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Summary

In recent years the number of smartphone users has been increasing at an unprecedented

rate. Smartphones are carried by billions of people every day, and are equipped with

many sensors such as accelerometer, microphone, and GPS. These sensors can be used to

capture various social and behavioural aspects of the users, which we refer to as social

sensing. An important application area of social sensing is the support to experimental

social psychology. However, smartphones have limited battery and processing power,

which pose challenges to the capture of data from the sensors and to data processing. In

this dissertation we present techniques to efficiently capture and process data from the

smartphone sensors and show that smartphones can be effective tools to perform social

sensing and to conduct social psychological studies.

The sensors embedded in the phone have to be sampled often in order to capture the

user’s behaviour. This, however, may lead to faster depletion of the battery. If the

sensors are sampled at a slower rate, then it may not be possible to accurately capture

the user’s behaviour. To meet the challenges posed by phone sensing, we design three

adaptive schemes. First, we design an adaptive sampling framework that samples the

data from the sensors considering the user’s context to conserve energy, while providing

the required accuracy to the applications. Second, to further increase the energy efficiency

of capturing data, we design a framework that exploits the sensors in buildings and

dynamically distributes the sensing tasks between the local phone and the infrastructure

sensors. When the data from the sensors are captured, they need to be classified to derive

high-level inferences. Third, to efficiently process the data we design a computation

offloading scheme that decides whether to compute the classification tasks locally on the

phone or remotely in the cloud by considering various dimensions such as energy, latency,

and data traffic.

We then demonstrate the ability of smartphones to perform social sensing and to con-

duct social psychological studies by designing and deploying three applications that use

the services of the proposed schemes. First, we present EmotionSense, a passive moni-

toring application that captures the user’s emotions and speech patterns automatically

by using the sensors in off-the-shelf mobile phones. Second, we present WorkSense, a

workplace behavioural monitoring application that can detect the collaboration and in-

teraction patterns of the workers. Third, we present SociableSense, a persuasive and

behavioural monitoring application that aims to foster interaction and relations between

the users at the workplace. We also report on the deployment of these applications in

real environments.
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1
Introduction

1.1 Smartphones

Until a few years ago mobile phones were mainly used as communication devices for phone

calls and Short Message Service (SMS) messages. They typically had a screen, keyboard,

and Global System for Mobile Communications (GSM) radio, and most of the emphasis

was on calls and messages. All this seems to have changed with the advent of phones

like the Nokia N95, Blackberry, and Apple iPhone, some of the first consumer-oriented

smartphones. The Oxford English Dictionary defines a smartphone as “a mobile phone

that is able to perform many of the functions of a computer, typically having a relatively

large screen and an operating system capable of running general-purpose applications”.

A smartphone is a mobile phone but has many more advanced capabilities like powerful

CPUs, large memory, sensors like accelerometer, proximity, Global Positioning System

(GPS) etc., and advanced connectivity options like Bluetooth, Wi-Fi, and mobile data

network. The first generation Apple iPhone, for example, included many advanced con-

nectivity features and sensors such as EDGE (Enhanced Data rates for GSM Evolution)

and Wi-Fi connectivity, accelerometer, proximity, and ambient light sensors. The sensors

were included to enhance user experience (for example, rotating the screen by detecting

when the user changes the position of the phone using the accelerometer sensor) and

to extend battery life (for example, automatic adjustment of brightness using the light

sensor). Today, there are many smartphone vendors like Google, Microsoft, Research In

Motion (RIM), Sony, and Samsung, and there are many smartphone operating systems

1
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Figure 1.1: Smartphone and personal computer ship-

ment statistics. (Source: Canalys 2012)
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Figure 1.2: Growth rates 2011/10.

(Source: Canalys 2012)

available including Apple iOS, Google Android, RIM Blackberry OS, Windows Mobile,

and Nokia Symbian OS. The availability of so many options has led to the unprecedented

growth of the smartphone market around the world.

The number of smartphone users has been growing exponentially so that they now have

surpassed the number of personal computers: vendors shipped 488 million smartphones

and 415 million personal computers in 2011 [CAN11]. Further, smartphone shipments in

2011 increased by 62% over those in 2010, while personal computer shipments increased

only by 15% in 2011 above the 2010 shipments (Figures 1.1 and 1.2). This is a clear

indication of a dramatic shift in the way people have been using computing devices. Fur-

thermore, with the advent of application stores such as Apple App Store 1, Google Play 2,

and Windows Marketplace 3, it is easy for users to explore and download applications. For

example, it was reported in [COS12] that 82% of the time people spent on mobile media

is via mobile applications. Due to their many advanced features and utilities smartphones

have become part of the everyday life of billions of people.

The proliferation of smartphones has given a push to their use in many domains, spanning

a variety of fields. Examples include navigation systems like maps [GMP], entertainment

systems like gaming [ZCCM12], social networking services like Facebook 4 and Twitter 5,

product recommendation systems [vRGMF09], social psychological systems [FCC+07],

and human mobility prediction systems [DGP12]. Further, deploying applications in

1http://www.apple.com/uk/iphone/from-the-app-store/
2https://play.google.com/store
3http://www.windowsphone.com/en-US/marketplace
4http://www.facebook.com/
5https://twitter.com/

2
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the mobile user market has become easier for the application providers due to online

application stores: once an application is ready it is only a few clicks away from being

deployed to all the users’ phones through these markets.

In the last few years the rapid adoption of smartphones, combined with their sens-

ing, processing, and communication capabilities has also attracted considerable attention

from the research community. Researchers have shown the potential of smartphones

through many innovative systems to: track the physical activity of users [PPC+12],

provide real-time trip information to passengers with the expected fare and trip dura-

tion [BNJ11], share and query global information [GLC+08], automatically tag digital

images [QBRCN11] by sensing people and context, and enhance the experience of users

in multiplayer games [ZCCM12].

1.2 Smartphone Sensing

Smartphone sensing is the process of capturing data from the sensors embedded in the

phone. There are many sensors in modern smartphones such as the Samsung Galaxy SII

or the Apple iPhone 4S: accelerometer, compass, GPS, microphone, proximity, to name

a few. If we also consider the radios in the phone to be sensors (as they can also be used

to capture the user’s data), then the list increases: Bluetooth, GSM, Wi-Fi, NFC (Near

Field Communication). The data captured from smartphones can be processed to draw

inferences about the user such as about physical activity, interaction, and location. This

typically involves extracting characterising features from the data and then classification

to draw inferences. The flow of the process is as shown in the following figure.

!
!
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"#$%#!
&%#$%'(!)*!(+,!-+.+/!

!
0('1#%%!

&(+,!-+.+!)*!#2.(+1.!
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!

899561+:'$%!

The application of smartphones in many fields is enhanced by the addition of sensors.

Researchers have devised innovative ways of using these sensors, such as location-based

reminders [LFR+06], automatically updating the user’s social network status with his/her

current activity [MLF+08], fall detection for the elderly [YKE+10], and enhancing user

experience in games [ZCCM12]. The CenceMe system [MLF+08] uses the accelerome-

ter sensor in the mobile phone for activity recognition, and the microphone sensor to

detect conversations. Many phone sensing research systems have also been proposed

recently [MLF+08, GLC+08, LBBP+11, ACRC09].

3
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1.3 Smartphone Sensing for Social Psychology

Smartphones can be used to capture a variety of behaviour and social aspects of the

user: the microphone can be used to detect whether the user is speaking [LBBP+11],

the Bluetooth radio can be used to determine the users in proximity and thereby detect

co-location, and GPS to detect the location of the user. By combining GPS co-ordinates

with data from other sensors, the location can be further classified into categories like cafe,

restaurant etc. [CLL+12]. We refer to the sensing of various behavioural and social aspects

of users through smartphones as Social Sensing . One of the important research areas in

which smartphone social sensing can be applied in is the social psychological sciences. In

this dissertation we explore phone sensing in the conduct of social psychological research.

Social psychological sciences deal with the study of general behavioural and interaction

patterns of users. They involve studying many aspects of users, including workplace be-

haviour, behavioural differences in a variety of locations (home, work etc.) and across

social groups, intervention and feedback mechanisms and their effectiveness, and emo-

tional patterns. Generations of social psychologists have tried to answer the following

questions using methods such as direct observation [KSFS05], self-reporting [Tou99], and

experience sampling [FCC+07] involving social experiments on human subjects.

• Interactions and emotions. How does location affect interaction? Do people

interact more at home or at work? What emotions are typically exhibited? How does

the frequency of interaction patterns and emotions vary? Can we measure emotions

quantitatively? What is the correlation of emotion with location and activity or with

interaction? How do speech patterns in a group of users vary over a given period?

• Workplace. What are the interaction and co-location patterns of the users in office

or corporate environments? Do people interact more in personal office spaces or in

common spaces like coffee rooms? Which workgroup members socialise with one

another and why? How do collaboration patterns of workgroups evolve? Do these

collaboration patterns differ significantly from those specified in project plans?

• Relations and feedback. Are users aware of their relations with their colleagues/-

family/friends? And do they make an effort to revive social links? Is the behaviour

of users significantly different at home and at work? What is the effect of colocation

on these interaction patterns? If alerted to the risk of fading relations (e.g., with

someone they have not talked to in a while), will they respond to that? Who attains

social status in family/friend/work groups? What role does positive and negative

affect play in interactions?

The current research methods used to answer these questions make little use of technol-

ogy. In addition to traditional self-reports, social scientists may also rely on one-time

4
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behavioural observation of the participants in laboratory settings [KSFS05]. Such meth-

ods may be useful, but the fact that they are based on behaviour in a lab raises concerns

about their generalisability to non-lab contexts. Recently researchers have begun to use

new methods in an effort to examine behaviour in everyday life. Daily diary [BDR03] and

experience sampling methods [FCC+07, BB01, FMPP07], for example, ask participants

to report the social events and psychological states they experienced either at the end of

the day or periodically during the day. Another method [MP01] has used devices that

take audio recordings (or snapshots) of participants’ daily lives every few minutes, which

are later transcribed and coded by teams of researchers. These methods have advantages

over the traditional survey methods, but they are nevertheless not free from problems as-

sociated with forgetting events that took place during the day, and carrying an additional

obtrusive electronic device.

Currently, social psychology studies do not use modern sensing technology to its full

potential. Cameras and microphones have been used in the past, but studies have mainly

been performed through direct observation [KSFS05] and questionnaires [BDR03], at

the expense of the researcher’s time. Most research in the social sciences, and social

psychology in particular, relies almost entirely on self-reporting methods [MP01] and

one-time behavioural observation of individuals in a laboratory. In social studies “at

large”, participants are either asked every few hours to complete a questionnaire on their

location, activity, and social interactions, or, in more technology-supported studies, they

carry a personal digital assistant that takes audio recordings every 20 minutes. These are

then coded on several dimensions by teams of researchers. Such methods are better than

one-time assessments, but they can be intrusive and labour-intensive, and are also found

to be biased towards pleasant experiences [FMPP07, PR91].

A common class of biases concerns social desirability, or the tendency of people to re-

spond to survey items in ways that present them in a favourable light. People may also

engage in socially desirable responding because they lack sufficient insight or knowledge

to accurately respond to survey items [PR91]. Even if they are performed in situ (as in

the case of MyExperience [FCC+07]), self-reports, as they are used in daily diary studies,

are especially prone to errors of memory. Indeed, several studies have shown that retro-

spective reports of thoughts, feelings and behaviour are unreliable and biased [FMPP07].

For instance, there is evidence that people behave consistently over a period of time and

over a variety of situations [MGP06], that individuals exhibit mood and emotions similar

to those of people with whom they interact most frequently [ZAT+05], and that most

social activity of individuals is effectively neutral [CW88].

Smartphone sensing technology is capable of bringing a new perspective to the design of

social psychology experiments, both in terms of accuracy of results of the social studies

and from a practical point of view. There are several advantages of using mobile phones

in conducting social studies.

5
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• Ubiquity. Smartphones are already carried by billions of people across the world.

It was reported [ENG12] that over 50% of US mobile users own smartphones. More

importantly, they are an integral part of their everyday lives and a considerable

amount of time is spent interacting through them. For example, it was reported

in [DBB11] that Americans spend 2.7 hours per day socialising on their mobile

phone.

• Unobtrusiveness. Smartphones are unobtrusive unlike purpose-built devices that

must be carried in the experiments and are generally a burden to the participants.

Smartphones are already carried by users, and their presence is likely to be “for-

gotten” by them, leading to accurate observation of spontaneous behaviour. This is

especially true when the sensing is performed passively, without requiring any input

from the user.

• Sensor-richness. Due to the presence of many sensors in mobile phones such

as accelerometer (can be used for activity recognition), microphone (speaker, con-

versation detection), and GPS (location), the behaviour of users can be captured

accurately and automatically.

• Powerful processors. Mobile phones are equipped with powerful processors, for

example, the Samsung Galaxy SIII is equipped with a Quad-core 1.4 GHz Cortex-A9

processor. It is feasible, therefore, to perform powerful classification and inference

tasks locally on the phone without using the user’s data plan to transmit the data

elsewhere for processing.

• Cloud connectivity. Even though modern mobile phones are equipped with pow-

erful processors, some classification tasks [KAH+12, CBC+10] may require high-end

processing power that is available in data-centres or cloud farms. This type of task

can be performed by transmitting the data to the cloud using high-speed connectiv-

ity options like Wi-Fi and 3G/4G available on mobile phones. Further, the accuracy

of some classification tasks such as speech recognition (e.g., Siri on the iPhone 4S6)

can be improved by using the “dictionaries” or other data available in the remote

servers.

• Ease of deployment. It is easy to deploy social applications on smartphones,

given the availability of online application stores. More importantly, since the user

base of some of these systems is very large7, there is an opportunity to conduct

experiments with a large number of users, a distant possibility a few years back.

6http://www.apple.com/iphone/features/siri.html
7It was reported in the Google I/O developer conference 2012 that 400 million Android devices have

now been activated and one million new Android devices are activated each day [BGR12].

6
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Figure 1.3: Percentage increase of resource capacities of the Samsung Galaxy SII mobile

phone compared to the Samsung Galaxy SI.

1.4 Smartphones: Limitations and Challenges

Even though mobile phones are an attractive platform for conducting social psychological

studies, they have limitations and pose many challenges, which we describe in this section.

1.4.1 Battery Limitations

Mobile phones have limited battery capacity and therefore energy should be expended

judiciously by the applications. Moreover, the battery capacity of mobile phones has not

been increasing at the same rate as the other components of phones like sensors, CPUs,

memory etc. Figure 1.3 shows the percentage increase in resource capacities between two

consecutive releases of a widely used smartphone, the Samsung Galaxy SI released in 2010

and the Samsung Galaxy SII released in 2011. We can observe that the memory and the

number of CPU cores have doubled, and the camera resolution has increased by 60%,

however, the battery capacity has increased by only 10% and stand-by life by only 6%.

Moreover, Figure 1.4 shows that the energy density of the lithium-ion type of battery,

which is the most commonly used in mobile phones, increased by only 2.3x from 1991

to 2005, whereas the increase in CPU speed during the same period is estimated to be

more than 100x [INT08]. This means that the battery should be made larger in order to

increase its capacity. However, since mobile phones are portable devices, battery size is

an important consideration in their design.

The lithium-ion battery trends and the higher rates of energy consumption in mobile

sensing applications (due to the powering of sensors) than in normal applications, motivate

the design of power efficient techniques to perform phone sensing. Some research has been

conducted in this sense [Nat12, KLJ+08, WLA+09].

7
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Figure 1.4: Increase in the energy density of Lithium-Ion battery from 1991 to 2005

(Source: http://batteryuniversity.com).

1.4.2 Processor Speeds

Although some modern mobile phones are equipped with many sensors, high-frequency

and multicore processors, and large amount of memory, this is not the case with all smart-

phones. A large number of mobile phones have much lesser processing power and memory.

For example, the HTC Wildfire, a top-selling basic smartphone, has fewer sensors, a sin-

gle core 528 MHz processor and 384 MB memory, but the Samsung Galaxy SIII boasts

a Quad-core 1.4 GHz processor and 1GB RAM. Accordingly, in order for mobile appli-

cations to scale to a large number of users using different phone models, social sensing

applications based on mobile phones may need to exploit resources outside the phones,

like cloud processing and using the sensors present in the infrastructure (for example,

door, motion sensors) to provide the same level of service to all users. Exploiting remote

processing and sensing resources also helps in reducing the phone’s energy consumption

by avoiding local phone processing and sensing.

1.4.3 Challenges

In addition to the battery and processing limitations there are also several other challenges

posed by mobile phones, which need to be addressed to build social sensing systems.

• Efficiency of sensor sampling. Considering the battery limitations of mobile

phones, the sensor sampling to capture data from the sensors of the phone cannot be

performed continuously, as this will drain the battery rapidly. However, conservative

sampling leads to the loss of valuable behavioural data and thus the behaviour of

users may not be modelled accurately. Smart sampling schemes such as adaptive

8



CHAPTER 1. INTRODUCTION

sampling that adapt the sampling to the user’s context and achieve the required

accuracy while conserving energy need to be designed.

• Exploiting sensing infrastructure. Although adaptive sensing schemes may

help in reducing power consumption, they still need to spend energy in capturing

the data (through local phone sensing). Modern buildings are instrumented with

a variety of sensors such as RFID access control systems and light sensors. By of-

floading phone sensing tasks to infrastructure of sensors in smart-buildings, local

phone sensing can be avoided thereby further increasing the energy savings. How-

ever, remote sensing imposes an increased cost in the form of network traffic. Thus,

dynamic techniques need to be designed to exploit the sensors in the infrastructure

of buildings considering the mobile patterns, sensing and network cost. In order

to utilise the sensing infrastructure, mobile phones should be able to discover the

services and sensor capabilities. Service discovery is a major challenge and there

have been some works to this end [ZMN05, Dar10]. Various technologies have been

used for achieving service discovery and advertisements such as Jini network tech-

nology, Microsoft’s Universal Plug and Play (UPnP), and Service Location Protocol

(SLP) [Ric00].

• Accuracy of classifiers. The sensors in mobile phones are not designed to capture

the behaviour of users. The microphone sensor, for example, is designed for phone

calls and not necessarily for speaker identification or mood recognition. Therefore,

efficient and accurate classifiers have to be developed in order that accurate infer-

ences may be inferred using raw data from the potentially inaccurate sensors of the

mobile phone.

• Computation offloading. Certain classifiers such as for speaker identification

[LBBP+11] or image/face recognition [CBC+10] are computationally intensive and

will consume a large amount of energy if computed locally on the phone, as the

processing takes a long time. Further, techniques like Natural Language Processing

(NLP) can be applied effectively only with large dictionaries, which are better stored

in the cloud. Local phone and cloud computing resources should thus be exploited

to process the classification tasks effectively. However, use of cloud resources con-

sumes the user’s data plan and there are generally limits to the amount of mobile

network data that can be used by the user in a calendar month. Moreover, wireless

transmission of the data also consumes energy, so intelligent techniques should be

developed to exploit the local phone and cloud resources while considering various

dimensions like data plans, energy, and accuracy.

• Privacy. The data captured from the phone sensors is sensitive to privacy, for

example, the voice data recorded for the speaker identification and the location

9
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captured from the GPS sensor. Therefore, privacy aspects of the sensor data should

be considered in phone sensing systems. Microphone recordings can be deleted after

extracting the essential features from the them. Bluetooth identifiers can be hashed

using one-way Secure Hash Algorithms such as SHA-256. There have been some

works on the privacy aspects of smartphones such as preserving the anonymity

of sensor reports without reducing the precision of location data [TKFH06] and

privacy-aware architecture for pervasive applications [CKK+08].

• Usefulness of applications. In order to motivate users to participate in social

studies, the applications should be useful. Therefore, using phone sensor data and

inferences, social applications need to be built that not only provide useful data to

the social scientists, but also provide value to users so that they continue to use the

applications and participate in the experiments.

1.5 Thesis and its Substantiation

In the previous sections we discussed the advantages of using mobile sensing to capture

the behaviour of users and conduct experimental social psychological studies, and we

presented the limitations and challenges posed by this use of mobile phones.

Our thesis is that smartphone sensing can be used to automatically capture the be-

havioural and social aspects of the user, and can be an effective tool in the conduct

of social studies.

Using smartphones in social psychology research involves i) designing and building soft-

ware components on phones that can capture the user’s behavioural data, ii) classify and

draw inferences about behaviour, and iii) model the user’s behaviour using these inferences

and support social applications. Each of these components poses research questions that

need answering to support smartphones based social sensing (Figure 1.5). In particular,

the research questions posed by these components are as follows:

• Research Question 1. How can we accurately capture raw data from the sensors

in smartphones in an energy-efficient way?

• Research Question 2. How can we efficiently process data captured through

smartphone sensors to draw inferences about the user?

• Research Question 3. In what ways can smartphones be helpful in the conduct

of social studies?
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Figure 1.5: Components of social sensing systems.

In support of our thesis and to answer the above questions we explore techniques and

models that enable efficient support of social sensing on smartphones (to answer Re-

search Questions 1 & 2); Then, utilising these techniques, we design and deploy social

psychological applications in real environments to demonstrate the usefulness of smart-

phones in the conduct of social studies (to answer Research Question 3). In particular,

we explore the following: First, we design an adaptive sensor sampling framework that

adapts the sensor data capture process to the user’s context and achieves energy savings,

while maintaining the level of accuracy required for the applications to be functional. Sec-

ond, to save energy further, we design and evaluate a sensor task offloading scheme that

efficiently uses both the local phone sensors and those in building infrastructure to achieve

energy savings without compromising the accuracy of the system (We answer Research

Question 1 by designing the adaptive sensing and sensing offloading schemes). Third, we

design a computation offloading scheme that exploits local phone processing and cloud

resources while considering the requirements in terms of energy, latency, and data traf-

fic (We answer Research Question 2 through the design of the computation offloading

scheme). Fourth, using these services, we design and deploy three social psychological

applications to demonstrate the usefulness of smartphones in conducting social studies

(We answer Research Question 3 using the findings from these deployments).

1.6 Contributions and Chapter Outlines

This dissertation explores the use of smartphones in performing social sensing and con-

ducting social psychological studies. Figure 1.6 shows a high-level mapping between the

chapters and the problems addressed. Our main contributions and chapter outlines are

as follows:

• [Contribution 1] Adaptive Sensor Sampling.

Sensor sampling is one of the fundamental components of any social sensing system

that aims to capture data from mobile phone sensors. Sensors embedded in the

mobile phone have to be sampled often in order to capture all the user’s context
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Research	  Ques/on	  3	  
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Figure 1.6: Chapter outlines and the proposed schemes.

events. This, however, leads to faster depletion of the phone’s battery and may also

discourage users from using these resource-intensive sensing applications as their

first priority is to make/receive phone calls or send/receive messages. On the other

hand, if the sensors are sampled at a slower rate, then the system may capture only

a subset of the user’s context events.

Sensor sampling schemes that achieve energy savings by adjusting (or lowering) the

duty cycling rate of a sensor may not capture all context events. Therefore, we also

need to measure the accuracy of sampling schemes to understand their performance.

We use the following terms in our definition of accuracy:

– Context events. A context event is an event inferred from data sensed by a

sensor, for example, in case of the phone’s accelerometer sensor, it could be a

“user stationary” or “user moving” event inferred using a movement detection

classifier. We define total context events as the total number of events that

can be inferred from a sensor data stream for a given length of time.

– Interesting events. A system might detect many types of context events

using a sensor, however, not all of these events might be interesting to the given

application. We define an interesting event as an event that is inferred by the

given classifier and that is of interest to the application. E.g., considering the

accelerometer sensor stream and a movement detection classifier, an application

might only be interested in “user moving” events. We define total interesting

events as the total number of events that are of interest to the application that

can be inferred from a sensor stream for a given length of time.
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We define the accuracy of a sensor sampling scheme as the number of interesting

events detected by the scheme divided by the total number of interesting events oc-

curred in the sensor stream for a given length of time. This is same as true-positive

rate considering interesting events as positive cases. For example, considering a

movement classifier based on the accelerometer sensor and assuming that an appli-

cation is interested in capturing “user moving” events, if n “user moving” events

have occurred in a given time period and if the system has detected n′ of them,

then the accuracy during this period is calculated as (n′/n). Since we only consider

interesting events (true-positive rate) for the measurement of accuracy, a problem is

that a scheme that reports events continuously would achieve high accuracy but may

not be efficient to use on mobile phones. Even though we do not explicitly measure

the number of uninteresting events detected, the proposed sampling schemes are all

designed to minimise the number of event detections that are not of interest to the

application. Further, another limitation is that the accuracy reported for a scheme

also depends on the classification accuracy (for example, accuracy of a movement

detection classifier in reporting “moving” and “stationary” events), i.e., considering

the possible inaccuracies in classification, the accuracy of a scheme might decrease

or increase due to errors in the classification process. Therefore, the performance

reported by using this metric should only be viewed along with the type of context

events and the classifiers considered.

We design an adaptive sampling technique that balances the energy-accuracy trade-

offs through the use of linear reward-inaction learning [BH75, KLM96] that is based

on the theory of learning automata [NT89]. The adaptive sampling scheme adjusts

the sampling rate of the sensors dynamically based on the user’s context in terms

of events observed (interesting or not), and thereby achieves energy savings without

compromising the accuracy of the system, i.e., the sensors are sampled at a high rate

when there are interesting events observed and at a low rate when there are no events

of interest. We evaluate the adaptive scheme by comparing it with a continuous

sensing scheme and several function based sampling schemes. We provide a detailed

description and evaluation of this scheme in Chapter 3.

• [Contribution 2] Sensing Offloading.

Although adaptive sensing reduces the energy consumption of the sampling process,

energy still needs to be spent for local sensing to capture the user’s data. An

approach that can further increase energy savings is to offload the sensing tasks

to sensors in building infrastructure. Most modern urban buildings are already

instrumented with sensors such as Radio Frequency Identification (RFID) access

control systems. There is also an increasing trend to instrument buildings with

a variety of sensors such as Passive Infrared (PIR) sensors, door sensors, and light

sensors. However, we note that a considerable number of buildings may not yet have
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sensing infrastructure and in this case the phone can depend on its built-in sensors.

Phone applications can exploit the presence of such infrastructure if available to

reduce the energy impact of capturing social activities.

Allowing mobile applications to interact with infrastructure sensors whenever they

are available provides an opportunity to design social sensing systems that can

maintain accurate sensing using both the phone and infrastructure sensors without

compromising the battery life. We therefore design a sensing offloading scheme that

efficiently utilises the local phone and infrastructure sensors considering the phone

sensing cost, the cost of communication between the phone and the sensing infras-

tructure, and the dynamic mobility patterns of the user. The presence of sensing

technologies within most modern urban buildings offers frequent opportunities to

apply this technique. For example, by relying on a building’s RFID access control

system, a phone application can suspend any localisation mechanisms on the phone

while the user remains in the same room. In situations where appropriate sensors

are not available in the infrastructure, the phone can fall back on traditional phone

sensing techniques. Given the typical living patterns of most users, where a vast

proportion of their daily lives is spent at their home or in a working environment,

the sensing offloading approach may potentially achieve significant energy savings,

thus further enhancing the acceptability of operating social sensing applications on

mobile devices. In Chapter 4 we explore the offloading of sensing to infrastructure

to achieve energy savings without compromising the accuracy of the applications.

We also show that when sensing offloading is used along with the adaptive sensing

scheme, energy savings are further increased.

• [Contribution 3] Computation Offloading.

Once the data is sampled using the local phone and remote sensors it needs to

be processed in order that high level inferences may be derived. This processing

might be trivial in terms of resource consumption for some classification tasks, like

detecting whether a person is stationary or moving, and intensive for some other

tasks, like speaker identification from the microphone data or image recognition

from the camera sensing. Mobile phones have limited computing power but they can

depend on remote computation performed on back-end servers such as cloud farms.

However, in general, data transmission is costly in terms of energy consumption

and not all users have unlimited data plans. The allocation of the execution of

computational tasks is thus vital in such systems.

We design a computation distribution scheme based on multi-criteria decision the-

ory [KR76] that decides whether to perform the computation locally on the phone

or remotely in the cloud by considering various dimensions such as energy, latency,

and data sent over the network. This scheme smartly distributes the classification

tasks among local and cloud resources while balancing energy, latency, and traffic
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trade-offs. We also design a rule-based framework to dynamically adapt the be-

haviour of the scheme with respect to changes in the mobile phone resources (like

battery charge/discharge cycles, user’s data plan running out of allowance). We note

that when an intensive computation task is offloaded to the cloud, it may result in

energy savings on the phone but it will consume energy on the cloud.

Throughout this dissertation, when we mention energy saving, the saving is on the

mobile phone and not on the overall energy of both the mobile phone and cloud

processing. We present the computation distribution scheme and its evaluation in

Chapter 5.

• [Contribution 4] Social Psychology Applications.

Once the adaptive sensor sampling, the sensing offloading, and the computation

offloading components are in place, various social applications can be built using

these services. We design and deploy three example social sensing systems: a passive

behavioural sensing application, a collaboration and interaction detection applica-

tion for the workplace, and an application that provides realtime feedback to users,

to demonstrate the kind of data that can be collected and the analysis that can be

performed using mobile phones and to show the advantages of the proposed schemes

(Chapter 6).

– Example Application 1: EmotionSense

EmotionSense is a framework for collecting data in human interaction studies

based on mobile phones. EmotionSense infers data on participants’ emotions

as well as proximity and patterns of conversation by processing the outputs

from the sensors of off-the-shelf smartphones. Using this example application,

we show that mobile phones can be used to understand the correlation and

impact of interactions and activities on the emotions and behaviour of indi-

viduals. The key components include two subsystems for emotion detection

and speaker recognition built on a mobile phone platform based on the Gaus-

sian Mixture Model (GMM) [SRL03]. EmotionSense automatically identifies

speakers and recognises emotions by means of classifiers running locally on off-

the-shelf mobile phones. We evaluated the EmotionSense application through

a real deployment involving 18 users over 10 days.

– Example Application 2: WorkSense

WorkSense is a social sensing application that utilises the sensing offloading

scheme to achieve accurate sensing of social activities at the workplace. Using

this example application, we show that mobile phones can be used to auto-

matically detect the social interactions of users at the workplace by tracking

formal and informal meetings during their daily routines and to infer how social

interactions may affect their performance. WorkSense is able to detect various
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meetings and collaboration patterns of users at the workplace. We evaluated

the WorkSense application with a real deployment within our research institu-

tion for about a month.

– Example Application 3: SociableSense

SociableSense is another example social sensing application that aims to pro-

vide realtime feedback to users to help them in fostering their interactions and

improving their relations with colleagues. The application utilises the services

of adaptive sampling and computation offloading schemes. The social feed-

back component in the application estimates the sociability of users (i.e., a

quantitative measure of the quality of their relations) based on the interaction

and colocation patterns extracted from the sensed data at run-time, and pro-

vides them with feedback on their sociability and strength of relations with

colleagues. It also alerts users to opportunities to interact. In order to demon-

strate the usefulness of SociableSense to the social scientists and participants,

we conducted a social psychological study in an office environment where 10

participants carried mobile phones for two working weeks.

Contributions 1 and 2 are intended to answer Research Question 1, Contribution 3 is

intended to answer Research Question 2, and Contribution 4 to answer Research Question

3. Many research questions in the field of social sciences can be further explored and

validated using mobile phone sensing technology, given that the phones are: ubiquitous,

unobtrusive, and sensor-rich devices. Research in mobile social sensing could also be

further explored, given the findings in this dissertation. We shall present them at the end

of the dissertation, in Chapter 7.

1.7 Publications

During my Ph.D., I have worked on the following publications that include workshop and

conference papers, a book chapter, a demo paper, and a paper under review.

1.7.1 Publications Related to this Dissertation.

Conference Papers

• [LRMR13] Neal Lathia, Kiran K. Rachuri, Cecilia Mascolo, and Peter J. Rentfrow,

Contextual Dissonance: Design Bias in Sensor-Based Experience Sampling Meth-

ods, in Proceedings of the ACM International Joint Conference on Pervasive and

Ubiquitous Computing (ACM UbiComp’13), Zurich, Switzerland, 2013.

16



CHAPTER 1. INTRODUCTION

• [REL+13] Kiran K. Rachuri, Christos Efstratiou, Ilias Leontiadis, Cecilia Mascolo,

and Peter Jason Rentfrow, METIS: Exploring Mobile Phone Sensing Offloading

for Efficiently Supporting Social Sensing Applications, in Proceedings of the 11th

IEEE Pervasive Computing and Communication Conference (IEEE PerCom’13),

San Diego, California, USA, Mar, 2013. [Won the Mark Weiser Best Paper

Award]

• [RMMR11] Kiran K. Rachuri, Cecilia Mascolo, Mirco Musolesi, and Peter Jason

Rentfrow, SociableSense: Exploring the Trade-offs of Adaptive Sampling and Com-

putation Offloading for Social Sensing, in Proceedings of the 17th Annual Interna-

tional Conference on Mobile Computing and Networking (ACM MobiCom’11), Las

Vegas, USA, 2011.

• [RMM+10b] Kiran K. Rachuri, Mirco Musolesi, Cecilia Mascolo, Peter Jason Rent-

frow, C. Longworth, and A. Aucinas, EmotionSense: A Mobile Phones based Adap-

tive Platform for Experimental Social Psychology Research, in Proceedings of the

12th ACM International Conference on Ubiquitous Computing (ACM UbiComp’10),

Copenhagen, Denmark, 2010.

Workshop Papers

• [RM11] Kiran K. Rachuri and Cecilia Mascolo, Smart Phone based Systems for

Social Psychological Research: Challenges and Design Guidelines, in Proceedings of

the 3rd International Workshop on Wireless of the Students, by the Students, and

for the Students (ACM S3’11, co-located with ACM MobiCom 2011), Las Vegas,

USA, 2011.

• [RMM10a] Kiran K. Rachuri, Mirco Musolesi, and Cecilia Mascolo, Energy-Accuracy

Trade-offs in Querying Sensor Data for Continuous Sensing Mobile Systems, in Pro-

ceedings of the Mobile Context Awareness: Capabilities, Challenges and Applica-

tions Workshop (co-located with ACM UbiComp 2010). Copenhagen, Denmark,

2010.

Book Chapters/Magazines

• [LPR+13] Neal Lathia, Veljko Pejovic, Kiran K. Rachuri, Cecilia Mascolo, Mirco

Musolesi, and Peter J. Rentfrow, Smartphones for Large-scale Behaviour Change

Interventions, accepted for publication in IEEE Pervasive Computing, Special Issue

- Understanding and Changing Behavior, 2013.

• [RMM12] Kiran K. Rachuri, Cecilia Mascolo, and Mirco Musolesi, Energy-Accuracy

Trade-offs of Sensor Sampling in Smart Phone based Sensing Systems, Mobile Con-

text Awareness, Book Chapter, Springer, 2012.
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Demos

• [Rac12] Kiran K. Rachuri, EmotionSense: Emotion Recognition and Social Sensing

based on Smart Phones (Demo), in Proceedings of the 1st ACM Workshop on

Mobile Systems for Computational Social Science (co-located with ACM Mobisys

2012), Lake District, United Kingdom, 2012.

Under Submission

• Kiran K. Rachuri, Christos Efstratiou, Ilias Leontiadis, Cecilia Mascolo, and Peter

Jason Rentfrow, Smartphone Sensing Offloading for Efficiently Supporting Social

Sensing Applications, submitted to Elsevier Pervasive and Mobile Computing, 2013

(extended version of our PerCom paper).
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I have also worked on other papers during my Ph.D., some of which are works begun
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2010.
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Search for Dense Wireless Sensor Networks, Elsevier Journal of Parallel and Dis-

tributed Computing (JPDC), 2010.
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2
Mobile Sensing : Literature Review

As discussed in the previous chapter, smartphones have revolutionised the mobile appli-

cation space: with high-end processors, large memory capacity, and many sensors, we can

now build many types of applications some of which seemed science fiction just half a

decade ago. In this chapter we present an overview of mobile sensing systems including

smartphone sensing and their application domains. We also discuss the type of sensors

embedded in modern smartphones and present the main features of a typical smartphone

sensing system while providing details of the existing work. We limit the discussion to

applications using the sensors of mobile phones, as this is the main focus of the thesis.

Chapter outline. Section 2.1 provides a brief history of mobile sensing and is followed

by a description of the main types of mobile sensing systems in Section 2.2. In Section 2.3,

we present the various sensors embedded in modern mobile phones and their typical usage

scenarios, followed by the types of mobile phone sensing paradigms in Section 2.4. We then

present the applications of smartphone sensing in Section 2.5, and general components in

phone sensing systems in Section 2.6. Finally, we present a summary of the chapter in

Section 2.8.

2.1 A Brief History of Mobile Sensing

Advances in sensing technology have led to the creation of many kinds of sensors that can

measure various physical properties such as temperature, pressure, and light. In general,
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different types of sensors are required to measure different physical properties. Thermis-

tors and thermocouples, for example, are used to measure temperature, and capacitive

and resistive sensors or hygrometers are used to measure humidity [WD10]. Advances in

technology have also led to the miniaturisation of sensors thereby creating an opportunity

for mass scale deployment of sensors that could be mobile. The University of California

Berkeley’s SmartDust [KKP99] project created miniature sensor nodes termed SmartDust

that could be deployed on a large scale for capturing data. The nodes are equipped with

temperature, humidity, pressure, light intensity, tilt and vibration, and magnetic field

sensors, and are integrated into a cubic inch package. The nodes are also capable of com-

municating over wireless, and forming self-organising networks. Many research centres

have been born out of the SmartDust project1, for example, the University of California,

Berkeley WEBS (Wireless Embedded Systems), and UCLA’s (University of California,

Los Angeles) Center for Embedded Networked Sensing (CENS).

Miniaturisation of sensors has also resulted in user-centric sensing such as implanting

sensors in the human body to monitor various physiological activities and building custom

devices with embedded sensors that can be carried by users. For example, the MIT Media

Laboratory’s sociometric badge [LWA+08, KCHP08] (also known as a sociometer) is a

wearable device with many embedded sensors and is automatically able to detect the

extent of face-to-face interaction, conversation, co-location, and physical activity from

the sensed data. Some other examples of purpose-built devices are the active badge

system [WHFaG92] and the Electronically Activated Recorder (EAR). The active badge

system can be used for indoor localisation using a wearable device that transmits an

infra-red signal. EAR is capable of recording audio samples using an electronic device

without any intervention from the user. Sensors were also then introduced in PDAs like

the HP iPAQ, music players like the Apple iPod, and mobile phones like the Nokia N95

and the Apple iPhone. With the rapid increase in the adoption of phones and the number

of sensors in them, it soon became possible to monitor many of the parameters that were

sensed by custom devices or sensor nodes with mobile phones.

2.2 Types of Sensing Systems

In this section we describe in detail the various types of sensing systems mentioned in the

previous section, and their application scenarios.

2.2.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) [ASSC02, ZSLM04, CEP+07] consist of small battery

operated mobile nodes that are equipped with computing, communication, and sensing

1http://robotics.eecs.berkeley.edu/ pister/SmartDust/
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capabilities. WSNs are capable of self-organising and communicate via multiple hops.

They typically consist of two types of nodes: sensor and sink. A sensor node is a device

that captures data through the sensors and transfers this data to the sink node (typically

a powerful device such as a computer) via multi-hop communication over many other

sensor nodes. A sink node stores all the collected data, and in many systems, provides

this to the outside world through a web-service API or similar mechanism. Sensor nodes

are equipped with many sensors like temperature, humidity, microphone, and camera.

Some of the commercially available nodes include MicaZ and TelosB [MOT13]. Sensor

networks have applications in many domains such as volcano monitoring [WALW+06],

environmental monitoring [MHO04], habitat monitoring [DEM+10], and civil and struc-

tural monitoring [XRC+04]. Wireless sensor network technology continues to evolve and

is an active research area.

It is generally difficult to use sensor nodes in conducting human monitoring studies as they

are less powerful in processing and memory capabilities than smartphones, and moreover,

carrying sensor nodes is a burden and can be felt obtrusive by users. If sensor nodes are

made more powerful by enhancing their processing power, then it results in increased cost

for experiment designers. More importantly, there are no application stores or continuous

connectivity to the Internet for deploying applications or communicating with the cloud.

However, sensor networks are now increasingly deployed as part of sensing infrastructure

in buildings for various purposes (e.g., door, motion sensors), so they seem to provide a

perfect platform for the augmentation of mobile phone sensing to save energy and improve

accuracy. In Chapter 4 we discuss in detail a possible framework for mobile phone and

sensor network sharing.

2.2.2 Body Sensor Networks

A Body Sensor Network (BSN) [Yan06, ZLL+11] is a wireless network of implantable

and wearable sensors attached to a human body. They are typically used for monitoring

various activities inside the human body, differ from traditional Wireless Sensor Networks

in communication ranges, sensing tasks, and deployment scale, and are mainly used in

healthcare. Moreover, a node in a BSN is typically biodegradable and biocompatible,

whereas a WSN node may not be. A sensor node in a BSN captures a variety of physio-

logical data from the human body such as heart rate, blood pressure, body temperature,

and glucose levels. BSNs are used for a purpose different than those of the target appli-

cation scenarios of the current dissertation, i.e., social and behavioural psychology, and

social sensing. BSNs find applications in many scenarios in the domain of healthcare and

wellbeing, for example, monitoring diabetic patients, automatic monitoring of patients

in hospitals and the elderly, and post-operative monitoring. BSNs also find applications

in the analysis of sports performance. Possible integration of the work presented in this

dissertation and the Body Sensor Networks could be envisaged.
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2.2.3 Wearable Sensing

In Wearable Sensing [PEK+06, Bon03, CMP00, FMT+99], wearable components such as

wrist watches, jackets [FMT+99], and badges [LM02, CBC+08, ALC06] are embedded

with sensors such as 3-axis accelerometers, cameras, and microphones to detect various

activities of the user. In [LM02] the authors use biaxial accelerometer sensors, digital

compass sensors, and angular velocity sensors to detect human activity, context, and

location using movements in 2D environments. The Microsoft SenseCam [ALC06] is a

wearable device equipped with camera, temperature, light, infrared, and accelerometer

sensors. One of the main applications of SenseCam is the capture of a blog or diary of

the user using various pictures taken by the camera. The other sensors are used for the

efficient triggering of the camera (e.g., triggering based on the user’s interaction detected

through the IR sensor).

Although wearable sensors are extremely useful for automatic detection of context, and

as shown, for example, in [LM02], accuracy is also high, these systems are only suitable

for laboratory studies or limited deployments and are not scalable due to high costs of

building hardware. Nor is it practical to ask users to use the wearable components in

their day-to-day activities for prolonged periods.

2.2.4 Phone Sensing

Mobile phone based sensing can perform tasks similar to wearable sensing as sensors like

accelerometer, camera, and microphone are already present in off-the-shelf phones. More

importantly, they are already carried by many people, which makes their deployment

highly scalable. Using phones also reduces deployment costs. We have discussed some of

the details of the sensors and advantages and limitations of phone sensing in the previous

chapter, and in the rest of this chapter we focus on the sensors in phones, the application

domains of phone sensing, and general features of smartphone sensing systems.

2.3 Sensors in a Smartphone

Modern mobile phones such as the Apple iPhone and the Samsung Galaxy SII (Figure 2.1)

have many sensors embedded in them. In this section we provide details of these sensors

and their common uses.

• 3-axis Accelerometer. Provides the X, Y, Z axis values of the triaxial accelerom-

eter sensor. The accelerometer sensor in a phone is used mainly in games to enhance

the user’s experience. The accelerometer values can also be used to calculate the

acceleration of the user, however, classifiers need to be developed to accurately infer

activities like moving, running, and walking from raw accelerometer data [MLF+08].
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Figure 2.1: Sensors embedded in the Samsung Galaxy SII mobile phone.

• Barometer. Some modern mobile phones like the Samsung Galaxy S III [SG3]

have a barometer sensor embedded. This sensor can be used to track changes in

atmospheric pressure and to estimate weather conditions and altitude.

• Bluetooth2. The Bluetooth sensor can be used to discover nearby Bluetooth de-

vices that are in discoverable mode3. It can be used, for example, to detect people

co-located with the mobile phone user. Bluetooth sensing can also be used to

perform indoor localisation by placing Bluetooth anchors at various locations and

maintaining a static map of the anchors and locations. Bluetooth sensor has been

2Bluetooth is a radio and not a sensor like accelerometer or microphone. However, since data can

be captured from this radio similarly to the sensors, in this dissertation we refer to the radios such as

Bluetooth, GPS, Wi-Fi as sensors.
3Discoverable mode allows a Bluetooth device to be discovered by other nearby Bluetooth devices

when they perform a scan. If a device is not in discoverable mode, then it will be hidden from the scan

requests of nearby Bluetooth devices.

23



CHAPTER 2. MOBILE SENSING : LITERATURE REVIEW

used by many works [BAB+10]. In modern mobile phones, the Bluetooth discover-

ability automatically switches off and may require periodic manual consent by the

user to continue in the discoverability mode. This poses problems for co-location

or indoor location detection. In these cases, the applications may have to depend

on “Bluetooth anchors” in the environment to localise the users to infer their co-

location.

• Camera. The camera can be used for taking pictures, video calls, and scanning

QR codes (Quick Response Codes)4. In addition, it is shown in [WCC+12] that

the phone’s front and rear cameras can also be useful to alert the user to unsafe

situations while walking on a road.

• Compass. The compass sensor can be used to detect the orientation and direction

of the phone. It is used in navigation applications such as Google Maps [GMP].

• GPS. The Global Positioning System (GPS) sensor can be used to localise the mo-

bile phone using satellite information. GPS generally has about metre-level accuracy

but works only outdoors when there is a clear view of the sky. The localisation fea-

ture is used in many applications, for example, location-based social networks like

Foursquare5 use location information to show nearby places of interest to the user.

• Gyroscope. The gyro sensor is useful to measure the phone’s orientation and

is used for gesture recognition in gaming-related applications [ZCCM12]. Again,

classifiers that can infer various user positions from raw sensor data need to be

developed to effectively use this sensor.

• Microphone. This is a fundamental sensor and is present in every mobile phone.

The microphone sensor can be used to identify the speaker, detect the user’s emo-

tions, and to determine noise levels in the environment. Noise in the user’s en-

vironment affects the accuracy of techniques like speaker identification. Further,

microphone generates a large amount of data due to its high hardware sampling

rates, for example, recording a 5 seconds audio sample on the Android platform in

PCM format generates a file size of about 100KB, which poses data management and

processing challenges. Some applications have also used it for localisation [ACRC09].

• Near Field Communication (NFC). The NFC chip in a phone can be useful

for short-range communication between similar devices usually no more than four

centimetres apart. It finds application in peer-to-peer communication and mobile

contact-less payments.

4https://itunes.apple.com/gb/app/qr-reader-for-iphone/id368494609
5https://foursquare.com/
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• Photo. The photo or light sensor is useful to detect the ambient light levels in the

environment of the phone. This sensor can be used to enhance the user experience

by automatically adjusting the screen brightness.

• Proximity. This sensor is useful to detect whether an object is blocking the surface

of the mobile phone. It is generally used to switch off the screen of touchscreen

phones when the user is speaking on the phone.

• Screen. The screen of the mobile phone can also be used as a sensor to detect

whether the user is interacting with the phone. It could be used in experience

sampling techniques as a “trigger” to ask the user to complete a survey [FCC+07].

• Wi-Fi/Cellular. We may regard the Wi-Fi and cellular radios in mobile phones as

sensors. These radios can be used to perform localisation [ALM]. Wi-Fi can also be

used to detect co-location of users based on fingerprinting [BP00] or signal strength

analysis.

These sensors in smartphones provide an excellent platform on which developers and

researchers could build social sensing applications. In addition to their usage scenarios,

the sensors also vary in power consumption: some are expensive power-wise, e.g., GPS in

active state [ZTQ+10], and some are cheaper, e.g., accelerometer [SP12].

In addition to these sensors, data streams in smartphones such as Facebook status mes-

sages, Twitter data, Foursquare check-ins, Google calendar, communication patterns and

application usage [LLLZ13], can also be considered as sensors that could also be a source

of information about the user’s context. However, the information provided by them may

not always be reliable. For example, in [LOIP10], it has been reported that the calendar

may not accurately represent the user’s real context as the actual events are hidden by

many placeholders and reminders. The unreliability of this information has also been

discussed in [VF11], where the authors discuss the problem of “checking-in” to locations

on Location Based Social Networks (LBSN) such as Foursquare without being physically

present or forgetting to “check-in” in some places. They present a solution based on the

phone’s sensors and radios to validate the check-ins and to alert users to check-in. From

these works, it could be inferred that the data from these “virtual” or “software” sensors

may not always be reliable for context-inference and it may be necessary to depend on

physical sensors.

2.4 Categories of Smartphone Sensing

Mobile phone sensing can be broadly divided into two [LML+10] categories: participatory

and opportunistic sensing.
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Participatory Sensing

In the participatory sensing model [BEH+06] the mobile phone user is actively involved

in the data collection process and the context is explicitly given to the system by the

user, for example, taking a picture or recording audio data from the microphone sensor

when at a particular location. The data is deliberately collected by the user upon a pre-

defined criterion, like collecting an air pollution sample when at a particular location and

time. The main advantage of this model is that the sensing is driven by the user, and the

applications need not perform continuous context sensing, thereby saving energy. In a

way, the complex context recognition step is avoided by leveraging the intelligence of the

user [BEH+06]. The disadvantages are that the data capturing part is dependent on the

user more than on the machine (phone) and therefore some data samples might be missed

if the user forgets to act, compromising the accuracy or functionality of the applications.

Moreover, since this model uses the user’s time, it will be a burden on the user to collect

data manually. Accordingly, incentive mechanisms [LH10] should be designed to retain

user participation levels. Participatory sensing systems include that presented in [ZZL12],

which predicts the arrival times of buses from data collected by bus passengers, and the

LiveCompare system [DC09] which facilitates inter-store grocery price comparisons using

photographs of price tags taken by the participants.

Opportunistic Sensing

In the opportunistic sensing [LML+10] model, data from the sensors in the mobile phone is

captured passively and the context is inferred automatically by the device and the user is

not involved in the data capturing process. An example is collection of accelerometer sam-

ples [MLF+08] automatically to classify the user’s activity, or audio samples [MCR+10]

to identify the conversation status. In this model, since the user is not involved, the

burden on the user will be less and the user may not feel as obtrusive as in the case of the

participatory sensing model. Further, since the data capturing process is automatic and

is performed by the phone, it will not miss any sensor samples if sensing is continuous.

However, continuous context recognition requires continuous sampling of sensors, which

results in rapid depletion of the phone battery [WLA+09].

In this dissertation, we focus on the opportunistic sensing model where the data capturing

process and the context recognition is automatically performed by the phone without the

user’s involvement.

2.5 Applications of Smartphone Sensing

Smartphones find applications in many domains such as activity recognition, transport

and navigation, entertainment, and social psychology. In this section we discuss some of
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the application domains and in particular focus on the works that use sensors embedded

in them.

2.5.1 Activity Recognition

Smartphones can be used to track the physical activities of users like running, cycling, and

walking, using the accelerometer sensor [MLF+08, PPC+12, ZCCT12]. This is achieved

by capturing [x, y, z] axis vectors of the accelerometer sensor and classifying them using

pre-trained models for physical activities. The movement speed can be calculated using

readings from the GPS sensor. These inferences can further be used to provide useful

services, such as fall detection for the elderly [YKE+10], or to enhance the social network

experience [MLF+08]. The CenceMe [MLF+08] system captures activity data on walk-

ing, running etc. and the conversation status of the user using a Nokia N95 smartphone,

and automatically updates the user’s social network status. For activity recognition,

they achieve an accuracy of about 94% for walking and about 74% for running. The

EEMSS [WLA+09] system is a mobile phone system implemented on the same smart-

phone model (N95) and is able to detect various activities like working, meeting, and

being in a vehicle. In [PPC+12], the authors present a technique to perform device’s pose

detection and the user’s walking speed estimation. They show that the scheme achieves

an accuracy of 94% for pose classification. Inferring the pose of the phone, for exam-

ple, can be used in pollution sensing applications as inferring that the phone is inside

a bag is useful to turn-off resource-intensive pollution sensor and for accurate labelling

of data. The work presented in [ZCCT12] addresses the problem of reliably estimating

cycling activity using a smartphone. By combining the GPS traces with data from the

US Geological Survey elevation service, and OpenStreetMap database, they achieve an

accurate estimate of caloric expenditure (they achieve a Root Mean Square error of about

5). Other applications like Endomondo6 and runtastic7, available in the Apple App Store

and the Google Play, can be used to track running using the GPS and accelerometer

sensors.

2.5.2 Transport

Vehicles can be instrumented with sensors and given that they have more capabilities and

resources than phones, they can be used to monitor traffic conditions and travel estimates.

MIT’s pothole patrol system uses vehicles equipped with accelerometer and GPS sensors

to detect potholes in roads. However, achieving similar functionality using off-the-shelf

mobile phones has the benefits of reducing the cost as not all vehicles are equipped with

the required sensors and improving the scalability as mobile phones are used by millions

6http://www.endomondo.com
7http://www.runtastic.com
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of users in any city, but the same can not be said of vehicles, especially in some cities. In

NeriCell [MPR08] the authors designed a mobile phone based system to monitor potholes,

bumps, and honking using the accelerometer, microphone, and GPS sensors. Smartphones

can also be used to estimate travel time, as demonstrated in [TRL+09] using the Wi-Fi,

GPS, and GSM (used for cellular triangulation) sensors. They show that the travel

estimates just based on Wi-Fi localisation are good enough, by demonstrating that 90%

of commute paths found were no worse than 10-15% of the optimal path. They also show

that by combining Wi-Fi with GPS improves the estimates only by a small margin, but

with a large increase in the energy consumption.

2.5.3 Entertainment and Games

One of the most popular application categories for mobile phones is games. For instance,

8 out of the top 10 most downloaded iPhone apps belong to the games category, which

shows their wide use [GIZ12]. Sensors in the phone can be used to enhance the gaming

experience of the user. In [ZCCM12] the authors used the microphone and accelerometer

sensors to support phone-to-phone mobile motion games. They performed a case study

using a game called SwordFight, a sword fight duel between two users where each user’s

phone simulates a sword. The authors of [MML+08] showed that the divide between

the virtual world and the real environment can be bridged and user experience can be

enhanced using smartphone sensing.

2.5.4 Enhancing User Experience

User experience in interacting with electronic devices and performing digital tasks can

be enhanced by using the sensors in smartphones. This enhancement could be as simple

as rotating the screen by detecting changes in the phone’s position using the accelerom-

eter sensor, or disabling the caller tone based on pre-configured gestures. In Switch-

board [MAZ+11] the authors presented a matchmaking scheme in mobile multiplayer

games over cellular networks. They achieve a match that reduces the burden on cellular

networks and phones while satisfying the latency requirements of games, for an enhanced

user experience. Point & Connect [PSZL09] is a device pairing scheme that uses the mi-

crophone sensors of the phones to pair the devices, which would otherwise take multiple

steps: discovering nearby devices, selecting the target device, authenticating, and then

pairing. As the name suggests, when the user needs to pair his/her mobile phone with

another in proximity, then he/she simply points the phone at the target phone. The sys-

tem captures the user’s gesture and completes the device pairing by using acoustic based

distance-change detection. Sensors can also be used to speed up the application launching

process as demonstrated in [YCG+12]. The authors use the user’s contextual information
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such as location, obtained using the GPS sensor, and temporal access patterns to pre-

dict application usage and prelaunch applications. They show that the scheme reduces

application launch delay by around 6 seconds on average.

2.5.5 Social Psychology

Recently there has been a lot of interest in applying the concepts of mobile phone based

sensing to social psychological sciences. In this subsection we discuss this application

domain in detail as it is the main focus of the dissertation. At a high level, we can divide

social psychological mobile applications into two types: passive monitoring to study user

behaviour, and feedback techniques to study the effect of interventions and incentives on

behaviour.

Behavioural Monitoring

Traditional methods of social psychological studies for behavioural monitoring are based

on collecting data from users through self-reports, which involve the users’ reporting de-

tails about their mood, conversations, location, and activity periodically, for example,

daily or weekly. However, it is hard for the users to accurately remember [Tou99] their

experiences, and it is much harder to remember emotional states in detail [MP01, Bla86].

To reduce memory errors, a better method called Experience Sampling [CL87] was de-

signed, which asks participants to complete self-reports several times a day by providing

an alert/notification via electronic devices such as pagers. Ecological Momentary Assess-

ment (EMA) [SS94] also involves signalling participants to report on their current or re-

cent psychological and behavioural states multiple times a day using electronic devices like

palmtop computers. Assessments can be on immediate affective, cognitive, or behavioural

experiences, or on longer time events. However, self-report methods and behavioural sam-

pling methods can be felt as a burden on the user as he/she has to take time to accurately

recollect behavioural states. Furthermore, self-reports and experience sampling methods

have been found to be biased towards positive or pleasant experiences [PR91].

To overcome the problems in self-reporting and experience sampling methods, Mehl et.

al. proposed the Electronically Activated Recorder (EAR) [MP01], a device that captures

audio samples in the user’s environment using an audio recording device for 30 seconds

once every 12 minutes. The audio files are transcribed offline by social scientists who

manually listen to them. This method has some advantages over self-reports as it avoids

memory errors and captures the real behaviour of the users without bias (as participants

are not required to complete behavioural reports). However, there are also disadvantages.

First, it takes a considerable manual effort from social scientists to transcribe audio files.

Second, the purpose-built audio recording device must always be carried by participants
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and can be very obtrusive. Third, since audio files are accessed by people other than the

user, this could raise privacy concerns.

Smartphones have the potential to overcome these problems as they are equipped with

sensors to capture data about the behaviour of participants. Further, they are equipped

with powerful CPUs, therefore, classifiers can be run on them to draw inferences about

user behaviour thereby reducing the manual effort of coding and also reducing the burden

of completing self-reports on participants. Moreover, phone systems can be designed to

delete the raw sensor data immediately after classification thereby preserving the privacy

of participants. Recently researchers proposed mobile phone based systems [LRC+12,

LLLZ11] to capture user behaviour. StressSense [LRC+12] is a mobile sensing system

based on smartphones that uses audio recorded through the microphone sensor to detect

stress in the user’s voice. The authors use many acoustic features from the recorded

audio for classification such as standard deviation of pitch, perturbation, and speaking

rate. They show that the system achieves an accuracy 81% and 76% for indoor and

outdoor environments, respectively. In [FCC11], the authors present a voice classification

library on smartphones and show that it is feasible to perform real-time voice classification

on off-the-shelf phones, and the authors of [LBBP+11] present an energy efficient speaker

identification scheme using the microphone sensor. They show that an accuracy of over

90% can be achieved using a 3 second sampling window and 8kHz hardware sampling rate.

Voice classification and speaker identification have many applications in the field of social

sciences, such as detecting speech and interaction patterns of the users. The MoodSense

system [LLLZ11] infers the user’s mood from the information such as SMS, email, and

browsing history already available in modern smartphones. They show that a generic

clustering scheme (one-size-fits-all model) can achieve an accuracy of 61% (considering

four emotion categories), and a subject-specific scheme improves the accuracy to 91%.

Feedback

Feedback on activities and behaviour helps users in understanding their own patterns.

Mobile phones are an excellent platform to provide various kinds of feedback to users

as they are ubiquitous and sensor-rich. More importantly, they are frequently accessed

by the users [DBB11]. Feedback can be designed to provide useful statistics to the user

or for individual well-being like motivating the user to drink healthy quantities of wa-

ter [CCC+09], or community well-being like encouraging water conservation [ABS05],

and green transportation [FDK+09].

Many research projects have used mobile phones to provide feedback: TripleBeat [DOO08]

is a platform that assists runners to achieve their exercise goals and uses a virtual com-

petition with other runners to encourage users. Some systems have also included social

gaming features like leader boards or rankings, or updating the user’s social network. For
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example, Foursquare8 is a widely-used mobile phone application that provides a location-

based social network service. Users can check-in to the locations they visit and receive

points that can be compared with those of the friends.

2.6 Components of Smartphone Sensing Systems

In this section we present the general components of smartphone sensing systems and

discuss the existing work.

2.6.1 Sensor Sampling

Sensor sampling is one of the fundamental components of mobile sensing systems [LML+10].

Raw data is captured from the sensors in a phone using the sensor sampling component.

The format of raw data differs for each of the sensors. For example, when a 3-axis ac-

celerometer sensor is queried the raw data is in the form of [x, y, z] vectors, and the raw

data from the microphone is an audio file of the form .wav, .3gpp, or .pcm.

Sensors in current off-the-shelf smartphones can be divided into two types:

• Pull Sensors. In this type, the sensor should be queried periodically to capture

data. For example, in the Android system, the Bluetooth sensor should be period-

ically scanned to detect the user’s co-location, and audio data should be recorded

from the microphone sensor often to detect conversation status. Sensors like micro-

phone, Bluetooth, accelerometer, GPS, and Wi-Fi fall within this category.

• Push Sensors. In this type, the sensor needs hardware-level support to efficiently

perform push notifications, for example, screen on/off notifications. The modules

interested in a sensor data stream should register or subscribe to updates from

the sensor, and they will be notified of new events by the operating system9. For

example, in the Android system, developers should implement SensorEventListener

and register with SensorManager to receive updates from the proximity sensor.

Sensors like proximity and screen (on/off) are some examples of push sensors.

Data can be gathered from the sensors in the mobile phone either by querying periodically

or through notifications. The push sensor data collection process is already efficient as

8https://foursquare.com
9A push sensor that is efficient requires hardware-level support and will typically be accessed through a

publish/subscribe mechanism. However, if a sensor’s data is accessed through a publish/subscribe method

then it is not necessarily a push sensor. For example, in the Android system, data from the accelerometer

sensor in the phone is accessed using a publish/subscribe mechanism, however, the operating system

queries the sensor periodically to access its data and notifies subscribers. We do not consider this type

of sensors as push sensors.
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it can be captured by the corresponding hardware, which then notifies the operating

system of this event (e.g., screen on event triggers a notification to the operating system).

However, pull sensor data collection is challenging because the sensor has to be queried

periodically to detect new events. The rate at which the sensor is queried will affect the

accuracy, energy, and latency of the system. Therefore, there is an opportunity to design

smart sensor sampling techniques to capture data from the pull sensors while balancing

energy-accuracy trade-offs.

2.6.2 Data Processing

Once the raw data is captured by the sensor sampling process, it needs to be processed to

permit inferences. For example, immobility and actions like driving, running, and walking

can be inferred from the raw [x, y, z] vector data of the 3-axis accelerometer sensor. These

inferences are generally based on machine learning techniques [LRC+12, Bis07]. The pro-

cess involves two steps, feature extraction → classification. Some of these classification

tasks such as detecting whether the user is moving or stationary are trivial and do not

require much computing power, whereas others such as speaker identification [LBBP+11]

based on microphone data, or face recognition [CBC+10] based on camera data are com-

putationally intensive. Even though modern mobile phones have high computing power,

using these computing resources for intensive classification tasks consumes a lot of en-

ergy [LBBP+11]. Furthermore, the computing requirements of some classification tasks

may just be too high for the phones. Typical classification tasks in mobile systems include

an activity recognition [MLF+08] to detect the type of physical activity of the user like

running, walking, cycling, or standing, and face recognition [CBC+10] to tag users in an

image (however, alternate techniques based on other sensors can also be used for image

tagging as shown in [QBRCN11]). A speaker identification [LBBP+11] classification task

is used to identify who is speaking, and finds applications in social psychology, and a stress

detection [LRC+12] classification task can be used to detect the psychological wellbeing

and stress experienced by users.

2.6.3 Applications/Information/Interventions

Using the sensor sampling and classification components, phone systems can infer the

user’s status, e.g., that the user is in conversation with person A at the cafeteria or the

user is driving home from the office. An important goal of these systems is to use these

inferences to build useful applications for end-users. This could be as simple as just pro-

viding some useful statistical information about the user’s activities like length of time

spent in conversations, or updating the user’s social network status with his/her current

activity [MLF+08]. More advanced application scenarios are to design and provide inter-

ventions or persuasion methods such as motivating the user to drink healthy quantities
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of water every day [CCC+09], keep in touch with friends [Gol04], or to assist runners in

achieving exercise goals [DOO08].

2.7 Energy Efficiency

Since mobile phones draw power from a battery source, the energy efficiency of phone

applications is an important and a pivotal design consideration. It is achieved by adopting

various techniques, some of which are detailed in this section.

Duty Cycling

Duty cycling is the process of limiting the length of time a sensor is active. If the duty

cycling of a sensor is 10% then it senses data only 10% of the time. Duty cycling is a

widely-used technique in Wireless Sensor Networks [BYAH06, CAHS05, LKR04] and also

in many mobile phone sensing systems [WLA+09, MLF+08, LYL+10, KLGT09, SP12].

The main reason for performing duty cycling is to save energy by powering off the sensor

periodically. Even though, this might save energy, there is an additional cost incurred due

to tail energy consumption [PHZ+11, PHZ12, BBV09], which is the cost incurred when

a component remains in a powered state after it has been turned off. Tail energy costs

for a sensor are typically less than the cost when the sensor is active [PHZ12]. It has

been shown in [PHZ+11] that components such as wireless NICs, SD card, GPS have tail

energy states. For example, they show that the HTC Tytn 2 phone’s NIC continues to be

in active state for about 1.7 seconds after a send/receive is completed. Some sensors also

continue to be in powered state (tail state) after they are turned-off by the application, and

they show that this duration is about 3 seconds for GPS. For example, if the application

uses a GPS sense window of 30 seconds, the energy estimation based on only the active

sensing periods could potentially lead to approximately 10% or more error.

In our evaluation of sampling schemes, we estimate the energy consumption based on

the total active time of a sensor. As discussed, the limitation of this approach is that

the tail energy states are not considered. Therefore, the performance reported using this

method may only represent an approximate estimate of the absolute energy consumption.

However, our main goal is to not measure the absolute energy consumption of the schemes,

but to understand the relative benefits of the duty-cycled sampling schemes, therefore,

this method of estimation allows us to estimate the relative performance differences among

duty-cycling schemes. We, however, note that a limitation of our energy results reported

for sensor sampling schemes is that they do not consider tail energy states.

Another disadvantage of duty-cycling schemes is that there is the possibility that events

might be missed when the sensor is not active, resulting in loss of accuracy. In general,

the lower the duty cycling, the higher the energy savings and the loss in accuracy.
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Sensor Sharing

The sensor sharing approach relies on sharing the sensors of the phone with other phones

in proximity, and opportunistic use of sensors in nearby phones. For example, if a mobile

phone’s battery level is low and if it needs location information then sensing from the

GPS, which is an expensive sensor, is not energy-efficient. The phone could, therefore,

request location information from the GPS sensor of a nearby mobile device, assuming

communication with that device is cheaper. Likewise, when the phone’s battery level is

high it can then assist other mobile phones that require sensor data. It should be noted

that, these type of techniques may reduce the energy consumption on the phone but in-

cur more energy consumption elsewhere, for example, on the remote mobile device or the

sensing infrastructure. This model of sharing by cooperation might save energy on the

phone and has been used in some mobile systems [VRC11, LJM+12]. In ErdOS [VRC11]

energy savings are achieved by proactively managing resources and by exploiting op-

portunistic access to resources in nearby devices using social connections between users.

CoMon [LJM+12] is a platform that aims to increase energy savings by employing heuris-

tics to detect mobile phones that will remain in proximity for a long period, and designing

cooperation plans for the mutual benefit of the phones involved.

Context Awareness

The user’s context can be used to achieve high energy savings. For example, the GPS

sensor can be turned off when the phone detects that the user is at home or at the office

and it can be switched on when it detects that the user is moving. The Acquisitional Con-

text Engine (ACE) [Nat12] is a middleware for mobile sensing applications that supports

continuous context recognition while achieving high energy savings. ACE automatically

learns the relations between various context attributes and then exploits these for further

optimisations: inference caching and speculative sensing. Inference caching allows the

platform to infer one context attribute from another already known attribute, e.g., the

user is not at home when driving. Speculative sensing is used to find the value of an at-

tribute by using cheaper proxy attributes. For example, the attribute: whether the user is

at the office can be answered false, if the attribute: whether the user is driving or running

evaluates to true. This can potentially save energy if the evaluation of proxy attributes

is cheaper than the main attribute. Other example of systems in this category include

SeeMon [KLJ+08] and the Jigsaw continuous sensing engine [LYL+10], which support

continuous sensing while achieving energy efficiency.

Triggered Sensing

In triggered sensing low-powered sensors are used to trigger the sensing of a high-powered

sensor. For example, the accelerometer sensor consumes much less energy than the GPS
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sensor. Therefore, given movement detection by continuously monitoring the accelerom-

eter sensor, the GPS sensor can be activated/deactivated, thereby saving a significant

amount of energy. The same was demonstrated in the SenseLess [BAPH09] system where

it has been shown that this scheme can reduce energy consumption by more than 58%.

In [PKG10] the authors present the Rate Adaptive Positioning System (RAPS), an energy-

efficient localisation technique for smartphones. The system uses the history of the user

to turn on/off the GPS sensor according to an estimated position accuracy and a given

threshold value for accuracy. It uses the accelerometer sensor and Bluetooth communica-

tion to reduce position uncertainty, and exploits celltower-RSS blacklisting to detect GPS

unavailability to avoid switching on the GPS.

Computation Offloading

Modern mobile phones have high-end and powerful processors, e.g., the Samsung Galaxy

SIII is powered with a quad-core 1.4 GHz Cortex-A9 processor. However, using this

processing power consumes a lot of energy [LBBP+11]. A viable option is to use cloud

processing to save energy while trading off communication costs. Some mobile systems

like [Kri10, KPKB10, CIM+11] exploit this feature to save energy. MAUI [CBC+10]

supports fine-grained code offload by considering the current connectivity constraints

of the mobile phone in order to achieve energy efficiency. The authors showed that

by using code offloading MAUI saves 27% energy for a video game, 45% energy for a

chess game, and much more for a face recognition application. They also showed that

exploiting remote computing significantly reduces the latency of these tasks: the latency

of performing a face recognition task is reduced from 19 seconds to less than 2 seconds.

ThinkAir [KAH+12] is also a framework for offloading mobile computation to the cloud.

The system accommodates changing computational requirements based on on-demand

VM resource scaling, and exploits parallelism for faster execution.

Comparing with the existing work, the techniques that will be presented in this disserta-

tion provide a novel way of achieving energy efficiency in capturing and processing data

from the phone’s sensors. The schemes achieve energy efficiency by using adaptive tech-

niques that dynamically adjust the duty cycling interval of the sensors, and by exploiting

the sensors in the environment and the computing resources in the cloud while considering

the mobility patterns and the requirements of the user. Further, the schemes presented

in this dissertation are orthogonal to most of the existing techniques that achieve energy

efficiency and can be used along side them. In each chapter, we provide a related work

section, in which, we compare and contrast our works with the related schemes.

35



CHAPTER 2. MOBILE SENSING : LITERATURE REVIEW

2.8 Present Dissertation and Future Outlook

This chapter surveyed a variety of mobile sensing systems: Wireless Sensor Networks,

Body Sensor Networks, Wearable Sensing, and Smartphone Sensing. We also discussed

smartphone sensing paradigms: opportunistic and participatory, various sensors available

in modern smartphones, and the applications of phone sensing systems to various domains

like activity recognition, transport, entertainment, and user experience. We discussed in

detail the application of smartphones to the social and behavioural sciences as this is the

main focus of the current dissertation.

Energy is one of the main limiting factors of mobile phone applications. We have seen

that improvements in mobile phone batteries have not matched those in other resources

such as sensors, computing, and memory. Therefore, we need efficient techniques that can

gather data from sensors and process them to draw inferences about the user. Once these

techniques are in place many interesting applications can be built on phones providing

great value to end-users and researchers.

This thesis is a step in this direction. Given the numerous applications of mobile phone

sensing, especially in the social and behavioural sciences, we design three schemes to effi-

ciently support social sensing applications on mobile phones: an adaptive sensing scheme

(Chapters 3), a sensing offloading scheme (Chapter 4), and a computation offloading

scheme (Chapter 5). To demonstrate the usefulness of smartphones in the conduct of

social studies, we then present the design of three social psychological applications based

on the services of the proposed schemes (Chapter 6).
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3
Adaptive Sensor Sampling

3.1 Introduction

As discussed in the previous chapter modern smartphones are equipped with powerful

sensors. In order to infer social context and to draw inferences about the behavioural

aspects of the user, raw data from the sensors has to be captured continuously. However,

continuous sensing leads to rapid depletion of the phone battery. It is reported, for

example, in [WLA+09] that the battery charge of a Nokia N95 [N95] smartphone lasts

less than 5 hours when sensing data from the accelerometer, GPS, microphone, and Wi-Fi

sensors using a predefined static (and aggressive) sampling rate. But if the sensors are

sampled at a lower rate, then the system might not capture important events, resulting in

lower accuracy. Therefore, there is a need to design adaptive mechanisms for querying the

sensor data that achieve energy savings while maintaining the accuracy levels required

for applications to be functional. Mobile phone operating systems lack a service that

provides an adaptive sampling functionality. Therefore, there is a key opportunity to

develop such a service for adding value to smartphone operating systems such as the

Android platform, so that application developers can utilise it and need not implement

these complex mechanisms but rather focus on their application functionality.

In this chapter we present a method to study and evaluate the energy-accuracy trade-

offs of sampling rate control mechanisms for querying sensor data in continuous sensing

mobile systems. We first present the method using various common function based rate

control mechanisms (such as exponential, linear, etc.). We then present an adaptive sam-
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pling technique that achieves considerable energy savings while maintaining the required

accuracy level through the use of linear reward-inaction learning [BH75, KLM96]. The

adaptive sampling scheme adjusts the sampling rate of the sensors dynamically according

to the context of the user measured in terms of events observed (interesting or not) and

thereby achieves energy savings while maintaining accuracy, i.e., the sensors are sampled

at a high rate when there are interesting events observed and at a low rate when there

are no events of interest. We also design and implement an API so that mobile appli-

cations can use the services of the adaptive sampling technique. Further, we design a

rules framework that allows experiment designers (for example, social scientists) to write

simple rules to program the behaviour of the sensor sampling. Adaptive sensing scheme is

a step towards answering Research Question 1 (How can we accurately capture raw data

from the sensors in smartphones in an energy-efficient way?) presented in Chapter 1.

Chapter outline. The remainder of the chapter is organised as follows: in Section 3.2

we describe our design method and present the learning-based adaptive sensing scheme.

We present the rules framework in Section 3.3 and implementation details in Section 3.4.

In Section 3.5 we present the evaluation of the proposed dynamic scheme along with a

continuous sensing scheme and set of static functions with respect to energy-accuracy

trade-offs. We present related work in Section 3.6, and finally, we present conclusions in

Section 3.7.

3.2 Adaptive Sensor Sampling

In this section, we present the design of the adaptive sensing framework along with the

learning based adaptive sensing scheme.

3.2.1 Design Method

In order to balance the energy-accuracy trade-offs of social sensing applications we present

a design method and a set of functions that can be used to control the sampling rate of

the sensors. We then present a learning-based technique to adapt the sensor sampling

rate to the user’s context, and show that this scheme performs better than a continuous

sensing scheme and simple function based static schemes in balancing the energy-accuracy

trade-offs.

Sensor Sampling

Sensor sampling is the process of sampling from the sensors of a smartphone. The process

involves continuous sense and sleep cycles. In a sense cycle (or a sense window), data is

queried from the sensor to infer events. In a sleep cycle (or a sleep window), the sensor is
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Figure 3.1: Sensor sampling process that we consider consists of consecutive sense and

sleep windows. Data captured from each sense window is classified to interesting or

uninteresting by the application requesting sensor data.

deactivated and no data is captured. Sampling interval is defined as sleep interval length

between two consecutive sense cycles, and sampling rate as the number of sense cycles

per unit time. We note that sensors also have a hardware-level sampling rate parameter,

which is generally set by application based on its requirements. We do not consider

hardware-level sampling rate in the design of adaptive sensing as it is application/classifier

dependent. The sensor sampling process that we consider is as shown in the Figure 3.1.

Classification of Events

To support social sensing mobile phones should detect various social and behavioural

events of the user. However, not all of these events are of interest to applications. For

example, a speaker identification application might only be interested in audio samples

that contain voice data, and may not be interested in audio samples that contain silence.

Another example: consider an application like Google Latitude1 that captures the user’s

location and updates his/her friends. When a user stays at a location there is no benefit in

repeatedly capturing the same location information, but it will be enough just to detect a

change in location. If a user changes location, then it is interesting to the application as it

can update the user’s friends view. Accordingly, we classify context events inferred from

the raw sensor data into two classes viz., uninteresting and interesting. An uninteresting

event indicates that no interesting external event has occurred and the corresponding

sensor can sleep (and need not sense) during this time. A interesting event is an event

of interest to the application that has occurred in the user’s environment that should not

be missed by the sensor.

1http://www.google.com/mobile/latitude/
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As mentioned earlier in this section, the sensor sampling process consists of continuous

sense and sleep cycles. In each sense cycle, raw data from the sensor is captured and

passed on to the application to check if it is interesting or not. The classification of

events into interesting or uninteresting is entirely dependent on the application, which

is requesting the sensor data, and is performed per sense cycle. The reason for the

classification of sensor data is to exploit this knowledge for the adjustment of sensor

sampling, which will be detailed later in the section. In this work we focus on context

events that are represented by a stream of discrete states, such as streams of user activity

like walking, sitting, conversing, and so on. The proposed method is also applicable

to context information that is continuously changing such as temperature, as it can be

discretely sampled.

Max and Min Sampling Intervals

As described, sensor sampling is a process of continuous sleep and sense cycles. The

shorter the sleep cycles the higher the energy consumption (and the number of events de-

tected). The longer the sleep cycles the lower the energy consumption, however, this may

result in missing some interesting events. We define two parameters viz., minSampling-

Interval and maxSamplingInterval. The former is the minimum sleep interval between

two successive sensor samplings and the latter is the maximum sleep interval. If the

sensor sampling interval for a sensor is always set to minSamplingInterval (i.e., a con-

stant rate sampling with sleep interval set to minSamplingInterval), then the accuracy

of the classifiers will be high (due to aggressive data sampling). However, the energy

expended will also be considerable. On the other hand, if the sampling interval is always

set to maxSamplingInterval, then the energy consumption will be minimised, however,

the accuracy will also decrease. Sense cycle, sensing window, or sampling window length

is generally constant and is application dependent, for example, the length of an audio

sample to be captured in each sensing cycle for noise detection is set to 5 seconds for

speaker identification [RMM+10b], or an accelerometer sample length of 5.12 seconds at

50Hz (for 256 samples) for activity detection [RDML05]. Thus, an important parameter

that impacts energy and accuracy, and should be dynamically varied is the sleep duration

between sensing cycles.

Back-off and Advance Functions

Intuitively, if no interesting events are observed, the sleep interval length between two

consecutive sensor sampling cycles should increase, and if interesting events are observed,

then the sleep interval length should decrease. Given this, we define two types of functions

that vary the sleep interval duration.
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Function type Back-off function Advance function

Linear 2× x x/2

Quadratic x2
√
x

Exponential 2x log2 x

Table 3.1: Back-off and advance functions.

• Back-off function. If no “interesting” events are observed (i.e., missable events),

then the sampling interval increases (i.e., sampling rate decreases) from its current

value to maxSamplingInterval based on a back-off function.

• Advance function. If a sensed event is classified as unmissable, then the sampling

interval decreases (i.e., sampling rate increases) from its current value to minSam-

plingInterval based on an advance function.

For example, let us assume that the current sampling interval for the microphone sensor

in the user’s phone is s. If no interesting events are observed (i.e., the classifier detects

that none of the users is speaking), then the rate of sampling should be decreased to save

battery. A way to do it is by increasing the sleep interval to 2×s. If no interesting events

are detected in the next iteration, then we further increase the interval and so on until

it reaches a maximum value (maxSamplingInterval). Even though this saves energy (as

the function increases the sleep interval), it might miss some interesting events during the

sleep time. Similarly, if the system detects an interesting event, then the sampling rate

is increased. A way to do it is by decreasing the sleep interval to s/2. Combining event

classification, max/min sleep intervals, and advance and back-off functions, the adaptive

sensing design works in the following way.

Once a sensor is sampled the captured data is processed and classified by the application-

level classifiers as an interesting or uninteresting event. If classified as uninteresting, then

the sleep interval increases from its current value based on a back-off function, such as

sleep interval = 2 × sleep interval. If the event is classified as interesting, then the sleep

interval decreases from its current value based on an advance function, such as sleep

interval = sleep interval / 2. The sleep interval is bounded by max and min intervals

to avoid too conservative or too aggressive sampling of the sensors. The choice of the

advance and back-off functions and of the minSamplingInterval and maxSamplingInterval

parameters plays a crucial rule in the energy-accuracy trade-offs of the various context

inference components. Examples of the back-off and advance functions (also used in the
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Figure 3.2: Example scenario: Fixed duty cycling vs adaptive sensing for the accelerom-

eter sensor.

evaluation in Section 3.5) are given in Table 3.1. The back-off function is invoked when

there are no interesting events observed and the advance function is invoked otherwise.

Figure 3.2 shows an example scenario of the accelerometer sensor using a fixed duty cycling

sampling and the proposed adaptive sensing. In this example a moving event (walking)

is considered interesting and a stationary event (idle) is considered uninteresting. Since

the fixed duty cycling scheme always samples at the same rate, it may waste energy

by sampling even when no interesting events are observed. Further, it may also not

capture all interesting events as it does not decrease the interval on detecting moving

events. The adaptive sensing scheme adjusts the sampling rate according to the user’s

context. It decreases the sampling rate on detecting uninteresting events and increases

the sampling rate on detecting interesting events. We will present the energy savings and

the energy-accuracy trade-offs of the fixed and adaptive schemes using benchmark tests

in Section 3.5.

3.2.2 Learning based Adaptive Sensing

In the previous section we used various static functions to describe the advance and back-

off functions. However, in order to fully utilise the adaptive sensing design, the behaviour

of the advance and back-off functions should change according to the user’s context, i.e.,

the rate of increase or decrease of the sampling interval should be dynamic. For example,

the rate of decrease on detecting an interesting event should not always be the same and

should depend on the recent history (in terms of interesting and uninteresting events)
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of the user. Therefore, in this subsection we present the design of a machine learning

technique that dynamically adapts the sampling rate of the sensors according to the

user’s context, achieving improved energy savings without compromising the accuracy of

mobile phone applications.

Learning based Adaptation

We design a learning technique based on the theory of learning automata [NT89] to control

the sampling rate of the sensors. In particular, the algorithm is based on the linear reward-

inaction scheme [BH75, KLM96] 2. Learning automata based techniques are defined in

terms of actions, probability of taking these actions, and their resulting success or failure.

In the context of learning automata there is only one action in our scenario, i.e., sensing

from a sensor. The decision whether or not to sense from a sensor in each sensing window

is based on a probability value, which we call probability of sensing. In cases where the

scheme decides to sense the sensing action results in either success or failure, which are

defined as follows: when data sensed from a sensor corresponds to an unmissable event

(for example, when an audio sample is recorded through the microphone sensor, and it

contains some audible data) then we call this a success. Similarly, when data sensed from

a sensor corresponds to a missable event (for example, audio data from the microphone

sensor contains no audible data but only silence) then we call this a failure. The idea is

that when a sensor expends some energy in sensing and this results in capturing an event

of interest then it is considered a success, otherwise a failure. The probability of sensing

from a sensor is dynamically adjusted according to the previous successes and failures.

The technique works as follows: let pi be the probability of sensing from a sensor si where

i={accelerometer, Bluetooth, microphone . . .}, and ai be the sensing action on the sensor.

If the sensing action ai results in an unmissable event then it means that the system has

detected an interesting event (i.e., a success, e.g., an audio sample containing voice data),

so the probability is increased (or advanced). The probability value (pi) is calculated

according to the following formula:

pi = p̃i + αI(1− p̃i), where 0 < αI < 1 (3.1)

p̃i is the probability of sensing calculated in the previous step and αI (alpha increase) is a

constant factor that sets the rate at which the probability increases. When p̃i is low, then

(1 − p̃i) is high and therefore pi increases more quickly. When p̃i is high, then (1 − p̃i)
is small and therefore pi increases at a slower rate. The intuition behind this model is

that the probability increases more quickly when it is at the low end of the range [0, 1],

and more slowly as it reaches the higher end. To explain further, if the probability is low,

2Alternative techniques include information theoretical approaches such as compressed sens-

ing [Don06], which are orthogonal with respect to our application-level approach.
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and interesting events are observed, then it has to increase more quickly to increase the

sampling rate. If the probability is high, and interesting events are observed, then it can

grow at a slower rate as it is already high. This formula is used as an advance function

when an interesting event is detected.

If the sensing action ai results in a missable event, it means that the system has not

detected an interesting event (i.e., a failure), so that probability is decreased (or backed-

off). The new probability value is calculated according to the following formula:

pi = p̃i − αDp̃i, where 0 < αD < 1 (3.2)

p̃i is the previous probability of sensing and αD (alpha decrease) is a constant factor that

controls the rate at which the probability decreases. When p̃i is low then the decrease of

the probability will be slower, and when p̃i is high then the decrease of the probability

value is faster. Similar to the previous explanation, the intuition is that when p̃i is high

and an uninteresting event is detected, then it has to decrease more quickly to save energy

as the sensing does not lead to event detection. If the p̃i value is low and an uninteresting

event is detected, then the decrease rate could be slower as the probability is already low.

This formula is used as a back-off function when an uninteresting event is detected. By

adopting these mechanisms, the sampling rate adapts to the context of the user. The flow

diagram of the learning based adaptive sensing scheme is shown in Figure 3.3.

In the initialisation phase, since we do not have the previous context of the user, we set

the probability value to 0.99, so that the sensing is performed almost continuously at

the start and then it subsequently adapts according to the sensed user’s context. If we

set the probability to a lower value, since we do not have the user’s previous context,

it might result in missing some interesting events, therefore, we chose to set the initial

probability to a high value. If the probability value falls too low, then it might take

several iterations of detecting interesting events to reach a higher probability value, and

this might result in missing interesting events. Since accuracy is an important factor that

should be maintained for social sensing applications to be functional, we limit the lower

bound of the probability to 0.1, i.e., converges to 10% duty cycling. We evaluate this

learning technique and compare its performance with that of various static functions, a

continuous sensing scheme, and a fixed duty cycling scheme in Section 3.5

Assumptions

In order to apply the learning based adaptive sensing scheme, we assume that the following

requirements hold.

• The application should be able to classify events to interesting or uninteresting

according to its requirements. If an application is unable to do this, then the

proposed scheme can not be applied.
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Figure 3.3: Flow diagram of the learning based adaptive sensing scheme.

• If an interesting event occurs in a large sequential stream of uninteresting events,

then there is a high chance that the scheme may miss the event, as it needs a

sequence of interesting events to increase the probability of sensing. The proposed

scheme, therefore, is not useful to capture events that happen rarely.

• The proposed scheme is applicable only to “pull sensors”, and “push sensors” do

not need a duty cycling mechanism as described in Section 2.6.

3.2.3 Adaptive Sensing API

Modern mobile phone operating systems such as the Android system provide APIs for

sampling the sensors. However, they lack a service to dynamically adjust the sensor

sampling interval. We therefore designed and implemented APIs in order for mobile

sensing applications to utilise the services of the proposed adaptive sampling scheme.

The design works in the following way:

• The sensor monitors (or sensor trackers or sensor threads that are responsible for

capturing data from the sensors) should first register a listener with the adaptive

sampling service providing details about the sensor type and sensor-specific cate-

gorisation of interesting/uninteresting events.
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• Whenever a sensor monitor captures data from the sensor, it should be sent to the

adaptive sampling service so that the service can adjust the probability of sensing

(described in the previous subsection).

• The adaptive sensing component then updates the sampling interval according to

the probability of sensing and notifies the sensor monitor asynchronously.

A detailed description of the APIs and sample code to show the usage of the APIs are

provided in Appendix A.

3.3 Rules Framework

The users of social sensing systems may not have necessary programming experience to

customise the sensing process, therefore, we designed a rules framework to support the

writing of rules to trigger sensing actions based on context events. Rules can be written to

capture data from a sensor on detecting a specific context event; for example, capture data

from the microphone only when the user is at home, or capture data from the Bluetooth

only when the user is at the office. The rules framework can also be used to trigger an

expensive (in terms of power) sensor based on an inexpensive sensor to save energy such

as the accelerometer based triggering of the GPS.

The adaptive sensing framework described in the previous section captures data from

several sensors. This data is then logged into two declarative databases (Knowledge Base

and Action Base). The data from each of the sensors is logged to the Knowledge Base, a

repository of all the information extracted from the on-board sensors of the phones. The

framework is based on a declarative specification (using first-order logic predicates) of:

• facts, i.e., the knowledge extracted by the sensors about user behaviour (such as

the user’s emotions) and his/her environment (such as the identity of the people in

conversation with the user).

• actions, i.e., the set of sensing activities that the sensors have to perform, such as

recording voices (if any) for 10 seconds each minute when the user is at home or

extracting the current activity every 2 minutes when the user is moving.

The sensing actions are periodically generated by means of the inference engine and a

user-defined set of rules (a default set is provided). The actions that have to be executed

by the system are stored in the Action Base. Users of the framework can define sensing

tasks and rules that are interpreted by the inference engine in order to dynamically adapt

the sensing actions performed by the system. In the remainder of this section we discuss

details of the declarative databases and inference engine, while presenting several example

rules.
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3.3.1 Action and Knowledge Base

The Knowledge Base repository stores the current facts that are inferred from the raw

data generated by the various sensors. Sensor trackers or sensor monitors capture data

from the sensors in the phone and log them into the Knowledge Base, which are in turn

used by the inference engine to generate actions. As the framework is aimed at mobile

sensing systems the Knowledge Base is designed to load in “memory” only the most recent

facts to reduce the application footprint. The format of facts is as follows:

fact(<fact_name>, <value>)

The corresponding timestamps of these facts are also stored. Actions are also treated as

facts, but with an extra identifier which is of the form:

fact(‘action’, <action_name>, <value>)

Some examples are:

fact(Activity, 1)

fact(‘action’, ‘ActivitySamplingInterval’, 10)

The former indicates that the user is currently moving, and the latter means that the

sampling interval of the accelerometer should be set to 10 seconds.

If users of the framework add rules to control the duty cycling of the phone’s sensors,

then these rules override the adaptive sensing functionality, i.e., the sampling of sensors

for which a sampling rule exists will not be controlled by the adaptive sensing, but will

be performed as per the specified rule. For example, if a rule is added to sample from a

sensor at a fixed rate then it overrides the adaptive sensing. Therefore the duty cycling

of sensors should only be used if the users of the framework do not wish to use adaptive

sensing for these sensors.

3.3.2 Inference Engine

The framework is based on a set of adaptation rules that enables the adaptation of the

behaviour of the system at run-time by monitoring the current activity, co-location with

other people, and location of the person carrying the mobile phone. The adaptation rules

are used to modify the sampling behaviour of the system according to the observed status

of the user (e.g., whether a person is moving), and his/her surroundings (e.g., if there

are other people around, if they are currently talking). The framework reduces energy

consumption by reducing data sampling and information processing by using triggers such

as the accelerometer based triggering of the GPS sensor.
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1. set_location_sampling_interval

2. foreach

3. facts.fact($factName, $value)

4. check $factName == ’Activity’

5. facts.fact($actionName, $currentInterval)

6. check $actionName == ’LocationInterval’

7. $interval = update($value, $currentInterval)

8. assert

9. facts.fact(’action’, ’LocationInterval’, $interval)

Figure 3.4: An example rule to set the sampling rate of the GPS sensor based on the

accelerometer sensor.

1. def update(value, currentInterval):

2. if value == 1:

3. samplingInterval = 10 # seconds

4. elif value == 0:

5. samplingInterval = 3600 # a large value

6. return samplingInterval

Figure 3.5: A function to update sampling interval.

An example of a rule used is given in Figure 3.4. The rule updates the value of the

location sampling interval in accordance with data from the accelerometer sensor. The

rule retrieves the fact Activity (lines #3 and #4) and the current location sampling

interval LocationInterval from the Knowledge Base and then executes an action (line

#9) to update the sampling interval based on a function (update(), Figure 3.5). The

idea is to provide a simple interface to add rules in order to change the behaviour of the

system. Another example is to write a rule to capture the data from the microphone

when the user is at a specific location (shown in Figure 3.6). In this case, when the user

is at home the $value variable (retrieved in line #3) holds an integer value representing

this state.
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1. set_mic_sampling_interval

2. foreach

3. facts.fact($factName, $value)

4. check $factName == ’Location’

5. facts.fact($actionName, $currentInterval)

6. check $actionName == ’MicInterval’

7. $interval = update($value, $currentInterval)

8. assert

9. facts.fact(’action’, ’MicInterval’, $interval)

Figure 3.6: An example rule to set the sampling rate of the microphone sensor based on

the user’s location.

3.4 Implementation

The adaptive sensing scheme has been implemented on the Symbian S60 platform based

on Python for S60 [PYS] and the Android operating system 2.1. We implemented sensor

monitors to capture data from the accelerometer, Bluetooth, microphone, and GPS sen-

sors. For the Symbian S60 platform we used the accelerometer sensor API provided by

PyS60 platform to access the X, Y, Z axes data of the accelerometer sensor, and the light-

blue [LIG] module to perform Bluetooth discovery operations. We used the positioning

module of PyS60 to capture the user’s location information. The monitor tries to extract

valuable information even if the GPS data is not complete. An example of an incomplete

position is one that contains data about the satellites used to obtain a GPS fix but no

latitude or longitude data. This can at least be used to infer whether the user is indoors

or outdoors.

Android Bluetooth APIs were used to discover Bluetooth devices in proximity. The dis-

covery process is asynchronous and the method call immediately returns with a boolean

indicating whether discovery has successfully started. The discovery process involves

an inquiry scan, followed by a page scan of each device found to retrieve its Bluetooth

name. The Android SensorManager Service is used to access the X, Y, Z axes of the

accelerometer sensor data. This process is asynchronous too and involves registering a

listener (SensorEventListener) for capturing accelerometer data. The Android Sensor-

Manager API provides various speeds at which data is sensed from the accelerometer,

and we use the SENSOR DELAY FASTEST setting to capture accelerometer data

as fast as possible. The location information is obtained through the Android Location

Manager [ALM].

49



CHAPTER 3. ADAPTIVE SENSOR SAMPLING

The rules framework is based on Pyke [PYK], a knowledge-based inference engine. It

takes a set of facts as inputs and derives additional facts through forward chaining rules.

It can also be used to prove goals using backward chaining rules. However, these are not

necessary in our system and were removed when we adapted Pyke for our platform in

order to reduce the memory footprint. We have also provided a set of adaptation rules

along with the framework which drive the behaviour of some sensors. The inference engine

is periodically invoked to process facts and generate actions.

3.5 Evaluation

In this section we present the evaluation of the learning based adaptive sampling scheme

with respect to accuracy and energy using real traces collected by participants carrying

mobile phones.

3.5.1 Empirical Datasets

We collected the dataset for benchmarking the various sensor sampling schemes from users

carrying mobile phones. We gathered a total of 255 hours of raw accelerometer sensor

data (i.e., X, Y, Z coordinates of 3-axis accelerometer), 230 hours of Bluetooth data (i.e.,

Bluetooth identifiers), and 213 hours of microphone data (i.e., audio recordings), with 10

users carrying a Samsung Galaxy S phone (running Google Android 2.1 Platform3) or a

Nokia 6210 Navigator phone (running Symbian S60 platform4). The participants were

students and staff of the Computer Laboratory, University of Cambridge. The data was

collected during weekdays. The participants were not required to interact with the sensor

data collection application as it was designed as a passive data collection tool. The data

was not collected from all the participants during the same days but was collected over a

period of few weeks based on their availability. The sampling of the accelerometer sensor

and the Bluetooth sensor was performed continuously with a sleep interval of 0.5 seconds

and 1 second, respectively. Audio samples of length 5 seconds were recorded from the

microphone sensor with a sleep interval of 1 second between consecutive audio recordings.

3.5.2 Classifiers

The adaptive sensing scheme requires the data from the sensors to be classified as in-

teresting or uninteresting events in order to dynamically adjust their sampling intervals.

Therefore, after the dataset was collected, we classified the raw data in the sensor traces

into high level events. For example, [x, y, z] vector data from the accelerometer sensor

3http://developer.android.com/about/versions/android-2.1.html
4http://www.developer.nokia.com/Devices/Symbian
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can be classified as moving or idle states. We then mapped these high level events to

interesting or uninteresting events. The classification process was executed offline to gen-

erate the event traces from the raw sensor traces. In particular, we used the following

classifiers:

Movement Classifier

The movement classifier classifies raw data from the accelerometer sensor to moving or

stationary events. Raw data from the accelerometer contains a list of [x, y, z] vectors.

The classification procedure is as follows:

• Calculate the magnitude of the acceleration of each of the vectors using the formula:

for a vector i, magnitude of acceleration mi =
√
x2 + y2 + z2.

• Divide the list of vectors into three subsets: first one-third, second one-third, and last

one-third. For each of these sets calculate the standard deviation of the magnitude

of acceleration values.

• For each set, if the standard deviation is greater than a certain threshold value

(which is determined using labelled ground truth data), then the user is considered

to be moving. The result is the event given by at least two of the three sets.

Predefined threshold based approach has been used by some works such as [FF00]

and [TRB+11].

Conversation Recognition

The conversation recognition classifier classifies a raw audio file as silence or sound. The

classifier was implemented using the Hidden Markov Model Toolkit (HTK) [HTK]. Two

Gaussian Mixture Models representing speech and silence models were trained, and then

each raw audio file was parameterised and compared with the conversation and silence

models. The model with highest likelihood of match is assigned as the model of the

recorded audio file. More details of this classifier will be presented in Chapter 6.

Co-location Change Detection

The co-location change classifier uses the data from the Bluetooth sensor to detect whether

the co-location of the user (i.e., the Bluetooth device addresses captured by the user’s

phone) has changed with respect to the data from the previous sensor sampling. It is a

simple classifier, and compares the Bluetooth scanning results of two consecutive sensor

samplings to detect whether the user is currently co-located with the same or a different

set of users. The Bluetooth discoverability on all the phones carried by the users was set

to ON during the entire data collection process.
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3.5.3 Methodology

In this subsection, we describe our evaluation methodology.

Categorisation of Events

As discussed in Section 3.2, we classified the raw data in the sensor traces into events,

which can be of two types, viz., “interesting” and “uninteresting” events. In the case

of the microphone sensor an unmissable event corresponds to some audible data being

heard in the environment and a missable event corresponds to silence. This is because

audio data with sound can be used by the classifiers for further processing like speaker

identification [LBBP+11] or stress detection [LRC+12], but silence data may not provide

much information. For the Bluetooth sensor traces an unmissable event corresponds to a

change in the number of co-located users, whereas a missable event indicates no change.

If there is no change in the user’s co-location state, then the mobile system/application

already has this knowledge, so there is no need to spend energy in detecting a known event.

In the case of the accelerometer sensor, the unmissable event corresponds to movement

of a user and a missable event indicates that the user is stationary. Although both these

events are unmissable, it is sufficient to detect just one of them since we only have two

possible events, so we choose a “user moving event” as unmissable.

Performance Metrics

We evaluated the performance of the adaptive scheme with respect to the metrics: accu-

racy and energy. The accuracy is measured in terms of the percentage of interesting events

detected. We do not consider uninteresting events as they may either provide information

that is redundant or not of much value to mobile applications.

We measure the energy consumption using the Nokia Energy Profiler (NEP) [NEP]. NEP

is a stand-alone test and measurement application for the Symbian S60 platform provided

by Nokia and it provides a way of measuring the power consumption of the mobile phone

at fine-grained time intervals. It can be used to estimate energy consumption, cumulative

energy consumption, as well as battery voltage and current, etc. The tool’s documentation

mentions that when an application is in use, the Nokia Energy Profiler can be run in the

background to profile power consumption. It is a popular energy measurement tool for

measuring energy consumption on Nokia mobile devices [VRC13] and many research works

such as [PFS+09, BBV09, XSK+10, WLA+09] have used it to measure and estimate the

power consumption of the mobile phone.

The Nokia Energy Profiler uses a power model to estimate the energy consumption of

various operations on the phone. Power models are generally built based on the direct

measurements of the power consumption of various components of the phone [ZTQ+10].
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Like most of the energy measurement tools based on power models, NEP is also prone to

small inaccuracies, related to factors such as temperature, total recharge cycles of battery

etc. However, we are interested in the relative differences in the energy consumption

but not the absolute energy measurement values. Therefore, this tool should provide us

an estimate of the relative differences between schemes as we are interested only in the

energy difference across schemes. The energy consumption of a sensing task is computed

as follows: we first measure the baseline power consumption of the mobile phone, and

then we activate the sensing task and measure the energy consumption. The difference

between these energy consumption values is calculated as energy of the task. We repeat

this procedure for over 100 iterations and finally we calculate the average of these values

to determine the average energy consumption of the task.

Power measurement values of the sensing tasks are affected by many factors such as oper-

ating system, CPU frequency, phone model, and background processes. In the evaluation

the energy consumption of a scheme with respect to a sensor is estimated from the length

of time the sensor was active and the measured power value. Thus differences in the power

measurement values across devices and operating systems should not affect our findings,

as we evaluate the relative difference between the schemes. For example, if a scheme acti-

vates a sensor for x duration of time, then the energy is estimated by multiplying this by

the measured average power value. If another scheme activates the sensor for 2x length of

time achieving the same level of accuracy, then we can say that the former scheme saves

50% energy more than the latter.

Tuning of the Adaptive Scheme

We first fine-tuned the parameters of the adaptive sampling scheme: since the α values

might vary according to the requirements of the application, we explored the performance

of the learning technique for each sensor for the entire parameter space of αI and αD

values (explained in Section 3.2) and then selected the appropriate values for them. We

measured the performance of the sampling schemes presented in the previous sections,

based on the percentage of total interesting context events (as described earlier in this

subsection) detected. The number of context events generated and its distribution is

generally dependent on the behaviour of the user. For example, the accelerometer sensor

in a user’s phone, who is not physically active during office hours, might generate a large

number of “user stationary” events during working hours. Similarly, the phone of a user

who is physically active during office hours might sense “user moving” events more often.

Another example is that the behaviour of the user in terms of her speech patterns impacts

the distribution of “user speaking” events detected by the phone’s microphone. Therefore,

the α values selected by this process should be general enough to provide the same level

of performance in the cases with a similar user behaviour as this might result in similar

distribution of context events.
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Techniques used for Comparison

To quantify the advantages of adaptive sensor sampling, we compared its performance

with a continuous sensing scheme, a fixed 50% duty cycling scheme, and various static

back-off and advance functions. The back-off and advance functions used in the evaluation

are given in Table 3.1 (Section 3.2).

3.5.4 Results

Bluetooth Sensor

αI and αD variation. To optimise the learning based technique for each of the sensors,

we first measured its performance in terms of accuracy and energy by varying the αI

and αD values. Figures 3.7 and 3.8 show the variation of both the α values with respect

to the performance of the learning based technique for the Bluetooth sensor in terms of

accuracy and energy, respectively. From these plots we can observe that the technique is

more accurate for higher values of αI and lower values of αD. This is because for higher

αI values the probability of sensing increases more rapidly and for lower αD values the

probability decreases slowly, i.e., the probability increases faster on detecting interesting

events, but decreases slowly on detecting uninteresting events, which, on average, results

in higher probability of sensing values. The learning technique decides whether to sense

or not in each sensing window, and in its most aggressive form (a high αI and a low

αD value) it resembles a continuous sensing scheme. However, the main strength of the

technique is its adaptiveness, which we demonstrate further. Using these results, the αI

and αD values can be selected according to the energy and accuracy requirements of the

application. To achieve high accuracy, values for αI and αD parameters based on the

results could be 0.9 and 0.1, respectively.

Comparison with other sampling techniques. To understand the energy savings and

adaptiveness of the learning based scheme we also compared it with a continuous sensing

scheme and a 50% duty cycling scheme. Figures 3.9 and 3.10 show the performance of the

adaptive, continuous sensing, and 50% duty cycling schemes with respect to accuracy and

energy for the Bluetooth sensor. We can observe that, to achieve almost the same level

of accuracy, the learning scheme consumes 50% less energy than the continuous sensing

scheme. With respect to the 50% duty cycling scheme, the learning scheme consumes 10%

less energy and achieves 40% greater accuracy. This is an important result considering

that social sensing applications may require high accuracy to accurately model the user’s

behaviour, and users may not be willing to participate in the experiments if they have to

frequently recharge their phones. The evaluation results show that the proposed learning

based adaptive scheme satisfies both these requirements. Further, we also compared the

performance of the adaptive scheme with that of various static functions described in

54



CHAPTER 3. ADAPTIVE SENSOR SAMPLING

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20

 40

 60

 80

 100

A
c
c
u

ra
c
y
 [

%
]

αI

αD

A
c
c
u

ra
c
y
 [

%
]

 30

 40

 50

 60

 70

 80

 90

 100

Figure 3.7: Accuracy vs alpha increase and

alpha decrease for Bluetooth sensor.
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Figure 3.8: Energy consumption per hour

vs alpha values for Bluetooth sensor.
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tooth sensor.

 0

 100

 200

 300

 400

 500

 600

 700

continuous 50% duty learning

E
n
e

rg
y
 (

jo
u
le

s
)

Sampling Schemes
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50% duty cycling, and learning schemes for

Bluetooth sensor.

Section 3.2 (Table 3.1). Figures 3.11 and 3.12 show the performance of combinations of

static functions and the learning technique. The x-axis labels in the graph are of the

format advance function – back-off function. Even though the energy savings were higher

for the static functions, the accuracy they achieved was very low: in consequence they

may not be able to capture all the required events to accurately model the behaviour of

the user. The static functions do not adapt to the context: they react in the same way to

a single interesting event or a continuous stream of context events, achieving low accuracy.

From the results it can be inferred that the combination that performs best and closest

to the learning scheme is exponential-linear, as this exponentially decreases the sampling

interval on capturing an interesting event and linearly increases the sampling interval

on capturing an uninteresting event, i.e., the sampling rate increases at a high rate and

decreases at a low rate. However, it is still 21% less accurate than the learning based

scheme. We note that since the confidence intervals of these static combinations overlap,

it is difficult to infer with high confidence about the performance differences among these

schemes and the best performing scheme out of all the combinations.
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based schemes for Bluetooth sensor.
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Figure 3.12: Energy per hour of static func-

tion based schemes for Bluetooth sensor.

Max/Min sleep interval variation. The maximum sleep interval (described in Sec-

tion 3.2) value limits the amount of sleep time between two consecutive sensor sampling

windows, and it affects the accuracy and energy of the adaptive learning scheme. To un-

derstand this we studied its effect on two combinations of alpha values: αI = 0.9, αD = 0.1

(aggressive sampling) and αI = 0.1, αD = 0.9 (conservative sampling). We set the mini-

mum sampling interval to a value close to zero (2ms), so that the schemes sample almost

continuously when sampling at the maximum rate. Figures 3.13 and 3.14 show the effect

of increasing the maximum sleep interval on the accuracy and energy, respectively, of the

adaptive scheme. As expected, as the sleep interval increases, the energy and accuracy of

the scheme decrease. However, the rate of decrease is slower for the aggressive sampling

combination of α values (αI = 0.9, αD = 0.1) than the conservative sampling combination

(αI = 0.1, αD = 0.9). This is because in the former case the scheme reacts to interesting

events by rapidly increasing the probability of sensing, and to the uninteresting events by

slowly decreasing the probability of sensing, which results in higher average probability

of sensing. Due to this, the scheme senses more often and does not frequently reach the

maximum sleep interval value. Therefore, the effect of increasing the max interval value

is lesser on this combination than on the other.

Accelerometer Sensor

In this subsection we present the evaluation of the adaptive scheme with respect to the

accelerometer sensor. Figures 3.15 and 3.16 show the accuracy and energy consumption

of the learning technique for different alpha values. We observe similar results to the

Bluetooth sensor, i.e., accuracy is greater for higher αI and lower αD values. In addition,

we observe that the variation of the energy values for accelerometer is not as high as that

of Bluetooth, as the cost of sensing from the accelerometer is much lower than is the case

with the latter. We now compare the performance of the adaptive scheme for high αI
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Figure 3.15: Accuracy vs alpha increase and

alpha decrease for accelerometer sensor.
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Figure 3.16: Energy consumption per hour

vs alpha values for accelerometer sensor.

and low αD values with continuous sensing and 50% duty cycling schemes, to determine

the energy savings of the adaptive scheme. Figures 3.17 and 3.18 show the accuracy and

energy results of the sensing schemes. We can observe that both learning and continuous

schemes achieve close to 100% accuracy. However, the energy consumption of the adap-

tive scheme is 42% less than that of continuous sensing. With respect to the 50% duty

cycling scheme, the learning scheme consumes 12% less energy and achieves 33% higher

accuracy. We also measured the accuracy achieved by the static functions: these achieve

low accuracy because they are static (Figures 3.19 and 3.20). Similar to the Bluetooth

results, exponential-linear is the most accurate static combination, but it remains much

less than the learning scheme. We note that the energy values of all the static combina-

tions are very close because of the low power consumption of the accelerometer sensor,

i.e., large differences in accuracy translate to small differences in energy.
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duty cycling, and adaptive schemes for ac-

celerometer sensor.
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50% duty cycling, and adaptive schemes for

accelerometer sensor.
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Figure 3.19: Accuracy of static function

based schemes for accelerometer sensor.
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Figure 3.20: Energy per hour of static func-

tion based schemes for accelerometer sensor.

Microphone Sensor

Finally, we measured the performance of the adaptive, continuous, 50% duty cycling, and

static functions for the microphone sensor. Figures 3.21 and 3.22 show the performance of

the adaptive scheme for varying alpha values for the microphone sensor. As expected, the

adaptive scheme is more accurate for higher αI values and lower αD values. Figures 3.23

and 3.24 show the accuracy and energy results for the continuous sensing, 50% duty

cycling, and adaptive sensing schemes. The results show that while achieving accuracy

results close to 100% the learning scheme consumes 43% less energy than the continuous

sensing scheme. With respect to the 50% duty cycling scheme, the learning scheme

consumes 7% more energy due to the intensity of the audio processing task. However, it

achieves 30% more accuracy than the duty cycling scheme. We also evaluated the static

functions for the microphone sensor and observed similar behaviour to that of the other

sensors, i.e., the accuracy achieved was very low.
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Figure 3.21: Accuracy vs alpha increase and

alpha decrease for microphone sensor.
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Figure 3.22: Energy consumption per hour

vs alpha values for microphone sensor.
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crophone sensor.

 0

 500

 1000

 1500

 2000

 2500

continuous 50% duty learning

E
n

e
rg

y
 (

jo
u
le

s
)

Sampling Schemes

Figure 3.24: Energy per hour of continuous,

50% duty cycling, and adaptive schemes for

microphone sensor.

The results presented in this section demonstrate that the proposed learning scheme

is more energy-preserving than the continuous sensing scheme while achieving similar

accuracy for all the sensors. The energy savings achieved by the learning based adaptive

scheme are 50%, 42%, and 43% higher compared with the continuous scheme with respect

to Bluetooth, accelerometer, and microphone sensors, respectively. Compared with the

fixed 50% duty cycling scheme, the learning scheme achieved much higher accuracy for

a comparable (microphone) or better energy savings (Bluetooth, accelerometer). The

results also showed that the static function-based schemes achieve too low an accuracy

to be useful for accurate social sensing. Further, the αI and αD parameter values are

configurable and can be adjusted to suit the energy and accuracy requirements of mobile

phone applications.
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3.6 Related Work

Much research work has concentrated on inferring various kinds of social-oriented contex-

tual information using smartphones [GLC+08, LYL+10, KLNA09, ROPT05] such as infer-

ring speaker [MCR+10, LBBP+11] or capturing activities [MLF+08, RMB+10, WLA+09].

Systems that use purpose-built mobile devices to autonomously measure the user’s con-

textual information include the Sociometer (or sociometric badge) [CP03] and the Mobile

Sensing Platform [CBC+08].

Energy is a vital issue when building mobile sensing systems. The EEMSS platform

[WLA+09] uses a hierarchical sensor management strategy to recognise participants’ ac-

tivities and achieves energy savings by using a minimal set of sensors and heuristically

determining sampling lengths and intervals for the sensors to detect the user’s state as

well as transitions to new states. The duty cycling parameters should be refined offline

through empirical tests and the system uses fixed fine-tuned intervals. Unlike the EEMSS

system, the proposed adaptive sensing scheme dynamically adjusts the sensor duty cycling

intervals according to the user’s context. Further, we have shown in this chapter that the

proposed dynamic scheme conserves more energy than static schemes.

The Acquisitional Context Engine (ACE) [Nat12] is a middleware for mobile sensing

applications that supports continuous context recognition while achieving high energy

savings. ACE automatically learns relations between the various context attributes, for

example, if the user is at home then she is not driving, and exploits these to save energy.

SeeMon [KLJ+08] is a context monitoring service for mobile devices based on several

sensors and it achieves energy efficiency by sensing from a minimal set of sensors. These

approaches achieve energy savings by inferring a context attribute using data from an

inexpensive, or lesser number of sensors, or already available information, whereas the

proposed scheme achieves energy savings by dynamically adjusting the sensor sampling

interval. Duty cycling to achieve power savings is also a widely used technique in many

mobile sensing systems [WLA+09, MLF+08, KLGT09]. Most of these systems, however,

use static intervals which, as shown in this chapter, is inefficient.

The Jigsaw continuous sensing engine [LYL+10] balances the performance requirements

of applications and the resource demands of continuously sensing on the mobile phone.

It supports accelerometer, microphone, and GPS sensors. The system implements a dy-

namic duty cycling component that achieves energy savings by decaying the microphone

sampling frequency (i.e., increasing the sampling interval) when no acoustic event is cap-

tured. However, the authors did not present exploration of the energy-accuracy trade-offs

of the dynamic duty cycling method. In the case of the GPS sensor, they use a scheme

based on the discrete-time Markov Decision Process (MDP) to learn the optimal GPS

duty cycles. Their target is to learn the optimal duty cycling policy considering battery

budget, duration of activity, and the mobility pattern of the user. The proposed adaptive
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sensing scheme uses a reinforcement learning mechanism where we consider the history

of events in adjusting the probability of sensing, i.e., more the number of consecutive

interesting events higher will be the probability of sensing (as the sampling should be

aggressive if a continuous stream of interesting events have been detected), whereas in

a Markov Model the decision taken at a state is generally independent of the previous

states. The authors of [CGS+09] also considered the energy budget and in particular,

given an energy budget they try to minimise the average localisation error using a dy-

namic programming approach. However, the formulation based on energy budget differs

from the proposed methodology in this chapter, i.e., dynamic adjustment of the sleep

interval between consecutive sensing windows according to the user’s context.

Nericell [MPR08] is a mobile sensing platform that monitors road and traffic conditions,

and it achieves energy efficiency by employing the concept of triggered sensing, where

an inexpensive sensor is used to trigger the operation of an expensive sensor. Triggered

sensing has also been used in the SenseLess system [BAPH09]. Although triggered sens-

ing can be configured using the rules framework presented in this chapter (Section 3.3),

the adaptive scheme does not depend on the triggered sensing. The proposed approach

relies on dynamically learning the user’s behaviour and adjusting the sensor duty cycling

intervals accordingly.

Virtual Compass [BAB+10] builds a relative neighbour graph using radio technologies like

Bluetooth and Wi-Fi, and can be a useful tool for social applications. It achieves energy

efficiency by adapting scanning rates and monitoring topology changes, and selecting the

most appropriate radio interface according to the energy characteristics. In [RPS+10]

the authors address the problem of energy-delay trade-offs in smart phone applications

and in particular, they focus on delay-tolerant applications. They present SALSA, an

algorithm based on Lyapunov optimisation, which achieves energy efficiency by adapting

to channel conditions and deferring data transmissions accordingly. Llama [BRC+07] is

an energy management system based on user statistics in terms of usage and recharge

cycles, and exploits excessive energy for a better user experience. Finally, several energy-

saving schemes for mobile devices were discussed and compared in [VBH03]. Although

these schemes address the problem of energy consumption on mobile platforms, they do

not address the energy-accuracy trade-offs of sensor sampling in mobile phones.

3.7 Conclusions

In this chapter we discussed a design method to adapt sensor sampling intervals to the

context of the user. The design includes identifying interesting and uninteresting events

and adjusting the sampling interval accordingly based on advance and back-off functions.

We also presented a learning based approach that can be used in these functions. The

learning scheme dynamically adapts the sensor sampling interval to the context of the
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user using a probabilistic approach. We also presented a rules framework to support the

writing of rules to trigger the sensor sampling based on the user’s context. We then

designed APIs for the adaptive sensing scheme so that mobile phone applications that

aim at energy savings can utilise the services of the adaptive framework.

The results showed that the learning based scheme saves considerably more energy com-

pared to the continuous sensing scheme, while achieving almost the same level of accuracy.

In particular, we showed that the proposed adaptive scheme uses 50%, 42%, and 43% less

energy compared with the continuous sensing scheme for the Bluetooth, accelerometer,

and microphone sensors, respectively. We further showed that it achieves much higher

accuracy than a fixed 50% duty cycling scheme for comparable (microphone) or better

energy savings (Bluetooth, accelerometer). We also explored the energy and accuracy re-

sults of varying the αI and αD values that can be adjusted according to the requirements

of mobile phone applications. In the next chapter we will show that the adaptive sensing

scheme can be combined with other schemes to further increase energy savings.
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4
Sensing Offloading

4.1 Introduction

In the previous chapter we discussed an adaptive sensor sampling scheme and showed

that it achieves significant energy savings. We have, however, also showed that energy

needs to be expended in querying the phone’s sensors often to achieve high accuracy.

Although the adaptive sampling technique improves energy savings, there is still need for

more efficient solutions before energy-hungry sensing applications can be widely accepted

by everyday users. In this chapter we introduce a new approach that offers significantly

bigger reductions in the phone’s energy consumption without compromising the accuracy

of event detection by opportunistically offloading sensing to fixed sensors embedded in

the environment if available. Offloading sensing to infrastructure sensors is another step

towards answering Research Question 1 (How can we accurately capture raw data from

the sensors in smartphones in an energy-efficient way?) described in Chapter 1.

Most modern buildings are instrumented with a variety of sensors such as RFID access

control systems, light sensors, motion sensors etc. Mobile phone applications can take

advantage of the presence of such sensing infrastructure to reduce the energy cost of de-

tecting social activities. By allowing mobile phone applications to interact with sensors

in the environment whenever they are available, there is an opportunity to design rich

systems that can maintain highly accurate sensing using both local phone and infras-

tructure sensors without compromising the battery life. Although offloading reduces the

cost of sensing on the phone, it requires additional energy in the form of network com-
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munication between the phone and the sensor. The total energy cost incurred on the

phone depends on how frequently the phone is expected to communicate with the sensor,

which depends both on the user’s mobility pattern, and on the rate at which events are

detected by environmental sensors. A key challenge in supporting sensing offloading is to

design a smart offloading scheme for optimal energy performance without compromising

sensing accuracy. We note that offloading sensing to remote sensors may save energy on

the phone, however, it incurs additional energy in the sensing infrastructure. Our aim is

to save energy on the mobile phone as it is powered by a limited battery source and we

do not consider the energy consumed by the sensing infrastructure as they are generally

powered by their own energy supply stations with always-on power supply.

In order to offload sensing to the remote sensors, smartphones should be able to discover

the services and capabilities of the sensing infrastructure. Several works [ZMN05, Dar10]

have addressed the issues related to the service and device discovery. Jini network tech-

nology, Microsoft’s Universal Plug and Play (UPnP), and Service Location Protocol

(SLP) [Ric00] are some of the technologies that can be used to support service discovery

and advertisements. In this chapter, our main focus is on designing an efficient sensing

offloading scheme and we assume the presence of a discovery service to find the sensors

in the environment. In order to communicate with the infrastructure sensors, we adopt

an existing protocol, which will be detailed further in the chapter.

In this chapter we present a novel sensing offloading scheme that smartly switches between

the local phone sensors and the sensors in the environment, when available, to achieve

energy efficiency while delivering accurate data to the applications. The sensing offloading

scheme takes into account parameters like sensor type, sampling rate, event rate, network

connection state, and the mobility patterns of users to make a decision about whether

to use local phone or remote sensors. We also present the design and implementation

of a sensing platform that uses the sensing offloading scheme to offer seamless transition

between local and remote sensing for mobile phones, in order to support accurate sensing

of social activities, and offers a simple social sensing API to mobile phone applications.

The system targets primarily office environments, where certain sensing modalities (i.e.,

room occupancy sensing) are commonly available.

Chapter outline. In Section 4.3 we present the architecture of a system that utilises the

sensing offloading scheme and handles interactions between the mobile device and sensors

in the environment. Sections 4.4 through 4.6 describe our experimental approach to

devise an efficient Sensing Offloading Scheme scheme that achieves high-energy efficiency

by combining both local and remote sensing. In Section 4.7 we evaluate our sensing

distribution scheme using a number of benchmark tests. We show through benchmarks

using real traces that the sensing distribution scheme achieves over 60% and 40% energy

savings compared to static scenarios where only phone-based sensing and only remote

sensors are used, respectively. Furthermore, we show through real phone-based tests (in

Chapter 6) that the scheme extends battery life by more than 35% compared to when no
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sensing offloading to the infrastructure is used. We present related work in Section 4.8

and finally, we present conclusions in Section 4.9.

4.2 Motivation

The energy performance of mobile phone sensing applications can be significantly im-

proved if costly sensing tasks are offloaded to sensors that are embedded in the environ-

ment. Users of a mobile sensing application can often find themselves in close proximity

to sensors that can help alleviate the burden of continuous sensing. For example, a door

sensor in an office can be tasked to send a notification of door activity (that indicates a

change in the number of people present in the room), and allow a mobile application to

suspend continuous scanning for co-located people. Another example is, by relying on a

building’s access control system, a mobile phone application can decide to suspend any

location tracking mechanisms on the phone while the user remains in the same building

or even room. In situations where appropriate sensing in the environment is not available,

the phone can fall back on traditional mobile phone sensing techniques. Considering the

typical living patterns of most users in which a vast proportion of their daily lives is spent

at home or in a working environment, the sensing offloading approach could achieve sig-

nificant energy gains while enabling the operation of accurate social sensing applications

on mobile devices.

Offloading opportunities may not be available at all times. Indeed, in a typical office

environment sensing infrastructure can be sparse. The possible gain in mobile phone

battery life is an incentive to the instrumentation of an environment with an appropriate

sensing framework. Further, in office environments, the usability and usefulness of specific

applications such as interaction and collaboration monitoring can be improved by cap-

turing data from more diverse sensor streams (e.g., door/desk sensors) that are generally

not available on smartphones. However, we do not make any assumptions that sensing

infrastructure is available in all the locations at all times. Although fully instrumenting

an environment with appropriate sensors can increase the battery life of mobile phones,

such drastic and costly solutions may not always be practical. Our approach considers

mobile applications that adapt seamlessly to the availability of sensing infrastructure in

the environment, offloading sensing when possible, and relying on local sensing when no

such infrastructure is available. This novel approach has the potential to lead to highly

accurate mobile sensing with minimal impact on the mobile phone’s battery life. We en-

visage a model where sensor providers in buildings can allow the sharing of their sensors

with mobile phone applications through well-defined standards. The incentives for this

are in billing through the mobile phone application using the sensors. Clearly, a privacy

framework for sharing and communication should be put in place, but many existing

solutions can be adopted to support this [LEMC12].
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Designing a scheme for opportunistically offloading sensing to the environment poses a

number of challenges.

• Firstly mobile applications are typically designed without any prior knowledge of or

access to the target environment in which they will operate. Any feasible solution

should therefore assume environments that are not designed to serve this particular

functionality, relying on widely adopted communication protocols for interacting

with existing sensing infrastructure.

• Secondly, even if appropriate sensing modalities are available in a particular environ-

ment, offloading sensing may not always be the most efficient solution. Offloading

can at times cost more than local sensing. Although remote sensing can reduce the

cost of actual sensing on the device, it imposes an increased cost in the form of

network traffic. In general the overall cost is a function of a number of variables:

sensor type, sampling rate, event rate, and network energy.

• Thirdly, the user’s mobility patterns play a crucial role in offloading sensing tasks.

We address these challenges in the remainder of this chapter.

4.3 System Architecture to Support Offloading

In this section we present the architecture of a system that can perform remote sensing to

capture sensor data. The system supports the sensing modalities presented in the previous

chapter i.e., accelerometer, Bluetooth, and microphone. Specifically, we design a mobile

phone service supporting social sensing for mobile applications. When sensing from the

local phone sensors, the system may utilise the services of the adaptive sensing compo-

nent described in the previous chapter. A key feature of the system is its transparent

support for opportunistic offloading of sensing to sensors embedded in the environment,

with the aim of improving energy efficiency without hindering accuracy. The design of

the sensing offloading scheme used in the system will be further described in this chapter

(Section 4.6). The operation of the system includes the discovery of sensing devices that

are available in the immediate environment of the mobile phone user, the identification of

devices that could be used for offloading, and the decision to perform such offloading in

order to maintain overall energy efficiency. If such offloading is not considered beneficial,

the system falls back to local sensing utilising the resources of the mobile device. The

supported sensing modalities are exposed to the mobile applications through the Social

Sensing API. The API allows applications to receive sensing notifications in an asyn-

chronous manner, similarly to the reporting of location updates provided by the Android

Location Services. The architecture of the system is shown in Figure 4.1.
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Figure 4.1: Architecture of a system utilising adaptive sensing, and sensing offloading.

4.3.1 Interacting with Sensing Infrastructure

One of the key enabling technologies for the sensing offloading scheme is the emergence

of a range of Web-based architectures that allow interactions with sensing infrastructure

over IP networks. We decided to assume the presence of sensing infrastructure that follow

the same architectural principles that are adopted by such architectures. Systems such

as SenseWeb [KNLZ07] and Sensei [VBH+10] identify two key elements in their architec-

ture: the presence of a rendezvous point that allows a client to query the infrastructure

about available sensing resources and their capabilities, and the support for a resource

communication protocol that enables clients to interact with specific sensing resources.

The operation of our system imposes the following two requirements on the sensing infras-

tructure: (i) the specification of the physical location of a sensing resource as reported by

the rendezvous point, and (ii) the support for an asynchronous publish-subscribe interface

for communication with a sensing resource. Both of these requirements are supported by

most common Web-based sensing architectures.

In the design of the system we adopt the sMAP [DHJT+10] like communication pro-

tocol for interaction with specific sensing resources. sMAP defines a REST-full/JSON

based communication protocol. Publish-subscribe communication is available through

the /reporting interface. Subscription to specific sensing events can be achieved by

sending a POST request to that interface:
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POST: http://dom.ain.org/report

{

"ReportResource" :

"http://dom.ain.org/data/sensing/ACC_D1_R01/*/reading",

"ReportDeliveryLocation" : "http://10.10.0.1:5001/",

"Period" : 60, "Minimum" : 50, "Maximum" : 100

}

The information that can be retrieved through the rendezvous point plays a key role in

the operation of our system. The expectation is that the system can identify the physical

location of sensor points. In the design of the system we target indoor environments with

the aim of taking advantage of common sensing technologies that can be found in smart

homes or office buildings. To that end we define a minimal XML schema of the sensing

infrastructure that incorporates information about the physical location of sensor points

within a building (Figure 4.2). Although the format of the schema is designed to meet our

needs, the same information can be easily extracted by standard-based schemata such as

SensorML [BR07]. The system can be trivially extended with additional schema parsers

to support multiple infrastructure interfaces.

Such information is crucial in order for the system to identify what types of sensors are

available around the user at any given time. Furthermore, an important requirement for

the accurate operation of the system is that a given environment should offer an accurate

indoor localisation technology that would enable the mobile device to discover where it is

currently within a building. In a typical scenario, when a user enters a building, the system

will attempt to retrieve the sensing infrastructure model from a well-known repository.

If the building offers a known indoor localisation technology (i.e., Wi-Fi fingerprinting,

Bluetooth RSSI trilateration), the system will utilise this technology to locate the user in

the building. That information is then used to discover the types of sensor that can be

accessed by the platform at any given time.

Sensor Mapping

The information that the system collects from the infrastructure is specific to the sensing

device accessed. The system allows the interpretation of such data with the incorporation

of sensor-specific drivers in the form of plug-ins. The Sensor Mapping component acts

as a repository of sensing plug-ins, triggering them on demand when a particular sensor

device is within range of the user. Each plug-in maps a specific high-level social sensing

task to a combination of subscriptions to certain sensor nodes in the environment. The
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<?xml version="1.0" encoding="UTF-8"?>

<mt:METIS xmlns:mt="http://dom.ain.org/metisML">

<!-- ............ -->

<mt:SensorNetwork>

<mt:sMAPURI>http://our.domain.org/</mt:sMAPURI>

<mt:SensorList>

<mt:SensorNode>

<mt:SensorId>BT_D11_R01</mt:SensorId>

<mt:SensorType>BluetoothScanner</mt:SensorType>

<mt:Location>

<mt:Label type="office">R01</mt:Label>

</mt:Location>

</mt:SensorNode>

<mt:SensorNode>

<mt:SensorId>ACC_D1_R01</mt:SensorId>

<mt:SensorType>DeskUseDetector</mt:SensorType>

<!--..........-->

</mt:SensorList>

</mt:SensorNetwork>

</mt:METIS>

Figure 4.2: Sample sensing infrastructure manifest obtained by the system from a service

provider.

design of such plug-ins is non-intuitive and depends on the presence of specific sensors in

the environment. As our main aim is to reduce the energy cost on the local device, such

mappings aim at reducing the frequency of local sensing by relying on notifications that

can be received from the environment. An inference object incorporated in the plug-in

is responsible for extracting significant social events from the event notifications received

from the infrastructure. The receipt of events from such nodes can allow the plug-in to

derive inferences and report information on the location of the user, or the current activity

state, for example.

Plug-ins that have been implemented for the system include:

• If real-time room occupancy information is available, subscribe to receive events

about the current room, and switch off location scanning when the number of people

in that room has not changed.
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• If desk occupancy information is available, subscribe to receive notifications about

the current desk, and report current activity as “sitting” without using the ac-

celerometer.

• If noise level detection is available in the room, subscribe to receive notifications

about changing noise levels, and adjust conversation detection on the phone when

not needed.

4.4 Approach

The performance of the system architecture presented in the previous section relies mainly

on the design of a sensing task distribution strategy that is able to select the most energy

efficient method of sensing (local phone or remote sensing) in any given situation. Simply

offloading sensing tasks to the infrastructure may not always be the most efficient solution:

although offloading reduces the cost of sensing on the mobile device, at the same time

it imposes additional energy cost in the form of network communication. The actual

communication cost can vary significantly depending on the user’s circumstances and the

environment’s: the mobility patterns of the user, the rate at which events are detected

by environmental sensors, and sensing parameters like the cost of sampling a sensor and

sampling rate. An efficient offloading strategy should be able to dynamically adapt in

the face of changing circumstances, by evaluating the expected cost-benefit trade-off in

deciding to perform sensing offloading.

In order to design the Sensing Offloading scheme we followed an experimental approach.

We performed a test deployment in which we collected information about user behaviour

and available sensor readings within an office environment. We then designed a generic

sensing offloading scheme and evaluated it through several benchmark tests using the

collected traces. Finally, through the implementation and real deployment of a social

sensing application for the workplace, we evaluated the sensing task distribution scheme’s

performance in action. The overall methodology is summarised as follows:

• Data Collection Deployment. The aim of this deployment was to collect sensor

readings with continuous sampling by both the mobile phones and already deployed

fixed sensors in the office environment. We used high sampling rates for all sensor

data. These two datasets allowed us to capture some ground truth on sensor data

both from mobile phones and from sensors embedded in the environment.

• Sensing Offloading Design. Using the traces from the initial deployment, we

experimented with a range of sensing distribution policies. The aim of this analysis

was to identify the parameters that affect energy cost and accuracy when deciding

to offload sensing from a mobile phone to infrastructure sensors.
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• System Deployment. By utilising the services of the proposed platform (i.e., sens-

ing offloading), mobile applications will be able to perform social sensing efficiently.

We developed a social application and deployed it within our research institution

with 11 participants for over a month. We will present the results on the application

aspects of the deployment in Chapter 6, which also covers other social psychological

applications that we built. We present the results on energy in this chapter.

4.5 Data Collection Deployment

We performed the initial deployment in the office space of our institution. The aim was to

collect data traces both from mobile phones carried by users, and from sensors embedded

in the environment. Although continuous sampling may be redundant and inefficient, it

is the best way to acquire the most comprehensive dataset capturing a phenomenon. Our

deployment accordingly was one where all sensors, including the users’ phones, in our

office environment were used and sampled at very high rates. The data collected through

this deployment was intended to be used to understand the opportunities for offloading

sensing from the phones to the environment and to evaluate the performance of this

technique. In the next subsections, we present details of the sensing modalities used in

the phones and infrastructure. We note that we could not use the dataset that has been

described in the previous chapter (Chapter 3, Section 3.5.1) for evaluating the sensing

offloading scheme as it has traces only from the sensors of the participants’ smartphones

and not from infrastructure sensors. We, therefore, performed a different data collection

deployment that will be described in this section for exploring the sensing offloading.

4.5.1 Mobile Phone Sensing

We designed an Android application to perform indoor localisation, co-location detec-

tion, and conversation detection using the mobile phone’s microphone. The classifiers

implemented are the same as those described in the previous chapter (Section 3.5). The

application was implemented in Java on the Android 2.3.3 platform.

The sensor sampling was implemented to gather data from the Bluetooth and micro-

phone sensors. The Android Bluetooth APIs were used to discover Bluetooth devices

in proximity. The discovery process involves an inquiry scan followed by a page scan of

each found device to retrieve its Bluetooth name, Bluetooth MAC address, and Received

Signal Strength Indication (RSSI) value. The conversation recognition module is based

on that used in the previous chapter on adaptive sensing, which was implemented using

the Hidden Markov Model Toolkit (HTK) [HTK] (Section 3.5). More details about this

classifier will be presented in Chapter 6 (Section 6.2).
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Figure 4.3: Sensing infrastructure: Each desk is instrumented with a desk occupancy

sensor and a Nokia 6210 Navigator phone acting as conversation detection sensor and

bluetooth anchor point.

4.5.2 Sensing Infrastructure

In our deployment we aimed to exploit existing sensing infrastructure in our environment.

As part of previous sensing experiments within our research institution [ELP+12] two

sensing infrastructures were already available: an indoor localisation infrastructure and a

room occupancy sensing application (Figure 4.3). The indoor localisation system relied

on Bluetooth anchor points deployed around the building. In particular Nokia 6210

Navigator phones were set to act as Bluetooth anchors and to assist in the localisation of

mobile phones. The infrastructure included 12 such Bluetooth anchor points covering a

space of 10 offices. Furthermore, each Nokia node performed a periodic Bluetooth scan

using the lightblue module for Python for S60 (PyS60).

As part of an infrastructure to capture accurate room occupancy data, a network of imote2

sensors had already been deployed around the office spaces. The sensors were attached

to desks and were able to detect when a particular desk was occupied. The desk occu-

pancy status was inferred by detecting vibration patterns using the 3-axis accelerometer

sensor embedded in the node. Each of the nodes periodically sent its current state (i.e.,

whether the desk was occupied or not) to a root node connected to a server. Desk usage

events were sent to the root node using the Collection Tree Protocol (CTP) [GFJ+09].

The overall network consisted of 13 nodes covering a space of 10 offices. In order to offer

additional support for conversation detection we enhanced the capabilities of the Nokia

6210 Navigator devices acting as Bluetooth anchor points with conversation sensing func-

tionality. We implemented the same detection algorithm that was running on the user’s

mobile devices (i.e. the Hidden Markov Model Toolkit based conversation detection) and

exposed the captured information as sensing events reporting conversations or silence that

were sent to a back-end server.
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4.5.3 Lessons Learned

The initial deployment involved 10 users and was in operation for one working week. Dur-

ing the deployment each user carried a smartphone while additional data were collected

from the static sensors installed in their working environment. The first result of this

deployment was an estimation of the effect of continuous sensing on the phone’s battery

consumption. We measured the battery drain of the phone on two Samsung Galaxy S

phones, while the phone was not used for any other purpose. The battery drain was mea-

sured using the BatteryManager API 1 of the Android platform, and Figure 4.4 shows

the result. We can observe that the phone lasted around 24 hours with only the data

collection application running. Considering that the battery life would also be hampered

by the normal phone usage by the participant, the typical battery life experienced by the

users would have been significantly less.

By analysing the users’ mobility patterns we tried to estimate the opportunities for sensing

offloading. According to the traces, users spent 64% of their time inside their own office

and 21% of their time in other offices (Figure 4.5) with sensing capabilities. These were

promising results showing that on average, users would be in an environment where sensing

offloading could be used 85% of the time. At the same time, we discovered that although

users spend most of their time in such areas, they frequently visited certain places for

short periods of time. In Figure 4.6 we observe that users visited other rooms for short

(6-minute) intervals (e.g., to have a chat with someone or to have a short discussion about

work). To understand the frequency and duration of such events we plotted the CDF of

how much time each user spent when entering a room (Figure 4.7): there is a high number

of short visits (50% of them last less than 20 minutes). Such short visits could cause either

lower accuracy or inefficiency when offloading sensing to the environment. A short visit

to a room where the mobile phone immediately offloads sensing, while the user leaves

shortly after, could cause sensing events to be either missed or mistaken (reported by the

wrong environment). Finally, users spent 15% of their time in locations that were not

instrumented (Figure 4.5), further justifying our approach, which does not only rely on

fixed building instrumentation, but exploits the portability of mobile phone sensing.

4.6 Sensing Offloading

Having analysed the results of the test deployment, we are now in a position to identify

the parameters that can affect the energy trade-offs when deciding to perform sensing

offloading to remote sensors. Specifically, the decision to perform offloading is based on

the estimation of the energy cost when sensing is performed locally on the phone, and the

prediction of the cost when offloading is performed remotely in the cloud. In estimating

1http://developer.android.com/reference/android/os/BatteryManager.html
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the latter, the mobility pattern of the user, the time they spend in a particular location,

and the rate at which events are reported by the remote sensor are factors that affect

the energy cost. In the following sections we describe an offloading scheme that achieves

energy efficiency by considering all these parameters.

Offloading a sensing task from the user’s mobile phone to the infrastructure involves del-

egating them to one or more sensors in the environment: the infrastructure will then be

responsible for monitoring for matching events and the phone will just wait for possible

notifications. For instance, in the case of detecting a conversation, the phone’s microphone

would be used to capture audio and test whether a conversation is detected. Offloading

such an activity involves a subscription for events by a suitable sensor in the environment

and then listening for network notifications when conversations are detected by the in-

frastructure. Such an offloading scheme may save significant energy as the phone need

not constantly sample the sensors and process the data for possible events. However,

offloading introduces network overhead (Wi-Fi connection maintenance and control traf-

fic) needed to manage offloaded tasks and to receive notifications about possible events.
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Therefore, if local sensing is cheap or users are highly mobile then this control traffic

might be uneconomical. Furthermore, in high-mobility scenarios offloading a task may

result in lower accuracy as the user might have already moved outside the infrastructure’s

sensing range by the time the new location is detected and the task would be transferred

back to the phone.

The decision to offload a sensing task only considers sensors that are near the user’s cur-

rent location. The definition of “near” is context-dependent and it is the distance from

the sensor in the infrastructure where sensing can be offloaded to the environment without

considerably sacrificing the accuracy of inferences. Most environments are divided into

designated areas, office spaces, or rooms. These may have physical boundaries such as

closed rooms with doors, or they can be logically divided, for example, cubicle spaces. The

assumption is that these spaces can be small enough to allow the offloading of sensing by

users located in that space without any impact on the accuracy of the detected informa-

tion. When a user moves to a different location, offloading needs to be re-evaluated. An

ideal offloading scheme reduces control traffic and energy consumption, while offloading

tasks to sensors that are in close proximity to (in the same environment as) the user.

The mobility patterns of users across different environments vary significantly based on

many factors like type of work performed and time of the day. Clearly a dynamic scheme

is required that takes into account historical information about mobility to decide on

offloading a given sensing task to reduce the overall energy consumption without compro-

mising accuracy. We design gain threshold based offloading scheme that uses historical

data about the mobility patterns and information about the estimated energy cost of the

sensing task and the control traffic. The energy costs could be measured on the Android

phones using a power meter [ZTQ+10] (such as the Monsoon Power Monitor2) and on the

Nokia phones using the Nokia Energy Profiler. We compare this approach with the two

extreme scenarios of always offloading and never offloading (local phone-based sensing).

4.6.1 Gain Threshold based Offloading

The Gain Threshold scheme operates by calculating the probability that offloading a par-

ticular sensing task would result in a gain in terms of energy consumption when compared

to the corresponding local sensing task. If the probability of gain is greater than 0.5, i.e.,

if offloading has more than 50% chance of resulting in gain (less than 50% chance of

resulting in loss) then the offloading is performed.

The probability of gain used for decision making is calculated by estimating the possible

communication costs that the phone may incur if offloading is performed. When a sensing

task is offloaded to a remote sensor there are two types of energy costs involved, fixed and

variable costs.

2http://www.msoon.com/LabEquipment/PowerMonitor
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• The fixed costs are the costs involved in maintaining a network connection between

the phone and the infrastructure provider system, subscribing to a remote service

for offloading, and cancelling the subscription at the end.

• The variable costs are the communication costs incurred by updates received as part

of the infrastructure sensor events that depend on the user’s behaviour (mobility,

interaction etc.).

A decision to offload a sensing task results in energy gain if the user stays in the location

for long enough that the sum of fixed and variable costs is less than the cost of local phone

sensing for that period. We refer to this minimum time period as gainTimeThreshold.

We note that fixed costs can be calculated based on offline estimated values for data

transfer over the network (e.g. this could be measured on the Nokia phones using Nokia

Energy Profiler), and variable costs (or event rate or sensor state change rate) can be

calculated based on the past history of event traces as recorded by the sensing platform.

The gainTimeThreshold varies for each of the sensors as the cost and event rate for these

change.

Gain Time Threshold

In the specification of the gain threshold we use the following notation:

Gs : gain threshold time of a sensor s

Csl : cost per sample of local sensing

Ssl : sampling rate of the sensor s

Cso : fixed cost of offloading the sensing task

Csr : cost per update of remote sensing

Cnr : baseline cost for maintaining network connection

Usr : update rate of remote sensing

N : number of sensing tasks that can be offloaded

According to the definition of gainTimeThreshold, for a sensor s, the total energy con-

sumption of local phone sensing is equal to the sum of fixed and variable costs of remote

sensing for gainTimeThreshold amount of time. In other words, if remote sensing is used

for more than gainTimeThreshold amount of time, then it results in positive energy gain,

and if remote sensing is used for less than gainTimeThreshold amount of time, then it

results in negative energy gain, i.e., offloading is not beneficial in this case.
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The local sensing cost for Gs amount of time for a sensor s (Ls) = The cost of local

sensing per sample (Csl) × Local sampling rate (Ssl) × Gs.

The remote sensing cost for Gs amount of time (Rs) = Fixed control traffic cost (Cso)

+ (Event update rate (Usr) × Cost of network transfer per update (Csr) × Gs) + Fixed

baseline network connection cost per sensor for Gs amount of time.

Per the definition, Gs is the amount of time for which, local cost = remote cost, i.e.,

Ls = Rs.

=⇒ Csl × Ssl ×Gs = Cso + Csr × Usr ×Gs +
Cnr

N
×Gs (4.1)

=⇒ Gs =
Cso

Csl × Ssl − Csr × Usr −
Cnr

N

(4.2)

Gs for a sensor s quantifies the minimum amount of time the sensing task should suspend

local sensing and use remote sensing to achieve energy cost benefit. In other words, it is

the minimum amount of time the user should stay in the current location after the system

offloads the sensing task, in order to achieve energy gain.

Probability of Gain Estimation

In this section we present the estimation of the probability that offloading a sensing task

(s) will result in gain. This value is used to make a decision on whether this offloading

is beneficial. Let {vj1 , vj2 , . . . vjk} be the total visits of the user to a location j, and let

{tvj1 , tvj2 . . . tvjk} be the total duration of each of the k visits, respectively. First, for each

sensor s, we divide the total duration of the lth visit to a room j into two parts: favourable

time (ftsjl) and unfavourable time (utsjl). Favourable time for a sensor is the time during

which offloading of the sensing task results in a positive gain, and unfavourable time for

a sensor is the time during which offloading results in a negative gain. Therefore, for a

visit to a room, the favourable time is the total visit time subtracted by the Gs value (as

we need at least Gs amount of time to achieve positive gain), and unfavourable time is

Gs, i.e., for the lth visit to a room j by the user, favourable and unfavourable times for a

sensor s are calculated as:

ftsjl = tvjl −Gs (4.3)

utsjl = Gs (4.4)
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Then, the probability (ptsj) that a user stays at a location j for more than the gain-

TimeThreshold (Gs) value for a sensor s is calculated as the total favourable time at

location j for all visits divided by the total time at the location j.

=⇒ ptsj =

∑k
l=1 ftsjl∑k

i=1(ftsji + utsji)
(4.5)

ptsj is the probability of gain that is used to make an offloading decision for a sensing

task s when the user is in room j. Finally, if this probability value is greater than 0.5, it

indicates a more than 50% chance of resulting in positive gain, and in this case the sensing

task is offloaded. A task that is offloaded to a remote sensor is cancelled (unsubscribed

from remote sensing) when the user moves away from the current location, as the remote

sensor may not capture the user’s activities accurately as it is not in proximity to the

user.

The intuition behind this model is that if there is greater than 50% chance that a user

stays in a location for more than Gs amount of time for a visit, then there is more than 50%

chance that there will be gain, and it is beneficial to offload the sensing task, otherwise it

will most likely result in more energy cost than local phone sensing. We present a detailed

evaluation of this scheme through micro-benchmarks in Section 4.7.

4.6.2 Extensions of Gain Threshold Offloading Scheme

Behavioural patterns of users tend to be reasonably regular, which can be exploited to

further improve the model just presented. In this subsection, we present an extension

of the gain threshold based offloading scheme considering significant dimensions affecting

the behaviour of users. The objective of these schemes is to improve the estimation of the

probability of gain by improving the accuracy of estimating the time a user spends in a

room and the estimation of the number of events that could be generated by the remote

sensor. In particular, additional parameters considered are time of day, day of week,

and identities of co-located users. Users at the workplace and in similar environments

have a specific schedule for each time slot of the day, for example, they may stay at the

common room for lunch everyday at 12.30 pm for 30 minutes, however, they might only

visit the common room for shorter periods and less regularly at other times of the day.

User behaviour is also driven by co-located users, for example, when the manager of a

group is around, group members may also be around and may spend most of their time

in their offices. The main idea is to exploit this behaviour in addition to the threshold

based offloading.

In these extensions we introduce additional constraints to the derivation of the probability

of gain value. Let t, d, and c denote the time of day, day of the week, and the set of co-

located users, respectively.
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The probability of gain value to decide on offloading a sensing task s when the user is in

room j is then redefined as:

psj = ptsj,t,d,c (4.6)

where ptsj,t,d,c is the probability that the user stays in the location j for more than

gainThreshold amount of time when he/she is co-located with the users in the set: c,

the current time of the day: t, and current day of the week: d. The favourable and

unfavourable time values in deriving ptsj,t,d,c should be calculated according to the con-

straints t, d, and c.

We could also derive more variations by only considering a subset of these dimensions.

For example, if we consider only co-located users, the probability of gain can be defined

as:

psj = ptsj,c (4.7)

Similarly, other variants can be derived i.e., these constraints can be applied in combi-

nation, which results in a total of 7 possible ways of estimating the probability of gain

value.

4.7 Micro-Benchmarks

As discussed in the previous section, the proposed sensing offloading scheme smartly

switches between the local phone sensing and remote infrastructure sensors, therefore,

it is expected to achieve higher energy savings than the schemes that use only phone

sensors or only remote sensors. In order to evaluate its performance and quantify the

energy savings we compare the offloading scheme with two cases reflecting two opposing

extremes in sensor offloading:

• Never Offload. This is the case where no offloading takes place, and the sensing is

performed using only the local phone sensors. This scheme resembles the behaviour

of an application that runs purely on the user’s mobile phone or in an environ-

ment where no infrastructure sensing is available, similar to the model presented

in Chapter 3. Even though this appears to be an inefficient scheme compared to

opportunistic task offloading, there are cases where this is efficient: when the cost

of local phone sensing is lower than the network energy consumption of data ex-

change with remote sensors, or in highly mobile scenarios where local phone sensing

can potentially save more energy by avoiding the cost of unnecessary control traffic

induced by continuous offloading and cancelling of sensing tasks. This method is

essentially identical to our data collection deployment (Section 4.5) where no of-

floading was used.
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• Always Offload. In this scheme the mobile phone offloads sensing every time

the user is in an environment where appropriate sensors are available. Since this

scheme utilises remote sensors and suspends local sensing, it may achieve more

energy savings than local phone sensing. However, Figure 4.7 shows that there are

many location change events that last only for a short time. We will show that this

induces more control traffic through sensing hand-overs or reduce accuracy due to

the missed events during these hand-overs.

The evaluation is performed with a number of benchmark tests using the Android emulator

and the collected traces (presented in Section 4.5).

4.7.1 Dataset

We used the dataset collected from the initial deployment for benchmarking the sensing

task distribution schemes. The dataset contains a working week of 10 users in an office

environment. The data include indoor location and conversation status detected through

their mobile phones and sensors in the environment. As the dataset was collected with a

continuous sampling process from the mobile phones and the infrastructure sensors, we

consider the data gathered as the ground truth and assess the performance of the offloading

schemes presented over it. We consider the following sensing tasks for the benchmarks:

Bluetooth scanning for inferring indoor localisation and microphone recording for inferring

conversation status.

4.7.2 Methodology

For the evaluation we developed a framework that runs on the Android emulator and

utilises the dataset to simulate the real scenarios. The energy consumption is estimated

by multiplying the total usage of each resource (such as Bluetooth scanning) with its

corresponding energy consumption value. The energy costs include the cost of local

sensing and the cost induced by network traffic.

Sensing Modalities

The benchmarks consider two sensing modalities: indoor localisation using Bluetooth

scanning and conversation detection using microphones. In the former case, desk occu-

pancy sensors are used for offloading Bluetooth scanning when users are at their desk.

In the latter, microphone sensors in the environment are used to offload conversation de-

tection from phones. Location scanning can also be offloaded if we assume the presence

of door sensors in the environment [HGDW12]. Although no such data was available in

our traces, we were able to generate door sensor traces using the mobility traces of the
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participants. Evaluation results consider both scenarios where door sensor data is and is

not available. The schemes local, always and threshold refer to the three main schemes

that were described. Moreover, the schemes always office and threshold office refer to the

behaviour of the system when no door sensor data is available.

Performance Metrics

We evaluated the performance of the sensing distribution schemes using the following

metrics:

• Local sensing resources usage: Length of time the local phone sensing resources are

used.

• Network usage: This is the amount of data sent and received over the network.

• Energy consumption: This metric is measured as the sum of the total energy con-

sumption for local sensing, processing, network connection maintenance, and data

exchange.

We calculate the resource usage and multiply it for each resource its corresponding power

consumption value to estimate the energy consumption. The power consumption values

used in the evaluation are from the following works: [FKK11], [SP12], [RH10a], [RH10b]

and [ZTQ+10]. The default sampling interval of local and remote sensors is set to 120

seconds. We pick the same sampling rate for both local and remote sensing paradigms

in order to measure energy cost under similar accuracy conditions as reflected by the

sampling rate.

Wi-Fi Baseline Cost

The benchmarks evaluated the behaviour of the schemes by considering the impact of

enabling Wi-Fi on the mobile device if that was required by the operation of the proposed

scheme. In estimating the true cost of remote sensing, it is reasonable to assume that

the cost of maintaining a Wi-Fi connection (Wi-Fi Baseline Cost) is part of the cost of

performing remote sensing. However, in a realistic setting, users typically enable Wi-Fi for

other purposes. In order to analyse both situations, we benchmarked the behaviour of the

schemes under both conditions: (i) measurements without considering the Wi-Fi baseline

cost, assuming that Wi-Fi is already enabled by the user, (ii) measurements including

the Wi-Fi baseline cost, where the Wi-Fi is enabled by the offloading scheme in order to

access the sensing infrastructure. In both cases the network cost measurements include

the energy overheads that are caused by the network traffic generated by the remote

sensing scheme. In these measurements we approximate the network energy cost as a
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function of the network traffic that is generated, in accordance with the results reported

in [RH10a]. The network traffic is estimated as an average of the number of bytes that are

exchanged when performing a subscription or receiving an event (this includes the traffic

for establishing a TCP connection, exchanging HTTP/JSON messages, and closing the

connection).

Mobility

As discussed earlier in this chapter, the rate of remote sensor events depends on the user’s

mobility patterns. Therefore, we studied the effect of mobility on the energy cost of the

schemes.

Sensing Parameters

Since the sensing parameters such as sampling rate and the cost of sensing have a direct

impact on the energy cost for local sensing, we studied the impact that these parame-

ters have on the performance of the schemes. Finally, we explored the behaviour of the

schemes when combined with the adaptive sensing technique that has been presented in

the previous chapter (Chapter 3).

4.7.3 Results

We first present the results which include the Wi-Fi Baseline Cost in the calculations.

Then we describe the same results without these costs. In both cases the results are

measured for the Bluetooth localisation sensing, and the combination of localisation and

conversation sensing. In addition, we also evaluated the proposed scheme by varying the

cost of sensing to show that the results are applicable to other sensing modalities.

Results Including Wi-Fi Baseline Costs

Firstly, we evaluated the performance of the schemes when Bluetooth localisation is the

only sensing task active. Figure 4.8(a) shows the average Bluetooth scan time per hour for

the offloading schemes. Since local sensing does not exploit sensors in the infrastructure,

we can observe that it scans the local Bluetooth more often than the other schemes. The

amount of scanning is less for the always offload scheme as it exploits the remote sensors,

backing off when scanning is not necessary. The error bars in all the figures in this section

represent the confidence interval computed considering the average value for each user as

a data point. Figure 4.8(b) shows the average amount of data exchanged over the network

per hour. The Local sensing scheme does not send any data to the server, and the always

offload scheme uses a large amount of data traffic as it always tries to offload when there
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Figure 4.8: Local phone resource usage, and changes detected per hour for location de-

tection.

are sensors in the environment. Since the office based schemes offload only when the user

is in his/her office (based on desk sensors), the local sensing usage is more and network

usage is less compared to the always offloading scheme. The threshold scheme behaves

like local sensing and does not send any data to the server, indicating that the scheme

never crosses the threshold to trigger sensing offloading.

In order to compare the energy consumption of the various schemes in achieving a similar

level of accuracy, we fixed the accuracy by adjusting the sampling rate of both local and

remote sensing. Figure 4.8(c) shows that the level of accuracy achieved in detecting the

change of location is very close for all the techniques. We then compared the energy

consumption of the schemes to achieve this accuracy.

Figure 4.9 shows the energy consumption for local Bluetooth sensing, sending/receiving

data over the network, and total energy consumption per hour including the Wi-Fi baseline

costs. The energy consumption for local sensing is higher for the local phone sensing

scheme due to the significant amount of local sensing resource usage. The network energy
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Figure 4.10: Energy per hour for location

and conversation detection considering Wi-

Fi baseline cost.

costs for the always offload scheme are higher compared to the local and threshold schemes.

However, with respect to the total energy consumption, local sensing performs better.

We can observe that the threshold scheme resembles the local phone sensing scheme, as

in this case the Wi-Fi costs surpass the cost of local sensing. This result shows that

the threshold scheme saves 37% energy compared to that of the always offload sensing

scheme, and is the best performing scheme along with the local sensing scheme. We note

that the always offload scheme occasionally uses local resources due to unavailability of

sensing infrastructure in some locations.

We further enabled both Bluetooth and microphone sensors and performed a similar

evaluation. The energy results are shown in Figure 4.10. We observe similar results for

local sensing cost, and network energy cost, however, the total energy cost of all the

schemes are very close. This is because the addition of the microphone sensor increased

the cost of local sensing, while it resulted in an incremental increase in the network cost of

the always offload scheme. However, the threshold and local sensing schemes are efficient

in this case too and save 6% energy compared to the always offload scheme. As a general

finding, as the number of sensors that can be offloaded increases, eventually the cost of

remote sensing will be lower than the local sensing cost. Since the threshold scheme uses

the gain calculation to decide on offloading, in this case, it is expected that the scheme

will switch from local sensing to remote sensing, which will be demonstrated further in

this section.

Results Without Including Wi-Fi Baseline Costs

Here we consider the case where Wi-Fi is turned on by default (i.e. by the user), and

therefore the energy cost of maintaining the Wi-Fi connection is not caused by the oper-
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ation of the offloading scheme. In these benchmarks the network cost is considered only

as a function of the additional traffic generated by the system.

Figure 4.11 shows the local sensing, network exchange, and total energy consumption

of using the Bluetooth sensor for location detection (the microphone sensor is disabled).

We now observe that the offloading schemes result in considerable energy savings as the

Wi-Fi is already enabled and the sensing tasks are offloaded more aggressively. With

respect to the overall energy consumption we can observe that the always offload scheme

outperforms the local sensing scheme in this case as it exploits the sensing infrastructure.

The threshold scheme resembles the remote sensing scheme, saving around 60% of energy

when compared to the fully local sensing scheme.

We then enabled both Bluetooth and microphone sensors, and performed similar mea-

surements. The results are shown in Figure 4.12. The local sensing cost and network

energy cost results are similar to those of using only the Bluetooth sensor. With respect

to the overall energy consumption, the offloading scheme performs much better than the

local sensing scheme. In this case too, the threshold scheme (along with the always offload

scheme) is the best-performing scheme and saves around 60% energy compared to fully

local sensing.

Sampling Interval

As shown in the results so far, the threshold scheme tends to follow the optimal scheme

in different circumstances. However, the optimal strategy does not depend solely on the

state of the Wi-Fi connection. There are several other parameters that play a pivotal role,

such as the sampling interval, the cost of local sensing, and the user’s mobility patterns.

The sampling interval is the interval between two consecutive sensor samplings and the
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cost of local sensing is the power consumption to sample data from the local phone sensor.

We evaluated the performance of the schemes with respect to sampling interval, sensing

cost, and mobility variation. In this evaluation, we considered the Wi-Fi connection

cost, i.e., Wi-Fi is off by default and the schemes should switch on Wi-Fi to use it. We

restrict this evaluation to the always offload, fully local, and threshold schemes only as the

other techniques based on office-only offload resemble their corresponding always offload

schemes very closely.

Figure 4.13 shows the total energy consumption of the schemes with respect to sampling

interval variation. We can observe that for low sampling intervals (high sampling rate),

the optimal scheme is the always offload, while for high sampling intervals (low sampling

rate) the optimal scheme is local sensing. This is due to the decrease in local sensing cost

as a function of sampling frequency. However, the threshold scheme tends to match the

best performing scheme in all cases, irrespective of the sampling interval.

Sensing Cost Variation

Another parameter that we considered in the evaluation of the offloading schemes was

the impact of sensing cost on the performance of the schemes. Figure 4.14 shows the

total energy consumption of the schemes with respect to local sensing cost variation.

We can observe that for low power consumption values for local sensing, the fully local

scheme is better and for higher power consumption values the always offload scheme is

better. However, in this case too, the threshold scheme tends to follow the best performing

scheme, irrespective of the local sensing power consumption.

86



CHAPTER 4. SENSING OFFLOADING

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1  5  15  30

E
n

e
rg

y
 (

jo
u

le
s
)

Location change interval (min)

local
always offload

threshold

Figure 4.15: Total energy consumption per hour for location detection for varying mobility

patterns.

The Impact of Mobility

Apart from the parameters affecting the cost of local sensing, efficient offloading depends

on the varying cost of network communication that includes the cost of “hand-over”

(subscribe / unsubscribe to a sensor), and the cost of receiving events that are detected

by the sensors in the infrastructure. Both these costs depend on the behaviour of the

users in the instrumented spaces. We investigated the impact of user mobility looking

at scenarios with different average times that people spent in a given location. We used

the original traces collected and modified the amount of time that each user spent in

each room. As illustrated in Figure 4.15, the results demonstrate how high mobility can

significantly increase the cost of sensing offloading if the user’s mobility is not considered

in offloading. Essentially, for a given visit to a location, offloading can only deliver positive

results if an offloading scheme can predict the possible time that a user will spend in that

location and ensure that the duration is enough to offer an energy gain. Since the proposed

scheme considers the user’s mobility patterns, it follows the best performing scheme.

As shown in the results so far, the threshold scheme tends to follow the optimal scheme in

different circumstances. However, the optimal strategy may not always include one of the

extreme offloading schemes. To demonstrate this, we evaluate the schemes with respect

to the following two scenarios that consider: 1) adaptive sensor sampling, and 2) multiple

sensors with different power and data requirements.

Adaptive Sampling

The use of adaptive sampling is efficient in mobile sensing systems as demonstrated in the

previous chapter. In adaptive sensing, the sampling rate changes in the face of changing

behaviour of the user, i.e., the sampling rate is reduced when no observed events take

place, and increased when observed events occur. We attempted to evaluate the impact on
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Figure 4.16: Energy consumption per hour with adaptive sampling schemes.

the energy consumption of the offloading schemes by using two simple adaptive sampling

schemes presented in the previous chapter:

• In adaptive scheme 1, we used a linear advance and an exponential back-off of

sampling interval i.e., linear-exponential.

• In adaptive scheme 2, we used an exponential advance and a linear back-off of

sampling interval i.e., exponential-linear.

As discussed in the previous chapter, the sampling interval is increased using the back-off

function when there is no change to the user’s context and the advance function is used

when there is a change to the user’s context. The context of the user for this evaluation is

defined as the co-located Bluetooth devices. In this scenario, when any of the schemes uses

the local resources, the corresponding adaptive technique for local sensing is employed.

Since our aim was to understand the performance of the schemes with respect to two

adaptive sensing techniques, we chose static-adaptive schemes in both cases so that they

have a comparable influence in both the tests. If we have chosen the learning scheme,

then it would be difficult to differentiate whether the benefit in the case using the learning

scheme was due to the dynamic adaptive sensing or the sensing offloading scheme.

The result of this evaluation is shown in Figure 4.16. We observe that for purely local

sensing the exponential back-off (adaptive scheme 1) shows more energy savings when

compared to the linear back-off (adaptive scheme 2). Also, the choice of adaptive scheme

does not have a significant impact on the always offload scheme as this uses remote

sensing most of the time (except in un-instrumented areas). However, in both cases

neither the always local nor the always offload is optimal. This is because when using

adaptive sampling, each of them will be optimal for a subset of the possible situations.

The threshold scheme appears to outperform the two others, by selecting the optimum

approach in every case.
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Figure 4.17: Energy consumption per hour with an inexpensive and an expensive sensor.

Multiple Sensors with Different Power and Data Requirements.

In this case, we evaluated the schemes using an inexpensive (30mW) and an expensive

(1.2W) sensor. We assume that the inexpensive sensor generates a large amount of data

per sensor sample (100KB per sample, similar to the audio recording for 5 seconds using

a PCM format in the conversation detection module). Figure 4.17 shows the result of this

evaluation, where we can observe that the energy consumption of the threshold scheme is

much lower than the other schemes. In particular, when the Wi-Fi baseline cost is con-

sidered, the threshold scheme consumes 46% and 31% less energy than the always offload

and always local schemes, respectively. When the Wi-Fi baseline cost is not considered,

the threshold scheme consumes 57% and 63% less energy than the always offload and al-

ways local schemes, respectively. The always local scheme consumes high energy because

of local sensing of the expensive sensor, and the always offload scheme consumes high

energy because of the communication cost of the inexpensive sensor. However, the energy

consumption of threshold scheme is much lower than the other schemes, as it selects the

optimal configuration for each sensing modality.

In this section we analysed the performance of the proposed threshold-based offloading

scheme under a wide range of conditions. Based on these results, it is clear that there

are situations where local sensing is preferable, while others where offloading is the most

appropriate option. The threshold scheme tends to follow the optimal solution under all

the conditions that we evaluated.
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4.8 Related Work

As discussed in the related work of the previous chapter (Chapter 3, Section 3.6), sev-

eral mobile phone based sensing systems [LYL+10, RMM+10b, WLA+09] were proposed

in the last few years. Several mobile sensing applications are presented in [CEL+08].

Llama [BRC+07] is an energy management system based on the user statistics in terms of

usage and recharge cycles and exploits the excessive energy for a better user experience.

However, most of these systems rely on local phone sensing, which is generally costly in

terms of energy consumption as shown in this chapter. Comparing with these systems, the

proposed system uses a novel sensing offloading approach for achieving energy efficiency,

furthermore, as shown in the benchmarks evaluation, it can complement phone sensing

systems using adaptive sampling to further improve the energy savings.

With respect to using the sensors in the infrastructure: FollowMe [GL11] lets mobile

applications exploit the sensors in the existing infrastructure like cameras and microphones

for richer context and better applications. They present some novel applications, for

example, an application that creates an interactive video diary of a family’s experience

in a theme park using infrastructure sensors such as cameras placed near rides and food

places in the park. ErdOS [VRC11] is a mobile operating system that extends the battery

life of mobile handsets by managing resources proactively and by exploiting opportunistic

access to resources in nearby devices using social connections among users. The authors

of [DFN+09] created an interaction method that enables users to control and interact

with content presented on public displays. In particular, they use Bluetooth names to

interact with smart environments, i.e., users are allowed to access content by changing

their Bluetooth device names. They built many applications for use on their displays

such as an interactive map service, accessing photos on Flickr (a photo management and

sharing website), and videos on YouTube (a video-sharing website) that can be accessed

using their interaction method. In [PH11], the authors propose that mobile phones can

serve as data mules for sensor networks due to their ubiquity and show that opportunistic

muling is suitable for office-based deployments. Even though this work involves interaction

of mobile phones with sensor networks, it addresses a very different problem to ours. None

of these works that exploit the sensing infrastructure provided a solution to the problem

of when to offload phone sensing to infrastructure. Our technique provides an efficient way

to support long-term deployment of social sensing applications by using a dynamic sensing

offloading scheme, which switches between phone sensing and remote sensing considering

the sensing parameters and the mobility patterns of users.

Some works [LFO+07] deployed sensor networks at the workplace and domestic envi-

ronments to understand usage patterns such as light use, sound, temperature, electrical

current and voltage, and motion. These approaches rely on full instrumentation of a

building that may again be costly or impractical.
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4.9 Conclusions

In this chapter we presented a novel approach that can offer considerably bigger reductions

in smartphone energy cost without compromising accuracy by opportunistically offloading

sensing to fixed sensors embedded in the environment. The proposed scheme considers

various parameters such as the mobility pattern of the user, duty cycling interval (or

sensor sampling interval), cost of sensing on the phone to determine whether offloading

sensing to the infrastructure results in energy gain at any given situation.

We conducted a study to explore the feasibility of offloading sensing and collected data

to test the proposed offloading scheme. We showed through several benchmark tests on

real traces that the scheme is able to achieve significant energy savings compared to pure

phone sensing and remote sensing schemes. We also demonstrated that by combining the

adaptive sensing techniques presented in the previous chapter with the sensing offloading

scheme, the energy savings increase further.
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5
Computation Offloading

5.1 Introduction

In the previous chapters we have discussed how adaptive sensing and sensing offloading

schemes can be used to capture sensor data efficiently. Once data from the sensors is

sampled, it needs to be processed to infer higher level activities. This processing might

be negligible in terms of resource consumption for some classification tasks, for example,

detecting whether a person is stationary or moving involves calculating the magnitude

of acceleration and standard deviation (Chapter 3, Section 3.5), which are less intensive

computing tasks. However, the processing requirements for some other classification tasks

are high. Some examples are speaker identification from microphone data [LBBP+11] or

image recognition from camera data [CBC+10]. Classification tasks are critical to the

functioning of social sensing applications on mobile phones [LML+10]. Modern mobile

phones are equipped with powerful processors, however, some classification tasks may

need far higher processing power [KAH+12, CBC+10]. Moreover, using the local phone

computing resources will consume energy and results in faster depletion of the phone

battery. With the advent of cloud computing platforms such as Amazon Elastic Compute

Cloud (EC2)1, Windows Azure2, and Google App Engine3, computation tasks can be

offloaded to the cloud for processing. Further, the accuracy of some classification tasks

1http://aws.amazon.com/ec2
2http://www.windowsazure.com/en-us
3https://developers.google.com/appengine
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such as speech to text translation (e.g., Google voice search on the Android platform4)

can be improved by using the “dictionaries” or other data available in the cloud. But, if

the tasks are computed in the cloud, then the data needs to be transferred to the remote

servers over a Wi-Fi/3G connection. For example, for audio processing the sound files

may need to be transferred to the server/cloud and these files can be large. In general,

data transmission is costly in terms of energy consumption and not all users may have

unlimited data plans. Therefore, the allocation of the execution of computational tasks

is of key importance in such systems.

Our solution for computing classification tasks is to design a scheme that decides where

to perform the computation, i.e., locally on the phone or remotely in the cloud by con-

sidering the various requirements of the user and experiment designers. In this chapter,

we present the design of a computation distribution scheme based on multi-criteria de-

cision theory [KR76] that decides where to perform the computations by considering

various dimensions such as energy, latency, and data to be sent over the network. This

scheme smartly distributes the classification tasks among local and cloud resources while

balancing the energy-latency-traffic trade-offs. We also design a rule-based framework

for dynamically adapting the behaviour of the scheme with respect to changes in mo-

bile phone resources (like battery charge/discharge cycles, user’s data plan running out

of allowance). The computation offloading scheme is a step towards answering Research

Question 2 (How can we efficiently process data captured through smartphone sensors to

draw inferences about the user?) presented in Chapter 1.

Chapter outline. We present the offloading scheme and an XML based adaptation

framework in Section 5.2. In Section 5.3, we present the design of an API that can be

used by the social sensing applications to utilise the services of the proposed offloading

scheme. The evaluation of the scheme through several micro-benchmark tests is presented

in Section 5.4, and related work is presented in Section 5.5. Finally, we present conclusions

in Section 5.6.

5.2 Computation Offloading

The computation offloading scheme is responsible for extracting high level inferences from

the sensor raw data by processing the classification tasks efficiently using local phone and

cloud resources. In this section, we present the design of the computation offloading

scheme and a framework that enables it to adapt to the changing resources of the mobile

phone.

4http://www.google.co.uk/intl/en uk/mobile/voice-search/
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5.2.1 Assumptions

In order to apply the computation offloading scheme, the following assumptions should

hold.

• We refer to the process of classifying data from a sensor with respect to a classifier

as a task and we assume that energy, latency, and total data sent over the network

for each of the tasks are pre-calculated and available to the offloading module be-

forehand. This is a practical assumption as these values can be estimated for most

of the common sensing tasks relatively easily: latency and the size of the data sent

over the network can be easily estimated by the phone, and tools like the Nokia

Energy Profiler [NEP] and the Monsoon Power Monitor can be used to obtain the

energy values on the Symbian S60 platform and the Android platform, respectively.

• We also assume that classifiers are preloaded both locally on the phone and remotely

in the server/cloud.

• We assume that a task takes constant time to compute, however, for some classifiers,

the energy consumption and latency might vary based on the size of the input data.

In these cases, the application should configure these parameters according to the

size of the input data before executing the decision engine.

5.2.2 Method

For certain tasks it is possible to divide a bigger task into smaller sub-tasks, for example,

a speaker identification task can be subdivided into extracting the characterising features

from the audio file and processing them to identify the speaker. Similarly, a photo tagging

task can be subdivided into scanning for the faces of people, feature extraction from each

of these, and then comparison with existing models to perform the photo tagging.

Let T be a task that can be divided into the subtasks t1, t2, t3, . . . tn (where n ≥ 1). If

a task cannot be divided into subtasks then we assume that it is composed of one single

subtask (i.e., the main task itself – n is equal to 1 in this case). Each subtask ti can

be computed locally on the phone or remotely in the cloud. For example, a speaker

identification task (T ) can be divided into two subtasks: extracting features from the

recorded audio file (t1), and comparing this with the existing models (t2). Each subtask

can be computed on the phone or in the cloud, therefore, it may have multiple versions,

for example, subtask t1 can be computed on the phone using subtask version v11 and in

the cloud using subtask version v12. We refer to each version of a subtask as a subtask

version. If each subtask can be computed locally on the phone or remotely in the cloud

then it results in a total of 2n unique combinations of the breakdown of T into subtasks.

Although the number of combinations is of exponential order, n is not the input size but
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the number of subtasks of task T , which in practice is small [CBC+10]. We discuss the

complexity of the algorithm in detail towards the end of this subsection. We refer to a

combination as a configuration. For each configuration ci (i in [1, 2, . . . 2n]), let ei, li, di

be the total energy consumption, latency, and total data sent over the network to process

the task (including all subtasks). We use a technique based on multi-criteria decision

theory [KR76] to select the configuration for processing the overall task.

We first define a utility function with respect to energy (uei) for a configuration ci as:

uei =
emin − ei

ei
(5.1)

where ei is the energy consumption for processing task T using configuration ci and emin

is the minimum of {ei, i = 1, 2, . . . 2n}. This utility function quantifies the advantage of

using a configuration over the best configuration with respect to energy consumption, and

its range is [−1, 0]. This utility function [Fis68, KR76] can be used to decide which con-

figuration to use for achieving energy efficiency, and that is indeed the combination with

highest utility (or highest gain/advantage). We note that the range of the utility function

([−1, 0]) is negative because we model the utility of a configuration for a dimension (such

as energy) as its gain with respect to the best performing configuration, which would be

at most zero in the case where the configuration is the best (for example when ei = emin)

with respect to the given dimension.

We also consider other performance metrics such as latency and total data sent over the

network. We define utility functions for these performance metrics in a similar fashion.

uli =
lmin − li

li
(5.2)

where li is the latency for processing the task T using the configuration ci and lmin is the

minimum of {li, i = 1, 2, . . . 2n}, and

udi =
dmin − di

di
(5.3)

where di is the size of the data sent over the network for processing the task T using

the configuration ci and dmin is the minimum of {di, i = 1, 2, . . . 2n}. The value of di

is zero when computation is performed locally on the phone: In cases like this where

the value of a dimension is zero, we also consider the value of the utility function to be

zero. The decision about which configuration ci to use for processing the task should take

into account all these performance metrics. For this reason, we define a combined utility

function based on the corresponding utilities for each of the performance metrics. The

combined utility function (uci) for ci is an additive utility function [Fis65, Kee02] defined

as follows:

uci = weuei + wluli + wdudi (5.4)
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where we, wl, wd are the weights (or importance) given by the experiment designers for

energy, latency, and data sent over the network, respectively, such that we +wl +wd = 1.

For example, participants with unlimited data plans need not worry about the amount of

data sent over the network, but will be concerned about the battery, so the experiment

designers may give a higher weight to energy utility than to data utility. Finally, the

configuration ci for which uci is maximum is used to process the task T .

This scheme can also be generalised to make it applicable to various other scenarios

considering additional performance metrics or dimensions, and computation models (like

cloud computation through Wi-Fi and cloud computation through 3G). Let D1, D2, . . . Dk

be the k dimensions to be considered, and M1,M2, . . .Mq be the computation models

available for selecting a configuration. The total configurations for a task T with n

subtasks will be qn. Then the utility function for these configurations for each dimension

would be:

uDji
=
Djbest −Dji

Dji

, ∀ j in [1, 2, .. k], ∀ i in [1, 2, .. qn] (5.5)

where Djbest is the value of the best case scenario for the dimension Dj. The overall utility

for each of the configurations can be calculated as:

uci =
k∑

j=1

wjuDji
, where

k∑
j=1

wj = 1, ∀ i in [1, 2, .. qn] (5.6)

where wj is the weight for the dimension Dj. Finally, the configuration with the maximum

utility value, i.e., C = max{uci , i = 1, 2, . . . qn} is used to process the task. The scheme

described in this section is shown in algorithmic format in Algorithm 1.

5.2.3 Algorithmic Complexity

The main computational tasks involved in this scheme are: (i) finding the best values

for each of the dimensions (line number 7 in Algorithm 1) and (ii) computing the utility

functions for each of the performance metrics (line number 17) and the total utility value

for each of the configurations (line numbers 18). The algorithmic complexity of both these

procedures (line numbers 4 to 10, and 15 to 24) is O(kqn), where n is the total number

of subtasks that a given task T can be divided into, k is the total number of dimensions,

which is 3 in our case (energy, latency, and data sent over the network), and q is 2 as we

consider local and remote computation models. Since these procedures are executed one

after the other sequentially and not inside a loop, the overall algorithmic complexity is

O(2n). To find the best combination, the utility value for each of the combinations has to

be evaluated. Since this requires iterating through all the combinations, it results in an

exponential complexity. Even though this is exponential, the total number of subtasks n
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<rules>

<condition expr="battery_left > 80 and data_sent < 50MB">

<weight metric="energy">33.3</weight>

<weight metric="latency">33.3</weight>

<weight metric="data">33.3</weight>

</condition>

<condition expr="battery_left < 20">

<weight metric="energy">60</weight>

<weight metric="latency">20</weight>

<weight metric="data">20</weight>

</condition>

<condition expr="data_sent > 50MB and data_sent < 100MB">

<weight metric="energy">20</weight>

<weight metric="latency">20</weight>

<weight metric="data">60</weight>

</condition>

<condition expr="data_sent > 100MB">

<weight metric="energy">0</weight>

<weight metric="latency">0</weight>

<weight metric="data">100</weight>

</condition>

<condition expr="default">

<weight metric="energy">33.3</weight>

<weight metric="latency">33.3</weight>

<weight metric="data">33.3</weight>

</condition>

</rules>

Figure 5.1: Sample rules for adaptation of weights for energy, latency, and data sent over

the network. If none of the conditions match the current status of the phone then the

weights specified in the default condition will be used.

is, in practice, small [CBC+10, MCR+10]. For example, in the case of computationally

intensive tasks like speaker recognition n is generally around 2 to 4: 1) feature extraction

such as amplitude, Fast Fourier Transforms (FFTs) etc., 2) detect if the features represent

voice data, and 3) compare the extracted features with existing models such as speaker

models or emotion models [MCR+10, RMM+10b, LRC+12].
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Algorithm 1 Computation offloading decision algorithm

1: Input: A task T with n subtasks

2: Output: SubTaskVersion[ ] subTaskVersionArray

3: Configuration[ ] configuration = buildConfigurations(T)

{Each configuration represents a combination of subtask versions of T and has details

about all the dimension values for this combination of subtask versions.}
4: Dbest[j] ← +∞, ∀ j in [1, 2, .. k]

{Dbest[j] is the best value for dimension j across the configurations}
{Calculate Dbest[j] for all dimensions}

5: for i = 1 to qn do

6: for j = 1 to k do

7: if configuration[i].getDimensionValue(j) < Dbest[j] then

8: Dbest[j] = configuration[i].getDimensionValue(j)

9: end if

10: end for

11: end for

12: Configuration bestConfig ← null

13: Ubest ← −∞
14: u[i] ← 0, ∀ i in [1, 2, .. qn]

{u[i] is the utility of configuration i}
15: uD[i][j] ← 0, ∀ j in [1, 2, .. k], ∀ i in [1, 2, .. qn]

{uD[i][j] is the utility of jth dimension of ith configuration}
16: w[j] ← loadWeightFromXMLConfig(), ∀ j in [1, 2, .. k]

{w[j] is the weight for jth dimension}
{Calculate utilities for all the configurations and find the best configuration}

17: for i = 1 to qn do

18: for j = 1 to k do

19: uD[i][j] ← Dbest[j] - D[i][j]

D[i][j]
20: u[i] ← u[i] + (w[j] * uD[i][j])

21: end for

22: if u[i] > Ubest then

23: Ubest ← u[i]

24: bestConfig ← configuration[i]

25: end if

26: end for

27: subTaskVersionArray ← bestConfig.getSubTaskVersions()

{return the subtask versions in the configuration with highest utility}
28: return subTaskVersionArray
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5.2.4 Adaptation of Weights

The users of the social sensing systems that use the proposed offloading scheme are ex-

pected to provide the weights for energy, latency, and total data sent over the network

based on the requirements of the participants of social sensing studies. However, unlike

other computing devices like desktop computers, the resources of mobile phones are not

static and some resources like battery life and total data left in a user’s data plan change

over time. The battery charge of mobile phones lasts for a limited amount of time, most

users have limited data plans and the costs after exceeding this limit are generally high.

Therefore, it seems sensible to use different weights for different “resource states” of the

devices. For example, the users might want to give more importance to latency when the

battery is full and when the battery is near depletion, they might want to assign higher

priority to energy. They might also want to put an upper limit on the amount of data

that can be sent over the network per day.

We design a framework where experiment designers can add simple rules to switch the

weights of metrics as resource levels change. The specification of rules is in XML format,

and a sample configuration is shown in Figure 5.1. Although we chose XML as a format

for configuration of the rules, other data exchange standards such as JavaScript Object

Notation (JSON) could also be used. The weights configured for the condition that

matches first will be used, which also addresses the case of defining conflicting rules. If

none of the conditions are satisfied then the weights configured as default will be used.

In the sample configuration given in the figure, the weights are distributed equally when

the battery level (battery left) is high and data plan consumption on the current day

(data sent) is below 50MB, however, when the battery level falls below 20%, the weight

for energy consumption is increased to 60%. Similarly, when the data sent over the

network (on the current day) crosses 50MB but is below 100MB then the weight for data

is increased to 60%, and if the data sent crosses over 100MB, then all the weight is given

to the data traffic.

5.3 Computation Offloading API

We designed an API for the computation distribution scheme, which can be used by mobile

applications to use the services of the computation offloading scheme to efficiently utilise

the local phone and remote computing resources. As discussed in the previous section,

each classification task can be divided into one or more subtasks and each subtask can

have one or more subtask versions. In designing the computation offloading API, first,

we define an XML schema that can be used to represent tasks and then an API to use

the offloading scheme.

100



CHAPTER 5. COMPUTATION OFFLOADING

5.3.1 Definitions

In this subsection we describe the XML schema that can be used to define tasks.

• Task. Task represents a classification task such as “speaker identification” or “phys-

ical activity classification”.

• Subtask. A task is divided into subtasks, which have to be executed sequentially

to complete the task. Subtasks of “speaker identification” could be “extracting

features” and “comparison with the speaker models”. The output of a task is used

as the input for the next task.

• Subtask Version. Each subtask can have several subtask versions implementing

the subtask. For example, a subtask version can run locally and another subtask

version can run remotely. Each subtask version has a certain latency, energy, a

computation model (local or remote), expected input data size, and expected output

data size.

Based on the requirements of the task and the weights given to the dimensions: energy,

latency, and data traffic (as described in the previous section), the decision engine decides

which subtask version to execute for each subtask. The programmer of a task can specify

the properties and requirements either in an XML configuration file or programmatically

using the API.

5.3.2 XML Task Specification

In this section we describe the XML format of the file in which tasks are specified. The

tasks can also be specified using the API methods. We present a detailed description of

the API and the XML format in Appendix B. The developer creates the XML file either

manually or with the help of a task profiler. The file is stored in the directory /res/xml/5

of an Android application project.

The format of the file is as follows:

• Element: task. The task element has a string attribute “id” which defines the

identifier of the task. The task element contains one or more subtask elements. It

contains elements defining the pre-filtering requirements for the task in terms of

privacy and maximum latency. The pre-filtering is used to filter the configurations

that do not meet the specified requirements (privacy, latency) from the offloading

decision process.

5Android res folder contains application resources such as custom configuration files, layout files, and

string values. http://developer.android.com/guide/topics/resources/index.html
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<?xml version="1.0" encoding="UTF-8"?>

<tasks xmlns="Cambridge:CO"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="Cambridge:CO tasks.xsd">

<task id="speech_recognition">

<max-latency>100000</max-latency>

<min-privacy-level>low</min-privacy-level>

<subtask id="extract_features" position="1">

<subtask-version version="1">

<computation-model>remote</computation-model>

<input-size>2048</input-size>

<output-size>128</output-size>

<energy>10</energy>

<latency>500</latency>

</subtask-version>

<subtask-version version="2">

<computation-model>local</computation-model>

....

</subtask-version>

</subtask>

<subtask id="compare_with_models" position="2">

....

</subtask>

</task>

</tasks>

Figure 5.2: Sample specification of tasks.

• Element: max-latency. Contains a long value of the maximum allowable latency

for any subtask-version.

• Element: min-privacy-level. Specifies the privacy level of input and output data

for a subtask. Value can be either high (data may not be sent over the network) or

low (data may be sent over the network). If the value of “min privacy level” is high,

then all the processing is performed locally on the phone, otherwise, the processing

is performed as per the decision of the offloading scheme. If the user is concerned

about transferring his data to remote servers for processing, then he could disable

this by setting the value of “min privacy level” to “high”.
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• Element: subtask. The subtask element has a string attribute “id” which defines

the identifier of the subtask. Further, it has an integer attribute “position” which

defines the position in the sequence in which the subtasks are executed. It contains

one or more subtask-version elements.

• Element: subtask-version. The subtask-version element contains an attribute

“version”, a string identifier for the subtask version. Further, it contains elements

specifying the properties of the subtask version: energy, latency, input size, output

size, and computation model (local, remote).

• Element: energy. Contains a long value of the expected energy consumption (in

Joules) of the subtask version.

• Element: latency. Contains a long value of the expected latency (in milliseconds)

of the subtask version.

• Element: input-size. Contains an integer value with the expected input data size

in bytes.

• Element: output-size. Contains an integer value with the expected output data

size in bytes.

• Element: computation-model. ENUM: local, remote

An example XML file is shown in Figure 5.2 for a speaker identification task, which

consists of two subtasks: extracting features and model comparison, each of which has

several versions (local or remote). The sequence of operations that need to be performed

by developers to use the computation offloading API is shown in Figure 5.3. We present

more details of the API in Appendix B.

5.4 Micro-benchmarks

In this section, we present the evaluation of the computation distribution scheme with

respect to selecting the best suitable configuration based on real traces collected through

participants carrying mobile phones.

5.4.1 Empirical Datasets

The dataset used for evaluating the computation offloading scheme is based on that used

in Chapter 3 (Section 3.5.1) for evaluating adaptive sensing schemes. We note that since

the computation offloading scheme do not need support from the sensing infrastructure
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Define	  tasks	  in	  the	  tasks	  XML	  
configura4on	  

Invoke	  computa4on	  
distribu4on	  to	  decide	  which	  
subtask	  versions	  to	  use	  

Define	  condi4ons	  and	  weights	  
in	  the	  rules	  XML	  configura4on	  

Execute	  the	  subtask	  versions	  

Figure 5.3: Sequence of operations to be performed to use the computation offloading

API.

(remote sensing, indoor localisation etc.) we did not use the dataset described in the previ-

ous chapter (Chapter 4, Section 4.5), instead we used the dataset described in the adaptive

sensing chapter that contains data collected from the phone’s sensors. We briefly describe

it here. The dataset was collected by 10 users carrying a Samsung Galaxy S or Nokia 6210

Navigator phone within our research institution (the Computer Laboratory, University

of Cambridge). The data collection application collected raw accelerometer sensor data

(i.e., X, Y, Z coordinates), Bluetooth data (i.e., Bluetooth identifiers), and microphone

data (i.e., audio recordings). The sampling of the accelerometer and Bluetooth sensors

was performed continuously with a sleep interval of 0.5 seconds and 1 second, respectively.

Audio samples of length five seconds were recorded from the microphone sensor with a

sleep interval of one second between consecutive audio recordings. Samsung Galaxy S

phones were running Google Android version 2.1 [AND] or higher, and Nokia 6210 Navi-

gator phones were running Symbian S60. The choice of operating system does not impact

the data collection process as the duty cycling rates used were same in both the phone

models. The raw data in the collected dataset was then classified into high level events

using the classifiers described in Chapter 3, Section 3.5.2. We used the adaptive sensing

scheme described in the same chapter as sensor sampling scheme for the evaluation of

computation offloading scheme.
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5.4.2 Method

The main aim of these benchmarks is to evaluate the performance of the utility func-

tion (explained in Section 5.2) used in the computation distribution scheme in terms of

selecting the best configuration given the importance assigned to each performance di-

mension. More specifically, we compared the performance of all possible configurations

and evaluated whether the utility function selects the appropriate configuration based on

the weights given for the three dimensions: energy, latency, and total data sent over the

network.

The performance metrics used are:

• Lifetime of the phone. The total time until battery is completely discharged

from the fully charged state.

• Average latency. The average time taken for processing a classification task.

• Average data sent over the network. The average number of bytes sent by the

system over the network to process a sensor classification task.

5.4.3 Tasks used in the Benchmarks

The classification tasks used in the benchmarks are of three types based on the sensor

from which data is queried.

• The activity recognition classification task has one subtask that classifies the data

sensed from the accelerometer sensor into moving or idle states. The computation

in this task is less intensive and involves calculation of magnitude of acceleration

using the [x, y, z] vectors, and then the standard deviation of the magnitude values.

The standard deviation is compared with a threshold value to derive the physical

activity state of the user. The procedure is detailed in Chapter 3, Section 3.5.2.

• The co-location detection classification task has one subtask that detects the change

in colocation of the user observed through the change in co-located Bluetooth de-

vices. The computation involved in this task is also less intensive and involves

computing the difference between two sets of Bluetooth device addresses.

• The speaker identification classification task detects the speaker. This task is highly

intensive and contains two subtasks.

1. The first subtask converts the recorded audio sample to Perceptual Linear

Predictive (PLP) coefficients file using the HCopy tool of the Hidden Markov

Model Toolkit (HTK) [HTK], which is an intensive computation.
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2. The second subtask compares the extracted coefficients file with the speaker

models of all the users using the HERest tool of HTK. The model with the

highest likelihood of match is selected as the speaker model of the recorded

audio file.

The design and implementation of these tasks will be explained in detail in the next

chapter (Chapter 6, Section 6.2.2). This is also an intensive computation, in which

the duration of computation linearly increases with the number of speaker models

available for comparison.

Each of these tasks have two subtask versions to perform computation of the task either

locally on the phone or remotely in the cloud.

5.4.4 Results

We first present the selection of the best configuration by the computation distribution

scheme for the speaker identification classification task. This task consists of two subtasks,

each of which can be executed locally on the phone or remotely in the cloud. Therefore,

we have a total of four configurations in which this task can be executed:

• C1: both subtasks computed locally.

• C2: first subtask computed locally and the other remotely.

• C3: first subtask computed remotely and the other locally.

• C4: both subtasks computed remotely.

Let S1, S2, S3 and S4 denote the various combinations of weights (configured by the

experiment designers) in the utility function: S1 : we = 1, wl = 0, wd = 0 (i.e., maximum

weight to energy); S2 : we = 0, wl = 1, wd = 0 (i.e., maximum weight to latency); S3 :

we = 0, wl = 0, wd = 1 (i.e., maximum weight to data sent over the network); S4 :

we = 0.33, wl = 0.33, wd = 0.33 (i.e., equal weights to all the dimensions). These are

shown in Table 5.1. Since our main aim is to show that the utility function selects the

best configuration considering the weights, we limit the test combinations to these four

combinations that represent common use cases, i.e., providing all the weight to a single

dimension or dividing the weight equally to all the dimensions.

Figures 5.4, 5.5 and 5.6 show the performance of all the configurations with respect to

energy consumption, latency, and total data sent over the network for processing the

speaker identification task. We can observe that the utility function for combination S1

selects configuration C4 as this has the lowest energy consumption, and for combination
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Combination We Wl Wd

S1 1 0 0

S2 0 1 0

S3 0 0 1

S4 0.33 0.33 0.33

Table 5.1: Weights for energy, latency, and data traffic for various combinations used in

the evaluation.

S2 the configuration selected is C4 as this is the lowest in terms of latency as well. For

combination S3, configuration C1 is selected as this sends the least data over the network.

Finally, for combination S4, which gives equal weights to all the dimensions, configuration

C4 is selected as this is the best considering all dimensions; moreover, it is also the best

performing configuration in two out of three dimensions.

The above evaluation shows that the proposed scheme selects the best configuration (con-

figurations C4, C4, C1, C4 for combinations S1, S2, S3, S4, respectively) for a given task

given the weights defined by the experiment designers. However, to study the impact of

this selection “at system level”, we have also evaluated the effect of these decisions “at

task level” on the overall performance of the system in terms of lifetime of the mobile

phone, average latency of processing a task, and average data sent over the network for

processing a task. The phone battery capacity is 3.7v/750mAh. We considered three

sensor classifiers: activity recognition (one subtask), change in colocation detection (one

subtask), and speaker identification (two subtasks), so we have in total four possible sub-

tasks each of which can be computed locally on the phone or remotely in the cloud. At a

system level, this results in 16 possible ways (or configurations C1 to C16 ) of processing

the sensor tasks. C1 computes all the subtasks locally on the phone, C2 computes the

second subtask of the microphone task remotely and all others locally, and so on, C15

computes the second subtask of the microphone task locally and other subtasks remotely,

and finally, C16 computes all subtasks remotely in the cloud. We evaluate the utility

function for the same combination of weights: S1, S2, S3, and S4. The learning based

technique presented in Chapter 3 is used as the sensor sampling mechanism.
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Figure 5.4: Energy consumption for pro-

cessing the speaker identification task.
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Figure 5.5: Latency or delay for processing

the speaker identification task.
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Figure 5.6: Data sent over the network for processing the speaker identification task.

Figures 5.7, 5.8 and 5.9 show the performance of all the possible configurations in terms

of lifetime, latency, and total data sent over the network. We can observe that for com-

bination S1 that gives maximum weight to energy, the configuration with the highest

overall lifetime is selected (i.e., C4 ) . For combination S2 that gives maximum weight to

latency, configuration C4 is selected as this is the lowest in terms of latency as well. For

combination S3, the configuration with least data sent over the network is selected (i.e.,

C1 ). We can also observe that there are multiple configurations with the lowest amount

of data sent over the network like C1, C5, C9, and C13, and from them the configuration

with better latency and lifetime values (i.e., C1 ) is selected. Finally, for combination

S4, configuration C4 is selected as it is better in two out of three dimensions (lifetime

and latency) compared to the other configurations. These results show that the proposed

computation distribution scheme selects the best configuration given the weights assigned

to the different dimensions.
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Figure 5.7: Total lifetime of the mobile

phone.
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Figure 5.8: Average latency of processing a

task.
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Figure 5.9: Average data sent over the network for processing a task.

5.5 Related Work

There have been much work focussed on increasing the efficiency of mobile systems by of-

floading computations [CBC+10, KAH+12, CIM+11, BSPO03]. In [MPF+10], the authors

show that continuous sensing is a viable option for mobile phones, by adopting strategies

for efficient data uploading. The focus of this work is on the minimisation of the amount

of data sent to the back-end servers and not on the distribution or offloading of the compu-

tation. The authors of [RNRR10] present the design and implementation of NAPman, a

network assisted power management scheme for Wi-Fi equipped smartphones. It employs

an energy-aware fair scheduling algorithm (at the Access Point) to reduce Wi-Fi energy

consumption of mobile clients and eliminates unnecessary retransmissions. In [KL10],

the authors discuss the energy savings when computation is offloaded to the cloud and

present aspects related to privacy and reliability of mobile systems such as smartphones.
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Cool-Tether [SNR+09] provides energy-efficient and affordable connectivity to the cloud

by building a Wi-Fi hotspot utilising the cellular radio links of one or more smartphones

nearby. These approaches are orthogonal to our offloading scheme, and the proposed

scheme can work alongside these techniques.

Spectra [FPS02] is a remote execution system for mobile devices that chooses the execu-

tion plan (provided by the programmers) dynamically based on performance, energy, and

application quality. In Spectra, mobile applications statically specify which code compo-

nents benefit from remote execution. During the execution, the system monitors resource

usage and advises on how and where to execute the specified code components. This helps

mobile applications to adapt to resource changes without specifying their resource require-

ments. However, remote execution requires data to be transmitted to remote servers and

most mobile data plans have limits on how much data can used per day or per month.

The costs after exceeding these limits are generally high. Spectra does not consider the

data plan limits nor it considers adapting the offloading scheme according to the data

usage. Further, it lacks a way of dynamically adapting the priorities (or weights) given to

dimensions with respect to the changing resources of mobile phone, whereas we consider

this in the proposed offloading scheme (through dynamic adaptation using rules specified

by the user).

CloneCloud [CIM+11] enables mobile applications running in an application layer virtual

machine (such as the Java Virtual Machine (JVM)6, the Dalvik Virtual Machine on the

Android Platform, and the Microsoft’s .NET platform7) to offload part of the execution

to device clones running in the cloud to make the execute time faster and also energy

efficient. In this scheme, at runtime, an application thread is migrated at a chosen point

from the mobile phone to the device clone in the cloud and then computed. It is then

re-integrated back to the phone. The system is mainly useful for mobile applications

running in a virtual machine.

In [KPKB10], the authors present a framework for supporting computation offloading

on the Android platform. They show using examples such as image recognition and an

augmented reality game that computation offloading of intensive tasks using the proposed

framework is beneficial. However, they do not address the problem of whether to offload

a computation task or not. They mention that the framework always offloads a task to

the cloud if there is an opportunity. Scavenger [Kri10] is also a framework for supporting

computation offloading and utilises the cross-platform support of the Python platform.

They use a scheduler to estimate the cost of performing computation remotely by consid-

ering parameters such as speed of the remote machines, network bandwidth and latency,

data size etc. However, they do not consider the energy consumption of performing these

tasks. Further, our scheme considers the requirements of the users and the changing re-

6http://www.java.com/en/
7http://www.microsoft.com/net
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sources of the phone (such as the phone’s battery level), whereas the Scavenger system

does not support these features.

ThinkAir [KAH+12] is a framework for offloading mobile computation to the cloud. The

system accommodates changing computational requirements based on on-demand VM

resource scaling, and exploits parallelism for faster execution. The authors of [CBC+10]

present MAUI, a system that achieves energy efficiency through fine-grained code of-

floading to the infrastructure while minimising the required code-level changes to ap-

plications. They showed that MAUI considerably improves the energy consumption of

resource-intensive applications, for example, they showed that by using code offloading

MAUI saves 27% energy for a video game. Furthermore, they also showed that the en-

ergy savings are much higher for a face recognition task, and its latency is reduced from

19 seconds to less than 2 seconds by exploiting remote computation. With respect to

these works, our scheme provides a dynamic decision engine that decides where to per-

form the computation of classification tasks i.e., locally on the phone or remotely in the

cloud considering the requirements of experiment designers (like social scientists) in terms

of battery consumption, delay, and traffic trade-offs. Moreover, the proposed offloading

scheme implements mechanisms that are adaptive to the user’s and designer’s require-

ments (battery, data plan, etc.) while considering dimensions such as energy, latency, and

data traffic.

In [LPH+12], the authors present Cloud-Offloaded GPS (CO-GPS) that allows a mobile

phone to duty cycle its GPS receiver and capture just enough raw GPS signal for post-

processing in the cloud by using publicly available satellite ephemeris information. The

authors show that, by utilising the cloud processing, 2 milliseconds of raw GPS signals is

enough to obtain a location fix. CO-GPS addresses the problem of offloading GPS raw

data to the cloud, and does not consider the problem of whether to offload a computation

to the cloud or not, which is addressed in the current chapter.

5.6 Conclusions

Social sensing applications use classifiers to infer various social and behavioural aspects

of users from raw data captured by smartphone sensors. The computing requirements

of these classifiers may vary from trivial to highly intensive depending on the type of

classification task.

In this chapter we presented a computation offloading scheme that efficiently utilises local

phone and remote cloud computing resources to perform the computation of classification

tasks. The core of the component is a decision engine that decides whether to perform the

computation for a given task locally on the phone or remotely in the cloud by considering

the dimensions: energy, latency, and data sent over the network. We also described an

adaptation framework for dynamically adapting the scheme to the changing resources of
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the phone based on an XML configuration file. We then presented the design of an API,

which can be used by mobile applications to utilise the services of the offloading scheme.

We showed through evaluation using real traces that the offloading decisions taken by the

scheme are optimal, and that our scheme dynamically selects the optimal computation

model according to the given requirements.

The main limitations of the computation offloading scheme are:

1. The complexity of the algorithm (presented in Section 5.2, Algorithm 1) is O(2n),

where n is number of subtasks in a given task T . We, however, note that n, in

practice, is small [MCR+10, LRC+12].

2. The rules framework (presented in Section 5.2.4) to configure the weights for the

dimensions does not provide a mechanism to validate the rules, for example, to

check for conflicting rules. The main focus of the work in this chapter is on deciding

where to perform the computation of classification tasks, however, a future work

could be to provide an interface to write and verify the rules.
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6
Social Sensing Applications

6.1 Introduction

In the previous chapters we have discussed techniques that adaptively sample a smart-

phone’s sensors to balance energy-accuracy trade-offs, improve energy efficiency by ex-

ploiting sensors in the user’s environment, and efficiently compute classification tasks

using the phone’s and cloud resources while considering the user’s requirements. Effi-

cient sensing and processing on smartphones finds application in many domains such

as environmental noise monitoring (using the phone’s microphone), physical health and

well-being (using the phone’s accelerometer), systems requiring indoor localisation such

as co-location monitoring at the workplace (using the phone’s Bluetooth radio), and so-

cial sensing (using combinations of sensors). Social sensing is useful in many domains

such as mental health, quantified self applications, and social and behavioural psychol-

ogy. We choose social psychology as the main application domain to apply our techniques

as it deals with a diverse set of social sensing aspects such as interactions, emotions, be-

haviour, and the influence of various factors such as physical activity, location, co-location

on these aspects. The idea is to develop a set of tools and techniques, so that the devel-

opers interested in building applications for the social psychology domain can focus on

the application development while depending on the techniques proposed in this disser-

tation for achieving energy-efficiency. Further, by targeting a large domain such as social

psychology, the potential applications that could be developed using the proposed tools

can be much more compared to the case of targeting a specific application scenario.
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In this chapter, we design and deploy various example social psychology applications while

demonstrating that the proposed techniques assist in performing efficient social sensing.

In particular, we answer Research Question 3 (In what ways can smartphones be helpful

in the conduct of social studies) presented in Chapter 1, by showing that smartphones

can be used as a platform for building social psychological applications such as capturing

the behaviour of individuals in terms of speech and emotional patterns, monitoring work-

place behaviour and identifying collaboration and work patterns, and providing feedback

to help users in fostering their interaction. For this, we design various techniques such as

speaker identification, emotion detection, detecting strength of relations, and detecting

collaborations. Using these techniques, we design example social psychological applica-

tions to demonstrate the type of data that can be collected using smartphones and their

sensors and the analysis that can be performed on this data. These applications are de-

ployed as part of social sensing systems built using the services of the schemes presented

in the previous chapters. Our aim in building these applications is to show some exam-

ples of how smartphones can be useful in social psychological deployments and to further

demonstrate that the techniques presented in the previous chapters help in reducing the

energy consumption.

Systems such as CenceMe [MLF+08] and Betelgeuse [KLNA09] have shown the potential

of mobile phone sensing in providing information such as user movement and activity for

recreational and healthcare applications. As discussed in Chapter 1, one possible use of

these technologies is arguably the support of sociology experiments [MGP06] which involve

studying people’s daily life and interaction. In the past, this analysis has been performed

with the help of cameras (in home/working environments or in laboratories), use of voice

recorders attached to people [MP01], and self reports using daily diaries or PDAs [BDR03].

However, these techniques may lead to biased results since people are aware of being

constantly monitored [PR91]. Instead, mobile phones may offer an unobtrusive means of

obtaining unbiased information about the behaviour of individuals and their interaction.

However, techniques to accurately infer the user’s behaviour from raw data of sensors

need to be developed. In this chapter, we design classifiers for behaviour modelling of

users and present the design, implementation, and deployment of three example social

sensing applications based on smartphones.

Chapter outline. In Section 6.2, we present our first example application, Emotion-

Sense, a passive behavioural monitoring application that infers the user’s emotions and

speech patterns. We then present WorkSense in Section 6.3, another example application

that captures the interaction and collaboration patterns of users at the workplace. Socia-

bleSense, an application that provides feedback to users for fostering interaction at the

workplace is presented in Section 6.4. We discuss related work in Section 6.5 and finally,

offer conclusions in Section 6.6.
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6.2 EmotionSense

In this section, we present our first example application, EmotionSense, an application

for collecting data in human interaction studies based on mobile phones. EmotionSense

aims to infer participants’ emotions as well as proximity and patterns of conversation by

processing outputs from the sensors of off-the-shelf smartphones. This can be used to

understand the correlation and the impact of interactions and activities on the behaviour

of individuals. In particular, through EmotionSense, we show that smartphones could

be potentially used to collect behavioural data of users and to understand the impact of

various external factors such as activity, co-location on their behaviour. More specifically,

in this section, we present the following:

• The design, implementation, and evaluation of an example application that could

be used in social studies and is able to provide information inferred about user

behaviour, especially with respect to the influence of activity, group interaction,

and time of day.

• We show that offloading computation helps in reducing the phone’s energy con-

sumption for high intensive classification tasks such as speaker identification.

• The results of a real deployment to demonstrate the type of sensor data that could

be collected by the application using off-the-shelf smartphones.

We note that the system does not store voice recordings and they are discarded immedi-

ately after processing. Bluetooth names are also not stored by the system.

6.2.1 Social Sensing

What are the typical emotions exhibited by people? What is the correlation of emotion with

location and activity or with interaction? How do speech patterns vary between members of

a group of users? Generations of social psychologists have tried to answer these questions

using a variety of techniques and methods involving experiments on people.

Most social scientists rely on self-reports or behavioural observations of participants in

laboratory settings, however, these methods are found to be biased [FMPP07, PR91]. As

discussed in Chapter 1, mobile phone sensing technology has the potential to bring a new

perspective to the design of social studies, both in terms of sensor data that could be

collected and from a practical point of view. Mobile phones are already part of people’s

daily lives, so their presence is likely to be “forgotten” by users, leading to observation of

spontaneous behaviour. The goal of EmotionSense is to exploit mobile sensing technology

to collect social and behavioural data of users.
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6.2.2 Application Components

In this subsection we provide details of the implementation of the fundamental components

of EmotionSense, describing the key design choices and solutions. The speaker recognition

component is implemented in C++ since it is based on tools of the Hidden Markov

Model Toolkit (HTK) suite for speech processing, which was originally written in that

language [HTK]. In the rest of the subsection we provide details of the core components

of the EmotionSense system: speaker and emotion recognition.

Speaker Recognition

The speaker recognition component is based on a Gaussian Mixture Model classifier [Bis06,

Rey02], which is implemented using HTK [HTK]1. HTK is a portable toolkit for build-

ing and manipulating Hidden Markov Models (HMMs) and Gaussian Mixture Models

(GMMs) and provides sophisticated facilities for speech analysis, model training, testing,

and results analysis. At present HTK is available for Windows and Linux systems only.

It was therefore necessary to adapt the main components of the toolkit to work on the

Nokia Symbian S60 platform.

The speaker recognition process is performed as follows:

• Speech data are collected from all users enrolled in the current experimental study.

The data are then parameterised using a frame rate of 10ms and a window size of

30ms and a vector of 32 Perceptual Linear Predictive (PLP) coefficients [Her90] (16

static and 16 delta) are extracted from each frame.

• A 128-component universal background GMM (representative of all speakers) is then

trained using all available enrolment speech to optimise a maximum likelihood cri-

terion. This training procedure is currently executed offline. However, the training

procedure could also be executed at run-time by sending samples to the back-end

servers by means of a WiFi or 3G connection.

• Next, a set of user-dependent GMMs are obtained by performing Maximum A Pos-

teriori (MAP) adaptation of the background model using the enrolment data asso-

ciated with each user. The adaptation constant used for the MAP process was set

to 15.

• Finally, at run-time the likelihood of each audio sequence is calculated given each

user model. Each sequence is then associated with the model that assigns it the

1Alternative SVM-based schemes, including the popular GMM-supervector [CSR06] and

MLLR [SFK+05] kernel classifiers, were not considered as they are generally suitable for binary clas-

sification tasks.
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highest likelihood. This is the Bayes decision rule [Bis06] in the case that the prior

probability associated with each user is equal.

In order to improve the accuracy and efficiency of the system, two key mechanisms were

implemented:

• Silence detection. Successfully detecting silence can improve the efficiency of the

system by eliminating the need to compare each sequence with each user-dependent

model. Silence detection was implemented by training an additional GMM using

silence audio data recorded under similar background conditions to the enrolment

data. Each audio sequence is initially classified as either silence or non-silence

by comparing the likelihood of the sequence given the silence and the background

GMMs. The silence detector can also be used to infer information about the user’s

environment, sleep patterns and so on.

• Comparisons driven by co-location information. To reduce the total number of

comparisons required, the speaker recognition component compares a recorded au-

dio sequence only with the models associated with co-located users. Co-location

is inferred from data captured by the Bluetooth sensor. This avoids unnecessary

comparisons against models of people who are not in proximity to the user, both

considerably speeding up the detection process and potentially avoiding misclassi-

fying the sequence as belonging to users who are not present.

Emotion Recognition

The emotion recognition component is also based on a GMM classifier. The classifier

was trained using emotional speech taken from the Emotional Prosody Speech and Tran-

scripts library [LDG+02], the standard benchmark library in emotion and speech pro-

cessing research. This corpus contains recordings of professional actors reading a series

of semantically neutral utterances (dates and numbers) spanning fourteen distinct emo-

tional categories. The selection is based on Banse and Scherer’s study [BS96] of vocal

emotional expression. Actor participants were provided with descriptions of each emo-

tional context, including situational examples adapted from those used in the original

study. Flashcards were used to display series of four-syllable dates and numbers to be

uttered in the appropriate emotional category.

The emotion recognition process is performed as follows:

• A 128-component background GMM representative of all emotional speech is ini-

tially trained using all the emotion data.

• MAP adaptation of the background model is performed offline using emotion specific

utterances from the emotion database to obtain a set of emotion-dependent models.

These models are then loaded onto the phones.
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Broad emotion Narrow emotions

Happy Elation, Interest, Happy

Sad Sadness

Fear Panic

Anger Disgust, Dominant, Hot anger

Neutral Neutral normal, Neutral conversation, Neutral distant,

Neutral tete, Boredom, Passive

Table 6.1: Emotion clustering

• At run-time, the component periodically calculates the likelihood of the recorded

audio sequence given each emotion-dependent model and assigns the sequence to

the emotion characterised by the highest likelihood.

We initially tested a total of 14 “narrow” emotions based on the classes defined in the

emotion library. These were then clustered into 5 standard broader emotion groups gener-

ally used by social psychologists [FBR98]. It is difficult to distinguish with high accuracy

between utterances related to emotions in the same group, given their similarity. In any

case, we also note that it is also hard for a person involved in an experiment to distin-

guish exactly between the emotions belonging to the same group in a questionnaire and

for this reason broad classes are commonly used. The details of each grouping are given

in Table 6.1.

6.2.3 Evaluation

EmotionSense needs to be evaluated to optimise the speaker and emotion recognition

components and to understand their accuracy and energy requirements. It also needs to

be evaluated through a user study to understand the type of data that could be collected

by it. We also make a case for the use of computation offloading scheme presented in

Chapter 5.

In this subsection we present an evaluation of EmotionSense by means of several micro-

benchmark tests to study the system performance and to tune the parameters of the

speaker and emotion components. In particular, we discuss the choice of the optimal audio

sample length value for speaker and emotion recognition. We also present an evaluation to

understand the benefits of computation offloading. In the next subsection, we describe the

results of a larger-scale deployment involving 18 users for 10 days to evaluate the prototype

in a realistic setting and demonstrate its usefulness in the conduct of social studies. The
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evaluation was performed using Nokia 6210 Navigator phones. If we had used Android

phones, it would not have affected the accuracy of results that will be presented in this

section as the classification accuracy is independent of the phone’s operating system, but

would affect the latency if the Android phone had a more powerful processor.

6.2.4 Performance Benchmarks

We ran a series of micro-benchmarks to test the performance of the speaker and emotion

recognition components. The data used for benchmarking was collected from 10 users.

Each user carried a Nokia 6210 Navigator mobile phone. We also explored the trade-offs

in performing local computation on the phones and remote computation on a back-end

server.

Speaker Recognition

In this subsection, we present the results of the speaker recognition subsystem bench-

marks. Voice samples from 10 users were used in this test. The users were students, staff,

and faculty of the Computer Laboratory, University of Cambridge. The users that we con-

sidered have diverse cultural backgrounds and their nationalities are distributed among

7 different countries and 3 different continents. We used about 10 minutes of data from

each user to train the speaker-dependent models. A separate, held-out dataset was used

to test the accuracy of the speaker recognition component. We varied the sample length

from 1 to 15 seconds and each sample was classified against 14 possible models. We used

15 samples per user per sample length, resulting in a total of 150 test samples per sample

length. Figure 6.1 shows speaker recognition accuracy with respect to sample length. As

sample length was increased, accuracy improved, converging at around 90% for sample

lengths greater than 4 seconds. From Figure 6.2, it can be seen that this corresponds

to a latency of 55 seconds in the case of local computation on the phone. In our tests,

we observed a higher accuracy for silence detection than speaker identification. This is

because, the speaker identification technique has been tested against 14 models, whereas

for silence detection, the classification test is binary, i.e., comparison against silence and

background GMM models. Further, it may also be because, it is relatively less complex

for the classification process to differentiate between a sound signal and a silence signal

compared to two sound signals with varying characteristics.

Computation Offloading

In this subsection, we show the advantages of offloading computation tasks to the cloud.

We compared the energy consumption and latency of classifying each audio sample locally

on the phone with that of remote classification on a powerful server. In the case of local
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Figure 6.1: Speaker recognition accuracy vs audio sample length.
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Figure 6.2: Speaker recognition latency vs

audio sample length.
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Figure 6.3: Speaker recognition energy con-

sumption vs audio sample length.

computation, the process of comparing a voice sample with all the pre-loaded models is

performed on a Nokia 6210 Navigator mobile phone that is equipped with an ARM 11

369MHz processor. In the remote computation case, an audio sample to be classified

is transmitted over the 3G network using the HTTP Connection module of PyS60 to a

powerful back-end server (Intel Xeon Octa-core E5506 2.13GHz processor, and 12 GB

RAM). We used a total of 150 samples for this test (same as that used in the speaker

accuracy test), each of length 5 seconds. A 5 second audio sample has a size of about 78KB.

The energy consumption shown in the results in this subsection is end-to-end consumption

including all computation and radio transmission costs. We measured energy consumption

using the Nokia Energy Profiler.

The results of this test are shown in Figures 6.2 and 6.3. We can observe that the remote

computation is more efficient both in terms of latency and energy consumption. For

example, for a 5 second audio sample, the remote processing consumes 5 times less energy

and 18 times less latency compared to that of the local phone processing. Further, as the

audio sample size increases, the magnitude of the difference increases linearly, for example,
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for a 15 second sample, the latency difference between the local and remote processing

is about 110 seconds whereas for a 5 second sample it is 57 seconds. In Chapter 5,

Section 5.4 (Figures 5.4, 5.5 and 5.6), we have shown that, for the energy consumption,

latency, and data sent over the network values corresponding to a 5 second audio sample,

the computation offloading scheme selects remote computation given equal distribution

of weights to all the dimensions as remote processing is more efficient than the local

processing with respect to two out of three dimensions.

As discussed, offloading computation reduces energy and latency of intensive classification

tasks, however, data needs to be transmitted to the cloud for remote processing, therefore,

it uses the user’s mobile data plan or Wi-Fi if it is available. Considering the rapid increase

in the availability of number of open Wi-Fi networks, in future, the issue of using the user’s

data plan might subside. However, currently, not all phones have Wi-Fi. In these cases,

local computation can be used, although, it leads to increase in the energy consumption

while reducing the data sent over the network.

The Impact of Noise

We also conducted a test to evaluate the effect of noise on speaker recognition accuracy.

We used Audacity [AUC], an open source cross-platform sound editor, to inject noise into

voice samples. Audacity provides an easy way to add a particular type of noise into voice

samples.

The real environmental noise is generated from many different types of sources such as

machines or user activities, for example, in office spaces, it includes noise generated from

moving desks, closing/opening doors, and operating coffee machines. In an environment

such as the user’s home, it might be generated from heating/cooling systems, vacuum

cleaners, refrigerators or user activities such as cooking, cleaning, washing etc. Each

of these sounds have different characteristics, further, the combinations of these noises

produce even more types of noise. We, therefore, choose to use a random noise as it

contains the characteristics of each of these sounds at some point or the other, moreover,

its random nature makes it hard for the speaker recognition technique to account for the

noise in its design. Accordingly, we selected Brownian noise (or random walk noise), as

the change, or increment/decrement, from one moment to the next in this type of noise

is random. We injected Brownian noise into all the test samples for their entire length

with amplitudes ranging from 0 to 0.1 (% of amplitude), in increments of 0.02. Figure 6.4

shows the effect of Brownian noise on speaker recognition accuracy. As expected, the

accuracy decreases as the amplitude of noise increases. The rate at which the accuracy

drops is higher for the noise amplitude values up to 0.04 after which the rate of drop

decreases, relatively.
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Figure 6.4: Effect of Brownian noise on speaker recognition accuracy (5 sec sample).
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Figure 6.5: Emotion recognition accuracy vs

audio sample length.
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Figure 6.6: Emotion recognition latency vs

audio sample length.

Emotion Recognition

In order to benchmark the emotion recognition subsystem, we used both test and training

data from the Emotional Prosody Speech and Transcripts library [LDG+02]. The advan-

tage of using this library is that it is difficult for non professionals to deliver emotional

utterances. An alternative is to use “natural” speech recordings (i.e., taken from every-

day situations without acting). However, it is difficult to determine appropriate reference

labels, required to evaluate performance on this speech, since many natural utterances are

emotionally ambiguous. The use of a pre-existing library also allowed us to avoid explicitly

annotating collected data with emotional labels. We used a total of 14 narrow emotions,

which were then grouped into 5 broad emotion categories. For each narrow emotion, we

used a total of 25 test samples per narrow emotion per sample length, resulting in a total

of 350 test samples per sample length.

Figures 6.5, 6.6, and 6.7 show the emotion recognition accuracy, latency, and energy

consumption, respectively, with respect to the audio sample length. As the sample length
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Figure 6.7: Emotion recognition energy consumption vs audio sample length.

Emotion [%] Happy Sad Fear Anger Neutral

Happy 58.67 4 0 8 29.33

Sad 4 60 0 8 28

Fear 8 4 60 8 20

Anger 6.66 2.66 9.34 64 17.33

Neutral 6 5.33 0 4 84.66

Table 6.2: Confusion matrix for broad emotions.

increases, the accuracy improves, converging to about 71% for the broad emotions for

sample lengths greater than 5 seconds. Based on the speaker and emotion recognition

accuracy results (Figures 6.1 and 6.5), we used a sample length of 5 seconds in the

EmotionSense system that is the point at which the convergence becomes evident. The

confusion matrix for broad emotions for a sample length of 5 seconds is shown in Table 6.2.

Among non-neutral emotions, anger has the highest accuracy of all. This is confirmed

in [BOH83], where the authors show that intense emotions (like anger) are easier to detect

than emotional valence. They also mention that emotions that are similar in intensity,

like anger and fear (panic), are hard to distinguish: the same can be observed in our

confusion matrix.
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We also note that distinguishing between some narrow emotions in a group is difficult given

the similarity of the utterances corresponding to them: for a sample length of 5 seconds,

the narrow emotion “happy” matches “interest” with a probability of 0.28. Grouping

these increases the accuracy of classification, which can be observed from Figure 6.5.

The use of a limited number of broader emotional classes is also advocated by social

psychologists [FBR98]: in general, classifying one’s own emotions using narrow categories

when filling self-report questionnaires is also difficult.

6.2.5 Social Study

After evaluating the accuracy of the system by means of the micro-benchmark tests, we

conducted a social study. The main goal of the study is to show some examples of the

type of data that can be collected through smartphones and the correlation analysis that

could be performed on the collected data. We show this by analysing the emotion and

speech patterns inferred by the EmotionSense system and studying the factors influencing

these patterns by correlating these with sensor data. The data extracted by means of

the EmotionSense system running on the mobile phones was also compared with the

information provided by participants by means of traditional questionnaires.

Overview of the Study

The study was conducted over a period of 10 days and involved 18 participants. Each user

carried a Nokia 6210 Navigator mobile phone for the total duration of the study. Users

filled in a daily diary questionnaire for each day of the study which was designed by a social

psychologist involved in our project following the methodology described in [BDR03]. We

divided a day into 30-minute slots, and asked the users to complete a questionnaire on

the activity/event they were involved in at a particular time of day. We also asked them

if the event happened indoors or outdoors, their location, and if there were other people

present (in particular, participants involved in our study). We also asked them to specify

their mood at that time.

Participants

We searched for volunteers using snowball sampling [Goo61]. It is a technique where exist-

ing participants help in recruiting future participants from their acquaintances. Therefore,

the growth of study group resembles that of a rolling snowball. We recruited 18 users from

the Network and Operating Systems (NetOS) group, Computer Laboratory, University

of Cambridge. The participants included 2 female and 16 male users and were Ph.D.

students, researchers, and faculty members of the laboratory. Since the system did not

require any user-phone interaction, the fact that the participants were technology-savvy
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is not a determinant factor in the outcomes of the experiment. Before the start of the

experiment, we provided an overview of the application and the type of data it collects

to the participants. We also explained them that they could opt-out of the study and

request for deletion of their data at anytime during the experiment. We provided each of

them with an unique identifier to complete online surveys.

Results and Discussion

We note that the results that will be presented in this subsection are some examples to

show the type of data that could be collected from the phone’s sensors such as accelerom-

eter, Bluetooth, and microphone. One of our aims is to show using some examples that

modern off-the-shelf smartphones provide an opportunity to understand the impact of

various external factors on the user’s behaviour as data can be collected from multiple

sensor streams. Since these results are intended as examples, we have not performed any

statistical tests, therefore, it is difficult to comment on the statistical significance of these

results and these should only be viewed as examples.

We analysed the distribution of emotions detected, and also the effect of time of day,

activity, and co-location, on the distribution of emotions. Figure 6.8 shows the distribution

of “broad” emotions detected by the system during the experiment. We can observe that

the application detected neutral emotions far more than other emotions. Figure 6.9 shows

the distribution of emotions from the questionnaires completed by users, which shows a

distribution of emotions that is only partly similar to that extracted by means of our

system. From our discussions with the participants, we found that the users indicated the

“happy” emotion as representing their mental state, but this might not necessarily mean

that they expressed happiness verbally. This is one of the limitations of the system i.e.,

it can only infer the user’s emotions exhibited verbally. We note that, even though we

observed some correlation between the self-reported data and the automatic inferences

by the application, this is just an example study to show the potential of automatic

inference by smartphones and more detailed studies are required to confirm and validate

these observations.

Modern smartphones with embedded sensors provide an opportunity to analyse the impact

of various external factors by correlating the inferred emotional and speech patterns with

sensor data.

Time of day. Figure 6.10 shows the distribution of emotions with respect to time of day.

We can observe that the detection percentage of emotions is less in mornings than during

afternoons and evenings. This is particularly true of most users in this experiment, who

were conversing less in the mornings than afternoons or evenings.

Accelerometer. As discussed in Chapters 1 and 2, the accelerometer sensor in the

phone can be used to infer the user’s physical activity. Therefore, it enables automatic
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Figure 6.8: Distribution of broad emotions

detected.
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Figure 6.9: Distribution of broad emotions

from daily dairies.
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Figure 6.10: Distribution of broad emotions

detected with respect to time of the day.
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Figure 6.11: Distribution of broad emotions

within a given physical state (idle/moving).

correlation analysis of the impact of the user’s physical activity on her emotions. We

studied the influence of the user’s physical activity such as “stationary” or “moving” on

her emotions. Instead of studying a global percentage of each of the emotions with respect

to activity, we plotted the distribution of relative percentage of broad emotions when users

are stationary and mobile. From Figure 6.11, we can observe that these distributions are

very close, and the relative ordering is the same in both the cases.

Bluetooth. We used the Bluetooth discovery feature on the phone and a static mapping

of Bluetooth addresses and participants’ identifiers to infer the people co-located with

the phone user. Figure 6.12 shows the impact of the number of co-located participants

on the emotions of users. We can observe that the total number of emotions detected

(for “neutral” category) in smaller groups is different from that in larger ones. This

indicates that group size may impact the user’s behaviour, and this is a factor that could

be considered in social studies.

126



CHAPTER 6. SOCIAL SENSING APPLICATIONS

 0

 5

 10

 15

 20

 25

 30

HAPPY SAD FEAR ANGER NEUTRAL

D
e
te

c
ti
o
n
 P

e
rc

e
n
ta

g
e

1-2
3-4
5-6
7-8

Figure 6.12: Distribution of broad emotions detected with respect to number of co-located

participants.

Location. We were able to associate predominant non-neutral emotion with location

categories (as labelled by the user): we found that the most common emotion in residential

areas was “happy” (45%), whereas in the workplaces and city centre “sad” was the most

frequently detected (54% and 49%, respectively). These observations show the potential of

a deeper analysis of correlation between emotions and location, which can be investigated

further from the socio-psychological perspective with more focused studies. We note that

these observations might be specific to the cultural context of this study.

Microphone. EmotionSense can also be used to analyse the speech patterns of users

with respect to time. Figure 6.13 shows the speech patterns of users over time, which

reveal a considerable degree of consistency in most participants’ verbal behaviour across

a 6-day period (except for the first day of “user2” that seems unique to him/her). In

addition to emotion and speech recognition, the data from the microphone sensor in the

phone can also be used to understand the conversation leaders in meetings. We analysed

the data collected from a meeting held during the experiment when 11 of the participants

sat together and talked for 30 minutes. We identified conversation leaders in each time

slot of length 5 minutes. The analysis is shown in Figure 6.14. We considered only the

top five most active speakers for this plot. We used an audio sample length of 3 seconds

for this analysis as the difference between the speaker recognition accuracies for sample

lengths of 3 and 5 is only 3% (Figure 6.1). We can observe that “user4” is the leader in

almost all the slots, except in 2nd and 5th slots, where he/she was challenged by “user2”

and “user5”, respectively.

We note that this study is intended as an example to show the potential of smartphones

in collecting behavioural data about participants. The aim of the results presented from

this study is mainly to show the type of data that can be collected using modern off-

the-shelf smartphones and to also show using an example the correlation analysis that

can be performed to identify the factors influencing the user’s behaviour. We have not
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Figure 6.13: Variation of speech patterns

over time.
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Figure 6.14: Speech time as percentage of

the total speech time for all users.

performed any statistical tests as the results are intended as examples, therefore, it is

difficult to comment on the statistical significance of the results. More focussed and large

scale social studies are required in order to further confirm and validate the observations

presented in this subsection.

6.3 WorkSense

In the previous section we presented a passive monitoring application for capturing the

emotion and interaction patterns of the participants. In this section we show that smart-

phones can be useful for capturing the behavioural and collaboration patterns of users

at the workplace and they can autonomously find the groups and interaction patterns

of workers. We show this through the implementation and deployment of WorkSense,

another example social application. We also show using this application that offloading

sensing to the environment achieves considerable energy savings compared to the case of

pure local phone sensing.

Although so far social sensing applications have remained primarily within the realms of

entertainment and gaming, achieving reliable and accurate social sensing on mobile de-

vices could allow the introduction of such systems as valuable business instruments with

the potential to improve work performance and team cohesion. In business environments

work performance is typically evaluated and monitored according to certain work-related

metrics: whether deadlines are met, tasks are progressing according to schedule, etc. How-

ever, these metrics may be very limited and there is a vast amount of information that is

currently not captured by any available technology: these include the daily interactions of

people at the workplace, and the effect of these interactions on their work. Chats between

colleagues in the corridor and lengthy discussions during a coffee break are examples of
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behaviour that, if recorded, could help identify “key” players in the resolution of issues,

or even identify how teams could improve collaboration. Studies [LWA+08, OP10a] have

shown that meetings and informal interactions at the workplace can have a positive im-

pact on the work of teams and individuals. This kind of study has been conducted with

specialised devices (often RFID tags) which must be carried by participants throughout

the study.

In this section we present WorkSense, an example social sensing application that utilises

the sensing offloading scheme presented in Chapter 4 to achieve accurate and energy effi-

cient sensing of social activities at the workplace. WorkSense uses the sensing offloading

scheme as it mainly targets office environments, which might be instrumented with sen-

sors. The primary aim of the WorkSense application is to automatically infer meetings

and collaborations among users at the workplace. We deployed the WorkSense applica-

tion in our research institution for over a month. The application is deployed as part of

the system presented in Chapter 4. The application uses data from the mobile phone

sensors (accelerometer, Bluetooth, microphone), and opportunistic interaction with envi-

ronmental sensors that have been deployed in the office environment (Bluetooth scanners,

desk sensors, microphones) using the sensing offloading scheme. Based on this data, the

application can detect various interactions and activities, and automatically infers col-

laborations and meetings of users. Furthermore, by combining sensed information with

work-related data (calendars, application activity loggers), it can help in understanding

the influence that certain social interactions may have on their work.

We evaluated the WorkSense application through a real deployment with 11 users for a

month in a working environment. We show that it is able to infer the effect of various

interaction and social patterns on the work of the users by capturing data from mobile,

infrastructure sensors, and combining them with work-related data about the users. We

also studied the performance benefits of offloading sensing to the environment using the

scheme presented in Chapter 4.

6.3.1 Workplace Monitoring

A number of social studies have attempted to evaluate the influence of social behaviour at

the workplace [LWA+08, OP10a, WOKP10]. They showed that social interactions at the

workplace can have positive impact on work performance, team cohesion, and in general

on employees’ well-being. However, most of these studies mainly use surveys and self-

reports or purpose-built devices [CP03, MP01] that workers are asked to wear during the

study.

Our aim in this section is to build an example social sensing system in which social

interactions are automatically detected during the day and associated with the work

activities for prolonged periods, where a worker is able to identify the person who is most
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influential in dealing with particular tasks, or social activity patterns that have either a

positive or negative influence on their work. In addition to self-reflection, such a system

could allow workers to compare their social behaviour pattern with others. Olguin and

Pentland [OP10b] have identified worker types according to social behaviour. Awareness

can influence behaviour and possibly lead to behavioural change. Apart from the social

impact of such tools, practical use can include the association of people with particular

activities, based on their social interaction patterns. In capturing social interactions at

the workplace, the use of mobile sensing technologies, and in particular mobile phone

sensing, can be invaluable. However, energy limitations on mobile phones can hamper

usability and, inevitably, acceptability of such systems by end users. Therefore, we use

the system architecture presented in Chapter 4 to exploit the sensors available in the

infrastructure to perform efficient social sensing.

6.3.2 Application

The main goal of the WorkSense application is to detect interactions and collaborations

at the workplace. The design of the WorkSense application is motivated by a number

of studies that have shown the importance of understanding organisational behaviour.

For example, in [LWA+08] the authors showed how we can significantly increase work

performance by understanding the face-to-face interactions between individual workers

and the formation of various social groups within an organisation.

We exploited a number of sensing modalities that were available in our office environment

using the sensing offloading framework presented in Chapter 4 to design WorkSense: an

application that aims to infer collaboration and meetings of users, and can be useful to

understand the impact social interactions may have on their work. Our target is to use

mobile phones to monitor and visualise work behaviour and opportunistically use building

sensing infrastructure to minimise the energy cost while not compromising on accuracy.

The WorkSense application consists of a mobile phone application that is able to detect

social interactions, co-location patterns, and a back-end service used for data aggregation

and sharing. We use the system presented in the Chapter 4 to deploy the WorkSense

application.

More specifically, WorkSense includes the following functional components:

Mobile phone application. The mobile phone application is implemented on the An-

droid platform and utilises the sensing offloading service. The application captures the

mobility patterns of users during working hours (visited offices, meeting rooms, common

rooms, etc.) and conversations with colleagues. This information is used to infer social

context, mining working patterns for a given time of day, and to offer awareness to the

user [LWA+08]. WorkSense uses the conversation detection classifier of the EmotionSense

system to detect conversation.
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Meeting detection. A meeting is considered to take place when two or more users

are co-located for more than a pre-set time threshold (currently 15 minutes) and are in

a conversation. In the definition, we do not specify as a prerequisite that the location

should be a meeting room, as we wanted to capture informal meetings that sometimes

take place in a common room or in the corridor. By incorporating the data captured

by the external streams like desktop task loggers, the meeting detection can also show

changes in the user’s behaviour before and after a particular meeting. Such information

can allow the user to identify meetings that have significant influence on their work, or

people who may have an effect on their performance.

Collaboration detection. Although people in our research institution typically form

groups that may collaborate within the context of a particular research project, the

WorkSense application attempts to capture a more objective picture of how collabora-

tion takes place in the research lab. Sometimes a user who is not officially assigned to

a project may play an important role. Collaboration detection is achieved by apply-

ing a community detection algorithm to the co-location data. However, as there are

cases where two or more colleagues may share an office, a straight-forward application

of the community detection algorithm would result in communities that are heavily bi-

ased towards people sharing offices, even if they do not typically collaborate. In order

to overcome this problem, we defined an intended visit as the case when a person vis-

its another person with the intention of conversing. We define the intended visit as:

deskEmpty(u1) ∧ colocated(u1, u2) ∧ conversation(u1). If sensing infrastructure is un-

available, then we do not consider the desk sensor information. The result of an intended

visit is a directional edge that links the two users where u1 is the initiator and u2 is the

target. The Collaboration Detection applies a community detection algorithm over the

directed graph of conversations between users. The dataset consists of a sliding window of

data applied over the last two weeks. The system uses the Louvain community detection

algorithm [BGLL08] to detect groups and collaborations.

Work activity monitoring component. The work activity monitoring component is

implemented in Java and is supported for Linux and Mac OS X platforms. The component

periodically logs details about all the applications running on the user’s computer, and

also detects the current active application. The details about all the running applications

are obtained by logging the output of the top command that gives the list of processes

running on the user’s computer. The module used to detect the active window on the

Mac OS X platform is implemented in AppleScript2, and on the Linux platform, we used

xwininfo3 command that is a utility for querying various details about the windows in

the Linux platform.

In addition, the application also needs an indoor localisation component to detect the

location of the user. The indoor localisation was performed using Bluetooth devices

2http://developer.apple.com/applescript
3http://www.xfree86.org/4.2.0/xwininfo.1.html
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Figure 6.15: Sensor nodes were installed on 13 desks including two relay nodes.

in the environment and using a static mapping of devices and locations. Location was

detected by comparing the Received Signal Strength Indication (RSSI) values of the co-

located Bluetooth devices, and the device with the highest RSSI value is mapped as the

location of the user. From a design perspective, WorkSense is a mobile phone application

and its operation does not require the presence of sensors embedded in the environment;

however, when such infrastructure is available, its energy performance can be dramatically

improved and the accuracy of the gathered information can be increased as well.

6.3.3 Deployment

We deployed the WorkSense system in a working environment for over a month. The

main aim of the deployment was to show through an example application that it is pos-

sible to analyse and infer work activity habits and patterns, interaction and activities,

and collaboration patterns at the workplace using the data collected from the sensors in

smartphones and the infrastructure. We recruited 11 participants from the Computer

Laboratory, University of Cambridge, United Kingdom, using the same procedure as de-

scribed in Section 6.2.3. The participants are students and staff of the University. During

this period each user carried an Android phone (Samsung Galaxy S or HTC Desire). The

mobile system was able to utilise existing sensing infrastructure that was deployed in our

institution (Figure 6.15) using the sensing offload scheme. This included desk occupancy

sensors (imote2 sensors), Bluetooth sensors, and conversation detection infrastructure (see

Chapter 4, Section 4.5).

The WorkSense back-end component is implemented in PHP and Python and is deployed

on a powerful back-end server (Intel Xeon Octa-core E5506 2.13GHz processor, and 12

GB RAM). The web API interface to the mobile and desktop components were provided

through PHP scripts. A Python-based cloud module is implemented to correlate the

data streams from social sensing (recorded by the mobile applications) and work activ-

ities (captured by the task-loggers running on desktop/laptop machines), based on the

timestamps.
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Sensing Offloading

As the WorkSense application is aimed at monitoring users at the workplace, this de-

ployment provided us an opportunity to evaluate the benefits of the sensing offloading

scheme. In this subsection, we present the results of the battery performance of the

sensing offloading scheme presented in Chapter 4.

The aim of this evaluation is to show the advantage of exploiting sensing infrastructure

over the pure local phone sensing on real smartphones. The phone was running the

WorkSense application, which uses two social sensing classifiers described in the previous

subsection to automatically detect interactions and collaboration patterns: (i) a speaker

identification classifier based on the microphone sensor and (ii) a co-location detection

classifier based on the Bluetooth sensor. To compare the difference in battery life of the

phone with and without using the sensing offloading, we used pairs of Samsung Galaxy

S phones, carried by the same user. One of the phones was set to never offload data

(local phone sensing with Wi-Fi switched off) while the other followed the threshold

based offloading scheme. This functionality was swapped between the two phones over

consecutive measurements in order to reduce the impact that minor differences on the

phone batteries may have on the results. The phones were allowed to discharge only during

office hours, by switching them off overnight. During the experiment the phones were not

used for any other activities. We measured the battery level using the BatteryManager

API 4 of the Android platform.

Most operating systems provide an estimate of the remaining battery based on power

models, therefore, the remaining battery charge value provided by the operating system

is subject to errors due to minor differences between the phones such as temperature and

recharge cycle count (or how much the battery has been used). To minimise this error,

we tested the schemes on two different phones but of the same model and make, and then

calculated the average of the results. Further, since the aim of this test is to measure the

relative differences among the schemes, this evaluation provides us a way to estimate the

relative gains of the sensing offloading scheme over the other schemes. We note that the

absolute numbers provided in this subsection for the battery lifetime have only been used

for relative comparison and these might vary based on the test setup.

We measured the battery life of the phone when using local phone sensing with Wi-Fi

switched on, sensing disabled with Wi-Fi switched on, and sensing disabled with Wi-Fi

switched off. In all these cases, a battery monitor was always running on the phone to

measure the battery discharge. The average consumption over multiple runs is shown in

Figure 6.16. The results show that, when using the threshold based offloading scheme

and exploiting the sensing infrastructure, the battery lasted up to 45% longer compared

to the case of local phone sensing with Wi-Fi on, and 35% longer when compared to the

4http://developer.android.com/reference/android/os/BatteryManager.html
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Figure 6.16: Battery drain of Samsung Galaxy S phone for various scenarios.

case with the Wi-Fi off. Furthermore, the energy cost of using the system is very close

to a mobile phone with the Wi-Fi on and no sensing, and only 6% less compared to a

phone that uses no sensing and no Wi-Fi. This is an indication that opportunistic sensing

offloading can improve support for the long-term deployment of sensing applications, by

significantly minimising the impact on the phone’s battery life.

Social Results

In this subsection, we present the results related to the social and behavioural patterns of

the participants to show some examples of the inferences that could be drawn, for example

about collaborations, using the data collected by smartphones.

Meeting detection analysis. One of the primary motives for the design of WorkSense

was that social sensing has the potential to capture views over interaction and activities at

the workplace. The most expected result of the WorkSense application was the detection

of formal and informal meetings. The Meeting Detection service was able to detect the

exact times at which meetings took place in the laboratory. Furthermore, by utilising

the calendar information such meetings were populated with appropriate meta-data. Fig-

ure 6.17 shows a snapshot of a time-line where the calendar schedule is contrasted with

the actual meetings as they were detected by WorkSense. In this snapshot we see how

a person that has consecutive meetings can slightly adapt the schedule according to the

duration of previous meetings. In this case many meetings were moved forward: this was

not something updated in the calendar. A similar observation was reported in [LOIP10],

where the authors showed that the calendar does not accurately represent reality as gen-

uine events are hidden by placeholders and reminders. Furthermore, WorkSense was able

to capture a number of unscheduled informal meetings typically taking place at the work-
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Figure 6.19: Work pattern of User 7 before

and after a specific meeting.
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Figure 6.20: Work pattern of User 7 before

and after a different meeting.

place. Although the impact of such meetings may not be immediately obvious, providing

information about such meetings may prove to be a valuable tool.

Activity type and user specific analysis. Information on which activities mostly take

place at specific times of the day can be detected: an example is shown in Figure 6.18

where the detected conversations are shown. Furthermore, interesting results are obtained

by comparing the work activities of a user before and after particular meetings. To

capture the work activities that act as ground-truth to show the varying level of effect of

different meetings, we installed task-loggers on the users’ computers as part of the work

activity monitoring component described in the previous subsection. The task-loggers

periodically log details of all the applications running on the user’s computer and also

detect the current active application. The data on meetings detected by the WorkSense

can be fused with data from the task-loggers in the back-end server to extract interesting

results: In Figures 6.19 and 6.20, it can be seen that the type of activity of User 7 changes

drastically after two different meetings.
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Community detection analysis. Before the deployment of the WorkSense application,

we collected the ground truth of how the participants are organised into work teams. Users

were asked to offer details about the people they currently collaborate with, the teams

they work in and the projects they work on. Figure 6.21 shows the different groups and

project teams as reported by the users. The users were divided into two research groups.

During the experiment three major projects were taking place. Each user belonged to a

single group and worked on a project.

We used WorkSense to automatically detect such communities. To do this, we first create

a weighted graph of detected collaboration where a link between two users represents

the length of time they spent in meetings and discussion. Afterwards, we apply the

Louvain community detection algorithm [BGLL08] to detect groups and projects that

users belonged to. The Louvain method is a simple and efficient method for identifying

communities in networks and is one of the most widely used methods. It is a hierarchical

greedy algorithm and operates in two phases, repetitively: first, it searches for small

communities by considering nodes one by one, and then it combines nodes of the same

community and forms a new network. The method uncovers hierarchies of communities

and allows further identification of sub-communities, sub-sub-communities and so on. The

Louvain’s method is also shown to be computationally efficient: the method runs in time

O(nlogn) with most of the complexity incurred by optimisation at the first level.

This algorithm generates team formations on varying levels of granularity: at the low-

est level (Level 1) it identifies smaller communities and at higher levels (e.g., Level 2) it

merges smaller communities to form larger clusters. The thickness of edges in the graph

represent the weight/strength of the link, and the colour of a node represents its commu-

nity. Figure 6.22 shows the Level 2 communities where WorkSense was able to identify the

separation between people belonging to different departmental groups. We can observe

that the algorithm is able to group users into two communities:

Group 1: U.2, U.3, U.4, U.6, U.7, U.9, U.10, U.11

Group 2: U.1, U.5, and U.8.

The groups are in accordance with those reported by the participants (Figure 6.21).

The spatial placement of nodes is generated using a spring model (Fruchterman-Reingold

force-directed algorithm [FR91]): the larger the spatial difference between two nodes,

the lesser the collaboration/communication between them. More interestingly though,

the output of community detection when operating at Level 1 (Figure 6.23) was a more

fine grained breakdown of groups that were not related to the information that the users

offered but to the projects that users had been working on, even within the same group.

The communities detected are in agreement with the project groups reported by the users

(Figures 6.21 and 6.23). Furthermore, the WorkSense application was able to identify

cross team collaboration and pinpoint people acting as bridges extending collaboration

links across teams.
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Figure 6.21: Communities as reported by the users.
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The analysis and results presented in this subsection serve as another example to show the

potential of smartphones for conducting social studies. We note that these are just few

examples and initial steps to show the potential of smartphone sensing and more studies

are required to precisely gauge the accuracy and validity of these social and behavioural

inferences.
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6.4 SociableSense

In the previous section we presented an application for monitoring the behaviour of users

at the workplace. Smartphones are not just useful for passive monitoring, but also in

closing the loop by providing feedback and useful statistics about the user’s activities. As

another example, in this section, we present an application that estimates the sociability

of users and provides gaming features to encourage users to become more sociable.

In this section, we present the design, implementation, and deployment of SociableSense,

a smartphones based social sensing application intended to provide real-time feedback to

users in order to encourage them to foster their interactions and improve their relations

with colleagues. The core of the application is a social feedback component that estimates

the sociability of users (i.e., a quantitative measure of the quality of their relations)

based on interaction and co-location patterns extracted from the sensed data at run-

time and provides them with feedback about their sociability, the strength of relations

with colleagues, and also alerts them to opportunities to interact. SociableSense utilises

the services of the adaptive sensing scheme presented in Chapter 3 to efficiently sample

the sensors and the computation offloading scheme presented in Chapter 5 to efficiently

compute the classification tasks.

To demonstrate how such an application can be useful in practice, we conducted a social

study in an office environment where 10 participants carried mobile phones for two working

weeks. More specifically, in this section, we present the design, implementation, and

evaluation of a system for quantitatively estimating the sociability and relations of users in

the office environments. We also close the loop by providing real-time feedback about their

sociability, the strength of their relations with colleagues, and opportunities to interact.

By inferring the most sociable person in the office, we provide implicit incentives to users

to become more sociable.

6.4.1 Relations in Workplaces

Social science researchers have been devoting their attention to investigating behaviour

and interaction of users in the workplaces for a long time, trying to answer questions

about different aspects of user behaviour. What are the interaction and colocation pat-

terns among users in the office or corporate environments? Do people socialise more in

personal office spaces or in common spaces like coffee rooms? Which work-group members

socialise with one another and why? Considering evidence that work-groups with highly

connected team members outperform less connected ones [LWA+08, OP10a, WOKP10],

the importance of these research questions is clear: Understanding how work-groups so-

cialise naturally and identifying the factors that moderate socialisation could have signif-

icant effects on group performance and productivity.
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Moreover, some of the questions concerning the users themselves include: Who is the most

sociable person in the group? Do I socialise more with person X or person Y ? Could I

get to know X more if I get a chance to interact with him/her in the coffee room every

day? How does my sociability vary with time of the day or day of the week?

Investigations of workplace socialising tend to rely primarily on self-report methods.

Although such methods can be useful and effective for assessing attitudes and beliefs,

considerable evidence suggests that reports of behaviour tend to be inaccurate [PR91].

Laboratory-based studies enable researchers to observe behaviour instead of relying on

behavioural reports. However, the nature of laboratory studies can make participants’

experiences unnatural and contrived. Moreover, using these methods, real-time feedback-

/alerts about users’ own relations are hard to provide. It is also difficult for participants

to know precise answers to the above questions, which go beyond their own approximate

observations.

Smartphones can prove invaluable for continuous monitoring of people in their environ-

ment as shown with the previous example applications, EmotionSense and WorkSense.

Since almost everyone has a mobile phone, they are a perfect platform for conducting

behavioural monitoring studies. In this section, we show how smartphones can be used

to provide realtime feedback to users, using an example application that estimates the

sociability of users and alerts them to opportunities to interact.

6.4.2 Sociability Measurements

We define sociability of a user as the strength of the user’s connection to his/her social

group. In other words, this metric is used to represent the quantity and quality of his/her

relations with colleagues. We measure the strength of a user’s relations and his/her

overall sociability based on network constraint [Bur95]5. In a social network, the network

constraint for a node quantifies the strength of the node’s connectivity. For any two

persons in a social network, a person with lower network constraint value is considered to

have higher strength in terms of connectivity. The network constraint Ni for a node i in

a social network is measured as:

Ni =
∑
j

(pij +
∑
q

piqpqj)
2, q 6= i, j; j 6= i (6.1)

where pij is the proportion of time i spent with j, i.e., the total time spent by i with j

divided by the total time spent by i with all users in the network.

Based on this concept, we measure the sociability of users with respect to co-location and

interaction patterns. We define colocation of a pair of users as being in proximity to each

5An alternative and in a way similar measure is the kith index [WOKP10].
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other, and interaction as speaking to each other. The system captures the colocation

patterns of users through the Bluetooth sensor, and the interaction patterns through

the microphone and the speaker identification classifier described in the EmotionSense

application (Section 6.2)6. We refer to the network constraint for colocation network as

colocation network constraint (NC). This is calculated as follows:

NCi =
∑
j

(pcij +
∑
q

pciqpcqj)
2, q 6= i, j; j 6= i (6.2)

where pcij is the proportion of time user i is colocated with user j. Similarly, we refer

to the network constraint for the interaction network as interaction network constraint

(NI), which is calculated as follows:

NIi =
∑
j

(psij +
∑
q

psiqpsqj)
2, q 6= i, j; j 6= i (6.3)

where psij is the proportion of time user i has interacted with user j. A smaller network

constraint means smaller psij and psiq values which in turn means that the user has spent

time interacting with many colleagues, i.e., he/she is more sociable.

In a social network of n nodes, the strength of relations of a user i with respect to

colocation is calculated based on pcij where j = 1, 2, . . . n, j 6= i and with respect to

interactions is calculated based on psij where j = 1, 2, . . . n, j 6= i. We call the user i

where i = min{NCk, k = 1, 2, . . . n} (i.e., the user with least colocation network constraint

value) the mayor of the group with respect to colocation, and similarly the user j where

j = min{NIk, k = 1, 2, . . . n} (i.e., the user with least interaction network constraint

value) the mayor of the group with respect to interactions. The alerts about the mayors

are sent to all mobile phones periodically to encourage active participation of the users

in the experiment and also to motivate them to socialise more by adding the competition

and gaming factors.

We use two examples to demonstrate the quantification of sociability through the network

constraint. Figure 6.24(a) shows a social network of three nodes. Let us say that A spent

5 hours with B and 5 hours with C, and B and C did not spend any time with each other.

The fraction of time A spent with B is 0.5 and with C is 0.5 and these are represented as

weights in the graph. However, B has spent time only with A, therefore the weight of the

edge (B,A) is one, similarly the weight of edge (C,A) is one too. The ranking with respect

to decreasing order of sociability (or increasing order of network constraint) is: A(0.5),

B(1.25), C(1.25). Since A distributes his/her time between two contacts, he/she is less

constrained than B and C, therefore A is more sociable. Figure 6.24(b) shows a social

network of five nodes. Let us assume that there is a core social network consisting of nodes

6There are other non-verbal modes of interactions among users like gestures, however, these are hard

to capture through the sensors of smartphones.
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Figure 6.24: Sociability measurement examples.

A, B, and C, and two new persons D and E have recently joined the network. D has

interacted with two people in the network, whereas E has connected only with one person.

Therefore D is connected more strongly than E. The constraints for D and E are 1.13

and 1.32, respectively, which makes D more sociable than E. Further, A and C are both

connected to three nodes, however, C’s constraint (0.69) is less than A’s constraint (0.83)

as more information flows through C than A as the graph breaks into two components

without C. Therefore C is considered more sociable than A. This kind of data about the

sociability of users is of very high interest to social scientists and corporations, as it helps

them to understand social patterns of users at a great level of detail. It can also be used

to create a positive impact on productivity [LWA+08, OP10a, WOKP10].

6.4.3 Indoor Localisation and Alerts

The indoor localisation feature in the SociableSense system is based on the Bluetooth

sensor, and is implemented to identify the users in social locations to notify colleagues of

opportunities to interact, and to study the influence of type of location on the sociability

of users. By placing Bluetooth devices at various locations in the office spaces, we can

achieve coarse grained localisation7. The main reason for using this method is that since

the system is already required to scan for Bluetooth devices to identify co-location of

users, it need not expend additional energy sensing from other sensors like Wi-Fi or GPS

that are generally expensive in terms of energy consumption. Moreover, Wi-Fi is not

available on all smartphones (for example, Nokia 6210 Navigator), and GPS does not

generally work in indoor office locations.

7We also note that more fine-grained solutions based on Wi-Fi fingerprinting and coarse-grained

solutions like logical localisation [ACRC09] can be integrated into this module, but since our aim is to

distinguish between work and social spaces, we limit this feature to the Bluetooth based technique.
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Our main aim is to distinguish between work and social spaces. Work locations are those

in which users work and spend most of their office time. Social or sociable locations

are those where users socialise and spend time during breaks, like coffee rooms, common

rooms, and game rooms. When a user is in a social location, an alert is sent to all other

participants, so that interested people can join the user and socialise with him/her.

6.4.4 Social Study

We conducted a social study to show how smartphones can assist in understanding the

impact of feedback mechanisms on users. The application was deployed as part of a

system that uses the adaptive sensing scheme presented in Chapter 3 and the computation

offloading scheme presented in Chapter 5.

Overview of the Study

We conducted the study for a duration of two working weeks (10 days) involving 10 users.

The participants were recruited from the Computer Laboratory, University of Cambridge,

using the same procedure as described in Section 6.2.3 of this chapter. Most participants

of this study were also part of the previous studies described in Sections 6.2.3 and 6.3.3.

In particular, seven participants of this study were also part of the previous studies. We

divided the experiment into two phases each lasting for a week. In the first phase, the

feedback mechanisms of the SociableSense system were disabled, and in the second phase

they were displayed. More specifically, we showed the following to the users: sociability,

strength of their relations (inferred using the microphone and Bluetooth sensors), activity

levels (inferred using the accelerometer sensor), and alerts about the users in sociable

locations (using the Bluetooth and network connection such as 3G or Wi-Fi). During

the study each user carried a Nokia 6210 Navigator mobile phone. We identified five

main locations where users generally spend most of their time. We categorise three of

these as work locations as users work spaces are located in these locations, and two of the

locations as sociable locations that include a common room and a cafeteria where users

either socialise or have breakfast/lunch. These two categories of location are in different

parts of the building, i.e., Bluetooth ranges were non-overlapping, therefore, localisation

error is negligible. The study only relied on the data from smartphones and no self-

reported data was used. In particular, through this example study, we aim to show that

it is potentially possible to observe the relative differences in the behaviour of users using

data from the phone’s sensors.

Results and Discussion

Through the deployment, we studied the effect of feedback mechanisms on the sociability

of the users. Figures 6.25 and 6.26 show the colocation network constraint and interaction
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Figure 6.25: Colocation network constraint

vs location types.
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Figure 6.26: Interaction network constraint

vs location types.
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Figure 6.27: Activity levels of users in vari-

ous location types.
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Figure 6.28: Network constraint vs activity

levels.

network constraint, respectively, for the two phases of the experiment. We can observe

that the average network constraint for both colocation and speech networks is lower

when feedback and alert mechanisms were enabled. Note that the network constraint is

a lower the better type of metric for sociability. We can also observe that the difference

between the network constraints with and without feedback is greater in sociable locations

than in work locations. However, we note that there might be many factors influencing

the behaviour of users, therefore, the results presented in this subsection are just some

examples of what can be potentially possible with smartphones and how they are helpful.

Through this study, we wanted to show that the differences with and without feedback

mechanisms can be analysed using data collected by mobile phones.

Accelerometer. We also analysed the effect of feedback mechanisms on the level of

activity of the users using the phone’s accelerometer sensor. As discussed in Chapters 1

and 2, the accelerometer sensor in the phone can be used to infer whether a person is

moving or not. Figure 6.27 shows the level of activity of users in both the phases of the
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experiment, where we observe fairly consistent behaviour. A more deeper analysis can

be performed by measuring the correlation between the level of activity and interaction

network constraint, which is shown in Figure 6.28.

The social results presented in this section show that by conducting studies in different

phases, the relative differences of the behaviour of users can be studied. We note that

this is just an example study and more rigorous studies need to be conducted by social

scientists to infer the precise impact of feedback and alert mechanisms.

Adaptive Sensing and Classifiers

The SociableSense application uses the adaptive sensing scheme for the following classifiers

and sensors.

• Conversation detection classifier (Microphone). This is same as that de-

scribed in Section 6.2.2 of this chapter and is based on the phone’s microphone

sensor. Since the interaction network constraint is estimated by inferring the speech

patterns of users, “conversation” or “speaking” is considered as an interesting event

and “silence” as an uninteresting event in the adaptive sensing scheme. The adap-

tive sensing scheme for this combination of interesting and uninteresting events has

already been evaluated in Chapter 3, Section 3.5, where we have shown that the

energy consumption is 43% less than that of the continuous sensing scheme for the

same level of accuracy.

• Activity recognition classifier (Accelerometer). This classifier infers whether

the user is moving or not using the accelerometer sensor and is same as that described

in Section 3.5. For this classifier, “user moving” event is considered as an interesting

event and “stationary” event as an uninteresting event. We have already presented

the energy results for this combination of event classification in the same section.

The results show that the energy consumption of the adaptive sensing scheme is

42% less than that of the continuous sensing scheme.

• Indoor localisation and co-location detection (Bluetooth). This classifier

infers the indoor location of the user using the phone’s Bluetooth sensor and fixed

Bluetooth anchors deployed in the environment, and her co-location using the Blue-

tooth radios on the participants’ phones. The change in the number of Bluetooth

devices as sensed by the phone’s Bluetooth sensor is considered as an interesting

event otherwise as an uninteresting event, which is same as that considered in Sec-

tion 3.5. The results presented show that the adaptive sensing scheme consumes

50% less energy than that of the continuous sensing scheme for this classifier.
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Computation Offloading

The SociableSense application uses the computation distribution service described in

Chapter 5 that computes the classification tasks either locally on the phone or remotely

in the cloud considering the user’s requirements. We have already shown the advantages

of using the computation offloading in Chapter 5, Section 5.4, and further in this chapter

when discussing about the results of the EmotionSense system (Section 6.2.3).

In this study we gave equal importance to all the dimensions: energy, latency, and data

sent over the network. The combination of weights is the same as that of S4 in Chapter 5,

Section 5.4. Thus, the computation distribution scheme selected the configuration C4

(speaker identification task computed remotely and other classification tasks computed

locally) out of 16 possible combinations, as the selected combination is best with respect to

two (energy and latency) out of three dimensions. The use of the computation distribution

scheme led to approximately 28% more battery life, 6% less latency per task, and 3% less

data transmitted over the network per task compared to the model in which all the

classification tasks are computed remotely.

6.5 Related Work

In recent years, we have witnessed an increasing interest in the use of ubiquitous technolo-

gies for measuring and monitoring user behaviour [Pen08]. Experience sampling mecha-

nisms [FCC+07, MKL+10] can be used to evaluate human-computer interaction especially

for mobile systems since the use of the devices is not restricted to indoor environments

unlike laboratory studies. The most interesting example of such systems is MyExperi-

ence [FCC+07], a system for feedback collection triggered periodically, partly based on

the state of on-board sensors. MyExperience does not include components for speaker,

emotion recognition or automatic classification. Furthermore, the self-report based mech-

anisms are prone to memory errors [Tou99] and are also found to be biased towards pos-

itive experiences [PR91]. In [MKL+10], the authors examined the use of a mobile phone

based experience sampling application for cognitive behavioural therapy. The application

collects data about the users’ emotions and their scales. However, this data has to be

manually entered into the system by the user. In contrast to these works, the proposed

social sensing systems allow for automatic detection of behavioural aspects through emo-

tions and speech patterns. Most of the existing systems are passive monitoring systems,

unlike SociableSense, which can be used to measure and provide feedback to users.

The authors of [JHYGP09] model dominance in small group meetings from audio and

visual cues, however, they do not model emotions. The MoodSense system [LLLZ11] can

infer the user’s mood from information already available in modern smartphones such as

SMS, email, phone calls, application usage, browsing history, and location information.
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The MIT Mood Meter [HHDP12] is a computer vision based system that automatically de-

tects and counts smiles in a large community from data captured through cameras installed

at various locations. For smile analysis, first they use a classifier to perform face detection

and then they extract several geometric properties of the faces to predict the intensity of

a smile. The approaches of these systems are orthogonal to our approach for detecting

emotions where we use the microphone sensor in the phone. StressSense [LRC+12] is a

smartphones based platform that uses the microphone sensor to detect stress in the user’s

voice. The system uses many acoustic features from the recorded audio for classification

such as standard deviation of pitch, perturbation, and the rate of speaking.

Recent systems for quantitatively measuring aspects of human behaviour using purpose-

built devices include the Sociometer [CP03] and the Mobile Sensing Platform [WBCK08].

A sociometer (or sociometric badge) is a wearable electronic device that can automatically

measure face-to-face interaction, conversational time, physical proximity to other people,

and physical activity levels using the sensors embedded in the device, similar to the phone.

The Electronically Activated Recorder (EAR) [MP01] records audio samples in the user’s

environment using an audio recording device for 30 seconds once every 12 minutes. The

audio files are coded offline by social scientists by manually listening to them.

Many studies have been conducted using the Sociometer and EAR [WOKP10, OWK+09,

OP10b, HWSM11], and some of these have also studied organisational behaviour. Al-

though these devices have an advantage over self-reports and experience sampling meth-

ods, they are generally not carried by the users every day, and long-term studies are

quite hard to achieve as it might be impractical to ask users to carry external devices

for prolonged periods or users may need to be incentivised [MRG+11] which may prove

costly. The applications that we designed instead target off-the-shelf smartphones. Fur-

ther, in systems like EAR, it takes a lot of manual effort of social scientists to code audio

files, whereas in the proposed systems classification is performed automatically. Some

works [LFO+07] have deployed wireless sensor networks at the work and domestic environ-

ments to understand usage patterns (light use, temperature, motion). These approaches

rely on full instrumentation of a building that may again be costly or impractical.

With respect to voice processing technologies, a survey of GMM-based speaker recognition

technology can be found in [Rey02]. SoundSense [LPL+09] is a smartphone platform

implemented on iPhone that detects interesting events using the microphone sensor such

as riding a bus, driving a car and is capable of automatically detecting the context, which

finds many potential applications in the field social sciences; similar algorithms that are

complementary to ours can be added to EmotionSense to provide information about social

situations to psychologists. The emotion recognition system that we implemented is close

to that devised by the Brno University of Technology team for the Interspeech 2009

Emotion challenge described in [KBC09]; however, this system was not based on mobile

phones. In addition to voice based emotion recognition systems, there are systems built

using wearable emotion detectors [TML+08].
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6.6 Conclusions

In this chapter we demonstrated using three example social applications that smartphones

can be effective tools in the conduct of social studies. EmotionSense is an application for

conducting passive behavioural monitoring studies and incorporates automatic emotion

and speaker recognition components. We have discussed the results of the evaluation of

the core application components by means of a series of benchmarks and a social study

that involved 18 participants. We have also shown how the information collected by

EmotionSense can be potentially used to understand the patterns of interaction and the

correlation of inferred emotions with the places, groups, and activity captured from the

sensors in the phone.

We then presented WorkSense, another example social sensing application that could po-

tentially be useful in conducting behavioural monitoring studies at the workplace. The

application implements collaboration and meeting inference components and we showed

through real deployment that the system detects formal and informal meetings and the

inferences match the actual collaborations of the users. Finally, we presented Sociable-

Sense, an application that closes the loop by providing real-time feedback to users on their

sociability, the strength of their relations with colleagues, and opportunities to interact.

The core of the application is a social component that models the relations of the users

and ranks them. We showed through real deployment that smartphones can be poten-

tially used as a platform to implement feedback and alert mechanisms and to test the

effectiveness of these mechanisms.
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7
Reflections and Future Work

In the previous chapters we presented social sensing applications and techniques to ef-

ficiently run them on smartphones. In this chapter we provide a brief overview of our

thesis and the research questions that we aimed to answer. We then summarise our

contributions, present limitations, and offer suggestions for future work.

Social psychology research deals with the understanding of behavioural and social aspects

of users. Most social science researchers do not use smartphone sensing technology to

its full potential. On the other hand, smartphone technology has been advancing at an

unprecedented rate. The thesis is inspired by the ubiquitous nature, unobtrusiveness, and

sensor richness of smartphones and their application in social sciences research: smart-

phone sensing can be used to automatically capture the behavioural and social aspects of

the user, and can be an effective tool in the conduct of social studies..

To support the thesis we were required to build schemes to efficiently capture and process

raw sensor data, and build mobile social applications based on inferences from sensor data.

However, each of these pose research questions (presented in Chapter 1, Section 1.5) that

needed answering. The dissertation has supported the thesis by exploring the following

closely related research threads:

1. Considering the resource limitations on mobile phones, we designed energy-efficient

techniques to capture data from the sensors in the smartphone and in the user’s

environment, and to process the sensor data to derive inferences. These techniques

enable smartphones to be able to run social sensing applications efficiently.
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2. We designed techniques to infer and model the user’s behaviour based on smartphone

sensor data, and implemented and deployed three example social applications to

demonstrate the potential of smartphone sensing in the conduct of social studies.

7.1 Summary of Contributions

In this section we reiterate the research questions that we aimed to answer and describe

our contributions in detail.

Research Question 1. How can we accurately capture raw data from the sensors in

smartphones in an energy-efficient way?

[Contribution 1] Mobile phones are equipped with many sensors such as accelerometer,

Bluetooth, and microphone, and data gathering from these sensors is a fundamental

step to support social sensing applications. However, since mobile phones are resource

constrained, efficient techniques need to be designed to balance energy-accuracy trade-offs.

We explored these trade-offs in Chapter 3. We designed an adaptive sensing framework

based on the principle that interesting events should not be missed and uninteresting

events can be missed. We presented a design method and an adaptive sensing scheme that

adapts the sampling rate of the sensors to the context of the user to achieve energy savings

while maintaining the required level of accuracy. We also presented a rules framework

that allows social scientists to write rules and adapt the sampling behaviour of the system

to changing external factors. We showed through evaluation using real traces that the

adaptive scheme saves as much as 50% energy compared to a continuous sensing scheme

while achieving a similar level of accuracy.

[Contribution 2] Even though the adaptive sensing scheme saves energy compared to

continuous sensing, it still needs to expend energy to achieve high accuracy. Consid-

ering that modern buildings have many sensors such as motion, door sensors, cameras

embedded in the infrastructure, these can be exploited to achieve further energy savings.

Therefore, in Chapter 4, we designed a sensor offloading scheme that leverages the sen-

sors in the mobile phone and in the user’s environment to capture the user’s data. The

offloading scheme dynamically adapts to the mobility patterns of users and saves a signif-

icant amount of energy without compromising on accuracy requirements. We also showed

that combining adaptive sensing with the sensing offloading scheme results in high energy

savings.

Research Question 2. How can we efficiently process data captured through smart-

phone sensors to draw inferences about the user?

[Contribution 3] Based on the schemes designed in Chapters 3 and 4, data can be

efficiently gathered from smartphone sensors. However, it still needs to be processed to

derive inferences about the user’s behaviour. Therefore, in Chapter 5, we designed a
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computation offloading scheme that smartly distributes the computing of a task between

local mobile phone and remote cloud processing resources by considering the dimensions:

energy, latency, and data sent over the network. The scheme can be adapted to the

changing resources of the mobile phone by writing rules. We showed through evaluation

on real traces that the computation offloading scheme selects the optimal configuration

for a given task considering the requirements of the experiment designers.

Research Question 3. In what ways can smartphones be helpful in the conduct of

social studies?

[Contribution 4] After designing schemes that can efficiently support data gathering and

processing for social sensing, we focussed on the design of example social psychological

applications to show using real examples the type of data that can be collected using

smartphones and the analysis that can be performed on this data. In Chapter 6, we

built a passive behavioural monitoring application (EmotionSense), a collaboration and

interaction detection application for the workplace (WorkSense), and an application that

can provide realtime feedback (SociableSense) to show the usefulness of smartphones in

supporting various types of social applications. EmotionSense is a passive monitoring

platform and implements two subsystems: speaker and emotion recognition, for inferring

the user’s emotion and speech patterns autonomously. By correlating these with other

sensor data like location, co-location, and activity, fine-grained behaviour analysis can

be performed. WorkSense uses the speaker recognition component of EmotionSense and

the sensor offloading scheme (Chapter 4) to automatically infer the collaboration and

work patterns of the users at the workplace. This application can be used to understand

the impact that social activities have on the work performance of employees and can be

beneficial to both the employees and the employer. Finally, we presented SociableSense,

an application that provides realtime feedback and alerts to users to encourage them to be

more sociable. The application models the relations of the users based on the microphone

(interactions) and Bluetooth (colocation) sensor data.

These contributions in terms of efficiently supporting social sensing applications on smart-

phones and designing models to capture the user’s behaviour from sensor data supported

our thesis: smartphone sensing can be used to automatically capture the behavioural and

social aspects of the user, and can be an effective tool in the conduct of social studies.

7.2 Limitations

In this section we present the limitations of the proposed schemes and the social applica-

tions.

• The adaptive sensing scheme is applicable to capturing data from a sensor only if the

events inferred from the sensor stream can be classified to interesting or not by the
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application. Further, it may not be suitable to sensor streams with low-frequency

events, i.e., events that happen rarely, as there is a high chance of missing them

especially when the probability of sensing is lower.

• The sensing offloading scheme can only be used in environments where a sensing

infrastructure is available. Further, it also assumes the availability of a discovery

and access service (for example, a web-based API) to find and utilise the remote

sensors.

• The computation offloading scheme requires the values of the dimensions (such as

energy, latency) to be pre-configured before executing the decision engine. Further,

the rules framework that can be used to dynamically adapt the behaviour of the

decision engine, lacks a way to find the conflicting rules defined by users.

• The social sensing applications that we presented in the previous chapter are some

examples to show the type of data that can be collected using off-the-shelf smart-

phones and the type of analysis that can be performed on this collected data. In

order to confirm the accuracy of findings and inferences from these social studies,

more focussed and/or large scale studies in collaboration with social scientists are

required.

7.3 Future Directions

The rapid growth of the number of smartphone users is likely to continue for many

years [YAH]. As sensor technology advances there will be many sensors added to com-

modity smartphones [LML+10]. Sensors in modern mobile phones can be used to capture

the behaviour of users automatically and accurately as demonstrated in this dissertation.

One potential use of the schemes and classifiers presented in this dissertation could be to

understand the bias introduced in various experience sampling studies as shown in our

recent work [LRMR13]. In this section we offer suggestions for future work.

7.3.1 Open Sensing Infrastructure Access

We have shown in this dissertation that adaptive sensing balances the energy-accuracy

trade-offs of social sensing applications. However, energy still needs to be expended to

achieve higher accuracy. As shown in Chapter 4, leveraging the environmental sensors is

an approach that results in higher accuracy while saving a significant amount of energy.

This is a key mechanism that can support the long term deployment of mobile social

applications. Considering the benefit to employees and employers, there is a case for

organisations to open access to the sensing infrastructure. Further, there is also a need

to create open standards for generalising the way in which mobile devices can access
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building infrastructure sensors. Given that these can be charged to users through billing

or through advertising, there is a need for re-thinking the business case in this area.

7.3.2 Behavioural Interventions

In the domain of social sensing an area that can be explored and which has not fully

exploited smartphone sensing is behavioural interventions. We have shown that mobile

phones could be used to provide realtime feedback through SociableSense in Chapter 6.

They can also be used in more varied scenarios, for example, in assisting users to quit

cigarette smoking. Another example is to help in reducing stress through intervention

when stress level increases (can be detected using heart rate monitors and/or a micro-

phone sensor [LRC+12]). However, the detection of these activities, for example, cigarette

smoking, is limited by available sensors in the phone. It might be possible to use alter-

native sensors like accelerometers to identify smoking activity based on the actions or

activity patterns. Other behavioural interventions include helping users reduce their car-

bon footprint by detecting their energy usage, and to reduce water consumption. Since

many users always carry phones and more importantly, regularly interact with them, they

represent a perfect platform for implementing persuasive techniques and interventions.

7.3.3 Evolving Classifiers

Emotion and mood recognition find applications in many domains including behavioural

psychology, healthcare, and stress detection. Furthermore, identifying mood can also be

exploited for commercial purposes such as delivering mood appropriate advertisements.

We have shown the feasibility of emotion recognition using mobile phones in Chapter 6.

However, detecting emotions is a complex task as there are many factors to be considered

such as noise levels and the way emotions are expressed by different groups (people of dif-

ferent cultural background, age groups, etc). These factors directly influence the accuracy

of the classification. Further, it is not always possible to collect training data for each

of these categories. A logical step ahead in improving the accuracy is to design evolving

classifiers that can use the real-time recorded data to fine-tune and adapt classifiers to

the user. A recent work [LRC+12] has shown that using classifiers that adapt to the user

is an effective method. More work in this direction could lead to scalable and accurate

emotion detection classifiers.

* * *

Smartphones are already one of the most popular electronic devices. Phone vendors have

been adding a variety of sensors to already sensor-rich off-the-shelf smartphones. The

availability of sensors in phones, especially GPS and magnetometer sensors has been
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exploited by many popular mobile applications like Foursquare1 and Google Latitude2

that are used by millions of users. There is also an increasing trend in use of other

sensors, such as the accelerometer and microphone sensors, for activity and conversation

detection in mobile applications such as CenceMe3. Further, some recent applications

have also aimed at exploring the use of mobile phones and their sensors for behavioural

and health sciences, like BeWell4 and ginger.io5.

Smartphone battery technology is a major limiting factor for the growth of mobile appli-

cations, especially social sensing applications. This dissertation has demonstrated that

by using smart schemes for sensing and processing, it is possible to run social sensing

applications efficiently on smartphones. The contribution of this dissertation is to have

paved the way for many more interesting applications based on smartphones in the field

of social and behavioural sciences.

1https://foursquare.com/
2http://www.google.com/latitude/
3http://itunes.apple.com/us/app/cenceme/id284953822?mt=8
4https://play.google.com/store/apps/details?id=org.bewellapp
5http://ginger.io/
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Adaptive Sensing API

In this appendix we present the design of APIs for the adaptive sensing framework pre-

sented in Chapter 3. These APIs can be used by the sensor sampling components of

mobile applications to efficiently capture data from the sensors in a smartphone. We

implemented these APIs using Java on the Android 2.3.3 platform.

A.1 API

In the API, we refer to the classes that sense data from the sensors as activity trackers

as they track the activity of the users such as physical activity, co-location activity, and

speech activity etc.

Class: AdaptiveSensing

public AdaptiveSensing getAdaptiveSensing()

The adaptive sensing component controls the interval between consecutive sampling win-

dows of the activity trackers. For this, each activity tracker should implement a listener

interface (AdaptiveSensingListener) and register with the AdaptiveSensing, which is

a singleton class and can be obtained using the above method.

public int registerActivityTracker(AdaptiveSensingListener li-

stener, ActivityTrackerInfo trackerInfo, int sensingCriteria,

<optional> InterestClassifier classifier)
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An activity tracker that requires adaptive sensing functionality should implement a lis-

tener interface AdaptiveSensingListener and register its instance with the singleton

instance of AdaptiveSensing, so that it can control the sampling interval of the tracker.

This can be done at the system start-up. The ActivityTrackerInfo object has informa-

tion about the tracker such as sensor type and classifier type. sensingCriteria specifies

the requirements of the activity tracker in terms of accuracy. InterestClassifier is an

optional parameter that can be passed in the registration process so that it can be used

to classify the sensor events from the activity tracker to interesting or not. If the optional

parameter is not specified, then the default classifier for the activity tracker will be used.

The return type of this method is an identifier that uniquely identifies the registration and

is required for all subsequent communication with the adaptive sensing instance. Details

about these classes/interfaces will be presented further in this section.

The implementation of an ActivityTracker should consider a sleep time between any

two consecutive sensor sampling windows, and this sleep time should be updated in the

method AdaptiveSensingListener.onSamplingWindowInteralChanged() called by the

AdaptiveSensing component.

public boolean deregisterActivityTracker(int identifier)

An activity tracker can also control its sampling rate independent of the adaptive sensing.

If an activity tracker is already registered and no longer requires adaptive sampling, it

can then unregister from the adaptive sensing component.

public void logSensedEvent(int identifier, SensorEvent sensor-

Event)

This method informs the adaptive sensing component about the last sensed event. The

AdaptiveSensing then classifies this sensorEvent to interesting or not and then updates

the sampling interval of the tracker accordingly.

Interface: AdaptiveSensingListener

public void onSamplingWindowIntervalChanged(long millis)

Called by the adaptive sensing component to set the sampling interval of the registered

sensor tracker. The parameter millis is the sleep interval in milliseconds between two

consecutive sampling windows. In the tracker’s listener implementation, this method

should not be used to perform any intensive processing as this will block the adaptive

sensing component notification thread, and should only be used to receive the sleep in-

terval value and return the call.

Class: ActivityTrackerInfo

public int getSensorType()
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This method returns the sensor type of the activity tracker. This can be SensorType.ACC-

ELEROMETER, SensorType.MICROPHONE etc. The method is required as the sampling rate

variation is dependent on the type of the sensor, as shown in Chapter 3.

public int getClassifierType()

This method returns the classifier type of the activity tracker. This can be ClassifierTy-

pe.BASIC MOVEMENT, ClassifierType.SPEECH RECOGNITION etc. The method is required

as the sampling rate variation is dependent on the type of the classifier too.

Class: SensingCriteria

This class provides various sensing criterion options. The actual sampling interval for a

sensing criterion, and the quantification of accuracy is based on the αI and αD values

presented in Chapter 3.

public int SENSOR ACCURACY HIGH

This criterion indicates high sensor sampling rate to achieve high accuracy, and possibly

high power consumption.

public int SENSOR ACCURACY MEDIUM

This criterion indicates medium sensor sampling rate to achieve medium accuracy. This

criterion achieves balanced energy-accuracy trade-offs.

public int SENSOR ACCURACY LOW

This criterion indicates low sensor sampling rate to achieve energy savings, however, it

might be at the cost of reduced accuracy.

Interface: InterestClassifier

public boolean isInteresting(SensorEvent event)

This method returns a boolean value indicating whether the input SensorEvent is inter-

esting or not (unmissable or missable event, presented in Chapter 3, Section 3.2). The

classification of an event to interesting or uninteresting is dependent on the application

requirements. The interface is provided in order for an ActivityTracker to define spe-

cialised interest classifiers if needed. By default the adaptive sensing component includes

general-purpose interest classifiers for a set of activity trackers (presented in Chapter 3,

Section 3.5). An InterestClassifier implementation is provided per ActivityTracker

and is based on the events generated by the latter. The current implementation provides

a static mapping of events to interesting or uninteresting (e.g., for microphone sensor,

sound event is interesting and silence event is uninteresting). The InterestClassifier

for a particular activity tracker will have knowledge about the type of events (returned

by SensorEvent.getEventType()) generated by the tracker.
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Interface: SensorEvent

public int getEventType()

This method returns the event type of the sensor event. Event type is an integer value

that represents the type of this event, for example, user is walking, user is speaking, and

user is at the workplace etc.

public Object getEventData()

This method returns an object that contains the event data. Since the type of data is de-

pendent on the sensor and classifier, the implementing class should return the appropriate

type of object.

public long getTimeStamp()

This method returns the time (in milliseconds) at which the event was detected.

public String toString()

This method returns a string representation (human readable) of the sensor event object.

For example, for movement classifier this could be “walking” or “running”.

Class: Sensor Type

Sensor type class defines various sensors in mobile phones that are supported by the

adaptive sensing framework. If the sensor used by an activity tracker is not defined in

this class, then the adaptive sensing cannot support it.

public static int ACCELEROMETER;

This represents the 3-axis accelerometer sensor embedded in the phone. Generally used

for physical activity recognition of the user.

public static int MICROPHONE;

This represents the microphone sensor embedded in the phone. Generally used for noise

and speech detection.

public static int GPS;

This represents the GPS sensor (for location detection) embedded in the phone.

public static int BLUETOOTH;

This represents the Bluetooth sensor embedded in the phone. Typically used for indoor

localisation and co-location detection.

Class: Classifier Type

Classifier type class defines various classifiers supported. If the classifier used by an

activity tracker is not defined in this class, then the adaptive sensing cannot support it.
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public static int PHYSICAL ACTIVITY;

This represents a physical activity classifier such as movement classifier described in Chap-

ter 3, Section 3.5 that can classify raw accelerometer data to moving or stationary states.

public static int SPEAKER IDENTIFICATION;

This represents a speaker identification classifier typically based on machine learning tech-

niques and intensive in processing, for example, speaker recognition technique presented

in Chapter 6, Section 6.2.

public static int LOCATION DETECTION;

This represents a location detection classifier based on one or more of the following: GPS,

Wi-Fi, Cell towers, and Bluetooth devices etc.

A.2 Sample Code

The following sample code provides a high level example of how the adaptive sensing API

can be used by the developers of sensor trackers and mobile sensing applications using

the Android Java programming language. In this example, we present an activity tracker

that detects physical activity of the user such as: running, walking, driving etc. and show

how it should use the adaptive sensing API.

public class RunningTracker implements

Act iv i tyTracker , Adapt iveSens ingLis tener , Runnable

{

// s l e e p between sensor sampling windows

private long s e n s o r S l e e p I n t e r v a l ;

// adap t i v e sensor sampling

private AdaptiveSensing adapt iveSens ing ;

// a c t i v i t y t r a c k e r i n f o : sensor type , c l a s s i f i e r

private Act iv i tyTracke r In f o t r a c k e r I n f o ;

// boo lean to i n d i c a t e whether to s top the t r a c k e r or not

private boolean stopTracker = fa l se ;

// i d e n t i f i e r re turned by the adap t i v e sens ing component

private int i d e n t i f i e r ;

public RunningTracker ( )

{
// ge t the in s tance o f the adap t i v e sens ing s e r v i c e

adapt iveSens ing = AdaptiveSensing . getAdapt iveSens ing ( ) ;
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// crea t e t r a c k e r i n f o o b j e c t

t r a c k e r I n f o = new Act iv i tyTracke r In f o ( SensorType .ACCELEROMETER,

C l a s s i f i e r T y p e .PHYSICAL ACTIVITY ) ;

// r e g i s t e r wi th the adap t i v e sens ing

i d e n t i f i e r = adapt iveSens ingSe rv i c e . r e g i s t e r ( this , t r a cke r In f o ,

S e n s i n g C r i t e r i a .SENSOR ACCURACY HIGH) ;

}

/∗ sensor sampling : sense and s l e e p c y c l e s can be

implemented based on the Java runnab le i n t e r f a c e or us ing

the Android AlarmManager ; in t h i s example , we base

the implementat ion on the Java runnab le i n t e r f a c e ∗/
public void run ( )

{
while ( ! stopTracker )

{
// capture data from the acce l e rometer sensor

SensorEvent sensorEvent = sense ( ) ;

// l o g the event to the adap t i v e sens ing in s tance

adapt iveSens ing . logSensedEvent ( i d e n t i f i e r , sensorEvent ) ;

// l o g to db or proces s

proce s s ( sensorEvent ) ;

// s l e e p

s l e e p ( s e n s o r S l e e p I n t e r v a l ) ;

}
}

/∗ t h i s method i s c a l l e d by the adap t i v e sens ing

component when a new s l e e p i n t e r v a l i s c a l c u l a t e d .

d e v e l op e r s shou ld not perform any i n t e n s i v e computing

in t h i s method , as i t w i l l b l o c k the adap t i v e sens ing

n o t i f i c a t i o n thread ∗/
public void onSamplingWindowIntervalChanged ( long i n t e r v a l )

{
// update s l e e p i n t e r v a l

s e n s o r S l e e p I n t e r v a l = i n t e r v a l ;

}

private void s ense ( )

{
// capture sensor data us ing the Android SensorManager

}
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private void proce s s ( SensorEvent sensorEvent )

{
// proces s sensor data

}

// c a l l e d on shutdown

public void shutdown ( )

{
stopTracker = true ;

adapt iveSens ing . d e r e i g s t e r A c t i v i t y T r a c k e r L i s t e n e r ( i d e n t i f i e r ) ;

}

}
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B
Computation Offloading API

In this appendix we present the design of APIs for the computation offloading scheme

presented in Chapter 5. We implemented these APIs using the Java programming lan-

guage on the Android platform. These APIs can be used by mobile applications to use

the services of the computation offloading scheme to efficiently utilise the local phone and

remote computing resources. As discussed in Chapter 5, each classification task can be

divided into one or more subtasks, for example, speaker identification can be divided into

converting audio file to coefficients file, and comparing this with the existing speaker mod-

els (as described in Chapter 6, Section 6.2). Each subtask can have one or more subtask

versions each implementing a computation paradigm. For example, a subtask version of

a subtask could be to perform model comparison for speaker identification locally on the

phone and another could be to perform the same remotely in the cloud.

Based on the requirements of the task and the weights given to the dimensions: energy,

latency, and data traffic (as described in Chapter 5, Section 5.2), the decision engine

decides for each subtask, which subtask version to execute. The programmer can specify

the properties and requirements of a task either in an XML configuration file or program-

matically using the APIs. An example XML file is shown in Figure B.1 for a speaker

identification task (task id: speaker identification), which consists of two subtasks:

extracting features (subtask id: feature extraction) and model comparison (subtask

id: model comparison), each of which has several versions (based on local or remote com-

putation). Pre-filtering requirements could be specified for the task in terms of privacy

and maximum latency in the task element.
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<?xml version="1.0" encoding="UTF-8"?>

<tasks xmlns="Cambridge:CO"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="Cambridge:CO tasks.xsd">

<task id="speaker_identification">

<max-latency>100000</max-latency>

<min-privacy-level>low</min-privacy-level>

<subtask id="feature_extraction" position="1">

<subtask-version version="1">

<computation-model>remote</computation-model>

<input-size>2048</input-size>

<output-size>128</output-size>

<energy>10</energy>

<latency>500</latency>

</subtask-version>

<subtask-version version="2">

<computation-model>local</computation-model>

<input-size>2048</input-size>

<output-size>128</output-size>

<energy>25</energy>

<latency>2000</latency>

</subtask-version>

</subtask>

<subtask id="model_comparison" position="2">

<subtask-version version="1">

<computation-model>remote</computation-model>

<input-size>128</input-size>

<output-size>128</output-size>

<energy>20</energy>

<latency>600</latency>

</subtask-version>

<subtask-version version="2">

<computation-model>local</computation-model>

<input-size>128</input-size>

<output-size>128</output-size>

<energy>40</energy>

<latency>12000</latency>

</subtask-version>

</subtask>

</task>

</tasks>

Figure B.1: Sample configuration XML file for the specification of tasks.
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B.1 API

Class: ComputationDistribution

This class provides access to the decision engine of the computation distribution frame-

work. It provides the following functions (only public functions are listed).

public static ComputationDistribution getComputationDistribut-

ion()

ComputationDistribution is a singleton class and the instance of its object can be

obtained using the above method.

public Task loadTask(String taskName)

Reads the task and all subtask variants from the XML configuration file and returns a

Task object.

public int registerTask(Task task)

Before the first execution, a task has to be registered with the framework using this func-

tion. This method returns an identifier, which should be passed in all the subsequent

task-related communication with the ComputationDistribution component.

public int unregisterTask(int identifier)

After the last execution of the task, unregistering removes the task from the task list.

The input parameter is the identifier provided by the registerTask() function.

public List<SubtaskVersion> whichSubtaskVersions(int identifi-

er)

This executes the decision engine (Chapter 5, Algorithm 1) and returns an array of subtask

versions (one subtask version for each subtask) to execute.

public Object executeTask(List<SubtaskVersion> subtaskVersions,

int identifier, Object input)

Executes the task by executing each subtask version in the array subtaskVersions using

the provided input object as the input to the first subtask, the output of the first subtask

as the input to the second subtask, and so on. The output of the last subtask is returned.

Class: Task

This class represents a task. Instance of a task can be created by the loadTask() function

of ComputationDistribution or can be created and populated manually. The class

provides getters and setters for the pre-filters: privacy level and maximum latency. The

privacy level is used to specify if the remote computation can be used or not. If the

privacy level is set to high, then only local computation is used otherwise both local and
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cloud computation models are considered. If the latency incurred by the local or cloud

models is more than the maximum latency value, then that model is not considered for

computing the task.

public Task(String id, PrivacyLevel minPrivacyLevel, long max-

Latency, List<Subtask> subtasks)

Constructor: Create a task with given id, pre-filter values, and list of subtasks.

Class: Subtask

This class represents a subtask.

public Subtask(List<SubtaskVersion> subtaskVersions)

Constructor: Create a subtask with given list of subtask versions.

Abstract Class: SubtaskVersion

Each subtask version must extend SubtaskVersion and implement the execute function.

The class further provides getters and setters for the subtask version properties id, energy,

latency, computation model, input size, and output size.

public SubtaskVersion(int id, long energy, long latency, long

inputSize, long outputSize, ComputationModel cm)

Constructor: create a subtask version with provided id, expected energy (Joules), latency

(milliseconds), input data size (Bytes), output data size (Bytes), and computation model.

abstract Object execute(Object input)

The execute function must be implemented by each subtask version. The executeTask()

method in ComputationDistribution calls this method.

Enum: public enum PrivacyLevel LOW, HIGH

Defines the privacy levels, LOW: input and output data can be sent over the network;

HIGH: input and output data cannot be sent over the network.

Enum: public enum ComputationModel LOCAL, REMOTE

Enumeration class representing local and remote computation models.

B.2 Sample Code

The following sample code provides a high level example of how the computation of-

floading API can be used by the developers of smartphone sensor trackers and mobile
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sensing applications. In this example, a thread uses an audio tracker to capture mi-

crophone data periodically (could be through the adaptive sensing API) and then uses

ComputationDistribution class to decide which subtask versions to use to compute the

task and then executes them.

/∗∗
∗ This c l a s s implements a thread , which r ep ea t e d l y

∗ l i s t e n s to the microphone f o r 5 seconds and then

∗ performs speaker i d e n t i f i c a t i o n .

∗/
public class SpeakerRecognit ionThread extends Thread

{

// ta s k id ( as de f ined in the XML)

private St r ing taskId = ” s p e a k e r i d e n t i f i c a t i o n ” ;

// how long to record b e f o r e i d e n t i f i c a t i o n

private long l i s t e n I n t e r v a l = 5000 ;

// we cont inue speaker i d e n t i f i c a t i o n u n t i l f a l s e

public boolean running = true ;

// the computation d i s t r i b u t i o n

private Computat ionDistr ibut ion cd ;

// the t a s k

private Task task ;

// id as s i gned by the computation d i s t r i b u t i o n

private int id ;

public void run ( )

{
// ge t the in s tance o f the computation d i s t r i b u t i o n

cd= Computat ionDistr ibut ion . getComputat ionDistr ibut ion ( ) ;

// load ta s k d e f i n i t i o n s from the XML f i l e

task = cd . loadTask ( taskId ) ;

// r e g i s t e r the loaded ta s k wi th the computation d i s t r i b u t i o n

id = cd . r e g i s t e r T a s k ( task ) ;

// r ep ea t e d l y execu te speaker i d e n t i f i c a t i o n

while ( running )

{
// wai t f o r a recorded event from audio t r a c k e r .

// in t h i s example , we assume the t r a c k e r l o g s the event
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// to a queue when an audio sample i s recorded , but o ther

// methods can a l s o be used

synchronized ( queue )

{
queue . wait ( ) ;

}
// ge t the recorded audio f i l e from t rac k e r

byte [ ] input = queue . remove ( ) ;

// f i nd which sub ta s k v e r s i on s to compute

SubtaskVers ion [ ] subtaskVers ions = cd . whichSubtaskVers ions ( id ) ;

// execu te the speaker i d e n t i f i c a t i o n

cd . executeTask ( subtaskVers ions , id , input ) ;

}

// un r e g i s t e r the t a s k from the computation d i s t r i b u t i o n

cd . unreg i s t e rTask ( id ) ;

}

}
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Fodor, and Gahng-Seop Ahn, The rise of people-centric sensing, IEEE In-

ternet Computing (2008).

[CEP+07] Jinhai Cai, D. Ee, Binh Pham, P. Roe, and Jinglan Zhang, Sensor network

for the monitoring of ecosystem: Bird species recognition, Proceedings of

the 3rd International Conference on Intelligent Sensors, Sensor Networks

and Information (ISSNIP’07), 2007.

[CGS+09] Ionut Constandache, Shravan Gaonkar, Matt Sayler, Romit Roy Choudhury,

and Landon Cox, EnLoc: Energy-Efficient Localization for Mobile Phones,

Proceedings of the International Conference on Computer Communications

(INFOCOM’09), IEEE, 2009.

[CIM+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ash-

win Patti, CloneCloud: Elastic Execution between Mobile Device and Cloud,

Proceedings of the ACM European Conference on Computer Systems (Eu-

roSys’11), ACM, 2011.

172



BIBLIOGRAPHY BIBLIOGRAPHY

[CKK+08] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Trian-

dopoulos, AnonySense: privacy-aware people-centric sensing, Proceedings

of the International Conference on Mobile Systems, Applications, and Ser-

vices (MobiSys’08), ACM, 2008.

[CL87] M. Csikszentmihalyi and R. Larson, Validity and reliability of the experience-

sampling method, Journal of Nervous & Mental Disease (1987), 526–536.

[CLL+12] Yohan Chon, Nicholas D. Lane, Fan Li, Hojung Cha, and Feng Zhao, Auto-

matically characterizing places with opportunistic crowdsensing using smart-

phones, Proceedings of the International Conference on Ubiquitous Comput-

ing (Ubicomp’12), ACM, 2012.

[CMP00] B. Clarkson, K. Mase, and A. Pentland, Recognizing user context via wear-

able sensors, Proceedings of the Fourth International Symposium on Wear-

able Computers (ISWC’00), 2000.

[COS12] Comscore, 2012, http://www.comscore.com/Press Events/Press Releases/

2012/5/Introducing Mobile Metrix 2 Insight into Mobile Behavior.

[CP03] Tanzeem Choudhury and Alex Pentland, Sensing and Modeling Human Net-

works using the Sociometer, Proceedings of the International Symposium on

Wearable Computers (ISWC’03), 2003.

[CSR06] W.M. Campbell, D. Sturim, and D.A. Reynolds, Support vector machines

using GMM-supervectors for speaker verification, IEEE Signal Processing

Letters 13 (2006), 308–311.

[CW88] Lee A. Clark and David Watson, Mood and the mundane: Relations between

daily life events and self-reported mood, Journal of Personality and Social

Psychology 54.2 (1988), 296–308.

[Dar10] Waltenegus Dargie, Context-Aware Computing and Self-Managing Systems,

CRC Press, 2010.

[DBB11] Infographic: Mobile Statistics, 2011, http://www.digitalbuzzblog.com/2011-

mobile-statistics-stats-facts-marketing-infographic/.

[DC09] Linda Deng and Landon P. Cox, Livecompare: grocery bargain hunting

through participatory sensing, Proceedings of the 10th workshop on Mobile

Computing Systems and Applications (HotMobile’09), ACM, 2009.

173



BIBLIOGRAPHY BIBLIOGRAPHY

[DEM+10] Vladimir Dyo, Stephen A. Ellwood, David W. Macdonald, Andrew

Markham, Cecilia Mascolo, Bence Pásztor, Salvatore Scellato, Niki Trigoni,

Ricklef Wohlers, and Kharsim Yousef, Evolution and sustainability of a

wildlife monitoring sensor network, Proceedings of the 8th ACM Confer-

ence on Embedded Networked Sensor Systems (SenSys’10), ACM, 2010.

[DFN+09] Nigel Davies, Adrian Friday, Peter Newman, Sarah Rutlidge, and Oliver

Storz, Using bluetooth device names to support interaction in smart envi-

ronments, Proceedings of the International Conference on Mobile Systems,

Applications, and Services (MobiSys’09), ACM, 2009.

[DGP12] Trinh Minh Tri Do and Daniel Gatica-Perez, Contextual conditional models

for smartphone-based human mobility prediction, Proceedings of the Inter-

national Conference on Ubiquitous Computing (Ubicomp’12), ACM, 2012.

[DHJT+10] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and

David Culler, sMAP: a simple measurement and actuation profile for physi-

cal information, Proceedings of the ACM Conference on Embedded Network

Sensor Systems (SenSys’10), 2010.

[Don06] D.L. Donoho, Compressed Sensing, IEEE Transactions on Information The-

ory 52 (2006), no. 4, 1289–1306.

[DOO08] Rodrigo De Oliveira and Nuria Oliver, Triplebeat: enhancing exercise per-

formance with persuasion, Proceedings of the 10th International Conference

on Human Computer Interaction with Mobile Devices and Services (Mobile-

HCI’08), ACM, 2008.

[ELP+12] Christos Efstratiou, Ilias Leontiadis, Marco Picone, Kiran K. Rachuri, Ce-

cilia Mascolo, and Jon Crowcroft, Sense and sensibility in a pervasive world,

Proceedings of the 10th International Conference on Pervasive Computing

(Pervasive’12), 2012.

[ENG12] Nielsen: Over 50 percent of us mobile users own smartphones, 2012,

http://www.engadget.com/2012/05/07/nielsen-smartphone-share-march-

2012/.

[FBR98] L. Feldman Barrett and J.A. Russell, Independence and bipolarity in the

structure of current affect., Journal of Personality and Social Psychology 74

(1998), 967–984.

174



BIBLIOGRAPHY BIBLIOGRAPHY

[FCC+07] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay,

MyExperience: A System for In situ Tracing and Capturing of User Feedback

on Mobile Phones, Proceedings of the International Conference on Mobile

Systems, Applications, and Services (MobiSys’07), ACM, 2007.

[FCC11] D. Fisher, K. Chang, and J. Canny, Ammon: A speech analysis library for

analyzing affect, stress, and mental health on mobile phones, Proceedings

of the International Workshop on Sensing Applications on Mobile Phones

(PhoneSense’11), ACM, 2011.

[FDK+09] Jon Froehlich, Tawanna Dillahunt, Predrag Klasnja, Jennifer Mankoff,

Sunny Consolvo, Beverly Harrison, and James A. Landay, Ubigreen: in-

vestigating a mobile tool for tracking and supporting green transportation

habits, Proceedings of the 27th International Conference on Human Factors

in Computing Systems (CHI ’09), ACM, 2009.

[FF00] Friedrich Foerster and Jochen Fahrenberg, Motion pattern and posture: Cor-

rectly assessed by calibrated accelerometers, Behavior Research Methods 32

(2000), 450–457.

[Fis65] Peter C. Fishburn, Independence in Utility Theory with Whole Product Sets,

Operations Research 13 (1965), no. 1, 28–45.

[Fis68] , Utility Theory, Management Science 14 (1968), 335 – 378.

[FKK11] R. Friedman, A. Kogan, and Y. Krivolapov, On power and throughput trade-

offs of wifi and bluetooth in smartphones, Proceedings of the IEEE Confer-

ence on Computer Communications (INFOCOM’11), IEEE, 2011.

[FMPP07] J. Fahrenberg, M. Myrtek, K. Pawlik, and M. Perrez, Ambulatory assess-

ment - monitoring behavior in daily life settings. a behavioral-scientific chal-

lenge for psychology, European Journal of Psychological Assessment 23

(2007), 206–213.

[FMT+99] J. Farringdon, A.J. Moore, N. Tilbury, J. Church, and P.D. Biemond, Wear-

able sensor badge and sensor jacket for context awareness, Proceedings of the

Third International Symposium on Wearable Computers (ISWC’99), 1999.

[FPS02] J. Flinn, S. Park, and M. Satyanarayanan, Balancing performance, energy,

and quality in pervasive computing, Proceedings of the International Con-

ference on Distributed Computing Systems (ICDCS’02), IEEE, 2002.

175



BIBLIOGRAPHY BIBLIOGRAPHY

[FR91] T. Fruchterman and E. Reingold, Graph drawing by force-directed placement,

Software: Practice and Experience (1991).

[GFJ+09] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and

Philip Levis, Collection tree protocol, Proceedings of the ACM Conference

on Embedded Network Sensor Systems (SenSys’09), ACM, 2009.

[GIZ12] The Most Popular iPhone and iPad Apps of All Time, 2012,

http://gizmodo.com/5890602/the-most-popular-iphone-and-ipad-apps-

of-all-time.

[GL11] Ben Greenstein and Brent Longstaff, Followme: Enhancing mobile applica-

tions with open infrastructure sensing, Proceedings of the 12th Workshop on

Mobile Computing Systems and Applications (HotMobile’11), ACM, 2011.

[GLC+08] Shravan Gaonkar, Jack Li, Romit Roy Choudhury, Landon Cox, and

Al Schmidt, Micro-blog: sharing and querying content through mobile phones

and social participation, Proceedings of the International Conference on Mo-

bile Systems, Applications, and Services (MobiSys’08), ACM, 2008.

[GMP] Google maps, http://maps.google.co.uk/.

[Gol04] Scott A. Golder, The keep-in-touch phone: a persuasive telephone for main-

taining relationships, CHI’04 Extended Abstracts on Human Factors in

Computing Systems (CHI EA’04), ACM, 2004.

[Goo61] L.A. Goodman, Snowball sampling, The Annals of Mathematical Statistics

32 (1961), 148–170.

[Her90] H. Hermansky, Perceptual linear predictive (PLP) analysis of speech, Journal

of the Acoustical Society of America 87 (1990), no. 4.

[HGDW12] Timothy W. Hnat, Erin Griffiths, Ray Dawson, and Kamin Whitehouse,

Doorjamb: Unobtrusive room-level tracking of people in homes using door-

way sensors, Proceedings of the ACM Conference on Embedded Network

Sensor Systems (SenSys’12), ACM, 2012.

[HHDP12] Javier Hernandez, Mohammed Ehsan Hoque, Will Drevo, and Rosalind Pi-

card, Mood Meter: Counting smiles in the wild, Proceedings of the Interna-

tional Conference on Ubiquitous Computing (Ubicomp’12), ACM, 2012.

176



BIBLIOGRAPHY BIBLIOGRAPHY

[HTK] Hidden Markov Model Toolkit, http://htk.eng.cam.ac.uk.

[HWSM11] Shannon E. Holleran, Jessica Whitehead, Toni Schmader, and Matthias R.

Mehl, Talking shop and shooting the breeze: A study of workplace conver-

sation and job disengagement among stem faculty, Social Psychological and

Personality Science (2011).

[INT08] Intel Microprocessor Quick Reference Guide, 2008,

http://www.intel.com/pressroom/kits/quickrefyr.htm.

[JHYGP09] D.B. Jayagopi, H. Hung, Chuohao Yeo, and D. Gatica-Perez, Modeling Dom-

inance in Group Conversations Using Nonverbal Activity Cues, IEEE Trans-

actions on Audio, Speech, and Language Processing 17 (2009), no. 3, 501–

513.

[KAH+12] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen

Zhang, Thinkair: Dynamic resource allocation and parallel execution in

cloud for mobile code offloading, Proceedings of the IEEE Conference on

Computer Communications (INFOCOM ’12), IEEE, 2012.

[KBC09] Marcel Kockmann, Luka Burget, and Jan “Honza” Cernocky, Brno Uni-

versity of Technology System for Interspeech 2009 Emotion Challenge, Pro-

ceedings of the Interspeech’09, 2009.

[KCHP08] Taemie Kim, Agnes Chang, Lindsey Holland, and Alex Pentland, Meeting

mediator: Enhancing group collaboration and leadership with sociometric

feedback, Proceedings of the ACM Conference on Computer Supported Co-

operative Work (CSCW’08), 2008.

[Kee02] Ralph L. Keeney, Common Mistakes in Making Value Trade-Offs, Opera-

tions Research 50 (2002), no. 6, 935–945.

[KKP99] J. M. Kahn, R. H. Katz, and K. S. J. Pister, Next century challenges: mobile

networking for “smart dust”, Proceedings of the International Conference on

Mobile Computing and Networking (MobiCom’99), ACM, 1999.

[KL10] Karthik Kumar and Yung-Hsiang Lu, Cloud computing for mobile users:

Can offloading computation save energy?, IEEE Computer 43 (2010).

[KLGT09] Mikkel Baun Kjaergaard, Jakob Langdal, Torben Godsk, and Thomas Toftk-

jaer, Entracked: energy-efficient robust position tracking for mobile devices,

177



BIBLIOGRAPHY BIBLIOGRAPHY

Proceedings of the International Conference on Mobile Systems, Applica-

tions, and Services (MobiSys’09), ACM, 2009.

[KLJ+08] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Hyonik Lee, Youngki Lee,

Souneil Park, Taiwoo Park, and Junehwa Song, SeeMon: Scalable and

Energy-efficient Context Monitoring Framework for Sensor-rich Mobile En-

vironments, Proceedings of the International Conference on Mobile Systems,

Applications, and Services (MobiSys’08), ACM, 2008.

[KLM96] L.P. Kaelbling, M.L. Littman, and Andrew Moore, Reinforcement Learning:

A Survey, Journal of Artificial Intelligence Research 4 (1996), 237–285.

[KLNA09] Joonas Kukkonen, Eemil Lagerspetz, Petteri Nurmi, and Mikael Andersson,

BeTelGeuse: A Platform for Gathering and Processing Situational Data,

IEEE Pervasive Computing 8 (2009), no. 2, 49–56.

[KNLZ07] A. Kansal, S. Nath, J. Liu, and F. Zhao, Senseweb: an infrastructure for

shared sensing, IEEE MultiMedia 14 (2007), no. 4, 8–13.

[KPKB10] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: a computation of-

floading framework for smartphones, Proceedings of the International Con-

ference on Mobile Computing, Applications, and Services (MobiCASE’10),

2010.

[KR76] Ralph Keeney and Howard Raiffa, Decisions with Multiple Objectives: Pref-

erences and Value Tradeoffs, John Wiley & Sons, 1976.

[Kri10] Mads D. Kristensen, Scavenger: Transparent development of efficient cy-

ber foraging applications, Proceedings of the Eighth Annual IEEE Inter-

national Conference on Pervasive Computing and Communications (Per-

Com’10), IEEE, 2010.

[KSFS05] Tim Kindberg, Mirjana Spasojevic, Rowanne Fleck, and Abigail Sellen, The

ubiquitous camera: An in-depth study of camera phone use, IEEE Pervasive

Computing 4 (2005), no. 2, 42–50.

[LBBP+11] Hong Lu, A. Bernheim Brush, Bodhi Priyantha, Amy Karlson, and Jie Liu,

SpeakerSense: Energy efficient unobtrusive speaker identification on mobile

phones, Proceedings of the International Conference on Pervasive Comput-

ing (Pervasive’11), Springer, 2011.

178



BIBLIOGRAPHY BIBLIOGRAPHY

[LDG+02] Mark Liberman, Kelly Davis, Murray Grossman, Nii Martey, and John Bell,

Emotional prosody speech and transcripts, 2002.

[LEMC12] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, Senshare:

Transforming sensor networks to multi-application sensing infrastructures,

Proceedings of the European Conference on Wireless Sensor Networks

(EWSN’12), 2012.

[LFO+07] Joshua Lifton, Mark Feldmeier, Yasuhiro Ono, Cameron Lewis, and

Joseph A. Paradiso, A platform for ubiquitous sensor deployment in occu-

pational and domestic environments, Proceedings of the Sixth International

Symposium on Information Processing in Sensor Networks (IPSN’07), ACM,

2007.

[LFR+06] Pamela J. Ludford, Dan Frankowski, Ken Reily, Kurt Wilms, and Loren

Terveen, Because I carry my cell phone anyway: functional location-based

reminder applications, Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI’06), ACM, 2006.

[LH10] Juong-Sik Lee and Baik Hoh, Sell your experiences: A market mecha-

nism based incentive for participatory sensing, Proceedings of the Inter-

national Conference on Pervasive Computing and Communications (Per-

com’10), IEEE, 2010.

[LIG] lightblue, http://lightblue.sourceforge.net.

[LJM+12] Youngki Lee, Younghyun Ju, Chulhong Min, Seungwoo Kang, Inseok

Hwang, and Junehwa Song, CoMon: cooperative ambience monitoring plat-

form with continuity and benefit awareness, Proceedings of the International

Conference on Mobile Systems, Applications, and Services (MobiSys’12),

ACM, 2012.

[LKR04] G. Lu, B. Krishnamachari, and C.S. Raghavendra, An adaptive energy-

efficient and low-latency mac for data gathering in wireless sensor networks,

Proceedings of the 18th International Parallel and Distributed Processing

Symposium (IPDPS’04), 2004.

[LLLZ11] Robert LiKamWa, Yunxin Liu, Nicholas D. Lane, and Lin Zhong, Can your

smartphone infer your mood?, Proceedings of the International Workshop

on Sensing Applications on Mobile Phones (PhoneSense’11), ACM, 2011.

179



BIBLIOGRAPHY BIBLIOGRAPHY

[LLLZ13] Robert LiKamWa, Yunxin Liu, Nicholas Lane, and Lin Zhong, MoodScope:

Building a Mood Sensor from Smartphone Usage Patterns, Proceedings of

the International Conference on Mobile Systems, Applications, and Services

(MobiSys’13), ACM, 2013.

[LM02] Seon-Woo Lee and K. Mase, Activity and location recognition using wearable

sensors, Pervasive Computing, IEEE 1 (2002), no. 3, 24 – 32.

[LML+10] N.D. Lane, E. Miluzzo, Hong Lu, D. Peebles, T. Choudhury, and A.T. Camp-

bell, A survey of mobile phone sensing, Communications Magazine (2010).

[LOIP10] Tom Lovett, Eamonn O’Neill, James Irwin, and David Pollington, The cal-

endar as a sensor: analysis and improvement using data fusion with social

networks and location, Proceedings of the 12th ACM International Confer-

ence on Ubiquitous Computing (Ubicomp’10), ACM, 2010.

[LPH+12] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor S. Ramos, Antonio A.F.

Loureiro, and Qiang Wang, Energy efficient GPS sensing with cloud of-

floading, Proceedings of the ACM Conference on Embedded Network Sensor

Systems (SenSys’12), ACM, 2012.

[LPL+09] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and Andrew T.

Campbell, SoundSense: Scalable sound sensing for people-centric applica-

tions on mobile phones, Proceedings of the International Conference on Mo-

bile Systems, Applications, and Services (MobiSys’09), ACM, 2009.

[LPR+13] Neal Lathia, Veljko Pejovic, Kiran K. Rachuri, Cecilia Mascolo, Mirco Mu-

solesi, and Peter J. Rentfrow, Smartphones for large-scale behaviour change

interventions, IEEE Pervasive Computing, Special Issue - Understanding

and Changing Behavior (2013).

[LRC+12] Hong Lu, Mashfiqui Rabbi, Tanzeem Choudhury, Daniel Gatica-Perez, and

Andrew Campbell, StressSense: Detecting Stress in Unconstrained Acoustic

Environments using Smartphones , Proceedings of the International Confer-

ence on Ubiquitous Computing (UbiComp’12), ACM, 2012.

[LRMR13] Neal Lathia, Kiran K. Rachuri, Cecilia Mascolo, and Peter J. Rentfrow, Con-

textual dissonance: Design bias in sensor-based experience sampling meth-

ods, Proceedings of the ACM International Joint Conference on Pervasive

and Ubiquitous Computing (UbiComp’13), ACM, 2013.

180



BIBLIOGRAPHY BIBLIOGRAPHY

[LWA+08] Wu Lynn, Benjamin N Waber, Sinan Aral, Erik Brynjolfsson, and Alex Pent-

land, Mining Face-to-Face Interaction Networks using Sociometric Badges:

Predicting Productivity in an IT Configuration Task, Proceedings of the In-

ternational Conference on Information Systems (ICIS’08), 2008.

[LYL+10] Hong Lu, Jun Yang, Zhigang Liu, Nicholas Lane, Tanzeem Choudhury, and

Andrew Campbell, The Jigsaw Continuous Sensing Engine for Mobile Phone

Applications, Proceedings of the ACM Conference on Embedded Network

Sensor Systems (SenSys’10), ACM, 2010.

[MAZ+11] Justin Manweiler, Sharad Agarwal, Ming Zhang, Romit Roy Choudhury,

and Paramvir Bahl, Switchboard: a matchmaking system for multiplayer

mobile games, Proceedings of the International Conference on Mobile Sys-

tems, Applications, and Services (MobiSys’11), ACM, 2011.

[MCR+10] Emiliano Miluzzo, Cory T. Cornelius, Ashwin Ramaswamy, Tanzeem

Choudhury, Zhigang Liu, and Andrew T. Campbell, Darwin Phones: The

Evolution of Sensing and Inference on Mobile Phones, Proceedings of the In-

ternational Conference on Mobile Systems, Applications, and Services (Mo-

biSys’10), ACM, 2010.

[MGP06] Matthias R. Mehl, Samuel D. Gosling, and James W. Pennebaker, Person-

ality in Its Natural Habitat: Manifestations and Implicit Folk Theories of

Personality in Daily Life, Journal of Personality and Social Psychology 90

(2006), no. 5, 862–877.

[MHO04] Kirk Martinez, Jane K. Hart, and Royan Ong, Environmental sensor net-

works, IEEE Computer 37 (2004), 50–56.

[MKL+10] E. Margaret Morris, Qusai Kathawala, K. Todd Leen, E. Ethan Gorenstein,

Farzin Guilak, Michael Labhard, and William Deleeuw, Mobile Therapy:

Case Study Evaluations of a Cell Phone Application for Emotional Self-

Awareness, Journal of Medical Internet Research 12 (2010), no. 2, e10.

[MLF+08] Emiliano Miluzzo, Nicholas D. Lane, Kristóf Fodor, Ronald Peterson, Hong
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