events is determined by the distance between the
communities, which are randomly placed in the simulation space, and by the speed of the
carriers. By averaging the results of different runs, characterised by different placements
of the communities, speed of the hosts and underlying social networks, we obtained the
“flat” curve showed in Figures 4.1 and 4.2.

We assume a retransmission delay equal to 0.001 seconds. The distribution delay of the
flooding protocol is not reported given the scale of the graph since it is lower than 10
milliseconds.

We note that the number of messages delivered by the epidemic protocol synchronously is
lower than the other two, since the message is replicated to the neighbouring nodes at each
replication step that is equal to the retransmission interval in CAR and in the Random
Choice protocols. In other words, the synchronous delivery mechanism in CAR allows for
a more efficient routing in presence of connectivity.
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Figure 4.10: Delivery ratio vs buffer size (scenario with 100 hosts and Random Way-Point
model).

4.2.3 Influence of the Buffer Size

Another critical aspect we investigated is the size of the buffers of the hosts. Figures 4.3
and 4.6 show the impact of the buffer size on the delivery ratio. We also report a more
detailed curve for values of buffer size in the range [0, 100] to show the impact on the
performance with very small buffers in Figure 4.4 and 4.7.

First of all, we note that the performance of the flooding protocol is strictly correlated
to the connectedness of the graph. In particular, the value of its delivery ratio also
gives an estimation of the number of hosts in the same connected component of the
resulting instantaneous network graph. This value is around 40% for the 50 scenarios
and around 25% for the 100 scenarios. It is worth noting that, given the delays in the
routing table updates and the routing table size limitation, the fact that the sender and
the receiver are in the same connected component does not imply that CAR is able to
support communication between the two, since the former may not store the entry related
to that recipient.

As expected, the epidemic protocol is able to deliver all the messages if the buffer size
is large enough to avoid the deletion of certain messages. The epidemic protocol reaches
100% with a buffer size greater than 300 and 250 for the 50 and 100 scenarios respectively.
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Figure 4.11: Influence of the choice of the weights of the utility function on the delivery
ratio (scenario with 50 hosts and Community based mobility model).

This buffer size is sufficient to allows recipients to receive a replica of the messages.

Let us consider the scenario composed of 50 hosts in Figure 4.3, where CAR outperforms
the Random Choice considerably. Quite interestingly, CAR shows delivery ratio higher
than the epidemic protocol for buffer size equal or smaller than 70. In fact, with small
buffers, the epidemic protocol shows its evident limitations due to the replication mecha-
nism. We also note an asymptotic behaviour of the curves related to CAR and Random
Choice for buffer size greater than 70 and 35, respectively. The protocols reaches its best
performance, given a buffer size sufficient to contain all the messages. The fact that CAR
does not reach 100% is due to the number of contacts opportunities in the given amount of
time, to the limited number of retransmissions and also to the limitations of the prediction
model. In fact, the predictability level for this scenario is about 85%. Moreover, as far as
the CAR protocol is concerned, by analysing Figure 4.4, we also deduce that some hosts
will carry up to 70 messages. These hosts are the ones characterised by high mobility
between different communities. From the point of view of the social network in input,
these hosts are characterised by strong links with multiple communities.

Let us now observe the results related to the 100 hosts scenario reported in Figure 4.6. Also
in this case, the performance of the CAR protocol shows the effectiveness of the prediction
based forwarding mechanism. The gap between the curves describing the performance of
CAR and the Random Choice model is larger than in the previous scenario. This is due to
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Figure 4.12: Influence of the choice of the weights of the utility function on the delivery
ratio (scenario with 100 hosts and Community based mobility model).

the fact that in a more dense scenario, like the one composed of 50 hosts, the probability
of getting in reach of the recipient by chance is higher. It is interesting to note that CAR
is able to reach good performance also in this scenario. The performance are slightly worse
than in the previous one, as in more sparse networks the probability of being in reach of
a connected path is lower. The predictability level of this scenario is about 82%, a value
close to the one measured for the 50 hosts scenario. In Figure 4.7 we can observe an
asymptotic behaviour for values of the buffer size higher than 70 and 30 for CAR and the
Random Choice protocol respectively.

We also ran simulations with infinite routing table size (i.e., equal to 50 and 100 entries):
CAR is able to reach a delivery ratio closed to 80% and 75% (an improvement of about
4 %). In other words, it seems that removing routing table limitations does not have a
strong impact on the performance of the protocols in the scenarios that we considered.
This is explained by the fact that the nodes are moving between a limited number of
communities. We observe again that in the case of the scenario composed of 50 hosts,
a buffer size of 20 hosts allows for storing information about all the hosts of two initial
communities of 10 nodes. Instead, with half size routing tables (i.e., 10 and 20 entries) we
observe a 18% and 24% reduction of the delivery ratio (with a standard deviation of 1%).
The reduction is more evident for the 100 hosts scenario, where the network topology is
more sparse.
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Figure 4.13: Influence of the host speed on the delivery ratio (scenario with 50 hosts and
Community based mobility model).

Another interesting aspect is the overhead in terms of number of messages. The results for
the 50 hosts scenario and 100 hosts scenario are shown in Figures 4.5 and 4.8 respectively.
CAR shows the best performance in this case, also with respect to the Random Choice
protocol. In fact, the number of forwarded messages by CAR is lower. The overhead in
terms of control traffic (i.e., transmission of routing tables) is the same for both protocols
(in fact, the Random Choice protocol exploits DSDV information like CAR).

Figures 4.9 and 4.10 we show the performance of CAR, Random Choice and the Epidemic
protocol using the Random Way-Point model. Quite interestingly, the performance of
CAR is still good. We observe, in general, that the connectivity of the two resulting
graphs is higher due to the distribution of the hosts in the simulation space (instead of
the clustered one resulting from the Community based mobility model). More specifically,
the good performance is mainly related to the fact that CAR is able to select the hosts
with the highest mobility (i.e., highest change degree of connectivity); in the composition
of the utility function, the part related to the colocation attribute is very similar for all
the hosts and can be modelled as a sort of random noise. Instead, the utility function
associated to the change degree of connectivity is clearly higher for highly mobile hosts
and, therefore, these are selected as carriers. As expected, the best combination of the
weights for this scenario is wcdch

= 1.0 and wcolh,i
= 0.0, since the latter nullifies the

inaccurate contribution related to the host colocation.
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Figure 4.14: Influence of the host speed on the delivery ratio (scenario with 100 hosts and
Community based mobility model).

To summarise, these experiments show that CAR is able to guarantee good performance
also in presence of small buffers with a limited overhead in terms of number of messages
sent, in comparison to the other protocols taken into consideration, thanks to the effec-
tiveness of the utility based prediction algorithm.

4.2.4 Influence of the Choice of the Values of the Weights of the Utility

Function

We now analyse the influence of the choice of the values of weights of the utility function.
The results are reported in Figures 4.11 and 4.12. We observe that the best combination
of the weights is wcdch

= 0.25 and wcolh,i
= 0.75.

From these diagrams, we can deduce that the prediction of future colocation is fundamental
for the performance of CAR. At the same time, we also note that both attributes are
important and need to be considered in the calculation of the utility function. The best
performance is not obtained when we consider the colocation utility exclusively, but when
both are evaluated. Moreover, the worst performance is obtained when the colocation
factor is not used.

These results are related to the mobility model that we used. In fact, the change degree of
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Figure 4.15: Influence of the number of retransmissions on the delivery ratio (scenario
with 50 hosts and Community based mobility model).

connectivity attribute is particularly important when no information about colocation is
available, i.e. when there are no potential carriers that have met the recipient in the past.
In these cases, the best possible choice is to select a node characterised by high mobility,
that potentially may be in contact with the recipient or, at least, with a better carrier
that has been in reach of the recipient previously. This situation is not modelled by the
Community based mobility model and, therefore, in our simulations, the most important
attribute is the colocation one, that is very effective for selecting a host that is periodically
in contact with the host of a particular community.

From a real deployment perspective, the selection of the values of the weights may be based
on preliminary observations of the mobility patterns of the hosts. Since the protocol is
not based on feedback mechanisms (like acknowledgement messages), it is not possible to
adapt dynamically the values of these weights at run-time.

4.2.5 Influence of the Speed of the Hosts and Routing Table Transmis-

sion Interval

In Figures 4.13 and 4.14 the influence of the speed of the hosts on the delivery ratio for
the 50 and 100 scenarios is shown considering different routing interval retransmission
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Figure 4.16: Influence of the number of retransmissions on the delivery ratio (scenario
with 100 hosts and Community based mobility model).

intervals. In these experiments all the nodes have the same speed. In these experiments,
the update interval of the prediction model is equal to the routing table retransmission
interval.

Let us consider the interval equal to 30 seconds. We observe that the delivery ratio
decreases as the speed increases. This is due to the fact that some routes become stale4,
but also because the quality of the prediction deteriorates as the mobility of the nodes
increases as we will show in Section 4.2.7. If the calculation of the delivery is wrong, in
scenarios composed of isolated clusters the probability that the messages are copied to the
carriers that are moving between the communities is lower.

As the routing table transmission increases, the delivery ratio increases as expected, since
the updates of the routes increases and the inputs of the filter are more frequent (and,
therefore, the prediction is more accurate).

We also observe that the Random Choice protocol performs better as the speed of the
nodes increases. In fact, as the speed increases, the probability of being in reach of
the final recipient of the message is also higher. We also note a small decrement of
the performance of the Random Choice protocol for values in the range [1 − 5] m/s for

4This is a well know problem of distance vector protocols for mobile ad hoc net-
works [Perkins and Bhagwat, 1994].
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the 50 hosts scenario and in the range [1 − 3] m/s for the 100 hosts scenario. In this
case two concurrent phenomena are present: as the speed increases, the percentage of
the contents of routing tables that becomes stale increases5 and, at the same time, the
probability of meeting the recipients also increases. However, with low speed the effect
of the latter is nullified by the effect of increasingly stale routing information. The curve
for the Random Choice protocol is generated using a transmission interval equal to 30
seconds. By increasing the transmission interval, the improvement of the performance
of the Random Choice protocol is minimal, since it does not exploit delivery probability
information. The improvement is due to the fact that there is an increased probability
that a neighbour will be discovered and, then, randomly selected. In fact, routing tables
are also used for neighbour discovery.

4.2.6 Influence of the Number of Retransmissions

The influence of the number of the retransmissions on the delivery ratio for the 50 and
100 hosts is shown in Figures 4.15 and 4.16.

A limited number of retransmissions impacts on the possibility of transferring messages
from a carrier to another one with a higher delivery probability. As shown in Figure 4.15,
the number of hops that is sufficient to achieve the maximum delivery ratio in this scenario,
given the time constraints, is around 10. This saturation of the performance is less visible
for the 100 hosts scenario (Figure 4.16), where the impact of imposing a limited number of
retransmissions is more evident. In this scenario, the higher number of nodes also increases
the probability of being in reach of better carriers.

Clearly, the impact of the number of retransmissions is more evident for the Random
Choice protocol, since it increases the chances of selecting a host that is moving between
the communities (i.e., it increases the probability of being in reach of the final recipient of
the message).

The influence on the number of messages sent is instead shown in Figures 4.17 and 4.18.
A higher number of retransmissions has also an impact on the number of messages sent.
However, in percentage, this is really limited: for this reason, from these experiments, we
conclude that the benefit of increasing the number of retransmissions exceeds the cost in
terms of overhead.
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Figure 4.17: Influence of the number of retransmissions on the number of messages (sce-
nario with 50 hosts and Community based mobility model).

4.2.7 Predictability Level and Protocol Performance

An analysis of the prediction level for both scenarios with different routing table trans-
mission intervals is reported in Figures 4.19 and 4.20.

In general, we expect that the prediction level decreases as the retransmission level de-
creases. We observe that for transmission intervals equal to 10 and 20 seconds a reduction
is visible for values in the range [0, 6] and [0, 9] for the 50 and 100 scenarios, respectively.
Then, we note an increment of the prediction level: this is probably due to the fact that,
since the routing tables are also used to detect the presence of the neighbours, with high
speeds the node goes undetected. If a node is undetected, it is clearly considered as non
colocated. In general, the predictor calculates low values of the utility associated to the
colocation attribute (close to 0, i.e., value that corresponds to non colocated). The predic-
tion error will be very low and the prediction will be considered correct. In other words,
the inputs of the predictors are wrong, whereas the predictions are correct. This is a
limitation of the proposed protocol in case of very dynamic environments, since it needs
frequent updates of colocation attributes to achieve good performance.

5We underline again the fact that the freshness of routing information needs to be considered also for
the synchronous delivery of the messages.
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Figure 4.18: Influence of the number of retransmissions on the number of messages (sce-
nario with 100 hosts and Community based mobility model).

With frequent updates (i.e., routing tables retransmission interval equal to 10 seconds),
a decrement of the prediction level is observed, as the speed increases for all the range
of values shown in the diagram. We also note that the decrement of the prediction level
(in the range [0, 6] and [0, 9]) is more evident for lower transmission frequency, since this
leads to less frequent sampling of the time series.

From these experiments, we deduce that the update interval should be (approximately)
inversely proportional to the speed of the hosts.

4.3 Critical Summary

The simulation experiments presented in this chapter have shown that CAR is able to
guarantee good performance, also in presence of small buffers, with a limited overhead
compared to the other protocols taken into consideration.

Limiting factors of the performance of CAR are small buffer size and the frequency of
routing table transmission interval also in relation to the host speed. A trade-off has
been identified between the performance of the protocol in terms of delivery ratio and
the overhead associated to the routing tables transmission. In order to maintain high
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Figure 4.19: Influence of the host speed on the colocation predictability (scenario with 50
hosts and Community based mobility model).

predictability levels, the frequency of the transmission must be increased, as the speed
increases.

The choice of the weights of the utility function has also a considerable impact on the
performance of the protocol. From our analysis, it is evident that both context dimensions
influence the message delivery ratio; as expected, host colocation has a primary importance
in the best carrier selection process.

The number of retransmissions is also another key parameter of the protocol; the additional
overhead associated to the number of retransmissions is low compared to the corresponding
performance increment and, therefore, the choice of a relatively high number of possible
retransmissions seems appropriate. This is necessary especially in scenarios composed of
a high number of nodes.

The use of a fixed (small) size of routing table limits the performance and the scalability
of CAR. However, the exploitation of the mechanisms for the intelligent replacement of
the entries seems to alleviate the impact on the performance of the protocol.
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Figure 4.20: Influence of the host speed on the colocation predictability (scenario with
100 hosts and Community based mobility model).
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Chapter 5

Implementation of the

Context-Aware Adaptive Routing

protocol

The process of preparing a program for a digital computer is especially attrac-
tive, not only because it can be economically and scientifically rewarding, but
also because it can be an aesthetic experience much like composing poetry or
music.

Donald E. Knuth

5.1 Overview of the Implementation

Haggle [Su et al., 2006] is a framework for opportunistic communication among mobile
devices in infrastructure-based and infrastructure-less environments. Haggle allows for
the use of different networking technologies at the same time such as Ethernet, 802.11,
Bluetooth and so on. The goal of Haggle is to support communication in the form of data
objects exchanges. These objects can also be stored temporarily in the local repositories
providing the support for the implementation of store-and-forward routing mechanisms.

The architecture of Haggle is open and flexible and allows for the integration of routing
protocols and other functionalities such as data storage related ones into the framework.
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The design philosophy underlying the Haggle platform is inspired by
Plutarch [Crowcroft et al., 2003], a proposal for a novel inter-network architecture
supporting multiple heterogeneous interfaces and different routing mechanisms.

Two very simple routing algorithms have been implemented in the current release (0.5)
of the Haggle platform: a one hop direct transmission protocol (i.e., data are sent to the
recipient only if this is currently in reach) and a pure epidemic one. We implemented
the Context-aware Adaptive Protocol as a forwarding algorithm for this platform. In this
chapter, we present the details of the implementation and discuss the general design issues.

5.2 The Haggle Platform

We now briefly present the aspects of the Haggle platform that are relevant to the imple-
mentation of CAR.

5.2.1 Overview of the Haggle Architecture

In the current version of the Haggle platform two very simple routing algorithms have
been implemented: a one hop direct transmission protocol (i.e., messages are sent to the
recipient only if this is currently in reach) and a pure epidemic one (i.e., messages are
sent to all the neighbours, without summary lists as in [Vahdat and Becker, 2000], using
a time to live field to limit the spread of the information).

The architecture of Haggle is composed of six independent Managers:

• Data Manager This entity is responsible for managing the data that are stored in a
searchable repository of Data Objects (implemented by the class DO), an abstraction
used in Haggle to store data with a set of attributes. Queries for particular data
based on matching on the values of the attributes using regular expressions can
be performed through the Data Manager. Data Objects can be linked together to
build more complex data structures. In the current version, the Data Manager is
implemented using MySQL back-end [MySQL, 2007]. However, more lightweight
solutions are currently being developed removing the need of a relational database;
this is essential to run the platform on resource-constrained devices like PDAs.

In addition to the ability of retrieving Data Objects by means of unique identifiers,
the Data Manager also supports searching of Data Objects by means of filters.

• Name Manager This entity is responsible for the mapping between different names
identifying the user-level end-points. The names of entities are stored as Name
Objects (implemented by the class Name). A Name Object is a particular type of
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Data Object. It can be linked to others referring to the same entity to form a Name
Graph, that is used to store the information about all the known names of an entity
collectively (e.g., all the identifiers for all the interfaces).

• Forwarding Manager This manager is responsible for delivering Data Objects to
other hosts. It encapsulates a certain number of Forwarding Algorithms that are
used to deliver the data to the final destinations. CAR is implemented as one of
these algorithms.

Applications can start a data transfer by specifying a set of Data Objects and a set
of Name Objects. The Forwarding Manager then constructs a Forwarding Object
that is a wrapper of a Data Object containing metadata needed to the forwarding
operation. This is linked to Name Graphs containing the identifiers of the sender
and the recipient(s).

The metadata can also include expiration times and hop counts. More details about
Forwarding Algorithms are provided in Section 5.2.2.

• Protocol Manager This manager is only responsible for encapsulating and man-
aging a set of Protocols. According to the Haggle terminology, a Protocol is de-
fined as a method used to transfer a Forwarding Object between two nodes (i.e.,
to enable point-to-point communication). Examples are SMTP [Klensin, 2001],
HTTP [Fielding et al., 1999] or a direct peer-to-peer protocol.

• Connectivity Manager This manager is responsible for encapsulating a certain
number of so-called Connectivities, representing the available network interfaces. It
provides support for neighbour discovery and for managing communication channels
between two hosts. The underlining communication mechanisms are implemented
using Java sockets.

The Connectivity Manager provides the abstraction of Neighbour that is a potential
next-hop by which a Protocol may know how to send data of certain types to specific
Name Objects.

• Resource Manager This manager schedules the various Tasks (i.e., operations)
according to a predefined cost-benefit algorithm1. All the outgoing and incoming
network connections are proposed for the scheduling to the Resource Manager and
executed according to their priorities based on the evaluation of their possible ben-
efits.

All managers provide interfaces which are used for the communication and coordination
among each others and to be accessed by other entities, including the Forwarding Algo-
rithms. In particular, our CAR implementation interacts with the Data Manager in order
to store and retrieve Data Objects, with the Protocol Manager to obtain the list of the

1Different algorithms can be plugged in by developers.
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hosts that are currently reachable and with the Name Manager to manage the identities
of the hosts and the users.

In the following section we discuss the role of the forwarding algorithm and, in particular,
we introduce the integration of the component implementing the core functionalities of
the CAR protocol in the Haggle framework.

5.2.2 Forwarding Algorithms

The role of Forwarding Algorithms is to route the Forwarding Objects to the final des-
tination(s). For each Forwarding Object that has to be sent, the Forwarding Algorithm
creates a Forwarding Task that is executed by the Resource Manager according to priori-
ties evaluated with a decision algorithm that calculates the benefit of performing a certain
task. In our implementation, we set the benefit to the maximum to guarantee the imme-
diate scheduling of the task2. When executed, the Forwarding Task causes the associated
Protocol to send the Forwarding Object to the specified recipient.

From a more practical point of view, Forwarding Algorithms must implement the
setForwardingTasks() method that receives in input the list of the pending Forwarding
Objects. These Forwarding Objects may have been created by the host or may have been
received from other hosts and stored temporarily. Periodically, the Forwarding Manager
invokes the setForwardingTasks() method. In the current implementation of Haggle,
this interval is fixed, but this can be easily modified by developers.

In Figure 5.1, the UML sequence diagram shows the interactions between the For-
warding Manager that invokes (periodically) the setForwardingTasks() of the instance
of the class CARForwardingAlgorithm. Then this method calls the static method
setForwardingTask() of the class ForwardingTask for each Forwarding Object that has
to be sent. If no objects have to be sent, because there are no recipients of pending For-
warding Object or better carriers for them, it returns without interacting with any other
class.

2Clearly, many tasks with the same priority may be in the queue waiting to be executed. In this case,
the order of execution is random. The tasks related to the execution of the operations of the CAR protocol
have the highest possible priority. A refinement may be to associate lower priority to transmissions to
intermediate carriers (for example assigning a benefit of 90 over 100) with respect to the task of transmitting
the data directly to the recipient if this is in reach. The transmission of routing tables may have a lower
priority than the forwarding of objects containing data. It is worth noting that the prioritisation of the
tasks is an aspect of the system still under investigation by the researchers working on the Haggle Project.
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ForwardingManager CARForwardingAlgorithm ForwardingTask

setForwardingTasks()

[if ForwardingObjects
have to be sent]
setForwardingTask()

[if another
 ForwardingObjects
has to be sent]
setForwardingTask()

Figure 5.1: Sequence diagram illustrating the interactions between the Forwarding Man-
ager and the class implementing the CAR protocol.

5.3 Integration of CAR in Haggle

5.3.1 Overview

In this section, we present the implementation of CAR in Haggle. As mentioned above,
CAR is implemented as a forwarding algorithm of Haggle. We designed a prototype
implementation of CAR supporting one hop synchronous communication.

The CAR implementation is shipped as a Java package called haggle.forwarding.CAR

containing three classes:

• CARForwardingAlgorithm This class encapsulates the logic of the algorithm imple-
menting the interface ForwardingAlgorithm. The constructor of this class launches
three threads, responsible for forwarding the data and control messages for creating
and updating the predictors.

• KalmanPredictor This class implements the prediction algorithm presented in Sec-
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<<interface>>
ForwardingAlgorithm

ForwardingAlgorithm

RoutingTablesSenderWorker

RoutingTablesCheckerWorker

PredictionWorker

Thread

KalmanPredictor CARRoutingTableEntry

Figure 5.2: Class diagram of the implementation of CAR for Haggle.

tion 2.5. The default values of the filter are Rt=0.01 and Qt=0.1. These values
can be set by developers. The implementation of the algorithm used in this class is
functionally identical to the one used in the simulations.

• CARRoutingTableEntry This class implements an entry of the routing table, pro-
viding different constructors for its initialisation (using String objects or in-
stances of the Name class). Routing tables are implemented as a HashMap of
CARRoutingTableEntry objects.

A UML class diagram showing all the interdependencies of the classes used for the inte-
gration of CAR in Haggle is shown in Figure 5.2.
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From a practical point of view, in order to run Haggle with CAR, this needs to be added to
the list of the routing protocols available for the forwarding process in the configuration file
of Haggle: we assume that only CAR is used as a forwarding algorithm3. No modifications
to the Haggle codebase is necessary.

When the setForwardingTasks() is invoked, the recipient of each Forwarding Object
passed as a parameter is extracted. Then, the protocol verifies if the recipient is currently
a neighbour (i.e., reachable at least through one of the available interfaces) and, if this the
case, the object is forwarded to it.

If a synchronous delivery is not possible, the host checks if it is currently the best carrier
for the message. If this is the case, the message is added to the list of Forwarding Objects
that is managed by the Resource Manager. Otherwise, the message is forwarded to the
best carrier currently in reach. We note that we had to provide support for multi-regions
routing. In other words, a host may be reachable through different network interfaces.
Different cost metrics can be assigned to different interfaces.

Haggle does not provide any mechanism for exchanging information periodically, like rout-
ing tables; however, this is essential for proactive protocols. We implemented the support
for it by means of the classic threads synchronisation techniques available in Java and
the available Haggle components and abstractions. In particular, the routing table mes-
sages are implemented as a special type of Forwarding Object. More precisely, we added a
field in the Data Object that distinguishes these objects from the ones carrying data called
ProtocolCode. Forwarding Object containing routing tables are characterised by a specific
value of this variable. This field is used for searching among the Forwarding Objects stored
in the Data Manager. Since the current version of Haggle does not support binary fields
in the Data Object but only Java strings, we implemented two methods to serialise and
deserialise the routing tables into/from strings (i.e., the encodeRoutingTableIntoString
and the encodeStringIntoRoutingTable methods).

Each host maintains a routing table that is implemented as a HashMap containing en-
tries that are instances of the class CARRoutingTableEntry. Routing tables are indexed
using the field targetHostId. The fields of the routing table entries targetHostId,
nextHopHostId and bestProbHostId are implemented as instances of Name.

5.3.2 Multi-threaded structure

Our goal was to encapsulate all the logic of the protocol in one class in order to sim-
plify the integration of CAR in the platform. The multi-threaded structure of the class
implementing the forwarding algorithm is presented in Figure 5.3.

3However, we observe that CAR includes the direct forwarding algorithm implicitly.
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CAR Forwarding Algorithm

Routing Table 
Sender Worker 

Thread

Routing Table 
Checker Worker 

Thread
Prediction Worker

Thread

Figure 5.3: Multithreaded structure of the class implementing the CAR forwarding algo-
rithm in Haggle.

We now describe the role of each thread in detail:

• Prediction worker The role of the PredictionWorker is to update the delivery
probabilities by retrieving information about the context from other Haggle man-
agers and by calculating the next step prediction using the Kalman filter based local
predictors. More specifically, the PredictionWorker firstly updates the colocation
predictor by checking if the host is a neighbour (i.e., it is reachable through at least
one of the available interfaces). This is performed by requesting the list of Protocols
to the Name Manager and then by checking all the reachable neighbours through
a specific protocol. This logic is implemented by the method isColocated() that
receives a Name object as parameter. If a new node is discovered, a new Kalman
filter predictor is initialised and added to the pool of the predictors4. The thread
also updates the current change degree of connectivity and the related Kalman fil-
ter. Then, for each host, the combined weighted utility is calculated. The estimated
delivery probabilities of all the nodes that are present in the routing tables are also
updated.

The other role of the thread is to check if the delivery probability of the host is
higher than the one stored in the routing table and, if this is the case, to insert its
identifier as best carrier and record its corresponding current delivery probability.

Finally, this thread also checks if new names of the host have been added to the
Name Manager, inserting these names to the routing tables for the delivery of the
messages. A host can have different entries in the routing tables, one for each name.
A different metric can be associated to different types of names (i.e., communication

4In the current implementation, there is not a predefined size of the pool. However, a possible choice is
to enforce a fixed size by removing the hosts of the pool with the lowest colocation values. This is clearly
necessary for resource-constrained devices.
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domains). An alternative choice is to keep a name graph for all the names indicating
the same host, but this does not allow for implementing specific calculation of the
best path according to a given metric or to particular cost/benefit mechanisms5.

• Routing tables sender worker The RoutingTablesSenderWorker thread is re-
sponsible for sending the routing tables periodically to the other nodes that are
currently in reach.

The routing tables are implemented as a special type of Forwarding Objects that are
generated by the Forwarding Algorithm itself by constructing them as Data Objects.
They are then sent as standard Forwarding Objects to all the neighbours on all the
interfaces.

• Routing tables checker worker The RoutingTableCheckerWorker is responsible
for checking if Forwarding Objects containing routing tables have been received. This
is necessary, since an architecture based on listeners for particular types of messages
(based on message filters) is not currently available in Haggle.

This thread periodically checks if the Data Manager is currently storing routing
tables by means of a filter on the protocolCode field. In theory, this should be done
using a persistent filter that notifies an event handler, but this has not yet been
implemented in Haggle.

If Forwarding Objects containing routing tables have been received, these are dese-
rialised and the information is used to update the local routing table.

These threads are started as daemons (according to the Java terminology) when Haggle is
launched. The interval of retransmissions of routing tables and updating of the predictors
can be set by developers.

5.4 Testing and Evaluation

In order to perform a functional test of the integration of CAR in Haggle, we have set up
a testbed of four desktop computers equipped with 108 Mbps Netgear WG113T Wireless
Adapters. The testbed is represented in Figure 5.4.

The testing was limited by the current implementation of the Haggle prototype, since it is
not possible to stop and restart the platform to simulate a disconnection. For this reason,
we simulate this in software, by limiting the reachability of the hosts building a sort of
virtual network and allowing only asynchronous routing, even if a connected path exists.

5In order to add the aggregation of names related to the same entity is sufficient to check if another
name of the same entity is already present in the routing table before adding a new entry.
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fragola
128.16.3.45

00:0f:b5:89:c8:2d
mircohaggle@googlemail.com

pasta
128.16.10.27

00:0f:b5:89:d0:3b
mircohaggle2@googlemail.com

pizza
128.16.10.26

00:18:4d:6e:56:9e
mircohaggle4@googlemail.com

lenticchia
128.16.11.121
00:18:4d:56:90

mircohaggle3@googlemail.com

Figure 5.4: Topology and addresses of the hosts of the Haggle testbed.

We tested different virtual topologies; one of these is shown in Figure 5.4, where even if
the four hosts are physically in radio range, the host pasta is not able to communicate
using synchronous routing to pizza.

We used a SMTP/POP application to test the platform. This application is composed
of two components: a SMTP/POP proxy for the interaction with an email client (like
Thunderbird) and SMTP and POP protocols (implementing the Protocol interface) inside
Haggle that communicate with email servers. The SMTP proxy translates the email sent
by the client into a Forwarding Object with one or more Data Objects, one containing the
email itself and the others if attachments have to be sent. The POP proxy listens on port
110 for incoming connections from the user’s client. When the client checks for email for
the first time, the POP proxy inserts a new known name (the email address of the host)
in the Name Manager. CAR is periodically checking if new names have been registered
requesting the list of known names of the host to the Name Manager, as described above.
The new names are then inserted in the routing table. In Figure 5.4 we indicated all the
names associated to the hosts (DNS name, IP address, Ethernet 802.11 address and email
address of the user).

The POP proxy interacts with the Data Manager for searching for Data Objects containing
email; it then reconstructs the original email and return it to the client. We assume that
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the network is composed of only the hosts communicating using 802.11b interfaces in ad
hoc mode without any external SMTP/POP servers.

We ran different test to observe if the asynchronous delivery process was working correctly.
We tested the routing tables dissemination, the store-and-forward and the selection of the
best carrier mechanisms6.

Let us consider for example the scenario depicted in Figure 5.4. Let us suppose that
fragola has been colocated with pizza for longer time than lenticchia. For this reason,
fragola is considered the best carrier for pizza among the two. Therefore, when an email
is sent from the user mircohaggle2@googlemail.com running its email application on
pasta to a user known as mircohaggle4@googlemail.com, the message is sent through
fragola.

Since our implementation relies on Haggle for the communication between pairs of nodes
in ad hoc mode, the transmission delay between two hosts is not influenced by our imple-
mentation of CAR. Some measurements of these delays are presented [Su et al., 2006].
The maximum delay in retransmitting a Forwarding Object if the recipient or if a
better carrier get in reach is given by the scheduling interval of the execution of the
SetForwardingTasks() method (we run experiments with values in the range [0.1, 10]
seconds). We note that also this parameter is dependent on the Haggle implementation
itself.

6In order to perform this test easily, we also implemented a carrier mode. A host in carrier mode will
have delivery probability set to 1 for all the hosts and then it will always be chosen as best carrier.
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Conclusions

Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

Winston Churchill

6.1 Summary of the Thesis

We have presented the design, the evaluation and the implementation of the Context-
aware Adaptive Routing protocol which supports communication in delay tolerant mobile
ad hoc networks.

We have shown that prediction techniques can be used to design store-and-forward mech-
anisms to deliver messages in intermittently connected mobile ad hoc networks, where
a synchronous path between the sender and receiver may not exist. We have designed
a generic framework for the evaluation of multiple dimensions of the mobile context in
order to select the best message carrier. We have demonstrated that Kalman filter based
forecasting techniques can be applied effectively to support intelligent message forward-
ing. We have shown that these techniques are lightweight and, therefore, suitable for
resource-constrained devices.
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6.2 General Contributions of the Thesis and their Applicability to Other Areas of Computer

Science

In order to be able to validate our protocol, we have developed a novel mobility model
based on recent results in social networks theory. We have validated the model using
real traces, showing that it is able to reproduce the host colocation patterns in terms of
inter-contacts time and contacts duration.

The simulation experiments have shown that CAR is able to guarantee good performance,
also in presence of small buffers, with a limited overhead in terms of number of mes-
sages sent, in comparison to the other protocols taken into consideration. We have also
highlighted the differences in terms of delivery ratio between random and prediction based
routing. We have presented a sensitivity analysis of the parameters of the protocol, under-
lining the trade-offs in terms of delivery ratio and additional overhead. Furthermore, we
have discussed the causes and the implications of inaccurate predictions, proposing possi-
ble countermeasures in case of highly dynamic systems and an algorithm for the selection
of alternative protocols, like epidemic-style ones, if necessary.

Finally, we have presented an implementation of CAR on Haggle, an opportunistic com-
munication framework, discussing the issues related to the design of the system prototype.

6.2 General Contributions of the Thesis and their Applica-

bility to Other Areas of Computer Science

We now consider three key contributions of the present work in detail, outlining their
possible general applicability to other problems in networking and, more in general, in
other areas of computer science.

• Routing based on Predictable Mobility Patterns Founded on Social Re-
lationships With respect to the delay tolerant networking research area, we believe
that our key contribution resides in the evaluation of the evolution of different di-
mensions that describe the context where communication happens in order to make
routing decisions. Our work has inspired the design of other forwarding mecha-
nisms based on predictable colocation patterns founded on social relationships, such
as [Leguay et al., 2006] and [Ghosh et al., 2007].

• Integrated Routing Table Management for Synchronous and Asyn-
chronous Delivery Another contribution of this work is the design of routing table
management mechanisms to store, update and distribute information to support syn-
chronous and asynchronous message delivery. Up to our knowledge, this is the first
attempt to provide a unifying solution to this problem in challenged networks.

More generally, the approach used in CAR can be adopted to support the integration
of deterministic routing mechanisms (i.e., based on the existence of known routing
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paths, unless failures happens, like in DSDV) and probabilistic ones (i.e., based
on the likelihood that a path will exist in the future between the sender and the
recipient). In general, it can be used to enable communication in hybrid networks
composed of infostations connected to the Internet and mobile nodes moving around
connected intermittently to the backbone.

• Application of Social Networks Theory to the Design of Realistic Mobility
Models The observation that mobile networks are social networks after all and, then,
that their evolution over time can be modelled considering the relationships among
the people carrying the devices is another key contribution of this thesis. This idea
can be used to develop more refined models of human mobility and connectivity, but
also to design mobile systems that take social relationships into account for data
routing and sharing of information. Our work has been a starting point for other
projects in this area such as [Legendre et al., 2006] and [Resta and Santi, 2006].

• Utility Based Framework for Context-Aware Systems The utility based
framework presented in Section 2.2 provides a simple and extensible way of measur-
ing and combining different aspects of context that can be measured and represented
by means of utilities.

The applications of such framework are potentially large, including, for instance, the
definition of Quality of Service evaluation model [Chalmers and Sloman, 1999] (for
example, for the selection of transmission links considering error rates, bandwidth
and power consumption) and the selection of service providers [Raverdy et al., 2006].

• Prediction Techniques for Dynamic Distributed Systems We envisage
many different applications of the prediction framework based on Kalman filter
forecasting techniques to other problems in networking and distributed systems,
for example to the problem of bandwidth [Song et al., 2006] and load balanc-
ing [Dinda and O’Hallaron, 1999]. Furthermore, the utility and prediction frame-
work presented in this work was also successfully applied by us to the problem of
scheduling of jobs in Grid Computing [Chapman et al., 2007], where the current load
of computational units is evaluated for the choice of the best server for a given job.

6.3 Current Research Directions

The theoretical results and the practical solutions presented in this work can represent a
foundation for a wide research agenda in the area of delay tolerant networks and, more in
general, of mobile systems.

In this section, we outline our most promising research directions founded in the work
presented in this thesis.
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6.3.1 Sensor Context-aware Adaptive Routing

We are adapting the core routing mechanisms of CAR for data collection in sensor net-
works [Mascolo and Musolesi, 2006, Mascolo et al., 2006].

Sensor devices are now present in virtually all sorts of items, from vehicles and furniture,
and deployed on humans and animals. This generates networks of wireless connected
devices with topologies which could be very dynamic. The monitoring abilities of these
devices range from pollution and temperature to health-care and mobility. The amounts
of data generated by these applications are usually quite large, but, fortunately, the data
is also, in most cases, delay tolerant, in the sense that it can be stored in the network for
a certain period of time before being collected. The scenario we envisage is one where
mobile sensor nodes (e.g., animals, vehicles or humans) route data through each others
in order to reach sink nodes, which can be either mobile or fixed. The fixed nodes are
intended as nodes connected to a backbone network and therefore able to forward the data
to the appropriate destination.

Different techniques could be employed for mobile sensor data gathering. A basic strategy
would be to only allow data delivery when sensors are in direct proximity of the sinks.
This technique has very little communication overhead, given that messages are only sent
directly from the sensor node generating messages to the sink. However, depending on how
frequently sensor nodes meet the sinks, the delivery of the data might be very poor. This is
particularly true if the sinks are very few and spread out. More refined techniques include
epidemic-style approaches, which would spread the data over the sensor network, so that
eventually a sink could be reached. This approach has very good delivery ratio if buffers
are sufficiently large, however the overhead in terms of communication and, therefore,
energy is quite high. Some solutions have been presented in literature, including the use
of data mules with scheduled routes [Jea et al., 2005].

For these reasons, the spreading of the messages needs to be carefully controlled and
traded off for the delivery ratio. This is even more true if the nodes have limited memory
so that the buffer size is small and very few messages can be stored. Moreover, we consider
scenarios where the routes of the potential message carriers may not be known a priori,
as in the case of systems where devices attached to animals or humans are exploited to
deliver the data to the sinks.

Starting from these considerations, we have developed SCAR (Sensor Context-Aware
Routing), a routing approach which uses the prediction techniques over context of the
sensor nodes to foresee which of the sensor neighbours are the best carriers for the data
messages. These mechanisms are inspired by the ones used in CAR.

In fact, our proposed solution relies on the analysis of the history of the movement pattern
of the nodes and their colocation with the sinks and on the evaluation of the current
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available resources of the sensors. In particular, each node evaluates its change rate
of connectivity, colocation with sinks, and battery level. The forecasted values of the
attributes describing the context are then combined to define a delivery probability P (si)
for each sensor si to deliver bundles to sinks.

While moving, the sensors will transfer their data to other sensors only if these have
a higher probability to deliver the data to sinks (i.e., they are better carriers). The
calculation of the delivery probability is local and it does not involve any distributed
computation. Nodes exchange information about their current delivery probability and
their available buffer space with the neighbours only periodically.

The delivery probability of the nodes also keeps into account the energy level of the
nodes, so to avoid that some best carriers become strong attractors and run into low
battery problems more quickly than others. However, as the battery level decreases, the
probability of being selected also decreases.

We are currently working on an implementation of SCAR for Contiki [Dunkels et al., 2004]
and we plan to deploy a prototype of the protocol for wildlife monitoring.

6.3.2 Improvement of the Community based Mobility Model

A number of features can be added to the mobility model presented in this paper in order
to increase its realism. Many researchers in the ad hoc network community have been
focussing on different aspects of this problem. Some of the techniques are orthogonal to
this work and can be integrated in our model. We plan to explore these refinements in the
future. More specifically, some of the most important improvements can be summarised
as follows:

• Non random assignment of the nodes to the geographical locations A pos-
sible improvement of the model may be the assignment of the communities based on
real mapping between groups of people and geographical locations (such as students
moving around lecture rooms and halls in a campus, etc.). An example of this kind
of mobility models is [Hsu et al., 2005]. In the current implementation, the place-
ment of the communities is random. This allows for multiple runs with different
automatically generated social networks and mobile scenarios. However, the current
implementation can be easily modified and replaced by a custom initialisation of the
simulation settings.

• Movement determined by pre-defined trails and presence of obstacles
Many existing mobility models are based on the definition of trails or paths that
are used to define the movements of the mobile nodes in the simulation scenarios.
Examples are the Manhattan model [Camp et al., 2002] or other models used to sim-

128



Chapter 6 6.3 Current Research Directions

ulate protocols and systems for vehicular ad hoc networks [Saha and Johnson, 2004].
In these models hosts move between different locations following precise paths that
represent roads or motorways. We plan to study the effects of the introduction of
pre-defined trails in our model, in particular to characterise the movements between
different communities (i.e., squares of the grid) with better accuracy. Instead of using
a straight line for reaching the goals, hosts may move on the shortest path between
the current point and the goal given a grid of roads constraining their movements.

Another improvement may consist in the insertion of obstacles that limit the radio
propagation in the system. For example, in [Jardosh et al., 2005] the authors propose
a modified version of the Random Mobility Model that allows for the insertion of
obstacles in the simulation space. The definition of obstacles can also be easily
integrated in our mobility model: this aspect is orthogonal with respect to the
mechanisms at the basis of our proposed model.

• Study of the connectivity of the resulting topology of the network We
plan to study the connectivity of the topology generated by the model also in re-
lation to the social networks given in input using results from graph theory stud-
ies [Bollobas, 2001]. We believe that some interesting results of graph theory can be
used to investigate properties of the network at run-time. For example, the detection
of the formation of one fully connected group in the system, a giant cluster (i.e.,
each pair of the graph is connected by a link) or several networks partitions, can
be done using spectral properties of the connectivity matrix of the mobile network.
This is the adjacency matrix of a graph where the mobile nodes are the vertices and
the radio links are the edges1.

6.3.3 Development of Models of Human Connectivity

We plan to continue our study on human connectivity, starting from the analysis of real
traces like the one collected by the CRAWDAD Project [Kotz and Henderson, 2005].

We believe that this is a very general problem that may have applications not only for
protocol testing and simulation but also for the design of novel systems that exploit the
properties of human connectivity patterns for the dissemination (and retrieval) of informa-
tion in mobile networks. A key point is the study of the factors that lead to the emergence
of power-law distributions in human networks [Newman, 2005].

1This adjacency matrix can be used for the calculation of the so-called n × n Laplace matrix which
indicates the difference between the node degree matrix and the adjacency matrix. The node degree matrix
is a diagonal matrix where each diagonal element of the node degree matrix counts the neighbours of the
respective node. If this matrix has only one eigenvalue equal to 0, the network is connected. If the number
of the eigenvalues equal to 0 is greater than 1, then the network is partitioned in disconnected groups. The
number of partitions is equal to the number of eigenvalues equal to 0.

129



Chapter 6 6.3 Current Research Directions

6.3.4 Traffic Models

Another problem in evaluating protocols for delay tolerant networks is the definition of
realistic traffic patterns. Social networks models may be used to design more realistic traffic
models for evaluating mobile systems, and in particular opportunistic ones. However, the
lack of traffic measurements is currently the main obstacle to the definition of such models.
In fact, synthetic traffic models have been successfully derived for fixed networks (see, for
example, the World Wide Web traffic model presented in [Crovella and Bestavros, 1997]),
but, unfortunately, the small number of deployments of delay tolerant systems limit the
availability of traces providing a quantitative representation of their usage. The other
problem is that the traces that can be extracted are usually very specific and, therefore,
can be used to model particular and not generic scenarios.

A possibility is to try to infer communication patterns from the use of other communication
devices such as mobile phone calls [Eagle and Pentland, 2006].

6.3.5 Predictive Publish/Subscribe based on CAR

Finally, the CAR protocol can be applied to support more complex communication
paradigms than simple unicast such as publish-subscribe systems [Costa and Picco, 2005].

The CAR point-to-point communication protocol could be easily extended to support 1-to-
N communication for event notification dissemination in intermittently connected mobile
ad hoc networks, by evaluating the probability of being colocated with the subscribers of a
certain topic. Another open question is the definition of a set of primitives for probabilistic
communication in mobile ad hoc networks. The idea is to provide a middleware layer based
on the CAR routing protocol for asynchronous communication in delay tolerant mobile sys-
tems [Musolesi et al., 2004], similarly to the primitives of EMMA [Musolesi et al., 2006], a
message oriented middleware implementing the JMS interface [Hapner et al., 2002] based
on the epidemic replication of messages.
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Estimation Models

A.1 Model with Trend Component

A more complex model can be obtained adding a trend component. We adopt a model
composed by the following equations:



Yt = Mt + Wt

Mt+1 = Mt + Bt + Vt

Bt+1 = Bt + Ut

where

Wt = WN(0, σ2
w)

Vt = WN(0, σ2
v)

Ut = WN(0, σ2
u)

In this model the state vector is the following
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Xt =

[
Mt

Bt

]

We can write

[
Mt+1

Bt+1

]
=

[
1 1
0 1

][
Mt

Bt

]
+

[
Vt

Ut

]

Setting

Vt =

[
Vt

Ut

]

we can also rewrite this equation in a more compact way

X̂t+1 =

[
1 1
0 1

]
X̂t + Vt

Using the same notation that we have adopted for the Kalman filter, in this case we have

Ft =

[
1 1
0 1

]

Gt =
[

1 0
]

Qt =

[
σ2

V 0
0 σ2

U

]

Rt = σ2
W

Therefore, we can rewrite the Kalman filter prediction equations for this model. Firstly,
we consider the initial conditions that, in this case, can be calculated using the following
formulae

X̂1 = P (X1|Y0)
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Ω1 = E((X1 − X̂1)(X1 − X̂1)T ) =

= E

( [
M1 − M̂1

B1 − B̂1

] [
M1 − M̂1 B1 − B̂1

] )
=

= E

(
(M1 − M̂1)(M1 − M̂1) (M1 − M̂1)(B1 − B̂1)
(M1 − M̂1)(B1 − B̂1) (B1 − B̂1)(B1 − B̂1)

)

With respect to the recursive equations of the filter we obtain

X̂t+1 =

[
M̂t+1

B̂t+1

]
=

=

[
1 1
0 1

][
M̂t

B̂t

]
+ ∆−1

t (Yt −Mt)

[
ΘMt

ΘBt

]
=

=

[
M̂t + B̂t

B̂t

]
+ ∆−1

t (Yt −Mt)

[
ΘMt

ΘBt

]

that can be decomposed as follows

M̂t+1 = M̂t + B̂t + ∆−1
t (Yt −Mt)ΘMt

B̂t+1 = B̂t + ∆−1
t (Yt −Bt)ΘBt

with

∆t =
[

1 0
] [ Ω11 Ω12

Ω21 Ω22

][
1
0

]
+
[
σ2

w

]
= [Ω11] +

[
σ2

w

]

A.2 Model with Trend and Seasonal Components

It is possible to derive a more general model, adding another component in order to allow
consideration of possible seasonal behaviour in the time series. Therefore, we introduce
the term St in the observation equation, which can be rewritten as follows

Yt = Mt + Bt + St + Wt

To define this seasonal component we have to analyse its properties. In general, we consider
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a time series γt representing a seasonal component such that

γt+d = γt

and

d∑
i=1

γt = 0

Therefore, it is possible to derive the following expression for the determination of γt+1

γt+1 = −γt − ...− γt−d+2 t = 1, 2, ...

A more general expression of the seasonal component St allowing for random deviations
from strict periodicity is obtained by adding a term Vt to the right hand side of the previous
expression

St+1 = −St − ...− St−d+2 + Vt t = 1, 2, ..

Considering only the seasonal effect, in order to obtain a state space representation, we
introduce the (d− 1)-dimensional state vector Xt

Xt =
[

St St−1 ... St−d+2

]T
The series St is given by the observation equation

St =
[

1 0 0 0 ... 0
]
Xt t = 1, 2, ...

where Xt satisfies the state equation

Xt+1 = FXt + Vt t = 1, 2, ...

with

Vt =
[

Zt 0 0 0 ... 0
]T

134



Appendix A A.2 Model with Trend and Seasonal Components

and

F =


−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


To derive a prediction state space model with a trend and a seasonal components, it is
sufficient to add this state equation to that which we have discussed in the previous section.
In other words, we have to consider the following state vectors

X1
t =

[
Mt Bt

]T

X2
t =

[
St St−1 ... St−d+2

]T
Defining

Xt =

[
X1

t

X2
t

]

we can derive a general form of the state equation that can be used to take in consideration
both trend and seasonal components as follows

Xt = FXt + Vt

with

Xt =
[

Mt Bt St St−1 ... St−d+2

]T
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F =



1 1 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 −1 −1 · · · −1 −1
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0



Vt =
[

Vt Ut Zt 0 ... 0
]T

The observation equation will be the following

Yt =
[

1 0 1 0 ... 0
]
Xt + Wt
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