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Summary

As technology becomes an inseparable part of society, the intersection between online

human behaviour and offline physical presence fuels new aspirations of quantifying the

human condition. The present dissertation explores the interconnectedness of these geo-

graphic and social levels of interaction through a multilayer network approach and demon-

strates the knowledge that can be extracted about geo-social dynamics through such

paradigm.

Leveraging rich data captured from mobile systems and online social networks, the ad-

vantage of using additional data layers when interpreting social and geographical systems

is demonstrated. Bridging the theory and practice of multilayer networks, a minimal

multilayer model is applied to six physical and digital international networks, including

the international postal network which is analysed here for the first time. This model is

further explored throughout this thesis in light of both online and offline social networks

of varying scales, offering a simple but effective approach to multilayer data as such. In

relation to urban dynamics, an interconnected multilayer geo-social network model is pre-

sented, capable of modelling entire cities as networks of people and places and offering

powerful insights into urban development processes.

Along with each chapter and model in this dissertation, a set of application-specific metrics

are discussed. While some of these, such as the global degree and overlap are extensions

of single-layer network measures, others, such as the multiplex tie strength, translate

between social theory and computational approaches for the first time. Some key the-

ories explored are those of media multiplexity, homophily, social capital and brokerage,

where the potential to under-appreciate these phenomena on the single-layer perspective

is demonstrated. Furthermore, this new perspective on social and urban theory is shown

to produce a number of valuable insights on how geo-social systems function in unison

and specifically how social properties can be attributed to places and in turn how places

shape social relationships. As an interdisciplinary body of work, this dissertation puts

forward evidence in support of multidimensional data-driven studies of geographic and

social systems as applied to fundamental questions in social science and urban studies,

substantiating the merits of a multilayer approach to geo-social networks.
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“Forty-two!” yelled Loonquawl.

“Is that all you’ve got to show for seven and a half million years’ work?”

“I checked it very thoroughly,” said the computer, “and that quite definitely

is the answer. I think the problem, to be quite honest with you, is that

you’ve never actually known what the question is.”

- Douglas Adams,

The Hitchhikers Guide to the Galaxy
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Chapter 1

Introduction

Almost all real and virtual systems are inherently composed of multiple layers or subsys-

tems, which contribute to the wholeness of their functionality but can also be considered

as systems in their own right. For instance, people in a city interact on a social level, but

they are also embedded in geographical space, thus forming a geo-social network from

these different layers of interactions. Network science has been largely successful in ab-

stracting meaning from single-layer subsystems [11, 132], such as social interactions alone,

and it is only recently that multilayer networks [96] have become a popular paradigm for

the modelling of interrelated subsystems and entire systems, carrying the aspiration that

these multilayer models can help us understand the bigger picture more realistically.
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Figure 1.1: Dissertation structure: data, models and applications.

With the emergence of mobile systems capable of capturing the daily patterns of move-

ments and the social life of people, Computer Science has been placed at the forefront of

advancing our understanding of complex human behaviour. Unlike theoretical and survey-

based approaches in other disciplines, empirical data-driven computational methods can

be applied to quantify our theoretical understanding of complex systems.
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12 1.1. THE STATE OF GEO-SOCIAL NETWORK ANALYSIS

An overview of this thesis is provided in Fig. 1.1 where the types of data, models and

applications are illustrated. The introduction laid out in this chapter will set the stage

for the rest of the dissertation and touch upon fundamental concepts which will later be

explored in depth. The main focus here will be on the application aspects, while Chapter

2 will go into the details of multilayer models and methodology. Most importantly, this

chapter introduces the technology and data which make this research possible. Starting

from an overview of what systems and applications provide in terms of geo-social data

and continuing to a summary of literature on human mobility and social interactions, this

chapter concludes with a review of potential implications for computational social science,

mobile applications and policy. At the very end, the thesis of this dissertation and its

substantiation is specified through an outline of the structure and contributions of each

chapter.

1.1 The State of Geo-social Network Analysis

The ubiquity of smartphones in urban areas, along with sensor-powered applications, have

presented new opportunities to study the parallel social and geographical interactions of

people at an unprecedented scale. In particular, location-based social network services

have emerged as an invaluable source of such multidimensional data because of their wide

adoption. These mobile applications entice people to share their location with friends

and strangers, providing two of the essential ingredients in geo-social analysis: a social

network of ties and a location map of their visits. On the other hand, rich interaction

data from mobile sensing applications has opened up a new horizon for quantifying the

human condition, from mapping how happy we are in different parts of the city [115],

to monitoring global communication patterns across the world [80]. Moreover, due to a

revolution in the quantification of services and open data, many other fundamental aspects

of human global activity such as post, trade and transportation have consequently become

available as data sources. These technological advancements form the backbone of the

research presented in this dissertation, where a new paradigm for exploring such data will

be introduced.

Social interactions and human mobility have been studied separately in a long tradition

of scholarship, where fascinating insights have been drawn on the way we form relation-

ships [79, 123], the way we interact within space and time [97], and the way that this

shapes our opportunities in life [37, 63]. More recently, with the help of mobile data,

striking relationships have been observed between these two domains, which render them

inseparable and interconnected. Geography and mobility have been shown to play a fun-

damental role in the formation and maintenance of ties [139] and the social network of

people can be inferred from their call data records [65]. Just recently scientists have also

demonstrated that, inversely, mobility patterns can also be inferred from social interac-



CHAPTER 1. INTRODUCTION 13

tions where the same scaling laws have been shown to dictate both [58].

Although distance has frequently been viewed as an obstacle to social interaction, the

“death of distance” [41] predicted through the advancements in communications and fa-

cilitation of long-distance travel has become an obsolete idea. As online social networking

services mature, it becomes clear that distance is very much still alive and plays an im-

portant role in online tie formation [107, 127]. In the developed world, online social

networking services have now reached a point of maturity where the majority of the on-

line adult population (76%) was active on at least one of the most popular services in

2014 [61]. Nevertheless, online communication has been shown to play an important role

in maintaining close and distant relationships, while decreasing the cognitive cost of do-

ing so [62]. As part of the phenomenon of globalisation, it appears we have been growing

increasingly connected through weak ties, from “six degrees of separation” in Stanley

Milgram’s 1967 small-world experiment and four degrees through Facebook topological

shortest paths in 2012 [7].

Network science has pervaded the field of geo-social analysis due to its generalisable and

intuitive models. Although social and geographic networks have mostly been considered

in isolation, the recent popularity of multilayer networks [96] has presented an under-

explored opportunity for modelling geo-social networks as systems composed of multiple

network layers. This paradigm allows for maintaining the network properties of isolate

layers independent while also as part of a system, where an interaction on one layer can

have a cascading effect across layers. In the context of geo-social systems, this means

that proximity-based interactions in physical space can be manifested as online social

links and vice versa. Furthermore, the multiplexity of social interactions as a unified

experience of online and offline encounters can be measured though such models, and

their novel network configurations can reveal global connectivity and resilience, invisible

from the single-layer perspective.

In fact, sociologists have long called for multidimensional studies of social phenomena such

as homophily, or the tendency to form preferential ties with those similar to us [123] and

the value of social networks [37]. Although still scarce, multilayer geo-social data has be-

come increasingly available as more social networking services have become location-aware

in the past few years, largely due to the business potential of location-based services. The

systemic representation of social and geographical interactions as a multilayer network is

extremely promising for the next-generation of recommendation systems and mobile ap-

plications, as well as fascinating from a sociological perspective. Modelling the dynamics

of people-place interactions can also reveal novel insights about the social roles of seman-

tic locations in the urban context and the wellbeing of neighbourhoods as will be further

substantiated in this thesis.
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1.2 Geo-social Networks in Practice

Geo-social networks as constructs of social and geographical interactions are in practice

information layers made available by the data collection system. Historically, it has been

impossible to obtain this level of granularity at a large scale and therefore most stud-

ies of geo-social human interactions have been restricted to small sample sizes and have

been largely observational. The idea of studying the social relationships and movements

of individuals in a sociometric manner had been introduced in 1934 by psychiatrist Ja-

cob Moreno who explained the mobility dynamics of a group of runaway girls through

studying their social network at school [128]. In 1948, the first larger scale study (1050

participants) of how geography, and in particular urbanisation, affects social tie strength

was conducted in a survey-based fashion across Californian neighbourhoods by sociologist

Claude Fischer [70]. Now, equipped with data only envisioned in the 20th century, there

are new opportunities to study geo-social interaction dynamics in a systemic and multi-

dimensional manner. There are broadly three types of geo-social data available at scale:

mobile call and proximity sensor data, online social and location data, and quantified

service data from technologies such as RFID.

1.2.1 From mobile systems to geo-social interactions

With the development of proximity-based sensors deployable on consumer mobile devices,

such as Bluetooth technology, the dimensionality of human interaction studies has flour-

ished. The appeal of using Bluetooth devices comes from its proximity-based wireless

protocol, allowing for direct inter-device communication at a short range (usually up to

10 meters). Their scan discovery protocol identifies nearby devices using their unique

identifiers and therefore serves as an excellent co-presence detector. Augmenting this

proximity data with social network information is non-trivial, since device identification

does not imply personal identification. Therefore, dedicated experimental projects need

to be set-up for practical and ethical reasons. One of the most successful such projects

is the MIT Reality Mining project [64], where personal and interpersonal behaviour was

tracked in order to study the social dynamics of the student community. Other research

has attempted to bring sensor-based geo-social analysis to the city level, where the “per-

vasive infrastructure” of cities was taken into account as a systemic view of human, space

and technological factors and human encounters can be quantified in such setting [98].

At this level, however, there is no fine grained information available about individuals,

while deployment still remains a challenge due to the large amount of observation and

infrastructure requirements.

An undoubtedly large-scale complementary source of geo-social data that comes from

mobile devices is Call Detail Records (CDR) from telecommunication providers. Using

cell tower signals, the location of individuals can be approximated at the initiation of each
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call or message. With the release of a few such datasets to researchers in the past decade,

several notable studies have resulted in great advances in human mobility studies [78,

170, 139]. While certainly pervasive, large-scale and an important artefact of modern

communication, CDRs are only approximate in terms of location and speculative in terms

of social relationships. Furthermore, access to CDRs has been a privilege of few researchers

due to the sensitive nature of the data and its proprietary nature.

The network assisted Global Positioning System (GPS) is currently the most accurate

source of location data, on average up to a few meters, and along with location sig-

nals from WiFi and cell towers, provides reliable location positioning for mobile apps

on smartphone devices. Perhaps the most viable source of geo-social interaction data,

based on such location technology, are location-based social networks such as Foursquare,

where users can “check-in” to semantic locations such as schools, cafes, restaurants and

parks, broadcasting their location to friends on the application. In terms of data, this

results in a proxy for human mobility augmented with a social network of friends. Many

researchers have already taken advantage of such data, demonstrating the potential of

augmenting social networks with geographic data for studying place-focused communi-

ties [31], friend recommendations [164], social forces such as homophily [201], and where

people will check-in next [44]. Some models have tried to couple mobility with social con-

tacts [180], with the goal of understanding mobility through social interactions and more

recently it was demonstrated that the two are in fact driven by the same scaling laws [58],

which invites for research beyond cross-sectional studies and towards novel applications

of the interconnected nature of the two.

1.2.2 The online social network ecosystem

The online social media space, has been increasingly alluded to as an “ecosystem”, due

to its multitude of platforms, all competing for the same resource - user attention [6].

There are many other systemic properties in the ecology of online social networks, such

as their intention to serve different purposes yet cohesively integrated in the World Wide

Web. Some major segments of social media services include interest-based communities

such as Pinterest, blogging platforms such as Twitter and Tumblr, photo-sharing such as

Instagram and Flickr, location-based such as Yelp and Foursquare, and the all-prevalent

Facebook. All of these services support social networking and are integrated to various

degrees with each other, where content from one can be shared to another, contacts can be

imported and accounts linked. This ecosystem has been understudied due to its recency,

the lack of multi-platform data and models of analysis.

Nevertheless, some recent efforts have been made to understand the way users present

themselves across platforms [91], the way they share content [141], and how traces from

one service can be used to predict identity on another [77]. The access to multi-platform

user activity and networks is very appealing from a commercial standpoint, as companies
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compete to better match users to products, as well as from a privacy and security perspec-

tive. Efforts to study urban and social problems from a multi-platform perspective using

the digital footprints of users, however, are rare due to their interdisciplinary nature and

aforementioned constraints on this type of data. Furthermore, while mobile networks are

pervasive, social media use is not and there are many considerations such as the validity

and representativeness of such data [181]. These limitations are discussed in the context

of each dataset used in this thesis.

While multi-platform studies are not yet widely popular, recent years have seen an elab-

orate body of research dealing with both the geographical and social aspects of online

social networks. This is largely due to the shift towards geotagged content across social

networking platforms and the popularisation of check-ins as a form of online content.

On the one hand, location-based social features have been demonstrated to have vast

potential for link prediction in online social networks [50, 164] and venue recommenda-

tions [136], while on the other hand, studies have shown the importance of distance in

location-based social networks [163] and the gravitation laws that dictate universal prop-

erties in human mobility patterns [135]. Further to being excellent sources of geo-social

data, location-based social networks have a strong link to urban computing, where they

have been shown to be useful in neighbourhood modelling [49] and indicative of depri-

vation in neighbourhoods [152], among other applications. In this sense, location-based

social networks are more than just products of available mobile technology. They are

also self-contained ecosystems of physical presence and digital interaction. The poten-

tial of studying the urban landscape through modelling location-based social networks as

systems of social and geographical interacting networks has been largely untapped.

1.2.3 National and international geo-social networks

While much of our insight into geo-social dynamic comes from the online world, there

is a vast potential for alternative data sources as more and more global services become

quantified through technologies such as RFID for tracking physical items in space. Major

studies on urban underground transportation [74], global air transportation [81] and inter-

national trade [85] have already shown the potential of physical networks to model global

dynamics in space. The notable work of Eagle [63] , demonstrated the potential of CDR

interactions in the UK to explain deprivation through social and information metrics of

diversity. In terms of multilayer studies, research on multimodal systems and cascading

failures, which are not possible on the single-layer, has been conducted [33, 43, 74]. How-

ever, there is a gap in the literature in terms of socially augmented physical networks,

where both physical and virtual network layers are taken into consideration, especially

in the context of global connectivity. This is largely due to the differences in collection

methods of social and physical data.

Nevertheless, it is possible to couple such disparate datasets through geography as some
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global studies have shown [172], where social media data from Twitter and Yahoo! has

been used to map the global alignment of interpersonal communication as posited by

Samuel Huntington’s theory of world cultural divisions [89]. With the presence physical

layer data such as trade, international transportation and Internet topology, combined

with global digital communication, there is vast potential to advance our understanding of

global connectivity and international relations beyond the single layer as will be proposed

in the present research.

1.3 Potential Implications

The link between social theory, physics and computational approaches in understanding

social and urban systems is still nascent, whereas the potential for gaining novel insight

from their combination is vast. The multilayer approach to geo-social networks put forth

by this thesis makes use of several existing data sources in novel ways to revisit socio-

logical and urban theory and apply it to new and old problems in Computer Science,

Computational Social Science and Urban Studies.

1.3.1 Computational Social Science

The social theory of homophily examined by Miller McPherson et al in their seminal work

Birds of a Feather [123] and the Strength of Weak Ties by Mark Granovetter [79] are

perhaps the two most influential sociological works of the past few decades. Their impact

has been profound on social computing where homophily has been extensively researched

in online social networks in terms of tie formation [2, 3, 201] and weak ties have been shown

to be more prevalent online, leading to a revolution in global connectedness and what came

to be known as “networked individualism” [21]. Despite Dunbar’s cognitive limit of 150

comfortably maintained social connections [176], online friendships have provided an easy

and minimal effort way to connect with weak ties, and the more diverse they are the

more social capital one can potentially generate [39]. Although these social forces are

relatively well understood from a monodimensional perspective, the way in which people

connect online and offline, both through social interactions and geographical ones is still

not formalised extensively. One of the goals of this thesis is to bring dimensionality to

social theories, which is something called for by McPherson himself [123] and show how

this dimensionality adds to our understanding of these phenomena and their applications.

The idea of multiplexity or the multi-channel communication in social networks, however,

is not new. Multiplexity in social networks has been observed and used to explain social

dynamics from Renaissance Florence [142] to the Internet age [84] but not many gener-

alisable models or applications exist at present. In her extensive research on the topic,
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Caroline Haythornthwaite, conducted a study where she asked a group of university mem-

bers to disclose the type of relationships within their social network, their frequency of

communication and media used [83]. She coined the term media multiplexity, where she

posited that media usage varies between weak and strong ties and that strong ties tend to

utilise more of the available communication channels, showing that the medium is indeed

the message. The present dissertation operationalises and applies this principle to online

geo-social networks and problems of link prediction in the following chapters.

1.3.2 Mobile Applications

Location-based services have added a significant advantage to mobile applications by

bridging the online and offline realities of users. While some location-based apps such as

Google Maps and Yelp focus on local search, others have been built on social networking

capabilities such as Foursquare. Furthermore, Facebook has location-based capabilities

through Facebook Places and others such as Twitter and Flickr allow users to geotag

their content. From a service provider perspective, this allows for context-aware recom-

mendations and more detailed user profiling as well as being better equipped to face the

challenges posed by content-delivery networks [162].

Although location-based social networks have resulted in an invaluable source of geo-

social interaction data, they struggle to remain competitive in the online social network

ecosystem. Due to the lack of clear business models and failure to engage users in a

sustainable manner, location-based social networks such as Brightkite and Gowalla have

become obsolete while market leader Foursquare has struggled for years to establish a niche

in the location app space. Research which has tackled the death and “autopsy” of online

social networks [75], has identified the weakness of social resilience in social networks as

the reason for their demise. It is therefore crucial to understand the driving forces of tie

strength and the role of location in such services. Mobile systems can further benefit from

a multilayer approach with regards to application design, where a systemic perspective

of the geographical and social components of the system can be seen as interacting yet

distinct could help establish unique competitive advantages and long-term sustainability.

Recommender systems such as those based on link prediction algorithms for online social

networks and venue recommendations are an integral part of online services. The present

thesis will add to the analysis of location-based services by examining them from a mul-

tilayer perspective and will explore new potential applications to “socially-aware” place

recommendations where the social roles of places are taken into account. Furthermore,

applications to urban development such as tracking human mobility for the identification

urban migration patterns will be discussed in light of the future generation of “socially-

aware” mobile systems.
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1.3.3 Urban Development

The city has been rightfully been alluded to as an organism, due to its complex dynamics

and processes [16]. Much imagination and research has already been poured into the

vision of a “smart city” governed by computer-supported systems. A part of this new

science of cities is the quantification of urban services such as public transportation [168]

and human mobility modelling [78]. Augmenting this understanding with a systemic

approach to urban modelling can help urban planners and policymakers make decisions

based on knowledge of the whole ecosystem of services.

Another area of interest is the measurement of critical indicators and understanding in-

equality on the neighbourhood level. At present, government census studies are the most

widely used measures of urban socioeconomic wellbeing at the urban level. However, re-

cent works proposing the use of user-generated content and social media for measurement

have emerged [111, 188, 151, 184] based on the availability of these new forms of data.

Using interim real-time measures of the urban pulse is appealing from a temporal and

cost perspective but can be challenging due to the demographic biases of digital media

users [61]. Nevertheless, as this dissertation will show, there are also opportunities in

tracking the social media population, which can lead to change in urban policy regarding

urban renewal and gentrification.

1.4 Thesis and Substantiation

The goal of this body of work is to analyse and interpret multilayer network models of

geo-social systems by applying them to real world problems through a data-driven com-

putational approach. As laid out in the preceding sections, social and urban theory has

been explored mainly in a unidimensional manner and many sources of rich multilayer

data have been untapped to such ends. Therefore, the thesis of this dissertation is that

a multilayer network approach to urban and social theory can advance our understanding

of geo-social dynamics beyond what is possible from studying their social and geographical

components in isolation.

The substantiation of this thesis will be incremental - starting with the exploration of a

minimal multiplexity model for measuring global connectivity and socioeconomic similar-

ity using a number of physical and digital networks. This will be followed by an expansion

to small scale offline and large scale online networks with the goal of understanding tie

strength, media multiplexity and homophily in the multidimensional setting. As a demon-

stration of the interconnected nature of people and places, we will also discuss a multilayer

interconnected network model where novel insights will be shown in the domain of urban

computing and social capital. In the context of each research application, a different set

of tools and techniques will be utilised to present multiple threads of analysis evaluat-



20 1.5. CONTRIBUTIONS AND CHAPTER OUTLINE

ing the benefit of multilayer network modelling and analysis in comparison with current

research and “traditional” single-layer models. Each chapter will present a number of

structural and interaction metrics and add to the original multiplex model in light of

different applications as outlined next.

1.5 Contributions and Chapter Outline

This dissertation makes several novel contributions: firstly, to the field of complex net-

works where multilayer models have recently enjoyed a renaissance, however, most work

done in the field is theoretical at large, while this dissertation provides empirical and

data-driven modelling techniques and evidence; second, to the field of computational so-

cial science, where multilayer network models and metrics from a geo-social perspective

have not been applied; third, to mobile systems and computing, presenting novel ways to

conceptualise location-augmented systems where data has largely been utilised in a uni-

dimensional manner; and finally to the field of urban computing, where interconnected

networks of people and places have not yet been introduced despite the great potential

to revolutionise our understanding of space and its social uses. The state of the art

on multilayer models and current applications will be outlined in Chapter 2, while the

contributions made in this dissertation are detailed in the following chapters:

• Chapter 3: Global Multiplexity: In this chapter, a minimal multiplex model is

presented as a collection of graphs. The idea of multiplexity, or multi-level commu-

nication, is explored in the context of this model, using six distinct sources of global

interaction data: the global trade network, consisting of the value of exports and

imports made between countries; the global migration network where the estimated

migration flows of people around the world are reported; the global flight network

where the number of flights between countries is recorded; the global IP traceroute

network, constructed on top of the Internet topology; the digital communication

network derived by Twitter mentions and Yahoo! emails on a global scale; and

finally the international postal network, which is analysed in this dissertation for

the first time. These physical and digital layers of online and offline international

resource flows are combined and studied together through the multiplex frame-

work, where it is shown that the global degree is useful in approximating critical

socioeconomic indicators. Further, the community multiplexity index, a measure of

community membership, similarity is applied to approximating the socioeconomic

profiles of countries, where it can be used to estimate critical values for international

development purposes when such data is missing for a particular country.

• Chapter 4: Multiplexity and Social Ties: This chapter further substantiates

the role of multiplexity in geo-social networks by formalising a multiplexity weight
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following empirical analysis of a student community geo-social dataset. The social

relationships of students and their level of communication multiplexity is analysed

in terms of proximity, phone calls and text messages, where more communication

channels were shown to be strongly indicative of a close friendship. This concept

is further applied to studying homophily in the community where students with

multidimensional ties were a lot more likely to be similar in terms of music taste,

political orientation and various other dimensions. We further explore similarity

in terms of structure and interactions on a large-scale using Twitter (social) and

Foursquare (location) data. A number of features for link prediction are presented

in this multilayer context, some of which extend existing single-layer metrics such as

the multilayer Adamic/Adar coefficient, while others use interactions from the two

heterogenous network layers such as the global similarity. Using three testing and

training sets of location-based, social and mixed features, we observe the superior

performance of multilayer mixed features to predict multiplexity in online social

networks using a supervised learning framework.

• Chapter 5: Social Diversity in Geo-Social Networks: In the final research

chapter of this dissertation, the concept of social capital is explored in terms of

structural diversity in the multilayer network. First, a quantitative measure of so-

cial capital, or brokerage, is applied to the multilayer setting in a two-layer online

social multiplex consisting for Twitter and Foursquare layers. It becomes empiri-

cally evident that by considering just one layer - social or geographic alone - social

capital can be under or over-estimated. The concept of brokerage is then redefined

for places, where an interconnected network model of people and places is introduced

and the brokerage power of a place is defined in terms of redundancy in the social

network of its visitors. Three other metrics of the social diversity of places: entropy,

homogeneity and serendipity are introduced here. Entropy is the predictability of

visits made by visitors to a place, homogeneity is the visitor diversity in terms of

characteristics and serendipity measures the probability of the social composition of

a place in terms of visitors. These measures of diversity are then compared to indices

of deprivation for London, where a positive relationship is identified. Neighbour-

hoods which are characterised by high social diversity but have high deprivation,

are identified as neighbourhoods which are undergoing processes of change such as

gentrification.

The final chapter in this dissertation, reflects on the findings and applications of this work

and provides a vision for future research.
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Chapter 2

Multilayer Networks

The following chapter gives a general introduction to multilayer networks and metrics with

comparison to their single-layer counterparts. Network representations have emerged as

an extremely powerful and general framework for analysing and modelling systems as

diverse as transportation, biological processes, academic authorship and logistics among

others [11]. Network science provides powerful tools for understanding such systems

with large sets of coupled components and emergent behaviours more generally known

as complex systems. Despite the broad range of applications, traditionally, most net-

work problems have been examined with a single graph representation, largely ignoring

interconnectedness and parallel interacting networks.

From multimodal transportation systems to interpersonal relationships, most real world

entities are connected in more than one way. One example is social network analysis,

where human relationships have been extensively studied as a formation of a single type

of personal interaction, oversimplified usually as friendship bearing a weight proportional

to interaction. However, people interact for various overlapping reasons such as work,

social, family and love life. This multiplexity, or the complexity caused by the existence

of more than one link between entities, is ubiquitous across science domains concerned

with systems.

In the past few years there has been a rekindled interest in unifying and formalising

the multilayer paradigm, particularly in the domain of physics and biology due to the

increased availability of suitable data for these models and their potential to represent

systems more realistically. Networks with multiple edges of different types between nodes

are most frequently referred to as network of networks [51], multiplex networks [189],

multirelational networks [195], and, more generally, as multilayer networks. Although

these models are all based on the same premise, that there are multiple relationships

between entities in a system, terminology largely differs based on domain. Some existing

examples include interacting systems such as the power grid [33], biological networks [22]

and transportation in the urban context [74, 56]. In this section, we will review three of

25
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Figure 2.1: The European flights network [56].

the most common multilayer models, which relate to the present dissertation along with

their metrics and applications.

2.1 Multirelational Network Models

Networks are typically modelled as graphs composed of a set of nodes (vertices) and

edges (links between them), along with certain fundamental properties such as direction-

ality and weights. When multiple sets of edges exist between nodes, such as different

modes of transportation connecting two stations, extensions to the network paradigm are

necessary in order to capture this multirelational nature, although the fundamentals of

graphs remain the same.

Multilayer networks can be represented as multigraphs, interdependent networks or rank-

3 adjacency tensors, depending on their nature and the background of the researcher

but they all have the common elements of nodes, edges and layers. The model which is

adopted is largely dependent on the field and context of study. Recently, most of the

multilayer literature has been produced from the physics domain, where many generative

models have been proposed. However, with the growing availability of empirical data,

it is increasingly important to also gain understanding of multilayer networks from a

data-driven perspective.

One example of such data can be found in Figure 2.1, where the European flights network

is shown as a system of different airlines and as an aggregate network, demonstrating

the flexibility of multilayer networks to be studied layer by layer as well as together in a

systemic manner. As will later be reviewed in this chapter, not all layers need be of the

same type as in this example and there are many cases in which interactions happen in
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Figure 2.2: Multilayer, multiplex and interconnected network examples.

various physical and digital dimensions and even between different types of entities. This

section covers only general multilayer, multiplex and interconnected network models of

multirelational networks relevant to this dissertation, however, more complete surveys of

generative and theoretical models can be found in [96] and [22].

2.1.1 Multilayer Network Models

The notion of a multilayer network is the most general when it comes to studying multire-

lational networks. The only implied requirement is that there is more than one network

layer of nodes and edges. This generality has led to many differing representations. In

this section we will discuss the two most popular: graph based and tensor based.

The adjacency-tensor paradigm stems from Mathematics and is a vector-based represen-

tation of multidimensionality in high orders. For example, in [55] the authors extend the

single-layer tensor representation to a multilayer one, where multiple types of relationships

can be represented. This approach requires the definition of two second order adjacency

tensors - one which represents relationships within layers and one between them. The mul-

tilayer representation is then derived from the product of these two tensors. For example,

Auvαβ = Auvα1β1 ...αdβd represents the order-2 adjacency tensor where element Auvαβ has a

value of 1 if and only if nodes u, v in layers α,β have an interlayer link. This adjacency

tensor is the product of the layers and vertices in the multilayer set-up.

On the other hand, the same properties can be obtained in a graph representation: M =

(V,EM , L) where the standard graph notation G = (V,E) is extended to include the set

of layers L. If nodes are different across layers, an additional set VM can be included
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which is more convenient than in tensor representations where missing nodes need to be

‘padded’, although this can be overcome with tensor flattening [55]. This model is general

enough to represent networks with varying topologies, time and other dimensions. With

certain constraints, it can be used to represent networks that are multiplex, edge-coloured

and sequential, as these models are all special cases of networks with multiple layers. A

very simple multilayer network as an example is the social network in Fig. 2.2a, where

different types of interpersonal relationships are ascribed to individuals. Some people

do not appear in all layers because they do not interact in that particular layer in the

multilayer network.

2.1.2 Multiplex Network Models

Multilayer and multiplex networks are often used interchangeably because a multiplex

model is the most common manifestation of a multilayer network. It is more specialised

in two respects: a) the nature of its interlayer links and b) the replicability of its nodes

across layers. In [55], the authors specify that “A multiplex network is a special type of

multilayer network in which the only possible types of interlayer connections are ones in

which a given node is connected to its counterpart nodes in the other layers”. In many

cases, this means that nodes should be present in all layers, and therefore the network is

node-aligned but this is usually not a requirement.

Multiplex networks are perhaps the only multilayer construct that can be easily translated

into a monoplex single-layer network in a straightforward manner. This of course is

possible only for non-ordered and non-weighted interlayer edges. This aggregation is

useful for applying standard network metrics to multiplex networks. Usually the weights

of the same edges across layers are linearly combined, which yields a weighted graph [19].

In addition, each layer can have a different weight encoded as a coefficient. In some cases,

however, this information is purposely disregarded in order to examine the connectivity

in the multiplex in itself [15], although in many scenarios it has been argued that a full

multiplex model has a theoretical information advantage over aggregated and single-layer

models [124, 54, 57, 134]. An example of a multiplex network is given in Figure 2.2b,

where all nodes are present across layers and each interlayer edge represents the coupling

between the same node across layers given three types of international relations between

countries. In the layer “borders” an edge case is given where neither of the nodes are

connected with each other but they are nevertheless embedded in this geographical layer.

2.1.3 Interconnected Network Models

Interconnected networks have many variants across different fields of study, including ur-

banism [51], engineering [110] and epidemology [161], and are some of the most practical

and widely applied models of multilayer networks. This is due to the fact that, in many
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cases, they model interdependence in systems and this can lead to novel understanding

of resilience and cascading effects. In [33], the authors used data from the 2003 Italian

electrical blackout, modelling the series of cascading failures which occurred in relation to

power stations presenting an interconnected network of Internet servers and the geograph-

ical locations of power stations. This was followed by work done on power grid cascading

failures to predict the cascades and aim to minimise risk from such failures [32]. As in this

example, in many cases interconnected networks have different sets of nodes on different

layers, similar to node-coloured networks, also referred to as multitype networks [187].

In terms of representation, the only constraint that interconnected networks have is that

they are layer disjoint, or that each node exists only in one layer [96]. In this sense, they are

very similar to node-coloured graphs, where each node has a colour analogous to a layer

in the multilayer paradigm. Because interconnected systems are often interdependent,

each layer can be represented as a graph in and of itself, along with a mapping of their

interdependency. For example, in [33], where on one layer there is the geographical

network of power stations in Italy and on the other the network of connected servers

to those power stations, the relationship between the two networks was defined as a

bidirectional link Ai ←→ Bi modelling the fact that if a node in one layer fails all nodes

for which the bidirectional link is true will fail too, leading to a cascading failure. Although

less critical, a visual example of such networks is given in Fig. 2.2c, where a social network

of classmates and the place network of the venues they have visited are interconnected

and the relationship between the two can be studied.

2.2 The “New Physics” of Multilayer Networks

Most multilayer metrics and models aim to extend traditional network science concepts

to cater for the presence of more than one network layers. We will discuss several of

the most important concepts of these “new physics” of multilayer models related to this

dissertation – starting from their traditional monoplex definition and extending into their

multiplex manifestations.

2.2.1 Degree

Perhaps one of the most fundamental metrics in network science is the node degree, which

measures the importance of a node in terms of number of links in the network. This is

the number of adjacent edges and consequently corresponding nodes that make up the

focal node’s neighbourhood. In traditional single-layer graphs, this concept has been

further extended to consider directed networks by measuring the in and out degree of a

node’s incoming and outgoing edges and to weighted networks, where the edge interaction

weights are added and sometimes normalised to produce the weighted network degree.
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A crucial element of defining the degree of a node is the definition of the node’s neigh-

bourhood. In multiplex networks, where it is possible to aggregate the network into a

single-layer graph, the traditional concepts of neighbourhood and degree can be easily

applied. The most straightforward approach to measuring the degree of a node in the

multilayer network is by considering the union or intersection of edges across layers. The

aggregation, however, can be done in multiple ways and it is contextual to the problem at

hand. For example, in [28] the authors define the multi-layer neighbourhood of a node to

be the collection of neighbours who are adjacent on at least α(1 ≤ α ≤ ∣L∣) in the multiplex

where α is the layer threshold value.

On the other hand, a vector version of a node’s degree has been proposed [15], where the

vector ki = (k1i ...k
M
i ) represents the multilayer degree of a node i across layers. Since this

does not give a clear signal of a node’s importance in the network, the overlapping degree

needs to be computed:

oi =
M

∑

α=1
k
[α]
i (2.1)

which is essentially an aggregation of the vector. The approach to multilayer degrees in

this dissertation is similar to both of these methods, where a threshold for minimum layer

connectivity is set and an aggregation is the performed in terms of weighting the edges.

This is discussed at more length in Chapter 3.

Another approach has been to define a set of layers such that D ⊆ L for which to consider

all edges (u, v, d), as defined by the authors in [18]. This flexible definition allows for

the exploration of various layer configurations and their relative importance, however,

the number of possible sets of D grows exponentially with the number of layers causing

difficulties in interpretation and computation. Another variant of this is the concept of

multilinks introduced in [19], where a binary vector is used to store the adjacencies of

pairs. The degree of a node is then the number of edges contained in the vector across

layers and the weighted version is the sum of weighted edges on each layer. Apart from

extensions of single-layer metrics, there has been a novel notion of a multiplexity degree

which is concerned with the number of layers in which a node appears [160]. This however

is only applicable to layer-disjoint models, where a node need not be present in every layer.

2.2.2 Triples and Triads

Beyond the concept of a node’s neighbourhood, there is the connectivity between members

of that neighbourhood, which includes edges between neighbours. In this expansion of the

neighbourhood, special kinds of network motifs, called triangles emerge, where triads of

connected nodes are formed. The number of such connected triads determine important

properties of the network such as its clustering coefficient. The clustering coefficient is a
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measure of the number of connected triangles over the total number of possible triangles,

dependent upon the network degree in the global version and the focal node or ego’s

degree in its local network counterpart, determining how tightly knit an (ego)network is.

The definition of a triangle and consequently the network clustering coefficient becomes

more complex as layers are added, since transitivity can extend to neighbours across layers

as discussed in the next section on network distance. Several attempts to define clustering

coefficients for multilayer networks have been made [15, 22, 27] but they are all dependent

on the definition of transitivity and paths in the model. For this same reason, it has also

been a challenge to bring a stable definition of a community and methods of community

detection into the multilayer context. This dissertation makes use of traditional com-

munity detection techniques such as the Louvain modularity optimisation method [20]

for detecting communities on the single layer. At the heart of this community detection

method is the modularity function, which determines the strength of division between

different clusters of nodes in the network. By optimising this function, groups of nodes

are identified which are interconnected amongst themselves to a greater extent than to

the rest of the network. Despite efforts to explore information similarity in terms of com-

munity structure between layers [90, 13] as a method for dimensionality reduction, the

community detection literature with regards to multilayer communities is still nascent.

Nevertheless, a few notable works have brought concepts such as modularity into the

multiplex context [129] and a few other novel ways of community detection in multilayer

networks [52, 147].

On the other hand, network motifs, where these triangles are incomplete are called struc-

tural holes. This concept is of great significance in social networks, where it relates to

the brokerage power of a node and sequentially a structural competitive advantage in the

network and a person’s social capital. A measure of brokerage which is leveraged upon

in Chapter 5 is defined in Burt’s seminal work on structural holes [36]. Burt defines the

effective size of a node’s neighbourhood as the non-redundant portion of it. The effective

size Si of node i can be expressed as:

Si =∑
j

[1 −∑
q

piqmjq], q ≠ i, j, (2.2)

where

piq =
ziq

∑

j

zij
, i ≠ j (2.3)

is the normalised weight of the link between nodes i and q over i’s local neighbourhood

where Z is the adjacency matrix and therefore if ziq = 1 there is no structural hole and

if ziq = 0 there is a structural hole and no redundancy in the network in the case of an

undirected weighted network, and where
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mjq =
zjq

max
k

(zjk)
, j ≠ k (2.4)

is the marginal strength of node j’s link to node q (i.e., the weight zjq of the link connecting

nodes j and q divided by the maximum link weight node j has with any of its contacts).

The value of mjq can be reduced to zjq in the case of unweighted and undirected networks

in which the only weight a link can have is one. According to Equation 2.2, we have:

1 ≤ Si ≤ ki ∀i, except for the case in which node i is an isolate (where Si is set equal to

zero). Thus, the brokerage of node i’s neighbourhood ranges from the minimum value of

one, when all pairs of node i’s contacts are connected with each other, to the maximum

value equal to the node’s degree ki (i.e., the number of links incident upon node i) when

there is no link connecting any pair of i’s contacts. What this essentially measures is

therefore the number of non-redundant connections a node has to otherwise disconnected

others. A simplified “unpacked” version of this was introduced by Borgatti in [23] as:

Si = n −
2t

n
(2.5)

where n is the number of neighbours of i and t is the number of links between them,

excluding links to i. Structural holes have not been defined in the multilayer network

setting yet and in Chapter 5 we make the first attempt to bring their classical definition

into the multilayer context.

2.2.3 Network distance

Network distance is typically measured as the length of a path from one node to another.

This may include weight and directionality trade-offs and many algorithms have been

proposed to optimise for certain requirements such as length and cost. Depending on the

real world context of a model one can define different notions of transitivity in multilayer

networks. One such way is to define paths in terms of inter-layer connections, where

nodes can form triangles across layers. In [46] the authors define this in terms of inter-

layer steps, where at each step a walk can continue on the same layer using what is termed

as supra-walks. This approach can be computationally intense for many layers, although

it makes an important distinction between the triadic properties of social networks, which

tend to be consistent across layers and the properties of transportation networks, which

tend to form more inter-layer triads due to their multimodality.

The definition of distance in terms of walks and paths is an important concept on which

many other network measures and algorithms rely, most importantly the shortest path

definition. One way in which paths have been considered in multilayer networks, given

the possibility to traverse between layers, is as the ratio of shortest paths between a pair

of nodes across more than one layer over the total number of shortest paths, termed
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interdependence of the multiplex [133]. This can be useful in understanding failures in

transportation systems for example, where the cost of switching layers is also higher and

should be considered in the path calculation if such cost exists. In this dissertation we

use the notion of multiplexity to define the network distance, as will be further detailed

in Chapter 4.

2.2.4 Layer overlap and correlation

One of the fascinating aspects of multilayer networks is the way in which their layers are

connected with each other and as part of a system. Two ways to measure this relationship

are the overlap between layers and their correlation in terms of degree, edge weights

or other structural properties. The overlap is the similarity in terms of the number

of common nodes or edges that two layers share. Bianconi defines the global overlap

in the multiplex as the total number of edges two layers share [19]. Another way to

compare edges is by looking at the correlation between weighted edges on different layers,

or the adjacency matrices or two layers. Such analysis is extensively conducted on the

International Trade Network in [12], where commodity-specific layers were correlated and

hierarchically organised to produce a taxonomy of commodities in the multilayer network.

A significant portion of early multilayer network exploration has been dedicated to degree-

degree correlations, also know as mixing patterns [131] or network assortativity. Typically

measured as the degree correlation between two connected nodes, it indicates to what

extent high degree nodes cluster with other high degree nodes. In the multilayer setting

this mixing has mainly been measured in multiplex networks, where the degree of a node

is correlated with itself on another layer [126]. Some results in the literature suggest

that such strong correlations are in fact harmful for collaboration in certain types of

social networks [194]. In Chapter 3, we will observe how countries carry their degree

properties across networks of international relations and what this means in terms of edge

correlations across networks as well.

2.3 Real World Applications

The majority of multilayer scholarship in recent years has been purely theoretical, explor-

ing generative multilayer models through simulated experiments [96]. Although, this has

been highly enlightening in view of the statistical mechanics of multilayer networks, there

is a significant gap between theory and practice, where real world multilayer networks are

not yet fully understood. Nevertheless, there are some notable examples of applications

such as [60], where the authors use data from the National Centre for Environmental

Prediction in Germany is used to analyse the atmosphere’s vertical dynamical structure

through interacting climate subnetworks. The authors in [34] used MRI and other brain
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data to explore the relationship between structural and functional brain networks, leading

to the discovery of significant interdependence between the two, and more importantly

the brain’s functions were found to follow the small-world topology properties much akin

to spatial complex networks. In what follows, we will explore two domains of empirical

multilayer studies which are most closely related to the present dissertation – that of

online and offline social networks and that of geographical urban and global networks.

2.3.1 Social Networks

Social networks as well as other systems have been found to consistently exhibit a power-

law degree distribution, small-world phenomenon, centrality and modularity [132]. De-

spite the success of social network analysis, the multidimensional nature of human rela-

tionships has been largely ignored in the past. Nevertheless, multiplexity, or the cardi-

nality and type of edges, has been well accounted for in sociology. Sociological studies

refer to multilayer social networks as “multiplex networks” since the 1970s [189], where

kin, neighbour and coworker relationships are explored. Observational studies since the

late 80s have reported that people who are linked through more than one way, have

a stronger bond because they have more ways and reasons to communicate with each

other [70]. In [159], Sampson (1968) describes several social relations among a group of

men in preparation of joining a monastic order in an ethnographic study of community

structure over time. Another example of small observational studies of human relations

comes from [94], where the work and friendship interactions at a tailor shop in Zambia

are analysed in relation to worker strikes. Other studies of social multilayer systems have

been done also with small troops of baboons (n=12), where multiplexity is based on be-

havioural dimensions and perturbations in one dimension (layer) are measured across the

social system [14]. With the popularisation of the Internet, the same was found to hold

true of online media such as email, chat, and social network sites in [83], where the author

studied the implications of multiple media usage on social ties in an academic organisation

and discovered that multiplex ties (those which use multiple media) indicate a stronger

bond.

It is easy to see how the multilayer paradigm fits social network analysis, where different

relationships that are not mutually exclusive can be ascribed to the same two people (e.g.,

colleagues, friends, and siblings). The same can be stated of two people’s communication

(e.g., phone, email, and face-to-face); their interactions offline (e.g., meet, travel, and

participate in sports) or online (e.g., tag a photo, re-tweet, and video chat). Despite the

observable multilayer nature of online social networks (OSNs) as a system [96, 95, 26],

there is little empirical work exploiting data-driven applications in the domain of mul-

tilayer OSNs, especially with respect to how location-based and social interactions are

coupled in the online social space [141, 103]. One large-scale example applied to virtual

social networks was presented by Szell et al. [177], where multirelational interactions rep-
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resenting different relationships between the players in a massive multiplayer online game

were used to model social ties and relate them to social balance theory (i.e., ‘the enemy

of my enemy is my friend’). Some other examples consider online social networks like

Twitter [53], where the spread of information around the announcement of the discovery

of the Higgs boson-like particle at CERN is explored through the multiplex interactions

of tweeting, re-tweeting and replying to existing tweets; in [119] the authors studied dif-

ferent social networking services through the Friendfeed social network aggregator; and

in [105] the authors collected multidimensional social network data based on Facebook to

study the formation of groups in a university setting. This dissertation aims to extend the

existing literature by modelling and analysing online and offline social networks through

the multilayer models described in this chapter in a variety of contexts.

2.3.2 Urban and Global Dynamics

In transportation networks, spatial interacting networks have been used to analyse the

structure of airport and railway networks in India, showing the effect of space in deter-

mining link probability [82]. The application of multilayer networks to the public and

international transportation domains has been demonstrated throughly, as these systems

are natural examples of multiplexes with multiple lines and modes along with a high level

of interdependence and layer transfer cost [74]. Similarly, the London underground has

been explored as a multiplex of transportation layers [56], where the authors address ques-

tions related to the efficiency and resilience of the system by exploring its interconnected

nature through random walks.

International dynamics are also naturally multirelational. Work taking this into account

has been done extensively in the international commodity trade domain [12] and global

air transportation [43]. Both of these works demonstrate novel ways of exploring existing

data, in the former case from the United Nations Commodity Trade Database, collecting

trade data since 1990, and, in the latter case, by collecting data on European airlines and

airports where rescheduling and resilience in the network were under investigation. Other

examples include the global cargo ship network [93] as a separate system, as well as the

worldwide coupled air and sea ports multilayer network, where it was found that the more

inter-similarity there is the more robust the segment of the network is. A similar multi-

modal paradigm is explored in [82], where the dynamics of overlapping spatial networks

are studied. One of the novel contributions of this thesis is the study of heterogeneous

layers of global interactions, in particular physical and digital in parallel. This is further

discussed in the following section where the contributions to literature and future outlook

is presented.
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2.4 Present Dissertation and Future Outlook

This chapter has reviewed the major trends in multilayer models, metrics and applications.

With a plethora of terms describing this paradigm, we have seen some differentiations

between three of the most popular mutirelational models - the generic multilayer model,

the node-aligned multiplex model and the interconnected network model. The tendency

for defining metrics for multirelational models has been to predominantly translate pre-

existing single-layer metrics into the multilayer context of the model under hand, with

few novel metrics specific to these models. Furthermore, the great majority of work in

the field has been theoretical, with relatively few empirical examples.

This dissertation takes steps in exploring the introduced models from a data-driven com-

putational perspective, where social and urban theory is applied to the systemic repre-

sentation of multiple layers of data. Furthermore, along with validating concepts such

as degree, distance and other traditionally monoplex metrics, new measures for exploring

interconnected people-place networks will be introduced such as serendipity and struc-

tural holes. Most importantly, this thesis contributes to the scarce empirical literature on

multilayer networks in geo-social systems.

Data-driven approaches to multilayer networks have mainly been applied in sociology,

where small observational studies have attempted to model social dynamics from a mulitre-

lational perspective. As we have seen in this chapter, there is a general lack of studies

which model data in a multilayer fashion, rather than try to fit data to formal models.

In Chapter 3, we will demonstrate how six types of physical and digital international

relationship types can be modelled collectively as a global multiplex network. From this

network representation, we will show how the global degree and community multiplexity

index can be derived to study the socioeconomic profiles of countries. Although some of

the works reviewed in this chapter have touched upon metrics of multiplexity itself (such

as interconnectivity), we show how in practice such fundamental metrics can be of great

benefit to international development.

Furthermore, in Chapter 4, we will see how survey and mobile sensor data collected for

the purpose of single layer analysis can be explored in novel ways to derive insight about

social relationships through mutliplexity. This chapter also examines media multiplexity

and homophily social theories in the new light of multiplex interactions. In addition, the

applicability of multiplex models and metrics, including contexutally adapted gravity and

multilayer interaction measures, is demonstrated in the domain of link prediction in online

social networks. This work again demonstrates novel ways of adapting available data -

from Twitter and location-based social network Foursquare, into an integrated geo-social

multilayer network.

Finally, in Chapter 5, we will study multilayer brokerage for the first time as applied

to two geo-social multilayer models. In the first, we study the online/offline paradigm
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of generating social capital through brokerage, where the presence of structural holes is

explored across layers for the first time. As we have shown in this review, there are

already existing concepts of layer transitivity and paths but they do not explore geo-

social interactions. In terms of extending multilayer scholarship with novel models and

metrics, we introduce an interconnected geo-social network of people and places in the

urban context where we extend the notion of structural holes and brokerage to places.

Furthermore, we introduce the concept of serendipity which is unique to this type of

models.

One of the biggest challenges in the field of empirical multilayer analysis has been the

availability of data to demonstrate the utility and benefit of such models. This dissertation

hopes to inspire novel ways of modelling existing data and the collection of datasets that

take into account the multidimensional nature of human relationships in the geo-social

context. Although narrow in applications at present, multilayer models are extremely

useful in modelling complex systems realistically - including computer, urban and social

systems - and with a future awareness of the presence of such tools and data, more

interdisciplinary research around this will hopefully stem.
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Chapter 3

Global Multiplexity

Timely statistics on key metrics of socio-economic status are essential for provision of

services to societies, in particular marginalised populations. Despite the importance of

accurate statistics to quantify the state of a country and progress towards favourable socio-

economic outcomes, regular and reliable measurement is difficult and costly particularly

in low income countries. With this in mind, in this chapter the network positions of

countries in the global multiplex of international flows as well as individual networks is

studied in order to approximate critical socioeconomic indicators of global importance.

The techniques used favour simplicity and interpretability in order to be easily applied as

potential benchmarks for UN efforts such as the Sustainable Development Goals (SDGs).

Following an introduction of multilayer models in Chapter 2, here we will demonstrate a

concrete and novel application to the international development context. A simple but

powerful multiplex approach to model the multiple interactions that exist between coun-

tries will be introduced in the first few sections of the chapter, where we will define the

multiplex network as a collection of graphs. Furthermore, the global degree, which can be

computed from the position of a node in the multiplex network is formalised and evaluated

on a large multilayer dataset of six networks representing international interactions using

correlation analysis. A community multiplexity index is also proposed to capture the con-

nectedness of countries on a global scale and offer a simple and reliable way to estimate

tie strength. The rest of the chapter will introduce the international postal network in

detail, as well as the other five networks used to approximate critical socioeconomic indi-

cators in the global multiplex. Finally, the potential of the community multiplexity index

to approximate the socioeconomic profile of highly interconnected countries, even when

challenged with missing data, is demonstrated through data-driven empirical evaluation.

39
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3.1 Multiplex Model

As further elaborated upon in Chapter 2, a multiplex network is one where multiple

connections exist between the same entities yet a different set of edges exists for a node in

each layer [55]. In this dissertation, we will use a simple graph-based model of a multiplex

graph M, which can be defined as an ensemble of m graphs, each corresponding to an

interaction type, and therefore representing a layer in the multiplex graph. The α-th

layer of the multiplex is indicated as Gα
(V α,Eα

). Therefore, the collection of graphs

composing the M -layer graph can be denoted as:

M = {G1
(V 1,E1

), ...,Gα
(V α,Eα

), ...,GM
(V m,Em

)} (3.1)

An adjacency matrix Aα is associated with each graph Gα
(V α,Eα

) representing the layer

α of the multiplex. Therefore, M can also be described with a sequence of adjacency

matrices A = [A1, ...,Aα, ...,AM]. We denote by aαij the element of the matrix Aα at layer

α representing the link between nodes i and j on that layer.

3.1.1 Global Multiplex Degree

Following from the definition of a multiplex model and similar approaches to multiplex

degrees described in Chapter 2, we can also define the multiplex neighbourhood of a node

i as the union of its neighbourhoods on each network layer:

NM(i) = {Nα(i)⋃Nβ(i)...⋃Nm(i)} (3.2)

where Nα(i) is the neighbourhood of nodes to which node i is connected on layer α.

The cardinality of this set can be considered as the node’s global multiplex degree, or, in

other words, the total number of neighbours with which a node has exchanges in any of

the layers:

kglob(i) = ∣NM(i)∣ (3.3)

As described in more detail in Chapter 2, there are many possible combinations of layers

to compute a node’s degree in a multilayer network. In this initial analysis, we opt for

the simplest version of a weighted degree which combines the layer weights of each edge

linearly and under the assumption that they all add equally to the multiplex (although

more analysis will be needed to assess this assumption). We can compute the weighted

global degree of a node i as:
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kglobw (i) =

∑

j∈NM(i)
∑

G∈M
eji

n ∗m
(3.4)

where for each neighbour in the multilayer neighbourhood NM(i), we sum the number of

of graph layers on which the edge appears and normalise by the total number of edges

possible in the multiplex. We only consider bidirectional edges because the global degree

is ultimately a measure of tie strength. This is common practice in contexts where tie

strength is of importance such as in social networks [99]. We then normalise the weighted

global degree by the number of possible edges n∗m, where n is the total number of nodes

and m is the number of networks in the multiplex collection.

3.1.2 Community Multiplexity Index

Networks are powerful representations of complex systems with a large degree of interde-

pendence. However, in many such systems the network representing it naturally partitions

into communities composed of nodes that share dependencies between each other, but

share fewer with other components. We formalise this idea as the community multiplexity

index of a pair of nodes (i, j):

cmi(i, j) = ∑

G∈M
δ(cGi , c

G
j ) (3.5)

where ci, cj are discrete variables indexing the clusters of which node i, j are members

respectively. If the two are equivalent for a given network G, the level of community mul-

tiplexity increases by one, represented by the Kronecker delta function, which evaluates

membership equivalency of the two nodes.

Prior work has explored information similarity in terms of community structure between

layers [12, 90] and many novel ways of community detection in multilayer networks [52,

129, 147]. Although we use a community detection approach on each layer separately, our

goal is not to obtain community clusters of countries in the multiplex but to observe the

strength of connectivity between countries across layers as a measure of their similarity

in order to build a proxy for exploring the socioeconomic similarity of pairs of countries.

3.2 Data

The network data used to demonstrate the above model and metrics consists of six layers

of physical and digital interactions between 196 countries. Most of the data is openly

available from the specified sources below apart from the international postal network,

which is used as part of this thesis for the first time and described in further detail here.
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Figure 3.1: Postal volume

3.2.1 The International Postal Network

Although postal flows are understood to follow a gravity model [4], where flows between

countries are dictated by volume and distance, similar to other networks describing flows,

little is understood about the network properties of the postal network and how they

relate to those of other global flow networks. The International Postal Network (IPN) is

constructed using electronic data records of origin and destination for individual items

sent between countries collected by the Universal Postal Union (UPU) since 2010 until

present. Items are recorded on a daily basis amounting to nearly 14 million records of

items sent between countries. As one of the most developed communication networks on

a global scale, it is a dense network with 201 countries and autonomous areas, and 23,000

postal connections between them, with 64% of all possible postal connections established.

The global volume of post has seasonal peaks observable in Fig. 3.1a. Notably, since

2010 postal activity is on the rise and this can be accounted for by the parallel growth

of e-commerce [183]. This growth also positions postal flows as a sustainable indicator of

socioeconomic activity.

In terms of daily activity, we can observe the mean relative number of daily items sent and

received by countries during the period in Fig. 3.1b. This can be highly dependent on the

size of the population of a country so these interactions have been normalised the volume

per country’s population. The annual population statistics provided by the World Bank

and collected by the United Nations Population Division have been used for this purpose.

From the distribution of volume, it becomes clear that the majority of countries send and

receive a similar amount of post per capita, however, with a number of exceptions on both

ends where a few countries send and receive exceptionally low or high number of items.

Next we can observe the degree distributions of both the weighted and unweighted global

postal graphs shown in Fig. 3.2, as the complementary cumulative probability function
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Figure 3.2: International Postal Network degree distributions

(CCDF). In Fig. 3.2a, we can see that the in and out degrees are relatively balanced

in both instances and that about 50% of countries have more than 100 postal partners.

The weighted degree in Fig. 3.2b follows a similar pattern but includes the weight of

connections in the graph. The network is weighted by summing the total annual volumes

of directed flow between two countries, averaged over years and normalised over the

population of the country of origin. It is then further normalised by the maximum weight

in the network, resulting in a value between 0 and 1, allowing for the comparison of

values between networks. The weighted adjacency matrix of the top quartile of countries

in terms of degree can be seen in Fig. 3.3 with the US and UK having the largest numbers

of postal partners. Prominent postal network countries have relatively high interaction

with most of their partners, including interactions with lower ranked countries. This is

related to the degree assortativity (discussed in Section 2.2.4) within the postal network,

elaborated upon in the following section.

3.2.2 Other global flow networks

This work builds upon previous efforts using global flow networks to present novel data

sources for international development efforts and to demonstrate a holistic view of several

distinct flow networks. We consider five networks, which have been previously studied

independently, along with the IPN. We will now describe these networks and compare

their properties in the following section.

The World Trade Network The trade network is constructed from records main-

tained by the UN Statistics Division in the Comtrade Database and provided by the MIT

Atlas Project. It contains the number and value of products traded between countries

classified by commodity class.
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Figure 3.3: Matrix of the intensity of connections between countries based on the number of

items exchanged (higher is darker); axes are ordered by the country’s unweighted postal degree

(its number of postal partners); only countries with more than 120 postal partners are

displayed.

The Global Migration Network This is compiled from bilateral flows between 196

countries as estimated from sequential stock tables. It captures the number of people

who changed their country of residence over a five-year period. This reflects migration

transitions and not short term movements and is provided by the Global Migration Project.
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The International Flights Network The flights data is collected by 191 national civil

aviation administrations and compiled by the International Civil Aviation Organisation

(ICAO). These tables detail, for all commercial passenger and freight flights, the country

of origin and destination and the number of flights between them [81].

The IP Traceroute Network This city to city geocoded dataset is built from tracer-

outes in the form of directed IP to IP edges collected in a crowdsourced fashion by volun-

teers through the DIMES Project [167]. The project relies on data from volunteers who

have installed the measurement software which collects origin, destination and number

of IP level edges which were discovered daily. We aggregate this data on a country to

country basis and use it to construct an undirected Internet topology network, weighted

by the number of IPs discovered and normalised by population.

The Social Media Density Network Constructed from aggregated digital communi-

cation data from the Mesh of Civilizations project, where Twitter and Yahoo email data

are combined to produce an openly available density measure of the strength of digital

communication between nations [172]. This measure is normalised by the number of In-

ternet users in each country and thus is well aligned with the other networks we use. It

also blends data from two distinct sources and thus provides greater independence from

service bias. We build an undirected network from this data where only bidirectional

edges in the two platforms are considered.

Global Wellbeing Indicators In the following analysis we compare the above net-

works and use multiplexity theory to extract knowledge about the strength of connec-

tivity across them. We distinguish between single layer and multiplex measures, which

allows us to observe to a deeper extent the international relationships and the potential

for using global flow networks to estimate the wellbeing of countries in terms of a number

of socioeconomic indicators summarised in Table 3.1. These indicators are widely-used

global benchmarks for the health and wellbeing of countries and have been compiled

from a number of organisations and agencies concerned with the measurement of global

conditions.

3.3 Comparing Multiple Networks

Although each of the five networks previously described, apart from the International

Postal Network (IPN), has been studied separately, there has not been a comparative

analysis of all. In Table 3.2, the network properties of all six networks are listed sepa-

rately. The number of nodes or countries exceeds 195(6) due to differing lists of mem-

ber states providing statistics to each authority. Although weights are distinct for each
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Abbreviated Full name Description Source

GDP

Aggregate measure of

Gross Domestic Product production on a The World Bank

on a per capita basis

LifeExp

Life Expectancy Life expectancy since

birth in years The World Bank

CPI

Perceived levels of corruption,

Corruption Perception Index as determined by expert Transparency International

assessments and opinion surveys

Happiness

Survey of the state

Happiness Score of global happiness perceptions Gallup World Poll

Gini.Idx

Income

Gini Index inequality on a The World Bank

national level

ECI

Holistic measure of The Observatory

Economic Complexity Index the production characteristics of Economic Complexity

of large economic systems

LitRate

Percent of adult population

Adult Literacy Rate who are literate UNESCO

PovRate

Percent of population

Poverty Rate living bellow national poverty The World Bank

threshold

EdRate

Percent of population

Education Rate who have completed The World Bank

primary school

CO2

Carbon dioxide Carbon Dioxide Information

Emissions of carbon dioxide in billions of metric tonnes Analysis Center

per capita

FxPhone

Percent of population

Fixed Phone Rate living in households with Int Telecommunication Union

a fixed phone line

Inet

Percent of population

Internet penetration who have accessed Int Telecommunication Union

the Internet in the past 12 months

Mobile

Percent of population

Mobile cellular subscriptions who have a mobile cellular Int Telecommunication Union

subscription

HDI

Composite statistic of life expectancy,

Human Development Index education, and income UNDP

per capita indicators

Table 3.1: Description and source of the fourteen global indicators.

network weight years ∣V∣ ∣E∣ < k > assort d cc

Post postal items 2010 – 15 201 22,280 110.85 -0.26 0.55 0.79

Trade export value 2007 – 12 228 30,235 132.6 -0.39 0.58 0.84

Migration migrants 2005 – 10 193 11,431 59.22 -0.33 0.31 0.68

Flights flights 2010 – 15 223 6,425 28.81 -0.1 0.13 0.49

IP IPs 2007 – 11 225 9,717 43.19 -0.42 0.19 0.6

SM density 2009 147 10,667 145.13 -0.02 0.98 0.99

Table 3.2: Network Properties: number of nodes, number of edges, average (out) degree, degree

assortativity, network density, average clustering coefficient

network, they always represent a volume of flow between areas. While there are small

discrepancies between the years of each network, most networks cover a five year period,

with the exception of the Social Media network which is from a single year. The volume of

interaction between two countries is averaged over the number of years for each network.

All networks are weighted by normalising the raw volume of interaction described above

by the population of each respective country of origin and rescaling all weights across net-

works within the same range [0,1] by dividing by the maximal weight, as we did for the
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Figure 3.4: Comparative analysis of the IPN and other networks in terms of Jaccard overlap, percent

shared edges, edge weight correlation and in and out degree correlations.

postal network in the previous section. The number of ip traceroutes originating in coun-

tries with higher population is higher in the city to city edge dataset from DIMES due to

the crowdsourced nature of the project. Although, perhaps more appropriate normalisa-

tions may exist in an independent study, in order for the weights to be comparable across

networks in the present research they are all normalised by population of the country.

The average out degree for each directed network is computed in a standard way as for

the postal network, as well as the degree assortativity (Pearson correlation between the

degrees of all pairs of connected countries), the network density and clustering coefficient.

The assortativity coefficient determines to what extent nodes in the network have mixing

patterns that are determined by their degree. Positive assortativity means that nodes

with high degree tend to connect to other nodes with high degree, whereas a negative

assortativity means that nodes with high degree tend to connect with others with lower

degree, which is the case for all of the six networks as seen in Table 3.2. Although all

networks differ in size and average degree, they have relatively high clustering coefficients,
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reflecting a general tendency for countries to cluster together in global networks. This

clustering however is not based on the importance of a node (its degree) since the assorta-

tivity coefficients for all networks are low or negative, suggesting that global networks are

dissassortative and therefore higher degree nodes tend to connect to lower degree nodes.

Fig. 3.4 presents a comparative analysis between the six networks. They are referred to for

short as: post, trade, ip, mig, sm and fly. The Jaccard coefficient, described as the number

of edges that exist on both networks is divided over the number of edges that exist in any

of the two networks, is used to compute the overlap of edges between pairs of networks

in Fig. 3.4a. The highest Jaccard overlap is between the postal and trade networks, the

two densest networks. The rest of the networks however are not strongly overlapping

in terms of edges, which implies that each distinct network layer provides a non-trivial

and complementary view of how countries connect. Nevertheless, the Spearman rank

correlation between weighted edges in Fig. 3.4b reveals that the volume of flow of goods,

people, and information is correlated for those edges between countries, which exist on

both networks. A notable exception is the digital communications network (sm), which

is entirely uncorrelated with any other network. This means that countries likely connect

in unexpected ways on social media and email.

When considering the degree of a country as an indicator of its position in the network,

we find that there are high correlations between the in and out positions of countries in

Fig. 3.4c and Fig. 3.4d. Although to a lesser extent, the social media network is also

correlated with the rest, despite its lower Jaccard overlap with other networks.

3.4 Approximating Indicators With Global Networks

In this section the networks discussed previously are compared to the values of the so-

cioeconomic indicators in Table 3.1, with the goal of using network theory to approximate

such difficult to obtain indicators. The network degree is computed for each of the six net-

works, defined as the sum of the neighbours for both incoming and outgoing connections

where directed. This reflects how well connected a country is in a particular network.

The weighted incoming and outgoing degrees on each network are also computed, defined

as the sum of the normalised flows from all neighbours and reflecting the volume of in-

coming and outgoing flows. In addition to these standard single-layer network metrics,

the previously defined global degree of a country, which takes into account connectivity

across all networks is computed. A plot of the cumulative degree distribution of both the

weighted and unweighted global degrees can be seen in Fig. 3.5.

The average global degree is 110 and the average global weighted degree is 250, which

means that each country connects with an average of 110 other countries through two or

more layers. In terms of unweighted degree (number of unique connections globally in the

multiplex) in Fig. 3.5a, we notice a substantial curvature, indicative of the moderately
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Figure 3.5: CCDF of weighted and unweighted global multiplex degrees.

stable degree approaching 102 but a sudden decline after, indicative of the few countries

10−0.5(32%) having a degree higher than 130. A steeper decline can be observed in the

weighted distribution in Fig. 3.5b, where the majority of countries have a weighted degree

of 0.25 or less (10−0.6), signifying that they have realised 25% or less of their connectivity

in the global multiplex. Although many empirical measurements of networks are noted

to follow a power law distribution, this appears as a straight line in a log-log degree

distribution plot, which is clearly not the case in the data. However, what is apparent is

that the distribution is right-skewed, with a small number of countries being observed to

have high global degrees.

Fig. 3.6 shows the Spearman rank correlation between the network degrees of the six

networks (in and out degree, and weighted in and out degree) and various socio-economic

indicators: GDP, Life expectancy, Corruption Perception Index (CPI), Internet pene-

tration rate, Happiness index, Gini index, Economic Complexity Index (ECI), Literacy,

Poverty, CO2 emissions, Fixed phone line coverage, Mobile phone users, and the Hu-

man Development Index. These indicators and their significance for the international

development agenda are described in detail in Table 3.1.

All degrees of single networks and the global degree appear vertically in Fig. 3.6 and

all indicators appear horizontally. In general, weighted outgoing degrees on the single

networks perform best for the post, trade, ip and flight networks. An exception from

the physical flow networks is the migration network, where the incoming migration de-

gree is more correlated with the various indicators. The best-performing degree, in terms

of consistently high performance across indicators is the global degree (for 7 out of all

indicators). This suggests that looking at how well connected a country is in the global

multiplex can be more indicative of its socioeconomic profile as a whole than looking at

single networks. The weighted global degree performs slightly worse in the Spearman

ranked correlations which emphasises the importance of structural properties of connec-
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Figure 3.6: Spearman rank correlations between global flow network degrees and socioeconomic

indicators.

tivity rather than aggregate annual flow volumes when it comes to international country

rankings. For example, a country may have few intense flow volume links but be overall

rather disconnected in the network. Although as an initial study the simplest degree

measures in multiplex networks as described in Chapter 2 were used here, future work

would benefit from a more fine-grained temporal analysis of weighted multiplex degree

measures where such data is available.

The GDP per capita and life expectancy are most correlated with the global degree,

closely followed by the postal, trade and ip weighed degrees. This shows a relationship

between national wealth and the flow of goods and information. The perception of cor-

ruption index (CPI) however, is most positively correlated with the out weighted degrees

of the postal and trade networks, followed by the ip network, similar to their relationship

with the happiness index. This signifies that less corrupt and happier countries have

greater outflows in those respects. On the other hand, the Gini Index of inequality is

distinctly most negatively correlated with the flight network, which means that countries

with greater inequality have less incoming and outgoing flight connections. The ECI

index is equally highly correlated with most network degrees, and especially the global

degree, trade, ip and post degrees. Literacy, Education and mobile phone users per capita

were more weakly correlated across than other indicators, which means that there may

be better predictor variables beyond the scope of this work for those indicators. Fixed
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Figure 3.7: Country community membership for each network.

phone line households, Internet penetration and CO2 emissions, however, are positively

correlated with the global degree, followed by the postal and ip degrees. This indicates

the importance of global connectivity across networks with respect to these factors.

Similarly to GDP, the rate of poverty of a country is best represented by the global

degree, followed by the postal degree. The negative correlation indicates that the more

impoverished a country is, the less well connected it is to the rest of the world. Finally,

one of the most strongly correlated indicators with the various degrees is the Human

Development Index (HDI), low human development (high rank) is most highly negatively

correlated with the global degree, followed by the postal, trade and ip degrees. This shows

that high human development (low rank) is associated with high global connectivity and

activity in terms of incoming and outgoing flows of information and goods.

3.5 Global Community Multiplexity Index

In the previous section, network measures were related to various socioeconomic indica-

tors, showing that metrics such as the network degree can be used to estimate wellbeing

at a national level. In this section, we further examine the connectedness between pairs of

countries through community structure across network layers as a form of socioeconomic

similarity. In the present context, communities are composed of groups of countries that

share higher connectivity than the rest of the network. If two countries appear in the same

community across many network layers, this can be considered a greater level of connec-

tivity and an indicator of greater socioeconomic similarity, otherwise not visible from the

single network perspective. We use the Louvain modularity optimisation method [20] for

community detection in each individual network (as described in Chapter 2), which takes

into account the tie strength of relationships between countries and finds the optimal

split in terms of disconnectedness in the international network. This returns between 4-6

communities for each network, the geographical distribution of which is shown in Fig. 3.7.
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Figure 3.8: Socioeconomic difference margin between countries who share communities in the global

flow networks.

Although communities naturally seem to be very driven by geography in physical flow

networks, this is not the case in digital networks where communities are geographically

dispersed. This is an indication of the difference in the way countries connect through post,

trade, migration and flights rather than on the IP and social media networks. However,

what does it mean for two countries to be both members of the same network community?

Common community membership indicates a level of connectedness between two coun-

tries, which is beyond the randomly expected for the network. It is often observed that

nodes in the same communities share many similar properties, therefore it can be expected

that pairs of nodes which share multiple communities across networks are even more sim-

ilar. Here, the overlap in pairwise membership between pairs of countries across the six

networks is measured as the community multiplexity index, a measure of socioeconomic

similarity.

The hypothesis is that countries that are paired together in communities across more

networks are more likely to be socioeconomically similar. Similarity is measured here as

the absolute difference between each indicator from the previous section for two countries

and plot that against their community multiplexity. For example, the United States has

an average life expectancy of 70 years, whereas Afghanistan has an average life expectancy

of 50, the absolute difference between the two is 20 which represents low similarity when

compared to the United Kingdom’s life expectancy of 72 for this indicator.

In Fig. 3.8, we can observe the variations in similarity for countries with different levels

of community multiplexity. What is immediately striking is that countries that share

a maximal number of communities and therefore exhibit the greatest community multi-

plexity, have the smallest margin of difference across all indicators. This suggests that

countries with high community multiplexity index have a more similar socioeconomic pro-

file than those with low community multiplexity index. This is confirmed by a two-sample

Kolmogorov-Smirnov (KS) test between the distributions of differences in each indicator
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for pairs sharing different numbers of communities. Although the KS statistic is lower be-

tween groups sharing 0 and 1 communities (apx. 0.1 for all indicators and p-value <0.01),

it is very high for groups between 1 and 6 communities (0.4 and above, p-value <0.01),

except for mobile phone penetration (detailed KS test results are presented in Table 3.3).

Indicator KS test p-value

GDP 0.44 4.441e-16

Gini Index 0.39 1.068e-12

Health (LifeExp) 0.4 6.42e-13

CPI 0.25 1.759e-05

Happiness 0.34 1.107e-09

ECI 0.37 4.151e-11

LitRate 0.33 1.015e-06

PovRate 0.46 5.762e-07

EdRate 0.27 1.013e-06

CO2 0.29 1.566e-08

FxPhone 0.4 3.896e-13

Inet 0.38 4.463e-14

Mobile 0.25 2.693e-06

HDI 0.48 2.2e-16

Table 3.3: Two-sample Kolmogorov-Smirnov test statistic results and p-values for socioeconomic

indicator differences between pairs of countries with minimal and maximal community multiplexity

values (1 and 6).

Further to this observation, in most indicators there is a very strong significance in the

level of community multiplexity - the higher the community multiplexity index between

two countries, the smaller the difference between their socioeconomic profiles. There are

notable exceptions to this such as the mobile phone penetration ratio, where it appears

that beyond the highest level of multiplexity, all other countries are relatively similar in

this aspect with low variation even for those pairs of countries which share no communities.

For all other indicators such as GDP, Literacy ratio, HDI and Internet penetration, there

is a dramatic increase in similarity past a community multiplexity of 3. Ultimately, these

similarities can be used to estimate the wellbeing of countries for which it is unknown but

can be estimated from its neighbours as suggested in this section but further analysis and

predictive modelling will be required to support this.

3.6 Related Work

Previous work has explored flows of both physical and digital nature, where physical

flows of goods and people [13, 1, 166, 85, 81, 112] and digital flows of information and

communication [157, 63, 182, 120, 172] have been extensively studied in the past in order

to understand better the way in which they affect the wealth, resilience and function
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of social systems on global, regional, national and sub-national scales. More recently,

these same data sources and methodologies have begun to be used to assist humanitarian

and development organisations, allowing new ways to use data to implement, monitor

and evaluate programs and policies [149]. The ability of such novel data sources to

complement traditional data collection techniques such as household surveys and focus

groups is clear [130]. The data is collected passively without the need for costly and

potentially dangerous active data collection, which also avoids inaccuracies due to human

error, bias [5] or dishonesty.

The use of data for development is still relatively nascent and questions remain over

the ability of such sources to measure or approximate metrics of interest. Invariably,

data sources such as social networking applications enjoy deeper penetration in developed

economies and rely on expensive technologies such as smart phones and robust commu-

nications infrastructure. It has been noted that measurements of human dynamics based

on such recent platforms can lead to strong biases [181], with worse implications for those

with limited access to these digital platforms. Nevertheless, there are a few notable uses of

urban transport data and CDRs for development applications. On the urban level, where

more detailed records of movement are available, deprivation can be predicted from the

flows of people through its transit system [168], the topic they tweet about, and its sen-

timent [153, 151]. Furthermore, evidence of social segregation can be found from such

data, where it has been noted that more deprived areas receive inflows of more diverse

origins than less deprived areas [101].

Closer to the international scope of this work, the authors in [169] explore the potential

of aggregated CDRs to predict poverty in countries where other sources of data might

be scarce at the cell tower level. Previous work has also attempted to use machine

learning methods on the city-level with similar data [171] and the authors in [121] explored

how top-up amounts reflect on poverty indicators. These methods however, have not

been demonstrated on a global level and would not be possible for every country due to

proprietary CDRs. Other creative ways of monitoring poverty have been proposed using

Night Time Light (NTL) measured from satellite imagery, where the levels of light have

been correlated with GDP [66]. This method is very coarse grained where sometimes

individual countries are difficult to tell apart and it might work for some regions better

than others. In this chapter, we have demonstrated an approach using open data from

international agencies and digital media to predict a number of crucial socioeconomic

indicators, from subjective wellbeing to inequality. Most importantly, we have shown

that a combination of these under the multiplex paradigm can provide a number of useful

proxies and reliable metrics for monitoring global wellbeing.
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3.7 Conclusions

The digital exhaust left by flows of physical and digital commodities provides a rich

measure of the nature, strength and significance of relationships between countries in the

global network. This chapter examined how these traces and their multilayer network

structure can reveal the socioeconomic profile of different countries. By measuring the

position of each country in the Trade, Postal, Migration, International Flights, IP and

Digital Communications networks, the potential to build proxies for a number of crucial

socioeconomic indicators such as GDP per capita and the Human Development Index

ranking along with twelve other indicators used as benchmarks of national well-being by

the United Nations and other international organisations was explored. In this context,

a global connectivity degree measure was proposed and evaluated, showing the utility of

multilayer analysis in light of international development challenges such as sustainability

and missing data.

We have observed how the network properties of global flows can approximate critical so-

cioeconomic indicators and how network communities formed across physical and digital

flow networks can reveal socioeconomic similarities. Real-time measurements of inter-

national flow networks can ultimately act as global monitors of wellbeing with positive

implications for international development efforts. Using knowledge about the way in

which countries interact through flows of goods, people and information, we can use the

principles of multiplexity theory to understand the strength of international ties and the

network communities they form.

Although these results do not provide insight into the cause of the socioeconomic cir-

cumstances of a country, one explanation is that network measures derived from global

flow networks are a proxy of socioeconomic activities and therefore highly correlated with

the explored indicators. It is an open question as to whether a highly central position in

the network leads to favourable socio-economic outcomes or vica-versa. The structural

connectedness of a country in the global network represents the number of opportunities

a country has to exchange goods, information and resources with our countries - the more

opportunities, the higher the exchange and therefore socioeconomic benefit. The follow-

ing chapter further explores the theory of multiplexity and its application to multilayer

interpersonal networks at small scale and online social networks at a larger scale.
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Chapter 4

Multiplexity and Tie Strength

In the previous chapter we observed how a simple multiplex framework can successfully

model international relations across layers of physical and digital interactions. In this

chapter we will further explore two types of multiplex aggregations, which will help us

formalise a multiplex weight for tie strength in social networks. We evaluate the measure

on the MIT Social Evolution dataset, where we will observe how different configurations

of the three layer multiplex of interactions between students can capture different rela-

tionships between them. In this way, we validate the theory of media multiplexity, which

states that pairs of people who communicate through a greater number of channels have

a closer relationship than those who communicate through a few.

This chapter takes two complementary approaches to tie strength, that of computational

social science and machine learning. While in the first set of experiments simple set

theory and probability shows the relationship between multiplexity and tie strength, the

second part leverages this to predict links in online social networks yet using the same

network model. By examining a number of classic link prediction features in the multilayer

context of two heterogeneous platforms - Twitter and Foursquare - and by introducing

two multilayer features, we predict links across the two as opposed to training and testing

on the same network. A framework of multilayer link prediction is defined and evaluated

on a two-layer dataset of Foursquare and Twitter across three cities with AUC scores of

up to 0.86. The multilayer features we introduce are shown to have greater predictive

power than single-layer features in the online social network “ecosystem”. Overall, this

chapter demonstrates the applications of generalisable multilayer network models using

different techniques applied to the online and offline social network context.

57
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Figure 4.1: Union and Intersection aggregations are shown on the right, where α indicates the layer; the

original networks/layers of the multiplex are shown on the left.

4.1 Multiplexity and Aggregations

As elaborated upon in Chapter 2, graph aggregations in multilayer networks have been a

popular approach to multilayer network analysis. In the context of social networks, where

each layer in the multiplex represents a different type of interaction between actors, various

aggregate configurations can reveal novel information about the strength and type of their

relationships.

Here, we build on the previously introduced graph-based model in Equation 3.1 and

consider two distinct configurations. The Union aggregation, which takes the union of all

edges in the multiplex represents the full multiplex connectivity between actors and can

be useful in problems such as information diffusion. The union is defined as Gα
⋃Gβ of

two graphs Gα and Gβ represented respectively by the adjacency matrices Aα and Aβ as

the graph described by the adjacency matrix Aα∪β with elements aα∪β = 1 if aαij = 1 or

aβij = 1, 0 otherwise.

On the other hand, the Intersection aggregation, which takes the intersection of all layers

in the multiplex. This perspective can be useful in considering problems related to re-

silience and reliability. The intersection is defined as Gα
⋂Gβ of two graphs Gα and Gβ

represented respectively by the adjacency matrices Aα and Aβ as the graph described by

the adjacency matrix Aα∩β with elements aα∩β = 1 if aαij = 1 and aβij = 1, 0 otherwise.

Given these definitions, the following two types of layer aggregations of the multiplexM

can be derived: the union graph ⋃M defined as

⋃

M
= G1

⋃G2 . . .⋃GM (4.1)

i.e., the graph aggregation in which an edge between two nodes is present if it is present

in at least one layer; and the intersection graph ⋂M defined as:
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⋂

M
= G1

⋂G2 . . .⋂GM (4.2)

i.e., the graph aggregation in which an edge between two nodes is present if it is present

in all the layers. Both the union and intersection aggregations are illustrated in Fig. 4.1.

The union aggregation is a graph configuration of the global connectivity and therefore,

the multilayer neighbourhood NM(i) can be used to describe the local ego-network of a

node as per Equation 3.2.

Similarly, the core neighbourhood of a node i can be defined in the intersection configura-

tion as:

NC(i) = {j ∈ VM ∶ ei,j ∈ E
α∩β

} (4.3)

where the set of multiplex links is defined as Eα∩β. We can further consider the set of

all single-layer links on layer α only as Eα/β. It is also worth noting that it is possible

to restrict this aggregation to a subset of graphs {α,β, γ, ...} and define, for example, the

union graph over the set of layers {α,β, γ, . . .} as the graph ⋃M,{α,β,γ,...} corresponding to

the union of the graphs of layers α,β, γ, . . .. The intersection graph aggregation over a

set of layers can be defined in a similar way.

4.1.1 Data

The open-access MIT Social Evolution dataset contains details of the everyday life of a

group of students between October 2008 and May 2009 [117]. These students co-reside

in two adjacent college residence buildings during term time. Details of their health

habits, political orientation, music preferences, social relationships (online and offline),

and mobile communication were collected during this period, allowing for a rich analysis

of the relationships between their characteristics, social ties and communication.

Communication Layers The multiplex interaction graph is built by combining differ-

ent communication layers. Three types of interactions can be extracted from the mobile

phone data - physical proximity data (whether pairs of users were within 10 meters of

each other, inferred from Bluetooth); phone call record data (who called whom); and SMS

data (who texted whom). Each of these communication layers is a network in its own

right (Table 4.1).

The degree distributions show that each communication layer is utilised to a different

extent and purpose (Fig. 4.2). While the proximity layer has a high average degree, the

other two layers have a low average degree in comparison, giving us initial insight into

the social dynamics of the student community - many students meet many others but
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network type avg degree nodes edges

calls directed 5.8 69 401

SMS directed 2.12 33 70

proximity undirected 61.2 74 4,526

Table 4.1: Network specifications. We take into account only interactions between students, ignoring

external ones in the dataset.
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Figure 4.2: Degree distributions for the call, SMS and proximity networks. In-degree is in light, while

out-degree is in dark (proximity is undirected).

few talk to many on the phone or text. The three layers complement each other, and

in combination represent three basic communication channels of human interactions -

spending time together, talking on the phone and sending messages.

If we denote the set of edges in the proximity layer as P , the call layer as C and the SMS

layer as S, the relationship between the three communication layers can be described as

S ⊂ C ⊂ P , meaning that all participants have been co-located with another participant

and are part of the proximity layer but not all have called or sent a text message to

another participant. This is because the proximity layer is prevalent, likely due to the

fact that all students are co-residing and possibly have lectures together. All pairs with a

call edge or a SMS edge also have a proximity edge. Incidentally, almost all pairs with a

SMS edge also have a call edge (92% overlap), which may not be generalisable to the case

of other communication networks. Overall, the density of the student network is such

that 83% of all nodes are connected on at least one layer - the proximity layer.

Social Relationships Social relationships reported by the participants form the ground

truth for the social tie analysis. Details of data collection methodology are described

in [117]. Three types of reported social relationships are considered: Facebook friendship,

Socialising twice per week, and Close friendship. The relationships are not mutually

exclusive. We consider a pair to have a given relationship if i has declared that relationship

with j in at least half of the six surveys during that time period (reports were given

approximately every month and a half). We allow these relationships to be directed

and not just reciprocal. For example, if i calls, sends messages to and meets with j
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category parameters range summary avg SD

political
interest in politics 0-3 tmax 1.67 1.00

political orientation 1-7 tmax 5.34 1.31

health

weight(lb) min 81.00 - max 330.00 tavg 157.5 41.34

height(in) min 60.00 - max 81.00 tavg 67.4 4.14

salads per week min 0.00 - max 6.00 tavg 1.46 1.43

fruits per day min 0.00 - max 7.00 tavg 2.12 1.45

aerobics per week(days) min 0.00 - max 7.00 tavg 1.91 1.9

sports per week(days) min 0.00 - max 6.00 tavg 0.89 1.5

music

indie/alternative rock 0-3 tmax 1.75 1.17

techno/lounge/electronic 0-3 tmax 1.34 1.09

heavy metal/hardcore 0-3 tmax 1.01 1.1

classic rock 0-3 tmax 1.84 1.1

pop/top 40 0-3 tmax 1.23 1.08

hip-hop r&b 0-3 tmax 0.75 0.86

jazz 0-3 tmax 1.19 1.03

classical 0-3 tmax 1.76 1.09

country/folk 0-3 tmax 0.84 0.96

showtunes 0-3 tmax 1.25 1.14

other 0-3 tmax 1.25 1.23

situational
year in college 1-5 actual 2.5 1.37

residential sector 1-8 actual 4.9 2.16

Table 4.2: Survey parameters and summary over time. Three types of summary are considered over

time: tmax when the final reported value is taken in the final survey of the study, tavg is the average of

all reported values and actual is when the actual value is reported.

(full connectivity in the multiplex), and considers him a close friend (maximal social

relationship), however j does not reciprocate the relationship or communication (minimal

connectivity and social relationship reported), j is still considered a close friend of i

according to our definition because i treats him as such.

The set of reported close friendships edges can be denoted as CF , the set of those who

reported socialising as SC, and the set of Facebook friendships as FB, then the relation-

ship between the three can be described as CF ⊂ SC ⊂ FB. This signifies that all close

friends socialise and are Facebook friends, but not all Facebook friends socialise and are

close friends.We assign the highest subset (most inclusive) set to a pair, so pairs have a

single definitive social relationship for the purpose of our analysis. Overall, we have 2,179

directed pairs who have not declared any social relationship; 1,299 who are only friends on

Facebook but do not socialise regularly; 586 who do socialise twice per week but are not

close friends, and 462 pairs of close friends. If we split relationships according to online

and offline presence, we can state that all social relationships have online presence in the

form of Facebook friendship (all 2,347), while all non-declared social relationships do not

(all 2,179).
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User Profiles From survey data collected periodically over the study period, there is

additional information about the participants - health, political and music preferences,

as well as their residential sector and year of study. We summarise the information from

each category to create a composite view of a participant’s attitude. Table 4.2 contains a

description of this data, further elaborated upon next.

• Political. Information about the participants’ political sentiments around the 2008

presidential election. This information includes the participant’s level of political

interest ranging from Very interested - 3, Somewhat interested - 2, and Slightly

interested - 1 to Not at all interested - 0 ; and political orientation from Extremely

liberal - 7, Liberal - 6, Slightly liberal - 5, Moderate middle of the road - 4, Slightly

conservative - 3, and Conservative - 2 to Extremely conservative - 1. The liberal

to conservative scale is fairly fine grained and could be independent from a political

party. On average, participants reported they are Slightly liberal to Liberal. Since

the political orientation can evolve over time and may be affected by the election

period as was reported in [118], the value of these parameters is reported at the end

of the observation period for all students, denoted by tmax.

• Health. The average of the weight, height, salads and fruits, and aerobics and

sports per week allowed us to build a comprehensive health profile for each user.

An average (tavg) over the survey period is used to give a single value for each

attribute, and gain an understanding of the overall health habits of each student.

Previous studies on this dataset found that tie formation was strongly dependent

on health factors such as aerobic exercise and other campus activities [59].

• Music. We use the self-reported interest in each genre to build a music profile for

each student. There are 11 different genres to which users have attached a preference

ranging between No interest - 0, Slight interest - 1, Moderate interest - 2 to High

interest - 3. The most popular genre is “classic rock” with an average rating of 1.84

and the least popular one is “hip-hop and r&b” with an average rating of 0.75. The

association between homophily and music has been notably drawn in [122], where

music types were found to create niches in socio-demographic segments of society.

• Situational. We have information about the residential sector (floor and building,

where there are two buildings separated by a firewall only) and the college year of

each student during the academic year. We coded each sector from 1 to 8 according

to location and adjacency to each other. For example, sectors 1 and 2 are on the

same floor, separated by a firewall, sector 3 is in the same building as sector 4 but

one floor up, while sector 5 is adjacent to it and so on. In terms of year in college,

students are either a Freshman - 1, Sophomore - 2, Junior - 3, Senior - 4 or a

Graduate Resident Tutor - 5. These situational factors have been previously found

to be highly indicative of a social tie [59].
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Figure 4.3: Probability mass function P (X = x) for each declared relationship x within each graph

aggregation. None (None) means there was no declared relationship in the directed pair; Facebook Only

(FB) means that there was only a Facebook friendship declared between the pair; Socialise (SC) means

that the pair declared they socialise twice per week in addition to being friends on Facebook; and Close

Friends (CF) means that there was a declared close friendship in addition to all other social

relationships.

4.1.2 Multiplex Social Ties

In media multiplexity, the use of many different media as a means of communication in-

dicates a strong tie [83]. Here, the strength of online and offline ties will be examined by

considering the multiplexity of communication between students. Due to the relationships

between the layers (denoted as S: SMS, C: calls, and P : proximity) being S ⊂ C ⊂ P ,

there exist four possible non-redundant aggregations: (1) proximity layer only, which in-

cludes edges present only on the proximity layer and no other layer; (2) proximity⋂ calls,

where we have those edges present on both the proximity and call layer (equivalent to

set C); (3) proximity⋃ calls⋃SMS, or the union of all layers (all pairs on any layer);

and (4) proximity⋂ calls⋂SMS, or the intersection of all layers (only pairs on all lay-

ers, equivalent to set S). Each of these configurations represent a different set of pairs

according to their structural overlap in the multiplex network.

In Fig. 4.3, the probability of each of the three social relationships (and that of having

no relationship) are compared within each of the aggregations described above. For each

one, the probability of having a given social tie is measured as the probability density

function (PDF) of a variable. Overall, it can be observed that single-layer communication

is indicative of no relationship or an online social tie. As the number of layers increases

to two, the probability of having no tie decreases dramatically, while the probability of

having a stronger offline tie increases. At the highest level of multiplexity, which in this

case is three layers, the highest probability of friendship exists. This is aligned with

previous studies of media multiplexity, and demonstrates the same principle with just a

few mobile communication layers.

Most strikingly, the highest probability of close friendship (P = 0.75) occurs at the in-

tersection of the three layers (intersection all in Fig. 4.3). In this aggregation, all other

social ties are underrepresented, highlighting the relationship between high multiplexity

and strong ties (close friendship). The union and proximity only aggregations reflect the

probability of having no social relationship (P = 0.5), and also of being Facebook friends
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only (P = 0.3). The intersection between the proximity and call layers on the other hand

(proximity⋂ calls), gives a more balanced representation of the different relationships

with a 0.5 probability of close friendship, a 0.23 probability of socialising twice per week,

and a 0.17 probability of being friends only on Facebook. The total probability of be-

ing friends on Facebook if two students have met during the period is defined by the

total probability of a social tie, since all social ties (all relationships except “None”) are

also present on Facebook. This gives a 0.5 probability of being friends online if the pair

is connected on one layer (in our context the proximity layer), 0.9 if connected on two

(proximity and calls), and with certainty if connected on all layers.

Given the above observations, it can be concluded that the more communication channels

utilised, the stronger the tie, and that the level of multiplexity is a good indicator of tie

strength. If the number of layers is considered as an indicator of tie strength, the strength

of a tie can be described in terms of a multiplex edge weight in the network as:

mwij =
M

∑

α=1

aαij
M

(4.4)

where M is the total number of layers in the multiplex, α is the layer in the multiplex as

per Equation 3.1 and a is the edge weight in the adjacency matrix A. For example, if two

students (i and j) utilise all possible channels for communication (in this case M = 3),

mwij will be equal to 1, whereas if they use one channel, mwij will be 1/3 .

4.1.3 Homophily and Multiplexity

In this section, the homogeneity and homophily in the community as it relates to multiplex

tie strength will be examined where politics, music, health habits, residential sector and

year in college will be considered as diversity factors. Diversity in this context defines the

variety of information introduced by ties as opposed to homogeneity. Based on Fischer’s

observation that greater multiplexity results in greater similarity [70], it can be expected

that on both the edge and neighbourhood network levels, the more communication chan-

nels utilised, the greater the similarity observed with respect to politics, health, music and

residence & year in college.

Profile Similarity & Multiplexity With the presumption that individuals with stronger

(multiplex) ties bear greater similarity, the similarity between student profiles are com-

pared to the strength of their multiplex relationship as defined by the multiplex weight

(mw). The similarity scores between students are derived using the cosine similarity of

the vector of attributes for each category - music, health, political, and situational for each

pair of students. These values are described in detail in Table 4.2. As an example, if two

students are both Somewhat interested in politics (value = 2), and one is Slightly liberal
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Figure 4.4: Spearman degree rank correlations (ρ) between similarity and multiplex network. (a)

political ρ = 0.78 (b) health ρ = 0.79 (c) music ρ = 0.81 (d) situational ρ = 0.73, all p-values < 0.01.

(value = 5), while the other is Slightly conservative (value = 3), their cosine similarity

(sim = 0.98) would be higher than a pair of students with the same political orientations

but where one student is Not at all interested (value = 0) and the other is Very interested

(value = 3, sim = 0.7). Each category has a different number and range of attributes,

and the similarity scores vary accordingly, however the magnitude is consistent and allows

for graph correlation analysis, as described next.

To find the relationship between the multiplexity (mwij) and the profile similarity of

two individuals, a standard matrix correlation coefficient is used. Given two generic

graphs represented by the NxN weighted adjacency matrices Aa and Ab, the correlation

coefficient per node Ci can be defined as follows:

Ci =

N

∑

j=1
wai,jw

b
i,j

√
N

∑

j=1
wai,j

N

∑

j=1
wbi,j

(4.5)

where wai,j represents the multiplex weight between a pair of nodes in layer a. From the

definition of the correlation coefficient per node, the graph correlation coefficient which

measures the correlation between the two weighted matrices can be derived as follows:

C(Aa,Ab) =

N

∑

i
Ci

N
(4.6)
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political music health situational

0.6** 0.49* 0.6** 0.56*

Table 4.3: Graph correlations between multiplex weight and each similarity score, p-value < 0.001 **,

0.01 *.

which is essentially the average correlation coefficient for all nodes. The graph correlations

are calculated between the adjacency matrix of the multiplex and that of the pairwise

similarity per category. In essence, each mwij is compared with its correspondent simi-

larity weight, and then the average for the whole graph is taken (see Table 4.3). We find

that there is a significant positive relationship between the multiplex edge weights and

the similarity across categories.

The highest correlations are with the political and health factors (C = 0.6 for both),

signifying that these are most closely related to the multiplex tie strength, followed by

situational factors (C = 0.56), and music (C = 0.49). This means that multiplex ties tend

to be observed in conjunction with high profile similarity.

Next, the Spearman rank degree correlations are computed between the weighted multi-

plex degree and weighted similarity degree of each node and the effects on a neighbourhood

level are observed in Fig. 4.4. Those nodes with a high similarity degree also have a high

multiplexity degree in consistence with the graph correlations on a per edge basis. This

signifies that students who have more multiplex ties are also more similar to their neigh-

bours than less popular ones in terms of degree rank. From the correlations on a per edge

level, along with correlations on the neighbourhood level, it can be confirmed that the

greater the multiplexity, the greater the similarity observed across categories.

Homophily & Multiplexity Homophily is a network phenomenon, which is distinct

from homogeneity in that it implies the occurrence of non-random similarity in pairs of

connected nodes whereas homogeneity is simply similarity between pairs. The presence or

absence of homophily in the student community can be measured as a function of network

distance and profile similarity. Here, distance is defined as the standard weighted network

distance. The network is weighted using the multiplex weight mwij. The distance is then

equivalent to the shortest path between two nodes in the network. A distance of 0 is

indicative of full connectivity in the multiplex. This means that the pair is connected on

all three layers. Direct connectivity of one hop exists up to a multiplex weight of 0.2,

where weights are normalised in the range 0-1. A distance of 1 represents a non-existent

path between two nodes.

With the expectation that individuals at a shorter distance in the multiplex network are

more similar than those further away, the conditional probability of the similarity between

pairs of connected students given a specific network distance, is measured as shown in

Fig. 4.5. At first glance, we can distinguish between the top graphs (4.5a and 4.5b)
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Figure 4.5: Conditional probability of similarity given a certain network distance (P (x∣y)) in terms of

multiplex weighted shortest path. We consider the entire multiplex networks, where the maximum

distance was 0.9, and 1 is where no path exists between two nodes.

as having consistently high probability of high similarity over distance, and the bottom

graphs (4.5c and 4.5d) as having a diagonal distribution of high probability, with high

similarity probability decreasing over distance.

The first two figures show an overall homogeneity in terms of political and health factors.

At a distance of 1 (non-connected nodes), the probability of high similarity is still high,

indicating that two nodes with high multiplexity and high similarity in these categories

could be connected at random. High homogeneity can be expected in the study, given

that students are co-residing and share the same context.

On the other hand, homophily exists where there is non-random similarity between in-

dividuals with shorter multiplex distance. This is most evident in subfigure 4.5c - music

preferences, where there is a clear shift in high probability from top left to low right as

distance increases. This means that those pairs at a short distance in the network, are

also highly likely to have a similar taste in music (sim = 0.9, where dist = 0), whereas

those pairs who are further from each other in the network have a lower similarity in
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music taste. For unconnected pairs, the similarity is especially low (near 0), indicating

that edges in the network with respect to music are non-random and highly dependent

on musical preferences.

Fig. 4.5d on the other hand shows an interesting divide between low and high similarities.

Most pairs are grouped into very high or very low similarity, and appear at the top row

and bottom row of the graph. Therefore, students tend to be either in the same year and

floor or in different years and different floors, which may be as a result of room allocation

according to year. There is a high chance (P = 0.7) that those who live and study together

(sim = 1), also have a highly multiplex tie, represented by the distinguishable top left tile

at position (0,1), and less so for those who live further apart and/or are in a different

year.

Despite the community being highly homogeneous in political and health aspects, the

shorter the distance in the multiplex network, the greater the similarity between two nodes

in the music and situational categories, which is indicative of homophily. In conclusion,

a multilayer approach to social network tie strength and homophily can be beneficial to

understanding the social dynamics of a student community. In the following section, we

will show that the concept of multiplexity can also be useful in online social network

link prediction, demonstrating that multilayer frameworks can be a useful tool for social

bootstrapping and friend recommendations due their comprehensive perspective on the

online social “ecosystem”.

4.2 Link Prediction in Geo-Social Multiplex Networks

Link prediction systems are key components of social networking services due to their

practical applicability to friend recommendations and social network bootstrapping, as

well as to understanding the link generation process. Link prediction is a well-studied

problem, explored in the context of both OSNs and location-based social networks (LB-

SNs) [106, 125, 47, 165]. However, only very few link prediction works tackle multiple

networks [103, 178, 156, 199], while most link prediction systems only employ features

internal to the network under prediction, without considering additional link information

from other OSNs. In this chapter, we will examine the problem of link prediction in light

of a multilayer approach and set the prediction task across the geographical and social

layers of two distinct and heterogeneous platforms.

4.2.1 A Multilayer Approach to Online Ties

In the online social “ecosystem”, while each platform can be explored separately as a

network in its own right, this does not capture the dimensionality of online social life,

which spans across many different platforms. Fig. 4.6a illustrates the concept by showing
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Figure 4.6: Multilayer model of OSNs with different link types: I. Multiplex link; II. Single-layer link on

Gα; and III. Single-layer link on Gβ .

how two graphs Gα and Gβ are coupled by common members, while some links may be

present or absent across the two graphs. As this represents the general case of online

social networks, members need not be present at all layers and the multilayer network is

not limited to two layers.

Fig. 4.6b illustrates three link types for the case of a two layer network. Firstly, a multiplex

link between two nodes i and j can be defined as a link that exists between them at least

in two layers α,β ∈ M. Second, a single-layer link between two nodes i and j exists

if the link appears only in one layer in the multilayer social network. In systems with

more layers, multiplexity can take on a value depending on how many layers the link is

present on as demonstrated in the previous section of this chapter and Chapter 3. Since

the multiplex model is applied to online social media here, the number of layers can be

expected to remain in the single digits due to cognitive limits in human interaction [86].

This will ensure that with each additional layer, the value of link between two individuals

increases and information is added to their tie strength [84].

At the beginning of the chapter, we introduced two aggregations of the multiplex graph

in Equation 4.3 for the core neighbourhood and in Equation 3.2 in Chapter 3 for the

union or global neighbourhood. This simple formulation allows for powerful extensions

of existing metrics of neighbourhood similarity, widely used for link prediction in online

social networks. The Jaccard similarity of two users i and j’s global neighbourhoods can

now be defined as:

jaccglob(i, j) =
∣NM(i)⋂NM(j)∣

∣NM(i)⋃NM(j)∣
(4.7)

where the number of common friends is divided by the number of total friends of i and

j. The same can be done for the core neighbourhood NC of two users.
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The Adamic/Adar index for link likelihood [2], which takes into account the overlap of

two neighbourhoods based on the popularity of common friends (originally through web

pages) has been a popular link prediction feature in a single-layer network. It can be

extended to the multilayer context through our definition of neighbourhoods as:

aa simglob = ∑

z∈NM(i)⋂NM(j)

1

log(∣NM(z)∣)
(4.8)

where it is applied to the global common neighbours between two nodes but can be equally

applied to their core neighbourhoods. Both the Jaccard similarity and the Adamic/Adar

index have been shown to be effective in solving the link prediction problem in both

social and location-based networks [106, 165]. We have extended these and apply them

to the multilayer domain to predict online social links across and between Twitter and

Foursquare – two heterogenous social networking platforms.

4.2.2 Data

Twitter and Foursquare are two of the most popular social networks, in terms of user

base size and interest in the research community. They have distinct broadcasting func-

tionalities - microblogging and venue check-ins. While Twitter can reveal a lot about

user interests and interactions, Foursquare check-ins provide a proxy for human mobil-

ity. In Foursquare users check-in to venues that they visit through their location enabled

devices, and share their visits of a place with their connections. Foursquare is two years

younger than Twitter and its broadcasting functionality is exclusively for mobile users

(50M to date1), while also 80% of Twitter’s 284M users are active on mobile2. Twitter

and Forusquare generally allow anyone to “follow” and be “followed”, where followers

and followed do not necessarily know one another. An undirected relationship can be

constructed from this, where a link can be considered between two users if they both

follow each other reciprocally [99].

The dataset was downloaded from the public Twitter and Foursquare APIs between May

and September 2012 for three major US cities, where tweets and check-ins were down-

loaded for users who had checked in during that time, and where those check-ins were

shared on Twitter. We initially identified Foursquare users on Twitter by hashtags that

pertain to the Foursquare service and then continuously downloaded their tweets over

the four month period. Therefore, our dataset contains a subset of Foursquare users

who publicly share their check-ins via the Twitter service, who are estimated to be 20-

25% of the Foursquare user base [137]. This allows for the study of the intersection of

the two networks through users who have accounts and are active on both Twitter and

1https://foursquare.com/about
2https://about.twitter.com/company
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Figure 4.7: Social network graph for San Francisco. Blue edges are single-layer edges, while pink edges

are multiplex edges. The node size is proportional to the degree in the union aggregation of that node.

Property New York Chicago SF All

∣VM∣ 6,401 2,883 1,705 10,989

∣ET∩F ∣ 9,101 5,486 1,517 16,104

∣ET /F
∣ 13,623 7,949 1,776 23,348

∣EF /T
∣ 6,394 4,202 863 11,459

< kglob > 4.55 6.12 2.44 4.63

< kcore > 1.42 1.9 0.89 1.47

tweets 2,509,802 1,288,865 632,780 4,431,447

checkins 228,422 105,250 46,823 380,495

venues 24,110 11,773 6,934 42,817

Table 4.4: Dataset properties: number of users (nodes); number of multiplex links (edges); number of

Twitter and Foursquare only edges; average global and core degrees; activity and venues per city.

Foursquare. Tweets were divided into check-ins and tweets depending on whether the

content of the tweet was a Foursquare check-in or not. A tweet is in the form (userId,

mentions, hashtags), where the actual content of the tweet is not considered apart from

whether it mentions another user or identifies with a topic through Twitter’s hashtag (#)

paradigm of topics. Check-ins are in the form (userId, venueId, coordinates, timestamp)

where the temporal and spatial aspects of the check-in are taken into account and not

its semantic properties. At the end of the period, the social network of each user was

also downloaded from both platforms by obtaining the user ids of their followers and who

they are following as well as Foursquare friends of up to one hop in the network. We

believe the dataset does not contain bots or other automated accounts as only real users

are known to post content through Foursquare due to its mobile application context.

Table 4.4 shows the details for each city, in terms of activity and venues, multilayer
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edges and degrees for each network, where ET∩F denotes the set of edges, which exist on

both Twitter and Foursquare, ET /F and EF /T are the sets of edges on Twitter only and

Foursquare only, respectively. Fig. 4.7 additionally illustrates the case of San Francisco,

where blue edges represent single-layer links on either Foursquare or Twitter, and pink

edges represent multiplex links on both. A Fruchterman Reingold graph layout [73] is

used to show the core-periphery structure of the network, with larger nodes having a

larger degree in the union aggregation.

4.2.3 Properties of Online Multiplex Links

The first goal at hand is to gain insight into the geo-social structural and interaction

properties of multiplex links in the multilayer online social network and how they differ

from other link types. We study the three types of links as described in the multilayer

model above: multiplex links across both Twitter and Foursquare, which are denoted as

tf for simplicity; single-layer links on Foursquare only (denoted as fo); single-layer links

on Twitter only (denoted as to). These are then compared to unconnected pairs of users

(denoted as na). The insight gained from the discriminative power of each feature, can be

used to interpret the results of the link prediction tasks defined in the following section.

Link Multiplexity and Structural Similarity The number of common friends be-

tween two individuals has been shown to be an important indicator of a link in social

networks [106]. Moreover, the neighbourhood overlap weighted on the popularity of com-

mon links between two users has been shown to be a good predictor of friendship in

online networks [2]. Fig. 4.8 shows the cumulative distribution of the Adamic/Adar index

of neighbourhood similarity across the various single and multilayer configurations of the

networks at hand and each of the four link types. Figs. 4.8a and 4.8b show the cumulative

distribution over the single-layer configurations of Twitter and Foursquare respectively,

while Figs. 4.8c and 4.8d show the distribution over the core and global multilayer con-

figurations. These plots allow us to reason about the fraction of pairs of users with an

Adamic/Adar index greater than a certain threshold which relates to the way that features

are ranked in a machine learning framework.

Each figure shows the fraction of Adamic/Adar indices greater than the given threshold.

In Fig. 4.8a we can see that 25% of Twitter user pairs (to) have an overlap of 100.3 or

greater, while 25% of multiplex tie pairs (tf) have 101 or higher. Those pairs that are not

connected (na) and those which are only connected on Foursquare (fo) have a similarly

lower Adamic/Adar threshold of 100. The results over different fractions of user pairs

remain consistent where multiplex tie pairs (tf) always have a higher Adamic/Adar index

threshold than Twitter only (to), Foursquare only (fo) and no link (na) pairs, based on

the CCDF curves. These results are analogous for the Foursquare network, where we can

observe an Adamic/Adar index of approximately 101 for 25% of multiplex pairs, closely
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Figure 4.8: Complementary cumulative distribution function of the log Adamic/Adar index for the

different network configurations, grouped by link type - Twitter overlap (A), Foursquare overlap (B),

Global overlap (C), Core overlap (D). Each figure shows the fraction of links with an aasim value

greater than x.

followed by Foursquare only (fo) pairs and then Twitter only (to) and na user pairs

with a value of 100. From the two single layer configurations, we can see that multiplex

links exhibit higher structural similarity at each threshold, followed by links native to the

platform and then those exogenous to the platform and finally unconnected user pairs.

With respect to the multilayer configurations, it can be observed in Fig. 4.8C that 50%

of user pairs which are not connected have an Adamic/Adar index of 10−4 or greater,

whereas 50% of single-layer links (fo and to) have 10−3 or higher and finally multiplex link

pairs (tf) have an index of 10−3.5 or greater. On the other hand, in the core configuration

in Fig. 4.8d we can see a division between multiplex link types and all other link types,

where 25% of all pairs of all multiplex ties (tf) have an index of approximately 101 or

greater while all other link types have a lower threshold of 100 or higher. While this is

somewhat expected, it shows that the core configuration is a good proxy for detecting

multiplex ties. In agreement with previous studies of tie strength [76], multiplex links

share greater structural similarity than other link types across network configurations

and this will be a useful property in our link prediction problem.

Link Multiplexity and Interaction The volume of interactions between users is often

used as a measure of tie strength [139]. In this section, the volume of geo-social interactions

on Twitter and Foursquare are shown to discriminate between the presence of the various

link types. A number of interaction features are extracted from the two services, which

along with the previously introduced structural features, will be examined in the following

section in light of their predictive power. These interaction features are:

• Number of mentions: The number of instances in the dataset in which user i has

mentioned user j on Twitter during the period. Mentions include direct tweets and

retweets mentioning another user. Any user on Twitter can mention any other user

and does not have to be following that user in the social network. This allows for
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this feature to be measured across pairs which do not have a link on any network

(na). Twitter users have been shown to exhibit favouritism for a small group of

their contacts when it comes to mentions (retweets) [99].

• Number of common hashtags: Similarity between users on Twitter can be captured

through common interests. Topics are commonly expressed on Twitter with hash-

tags using the # symbol. We therefore measure the number of instances in which

user i and user j have posted a tweet using the same hashtag. Similar individuals

have been shown to have a greater likelihood of having a tie through the principles

of homophily [123].

• Number of colocations: The number of times two users have checked into the same

venue within a given time window. In order to reduce false positives, a shorter time

window of 1 hour only is considered. Two users who appear at the same place, at

the same time on multiple occasions, have a higher likelihood of knowing each other

(and therefore having a link on social media). Each colocation is weighted on the

popularity of a place in terms of the total user visits, to reduce the probability that

colocation is by chance at a large hub venue such as an airport or train station. The

importance of colocations has been highlighted in discovering social ties as well as

place-focused communities [30].

• Distance: Human mobility and distance play an important role in the formation

of links, both online and offline, and have been shown to be highly indicative of

social ties and informative for link prediction [193]. The distance between the geo-

graphic coordinates of two users’ most frequent check-in locations were calculated

as the Haversine distance, the most common measure of great-circle spherical dis-

tance: distij = haversine(lati, loni, latj, lonj), where the coordinate pairs for i, j are

those of the places where users with more than two check-ins have checked in most

frequently, equivalent to the mode in the multiset of the venues where they have

checked in. This allows for minimising data loss while increasing the probability

that a most frequent location will emerge, similar to previous related work in the

field [44, 163, 136].

Two additional features are considered, which merge information from the Twitter social

network and the Foursquare location network. In order to capture the tie strength between

a pair of users in the multilayer network, their similarity based on the social layer can

be considered, or the number of common hashtags, denoted by simij and their spatial

similarity, or the distance between their most frequented venues on Foursquare, denoted

by distij. Inspiration for this measure is drawn from gravity models in transportation

studies where the attraction between two entities is proportional to the importance of

their interaction over their distance [155]. The global similarity can be defined as the

Twitter similarity over Foursquare distance as:
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Figure 4.9: Exponent matrix for simglob. Colour gradient indicates the optimal exponents in terms of

difference maximisation between the medians of the multiplex and non-existent link types -

∣Mdtf −Mdna∣.

simglob(i, j) =
sima

ij

distbij
(4.9)

where exponents a, b are chosen based on the context of at hand. In this case, a is the

potential for the similarity measure to reflect a reciprocal link between two users, whereas

b is a parameter related to how well connected the two venues are and therefore how

significant the distance between them is, similar to the gravity model’s original use in

transportation [155]. The exponents a = 2, b = 1 are set after optimising for the exponents

that maximise the difference between the median values of multiplex links (tf) and no

link (na). Figure 4.9 shows how these results vary across different exponents a and b in

the range [1,2].

The second feature which captures the complete interaction across layers of social networks

can be defined as:

intglob(i, j) =
M

∑

α

kα∣intαij ∣ (4.10)

where int can be any type of interaction between i and j in layer α and interactions

are summed across layers and weighted by a constant k for each layer. This allows for

adjustments based on the weighted importance of an interaction, specific to the context

of the layer. In our case we consider mentions and colocations as the interactions across
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Figure 4.10: Interaction features’ distribution for each link type. Panel Figure A-C show the

distributions of Twitter mentions, Common hashtags, and Number of colocations in log scale,

distribution of distance in km between the home locations of users according to the type of link they

have (top 10% of distances are excluded for figure readability), and the distribution of the multilayer

similarity and interaction features.

layers and a coefficient k = 1 for both layers as we would like to maintain the empirical

properties of interactions and after optimising for a number of different coefficients.

In Fig. 4.10, the four types of spatial and social interaction on the two social networking

services as well as the two multilayer geo-social features are presented in the order in

which they were presented. Each box-and-whiskers plot represents an interaction between

multiplex links (tf ), Twitter only (to), Foursquare only (fo), and unconnected pairs (na)

on the x axis. On the y axis we can observe the distribution divided in four quartiles,

representing 25% of values each. The dark line in the middle of the box represents the

median of the distribution, while the dots are the outliers, where the definition for an

outlier is a value which is less than the first quartile or greater than the third quartile

by more than 1.5 times the interquartile range between quartile 3 and 1. The “whiskers”

represent the top and bottom quartiles, while the boxes are the middle quartiles of the

distribution.

In terms of Twitter mentions (Fig. 4.10a), multiplex ties (tf) exhibit higher values of men-

tions than any other group, including the Twitter only group (to) with a median value of

101 and top-quartile values above 104. Pairs of users connected only on Foursquare (fo) do

not typically mention each other on Twitter although this is made possible by the service.

On the other hand, mentions are just as common between users who are not connected

on any network (na) as between those who are connected on both (tf), which may be as a
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result of mentioning celebrities and other commercial accounts. This, however, is not the

case for hashtags (Fig. 4.10b), where we find that almost all of unconnected users share 10

hashtags or less with the exception of outliers. While mentions are more discriminative

between multiplex links (tf) and single-layer connectivity (to and fo), hashtags are better

at distinguishing between links and non-links (na) in terms of median values.

With regard to Foursquare spatial interaction in Figs. 4.10c and 4.10d, multiplex ties (tf)

have the highest probability of multiple colocations with a median value of 10−3.8. Despite

being weighted by the popularity of a venue, values in the top quartile of unconnected

pairs (na) are relatively high with respect to other link types. However, in terms of

median values there is still a distinction between the different levels of multiplexity which

each link type represents. On the other hand, while distance (Fig. 4.10d) does not vary

much in terms of median values for the different link types, based on the top quartiles

of the distributions across link types, it appears that Foursquare only pairs (fo) are more

likely to frequent locations close to each other, closely followed by multiplex link pairs

(tf) where distances for both are below 20km. Twitter only (to) and unconnected pairs

frequent locations similarly further away. This indicates that both Foursquare spatial

features are better at distinguishing multiplex links and native Foursquare links than

other link types based on the distributions observed in agreement with previous literature

which has suggested that geographical features are powerful social link predictors [30].

In Figs. 4.10e and 4.10f we can compare the multilayer geo-social features we defined

above to the single-layer social and geographic features observed. The distribution of the

simglob measure, integrating similarity and distance as factors of attraction between pairs

of users, can discriminate between link types mainly based on the maximum value in the

top quartile of the distributions in Fig. 4.10e, where we observe that the maximum values

for multiplex links are higher than any other link type (over 7.5), whereas the maximum

value for unconnected pairs is approximately 4 while the median is 0. This shows that

only values with low similarity and high distance fall below 0, whereas most pairs of users

have less negligible similarity where values around 1 indicate a balance between distance

and similarity.

In Fig. 4.10f the distinction between different link types in the distributions of values

is more striking than for any of the single-layer features. We can see that each median

value is significantly different – multiplex links (tf) are the highest with a median of

101.5, followed by to links (100), fo links (10−1.5) and finally non-present links (10−4). This

satisfies two desirable properties for link prediction – distinct thresholds between link

types, and a discriminative threshold between the non-existent links (na) and all other

link types, on which to base binary decisions of the presence/absence of a link.
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4.2.4 A Multilayer Approach to Link Prediction

Having empirically shown the value of the different features in distinguishing between

different link types above, here the question of how this information can be used to predict

links across layers of social networks is explored. The likelihood of forming a social tie

as a process that depends on a union of factors, using the Foursquare, Twitter, and the

multilayer features defined up until now is evaluated in a supervised learning approach,

and their predictive power is compared in each feature set respectively.

Prediction Space The main motivation for considering multiple social networks in a

multilayer construct is that each layer carries with it additional heterogeneous information

about the links between the same users, which can potentially enhance the predictive

model. In the present context there are two distinct layers of information - the spatial

movements of users from Foursquare and their parallel social interactions on Twitter. This

evaluation explores whether by using spatial features from one network layer (Foursquare),

it is possible to predict links on the social network layer (Twitter), and vice versa. In

light of the multilayer nature of OSNs, it is also explored whether better prediction can

be achieved by combining features from multiple networks.

Formally, for two users in the multilayer network i, j ∈M, where VM are the nodes (users)

that are present in any layer of the multilayer network, we employ a set of features in a

supervised learning framework that output a score rαij so that all possible pairs of users

VM×VM are ranked according to their expectation of having a link eαij on a specific layer

α in the network. Two distinct prediction tasks can be specified:

(1) Rank pairs of users based on their interaction on one network layer in order to predict

a link on the other. This entails (a) training on spatial mobility interactions to predict

social links on Twitter, and (b) training on social interaction features on Twitter to test

on Foursquare links.

(2) Rank pairs of users based on their interaction on both network layers in order to

predict a link across both (a multiplex link). We train on three sets of features – spa-

tial interactions, social interactions, and multilayer features which are summarised in

Table 4.5.

The evaluation is performed on the three datasets described in Table 4.4 for the cities of

San Francisco, Chicago, and New York to show performance on these tasks across urban

geographies. In terms of algorithmic implementation, public versions of the algorithms

available in [146] were used. Supervised learning methodologies have been proposed as a

better alternative to unsupervised models for link prediction [108]. The data is fit to a

Random Forest classifier [25], which uses a sub-sampling and averaging technique across

a number of tree estimators to improve the predictive accuracy and control over-fitting.

Subsampling takes place with replacement and is equal to the training set size. Each
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Twitter features

mentions ∣mentionsij ∣

hashtags ∣hashtagsij ∣

jacc
∣NT

i ∩NT
j ∣

∣NT
i ∪NT

j ∣

aa sim ∑

z∈NT
i ∩NT

j

1
log(∣NT

z ∣)

Foursquare features

colocs ∣colocationsij ∣

dist haversine(lati, loni, latj, lonj)

jacc
∣NF

i ∩NF
j ∣

∣NF
i ∪NF

j ∣

aa sim ∑

z∈NF
i ∩NF

j

1
log(∣NF

z ∣)

Multilayer features

intglob
M

∑
α
∣intαij ∣

simglob
sima

ij

distbij

jacc ∣NC(i)∩NC(j)∣
∣NC(i)∪NC(j)∣

aa sim ∑

z∈NC(i)∩NC(j)

1
log(∣NC(z)∣)

Table 4.5: Summary of link features. We denote the Twitter neighbourhood as NT and the Foursquare

neighbourhood as NF .

prediction task is optimised across two parameters: the number of tree estimators and

the max depth allowed for each estimator.

A 10-fold stratified cross-validation testing strategy is used in addition: for each test

we train on 90% of the data and test on the remaining 10% and each fold set contains

approximately the same percentage of samples of each target class as the complete set

since the number of prediction items in the data are in the order of ∣VM∣
2. For every test

case, the user pairs are ranked according to the scores returned by the classifier for the

positive class label (i.e., for an existing link), and subsequently, all possible thresholds of

probability in terms of true positive (TP) and false positive (FP) values rate are plotted

against each other as Receiver Operating Characteristic (ROC) curves. The Area Under

the Curve (AUC) scores are used from these curves to report the relative performance of

each task by averaging the results across all folds, where the fraction of positive examples

correctly classified is taken into account as opposed to the fraction of negative examples

incorrectly classified. ROC analysis can provide insight about how well the classifier can

be expected to perform in general, at a variety of different class imbalance ratios and

therefore, against different random baselines that could correspond to these ratios.
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Figure 4.11: ROC curves for the Random Forest classifier and Area Under the Curve (AUC) scores for

each city dataset.

Multilayer Link Prediction The evaluation is presented using ROC curves and the

corresponding Area Under the Curve (AUC) scores across cities, shown in Fig. 4.11. First,

training is performed on the Twitter social interaction features summarised in Table 4.5

and tested on the Foursquare target labels. Formally, for a pair of users i and j a feature

vector xαij encoding the values of the users’ feature scores on layer α in the multilayer

network can be defined. A target label yβij ∈ {−1,+1} is also specified, representing whether

the user pair is connected on the β layer under prediction. The supervised Random Forest

classifier (best performance achieved with 45 tree estimators, allowing for a maximum tree

depth = 25 each) is used to predict links from one layer using features from the other.

Fig. 4.11a shows the ROC curves and respective AUC scores for each city in predicting

Foursquare links from Twitter features, ranging between 0.7 for the New York dataset

to 0.81 for Chicago, and 0.73 for San Francisco. These results represent the probability

that the classifier will rank higher a randomly chosen positive instance than a randomly

chosen negative instance [69]. On the other hand, we can consider the reverse task of

predicting Twitter links using Foursquare features in Fig. 4.11b, where an AUC scores of

0.86, 0.73, and 0.79 are obtained for the three cities respectively. Slightly higher results

can be observed for Twitter links, which may be a result of the higher number of Twitter

links in the dataset or as a result of the greater difficulty of the inverse task. These results

are compared to the traditional single-layer prediction task of Twitter links from Twitter

features and Foursquare links from Foursquare features internal to the platform where

an AUC= 0.86 and AUC= 0.88 are achieved on average between cities with the same
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Random Forest set-up. This shows that our performance across services is comparable to

that within the service itself.

It has been observed in the preceding analysis on link types that those pairs connected only

on Foursquare do not exhibit strong interaction on Twitter by exchanging a low number of

mentions and having low neighbourhood overlap, however, those pairs of users connected

on both platforms, exhibit high interaction across. It can therefore be expected that a

large number of stronger multiplex ties have been identified in this task. In the second

prediction task, this assumption is tested by observing if it is possible to achieve higher

predictive power across cities when testing on the presence or absence of a multiplex

link. Formally, given a feature vector xij, the goal would be to predict a target label

yij ∈ {−1,+1}, where a link exists on both layers (+1) or not (-1). In Fig. 4.11c and

4.11d we can observe that it is possible to achieve greater predictive power using Twitter

features in predicting multiplex links than Foursquare links in Fig. 4.11a and in using

Foursquare features in Fig. 4.11b, with the highest AUC scores of 0.82 and 0.84 for each

set respectively. It should be noted that the Foursquare spatial features perform slightly

better than the social interaction features for Twitter, which places importance on the

discriminative power of spatial interactions as also observed in the first part of the analysis.

This confirms the assumption that multiplex links are easier to identify than single layer

links by using the same algorithmic set-up and shows that the strength of multiplex ties

exhibited in the first part of our analysis can be used to predict links across networks.

Finally, it can be observed that using multilayer and geo-social features which employ

both spatial and social interactions from the two heterogeneous platforms can outperform

both single layer sets in predicting multiplex links (highest AUC = 0.88 for Chicago). It

is intuitive that when using information from both layers the prediction of multiplex links

becomes easier and it is often the case that such multilayer network data is not available.

However, it was observed that relatively good results can also be achieved using only

social or only geographic information.

In order to evaluate the information added by the proposed features as compared to the

previously widely used Adamic-Adar and overlap metrics, the prediction results thus far

are compared with a simplified model using the Adamic-Adar and overlap features alone,

while using the same predictive framework, and the change in average AUC scores between

cities is computed. For the first prediction task of using the Twitter social layer features

to predict links on the spatial Foursquare layer, an AUC score of 0.68 is achieved when

using aa sim and overlap features alone as compared to AUC=0.8 when using the full

feature set including interactions. For the second task of using the Foursquare spatial

features to predict links on the Twitter social layer, an AUC score of 0.65 was obtained

when using the two structural features alone as opposed to AUC=0.75 on average across

cities when using the full model. This indicates that the additional interaction features

add significantly to the predictive power of the model.
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When predicting the presence of a multilayer link between pairs of users, using the struc-

tural Adamic-Adar and overlap features alone, an AUC of 0.7 is achieved for the social

Twitter layer, 0.71 for the spatial Foursquare layer, and 0.69 for the multilayer configura-

tion. When compared to the full feature model (AUC=0.77, 0.8, and 0.83 respectively), a

significant improvement can be noted in terms of predictive power. In conclusion, the in-

formation added by the multilayer interaction features results in a significant improvement

over the existing methods based on popular structural features alone.

4.3 Related Work

As touched upon in Chapter 3, and further elaborated in the present chapter, media

multiplexity [83] is the principle that tie strength is observed to be greater when the

number of media channels used to communicate between two people is greater (higher

multiplexity). It is a well studied property in the social sciences [84] and it has been ex-

plored in social networks from Renaissance Florence [142] to the Internet age [83]. In [84]

the authors studied the effects of media use on relationships in an academic organisation

and found that those pairs of participants who utilised more types of media (including

email and videoconferencing) interacted more frequently and therefore had a closer rela-

tionship, such as friendship. The strength of social ties is an important consideration in

friend recommendations and link prediction [76] but has been previously understudied in

the context of multiplexity properties.

Social network research has further focused on the effects of homophily expressed in in-

teractions online, where findings suggest that most of the content shared comes from

weak and diverse ties. Recent research on homophily [lit. love of same], used sensors for

tracking mobility and interactions offline, and showed that physical exercise, residential

sector, and on-campus activities are the most important factors for the formation of social

relationships, placing emphasis on spatio-temporal activities [59]. Furthermore, dynamic

homophily based on political opinion was studied in the same context during the 2008 US

presidential election by means of Bluetooth scanning: the researchers observed increased

proximity around the presidential debates between students with the same political ori-

entation [118]. The authors in [10] showed that in the context of Facebook, while strong

ties are consistently more influential, weak ties are collectively more important and users

consume and share information produced largely by those with whom they interact infre-

quently. Diversity in online social network exchanges has also been observed in Twitter,

where users re-tweet more content from topically dissimilar ties [116].

As we discuss in Chapter 1, online social media has become an ecosystem of overlapping

and complementary social networking services, inherently multiplex in nature, as multiple

links may exist between the same pair of users [96]. In this section, multiplex tie strength

defined in the first part of this chapter is leveraged through the geographic and social
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interactions of users and applied to the classic networks problem of link prediction [106].

Unlike previous work [18, 144, 156], the multilayer link prediction problem was framed

across online social network platforms and media multiplexity was applied as a measure

of tie strength, showing its applicability to link prediction in the geo-social domain.

The problem of link prediction in online social networks has been actively researched in

the past decade, following its ignition by the seminal work of Liben-Nowell and Klein-

berg [106]. Since then, it has been applied to various platforms and services. For instance,

in [165] the authors exploit place features in location-based services to recommend friend-

ships and in similar spirit the authors in [158] show how using both location and social

information from the same network significantly improves link prediction, while in [8] a

new model based on supervised random walks is proposed to predict new links in Face-

book. Link prediction has also been approached in the multidimensional setting [156]

and in multi-relational networks [199], however, these works build on features that are

endogenous to the system that hosts the network of users. Drawing upon these works,

the present evaluation tests on heterogeneous and fundamentally different network layers

from two distinct platforms - social network Twitter and location-based social network

Foursquare - by mining features from both. This approach differs in that it frames the link

prediction task across layers in the context of multilayer networks, rather than partitions

of the same network.

4.4 Discussion and Implications

Social media sites have had a profound effect on the way we maintain close and distant

social relationships, on their number and their diversity, and the cultivation of our so-

cial capital, as previously discussed in Chapter 1 [191, 192]. Despite the vast potential

for communication through social media such as Facebook, users tend to interact mostly

with their closest friends [6]. Friends tend to come from similar socio-demographic back-

grounds, share common interests and information. This presents evidence of homophily,

or the long-standing social truth that “similarity begets friendship” [148]. While it has

interesting implications in social networks in terms of link prediction [3], resilience [131],

and preferential attachment [143], homophily also leads to the localisation of information

and resources into socio-demographic space [123]. Conversely, diversity in social contacts

has been shown to be of great importance for social and economic wellbeing, both at

individual and community levels [63].

In this chapter a new multiplex measure of social tie strength was introduced and applied

to uncover the presence of homophily within a community of 74 students, with respect

to political orientation, music preferences, health habits, and situational factors. This

methodology is inspired by Fischer’s early work on homophily [70], where it was observed

that the more types of relations that exist between two people (e.g., friends, kin, neigh-
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bour), the stronger their bond, and the stronger the effects of homophily (similarity)

between them. Although very different from kinship relations, the same principle of tie

strength and depth was found in media multiplexity with regards to various types of

media in the organisational environment [84], where stronger ties interact through more

types of media than weaker ones.

The strength of ties manifested through multiplexity is expressed through a greater in-

tensity of interactions and greater similarity across attributes both the offline [83], and

in the online context. A number of features, which take into consideration the multi-

layer neighbourhood of users in OSNs were explored in this chapter. The Adamic/Adar

coefficient of neighbourhood similarity in its core neighbourhood version proved to be a

strong indicator of multiplex ties. Additionally, the introduced combined features, such

as the global interaction and similarity over distance, discriminated more distinctively

the type of link that exists between two users, than its single-layer counterparts. These

features can be applied across multiple networks and can be flexible in their construction

according to the context of the OSNs under consideration.

Recently, social media has been increasingly alluded to as an ecosystem. This allusion

comes from the emergence of multiple OSNs, interacting as a system, while competing for

the same resources - users and their attention. This system aspect has been addressed in

this chapter by modelling multiple social networks as a multilayer online social network.

Most new OSNs joining the “ecosystem” use contact list integration with external existing

networks, such as copying friendships from Facebook through the open graph protocol.

Copying links from pre-existing social networks to new ones results in higher social in-

teraction between copied links than between links created natively in the platform [202].

This study proposes that augmenting this copied network with a rank of relevance of

contacts using multiplexity can provide even further benefits for newly launched services.

In addition to fostering multiplexity, however, new OSNs and especially interest-driven

ones such as Pinterest for example, may benefit from similarity-based friend recommenda-

tions. Here, mobility features have been applied in addition to neighbourhood similarity

from Foursquare to predict links on Twitter and vice versa, highlighting the relationship

between similar users across heterogeneous platforms. Similarly in [178], the authors infer

types of relationships across different domains such as mobile and co-author networks. Al-

though using a transfer knowledge framework, and not exogenous interaction features like

in the present work, the authors also agree that integrating social theory in the prediction

framework can greatly improve results.



Chapter 5

Social Diversity in Geo-Social

Networks

This chapter builds on the previous two by extending the application of the basic multi-

plex model to social diversity in multilayer social networks and introduces a new model

of interconnected geo-social networks which allows for cross-layer projections of social

diversity between people and places. Similarly to the previous chapter, a combination

of analysis techniques are used to understand brokerage and its multilayer extension to

geo-social networks, initially with a light empirical validation of the phenomenon in online

social networks and followed by a more in-depth network analysis approach, extending

the concept to places through a human mobility study.

In the first part of the chapter, the concept of brokerage as a quantifiable measure of social

diversity is explored, followed by its application to a multilayer online social network. The

concept of structural diversity or brokerage in social networks is applied to the multilayer

setting of both online and offline interactions for the first time in this chapter. The un-

der(over)estimation of social diversity will be uncovered by applying the effective size and

efficiency metrics to the multilayer setting using empirical distributions and differences

between the single layer and multilayer neighbourhoods of nodes.

Furthermore, an interconnected geo-social network model is introduced and evaluated

in the context of urban social diversity. Apart from brokerage, three other measures of

structural and probabilistic diversity are defined and applied to urban geographies in Lon-

don. The concept of the social role of a place is introduced in the interconnected network

setting and evaluated against measures of social diversity in approximating deprivation

indices for London. Finally, the social diversity rank of London neighbourhoods is used

to identify areas undergoing processes of change such as gentrification.

85
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5.1 Social Diversity in Multilayer Social Networks

The brokerage potential of a node in a social network provides the node with an ad-

vantageous position compared to other nodes. In particular, nodes with high brokerage

potential are typically characterised as being positioned near structural holes separating

otherwise disconnected pairs of nodes [36]. In this section, the notion of structural hole

will be extended to a multilayer context so as to enable brokerage opportunities to arise

from an individual’s combined online and offline social network.

Social networks are typically represented as single layers, where nodes are connected by

one type of relationship such as friendship or collaboration. While single-layer networks

may be sufficient in many cases, they do not realistically capture the online and offline

interaction between people, which is becoming increasingly ubiquitous. Therefore a mul-

tilayer geo-social approach to the study of social relationships is needed so as to identify

the geographic layer of physical co-presence as well as the online social interaction layer.

This will enable exploration of the brokerage potential of people within and across layers.

Efficiency. In Chapter 2, we introduced and formalised the brokerage of a node. An

extension of this is the ego-network’s efficiency, which is essentially the normalised bro-

kerage. The efficiency Ei of node i’s local neighbourhood refers to the proportion of i’s

neighbourhood that is non-redundant [36]. This can easily be derived by dividing the

brokerage by the degree of the node:

Ei =
Si
ki
. (5.1)

Efficiency thus helps shed light on the extent to which an individual’s effort to expand so-

cial capital is directed toward novel social circles that provide exposure to non-overlapping

and diverse sources of information [36].

Over(under)estimating social capital. When individuals belong to multilayer net-

works, such as the one in Fig. 5.1, one may over- or underestimate their brokerage po-

tential if only a single layer is analysed (e.g., only online communication). For example,

in Fig. 5.1a node u1 brokers between nodes u2, u3 and u4 in the online social network

layer. There are three links connecting node u1 to three non-redundant contacts. The

degree of node u1 is equal to the effective size of u1’s local neighbourhood (i.e., three),

and the efficiency is therefore one. This places node u1 in an advantageous brokerage

position in which it can bridge three structural holes and intermediate between otherwise

disconnected contacts. There is no feasible channel available to the other three nodes for

communicating directly and exchanging information with one another. In this sense, node

u1 is needed to secure communication among nodes u2, u3, and u4. However, when the

geographic layer is taken into account in addition to the social layer, new links between
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Figure 5.1: Brokerage in geo-social networks

node u1’s contacts become apparent: a link between node u2 and node u3, and a link

between node u3 and node u4. This increases the redundancy of node u1’s contacts, thus

reducing the effective size and efficiency of u1’s overall (i.e., geo-social) local neighbour-

hood to 5/3 and 5/9, respectively. An opposite problem of underestimation is illustrated

in Fig. 5.1b, where it appears that node u1 has a fully redundant local neighbourhood in

the online social layer, where u1’s contacts (i.e., u2 and u3) are connected with each other.

In this case, the effective size of u1’s local neighbourhood is one, while the efficiency is

1/2. However, when the geographic layer is taken into account, we find that node u1 has

an additional non-redundant contact, u4, that has no connection with node u2 and node

u3. This therefore increases the effective size of node u1’s overall local neighbourhood

from one (in the social layer only) to 7/3. Correspondingly, efficiency increases from 1/2

to 7/9. The two examples in Fig. 5.1a and Fig. 5.1b thus clearly suggest that the analysis

of brokerage opportunities can be biased by problems of over- and underestimation when

only a single network layer is taken into consideration.

To overcome this, the notion of brokerage is extended using a multilayer graph, where

geographic and social links are both regarded as feasible communication channels that

can jointly provide nodes with opportunities for brokering between others. This means

that cross-layer triads and triangles must be allowed for. The most straightforward way to

achieve this is to calculate the union of the two layers, such that Gα⋃β = (V α⋃β,Eα⋃β),

as we have done in Chapter 4. This reduces the problem to a single graph to which the

existing measures of brokerage can be applied. Since we are interested in the structure

of the resulting combined network, we do not assign different weights to each layer, even

though in other problems this may be methodologically appropriate. We will next describe

the geographical and social data of which our two layers are composed.
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5.1.1 Dataset

The dataset consists of the check-ins and links connecting 37,722 active users of the

location-based social network Foursquare in London, UK. This includes 549,797 check-

ins, each representing a visit made by a user to a certain venue at a certain time and date.

These check-ins have been made to 43,584 venues, and have been posted to Twitter by

the users in the period between December 2010 and September 2011, with their respective

social networks downloaded at the end of that period. First, a social network can be built

from the reciprocal Twitter following between all Foursquare users who have shared their

check-ins on Twitter. Because the goal is to detect structural holes spanned by users both

in the online and in the co-location networks, the focus is only on the Foursquare users of

Twitter. The presence of spammers and bots in this dataset is unlikely due to the nature

of Foursquare check-ins which require physical presence at a location and are restricted

in time, practically infeasible for spammers. Furthermore, we only consider reciprocal

social links and spammers are shown to have a very low number of bidirectional links on

Twitter [200].

The co-location network is built on top of the social network, with the same nodes and

using the check-ins posted to Twitter by the Foursquare users. Two nodes in this network

are connected if they were co-located, i.e., they happened to be at the same place and at

the same time, which reflects the potential for exchanging information offline. The new

network is constructed by using the timestamp of users’ check-ins to venues, where if two

users have checked-in to the same venue within a 1-hour window, a link is placed between

them in the co-location network. A link is placed between two users only when they were

co-located more than once in order to minimise false positives. In this way, a proxy for

offline interaction between Foursquare users is used, in agreement with previous studies

of co-location from location-based services [50].

network ∣V ∣ ∣L∣ < k > < C >

social 36,926 176,164 9 0.15

co-location 8,059 112,367 27 0.51

geo-social 37,722 287,661 15 0.2

Table 5.1: Network properties

Finally, the geo-social multilayer network is built by taking the set of links that are

produced by the union of the social and co-location networks. The multilayer network

is undirected, and links in this network are unweighted. Table 5.1 outlines the following

network properties of the two single-layer networks and the combined multilayer network:

the number of nodes, V ; the number of links, L; the average degree, < k >; and the average

(local) clustering coefficient [196], < C >. The cumulative degree distributions of all three

networks are shown in Fig. 5.7.
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Figure 5.2: Cumulative degree distributions Pcum(k) of the single-layer networks and the geo-social

network

5.1.2 Evaluation

In this section, the interplay between online social network brokerage and co-location

network brokerage in the Foursquare network of users in London is evaluated. To this

end, the changes in the effective size and efficiency of users’ local neighbourhoods is

investigated from one layer to the other, and then the users’ brokerage opportunities in

the combined multilayer geo-social network is measured.

Social vs geographic brokerage Equation 5.2 is used to capture the brokerage po-

sitions of all nodes that belong to both the co-location (geographic) and social network

layers. Nodes with degree equal to zero in either layer are therefore removed from the

analysis. In Fig. 5.8a, we plot the effective size of nodes in the geographic co-location

layer against the nodes’ effective size in the social network layer (up to a size of 150 for the

sake of visibility). The majority of nodes are associated with a high brokerage potential

only in one of the two layers, but not across layers. This suggests that users may seem

to intermediate between others when evaluated within a single layer, when in fact their

opportunities for brokerage are much fewer when the two layers are combined.

The social network degree and the co-location network degree of nodes bear no correlation.

Since a node’s opportunity for brokerage greatly depends on the node’s degree, it would

be unreasonable to expect a correlation between the effective sizes of the node’s local

neighbourhoods in both layers. This suggests that there is a trade-off between being

physically co-located with many others in the co-location network and having many friends

online. Correspondingly, there is also a trade-off between brokerage positions online and

offline, as indicated by our findings. Individuals that hold prominent brokerage positions
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Figure 5.3: Effective size and efficiency of nodes’ local neighbourhoods

either in the social or in the geographic layer of the network are not likely to hold an

equally prominent position in the combined two-layer network. This also implies that the

assessment of brokerage confined within a single layer in isolation may be positively or

negatively biased.

Figs. 5.3b and 5.11a show the efficiency of each node’s neighbourhood as compared to the

node’s degree. Although the vast majority of users have a low degree and low efficiency,

it is clear from the figures that nodes with a degree higher than 200 tend to have an

efficiency between 0.75 and 1.00. This suggests that as nodes increase the number of

their contacts, they also optimise the efficiency of their local neighbourhoods by including

non-redundant contacts, thus expanding the opportunities for brokerage [36]. As shown

in Fig. 5.8a, high-degree nodes appear to be able to secure a higher efficiency of their

networks than low-degree nodes. This finding is consistent with other related studies

that have documented an inverse relationship between the degree and the local clustering

of nodes [186, 154]. Because nodes with high degrees tend to have a lower clustering

coefficient than nodes with low degrees, the former nodes are also expected to leverage

on greater brokerage opportunities than the latter ones [102].

When the effective size of nodes’ neighbourhoods is evaluated only in the co-location

network, the nodes with high brokerage potential do not correspond to the nodes with

high potential in the social network layer. Therefore, a combined geo-social approach to

brokerage, which unifies both interaction layers into an integrated source of brokerage

opportunities is more suitable.

Geo-social brokerage Geo-social brokerage is here regarded as arising from the union

of the co-location network and the online social network. Information can indeed be

transmitted both online and offline, and whether individuals can benefit from having

access to novel and non-overlapping sources of information can only be investigated by

analysing the structural positions individuals hold in the combined online and offline
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network. The union of the two layers has an effect on the degree of the individual user. In

particular, for each node the degree in the multilayer network cannot be smaller than the

lower degree the node has in either single-layer network, and cannot be higher than the

sum of the two degrees the node has in the two single-layer networks. On the one hand, the

degree in the multilayer network takes on the minimum value when all the contacts a node

has in one layer are the same as the contacts in the other layer. On the other hand, it takes

on its maximum value when all contacts in both layers are unique. The implications in

terms of opportunities for brokerage are straightforward: in the former case, the node has

fewer opportunities than in the latter as there are fewer contacts among whom the node

can intermediate. However, not all opportunities for brokerage will translate into actual

structural holes. This will depend on the variation in links among contacts resulting from

the inclusion of an additional layer. When one network layer is combined with another,

some of a node’s contacts that were unconnected in the former layer may be connected

in the latter, thus mitigating the potential of the node to intermediate between contacts.

The effective size of the node’s neighbourhood in the combined network will ultimately

depend on the interplay between variation in number of contacts and variation in number

of links between contacts [102].

Fig. 5.4 shows the distribution of change in brokerage induced by the geo-social network

with respect to each of the single-layer networks. For each node, this change is here

measured as the difference between the effective size and efficiency of the node’s neigh-

bourhood in the composite geo-social network and the node’s effective size and efficiency

in the single-layer network. When a node has a degree (and effective size) equal to zero

in either layer, the node’s efficiency is set equal to zero in that layer. Fig. 5.4a shows

changes in effective size only within the range (−50,50). As suggested by the figure,

there is an improvement of brokerage potential in the geo-social network over brokerage

in the co-location network. When the social layer is also accounted for in the analysis

of a node’s brokerage position, additional structural holes emerge in the node’s neigh-

bourhood, thus amplifying the node’s opportunities to intermediate among disconnected

others. However, while the majority of nodes can also improve their brokerage positions

when the co-location layer is added to the social layer, nonetheless there are some who

suffer from a decrease in structural holes. Thus, the co-location network may contribute

toward increasing the number of a node’s unique contacts, but at the same time may also

add new links among some of the node’s contacts that would appear as unconnected in

the social layer. These mixed effects of the geo-social network on brokerage are even more

pronounced when assessed in terms of variation in efficiency. As indicated by Fig. 5.4b,

while most nodes seem to secure a more efficient neighbourhood when one layer is com-

bined with the other, there are some who suffer from a loss of efficiency, especially when

the co-location layer is added to the social one.

Overall, these results suggest that brokerage may be over- or underestimated when as-

sessed in one single layer. On the one hand, in the online social network layer many users
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Figure 5.4: Variation in effective size and efficiency between the multilayer geo-social network and

single-layer network

may appear to be brokers but their influence and intermediation power may be overrated.

On the other, many users who appear to have little brokerage power offline may be active

brokers when the offline connections are combined with the online ones.

Neighbourhood heterogeneity One of the main benefits of brokerage lies in the

advantage that individuals acquire through novel recombinations of non-redundant infor-

mation [36, 109, 175]. Brokers are expected to leverage on the diversity of their contacts

in order to intensify the competitive advantage they can derive from their structural

positions. We test whether in the dataset brokerage positions are associated with het-

erogeneity of local neighbourhoods. In particular, it is examined whether the association

between brokerage and heterogeneity can be detected in each of the single-layer networks,

and whether there is a variation in the association when the two layers are combined.

To this end, for each node the average cosine similarity is computed between all uncon-

nected pairs of the node’s contacts. In turn, similarity between unconnected contacts is

assessed by using the frequency distribution vector of the categories of places that each

user has visited. This vector is assumed to be representative of the user’s personal pref-

erence for categories of places visited. There are nine top-level categories of places in

Foursquare: “Professional & Other Places”, “Shops & Services”, “Travel & Transport”,

“Food”, “Nightlife Spots”, “Arts & Entertainment”, “Colleges & Universities”, “Outdoors

& Recreation”, and “Residences”. A nine-cell numeric vector is built, in which each cell

is representative of a category and contains the frequency of visits made to that category

by each user within the period covered by the dataset. For each node, and for each pair

of users in the node’s neighbourhood, the two corresponding vectors are compared, and

an average score of similarity associated with the focal node’s neighbourhood is obtained.
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Figure 5.5: Effective size of nodes in different layers as compared to their average neighbourhood cosine

similarity

Fig. 5.5 shows, for each node, the relationship between the effective size of the node’s

neighbourhood and the node’s average neighbourhood similarity. In agreement with the

literature [36, 79], Fig. 5.5a suggests that users with many opportunities for brokerage

in their social networks tend to belong to a heterogeneous neighbourhood, while the

majority of users that are embedded in socially cohesive networks (i.e., with low effective

size) tend to be connected with similar others. Findings on the co-location layer are

mixed, even though users with the highest brokerage potential are still associated with

relatively high diversity in their local neighbourhood (Fig. 5.5b). Finally, when both layers

are combined into the geo-social network, neighbourhood heterogeneity is associated with

brokerage opportunities (Fig. 5.5c). All users with an effective size of more than 250 have

an average neighbourhood similarity of no more than 0.6. Thus, the geo-social network

retains and reinforces the pattern observed in the other two layers.

In conclusion, the analysis of multilayer brokerage strengthens the study of social capital

by uncovering sources of information benefits that would otherwise remain hidden in a

single-layer network. For instance, findings indicate that the potential for novel recombi-

nations of non-overlapping information would remain undetected if only the co-location

layer were taken into account. Only when this layer is combined with the online social

network layer can the heterogeneity of a node’s unconnected contacts be fully captured

and the value the node can extract from structural holes be properly assessed.

Having examined the brokerage power of individuals from a multilayer perspective, a

follow-up question on the brokerage power of places emerges. Urban places are designed

to bring together people and foster social interactions, so can places be brokers too? In

the remainder of this chapter we will attempt to answer this question through a broader

analysis of urban social diversity and what it means for urban development and location-

based applications.
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5.2 The Social Diversity of Places

People and places are interconnected in an organic way [17], and more intensely so in

the urban context. With more than half of the world’s population living in urban areas,1

understanding how human mobility enhances the social diversity of places is important for

urban planners and system designers alike. While the fundamental role of urban geography

in human interactions, relationships and social capital is relatively well understood [44,

63, 140], the role of people in the success of places has been empirically understudied.

Nevertheless, much of the success of cities can be attributed to their multiculturalism and

the synergy of diverse attitudes within a relatively small geography that is brought on by

its inhabitants and measurable through their human mobility network and social network

properties [71].

Urban activist Jane Jacobs wrote “[Cities] differ from towns and suburbs in basic ways,

and one of these is that cities are, by definition, full of strangers” [92]. In this section

the places that bring together strangers among other types of urban social diversity is

explored and the relationship with the prosperity of an area in an interconnected model

of people and places is measured. In social networks, the diversity of one’s social ties is

associated with the amount of social capital they have at their disposal as demonstrated

in the previous section of this chapter. Social ties can be classified as bridging or bonding

where bonding ties are those within homogeneous groups while bridging ties are those

which transcend groups and are associated with diversity [150]. However, it is not yet

understood how the diversity of the social network of visitors defines the social role and

affluence of a place.

5.2.1 The Interconnected Geo-Social Network

Many real-world systems can be represented through a number of unique yet intercon-

nected networks. One such system results from the interaction between geography and

people. Although the properties of social and geographic networks have long been studied

independently, such view does not consider the dynamics between the two. Here a model

of interconnected geo-social networks is presented, where projections of one carry rich

information about the other.

The spatial graph GL = (VL,EL) has a set of nodes l ∈ VL which are geographical locations

and can be described by a set of coordinates, and a set of edges EL that can be described

in terms of the user transitions between them with a weight equal to their number. The

neighbourhood of a location l can be denoted as Nh
L(l) and includes all its adjacent

associated locations in terms of transitions up to h hops.

1United Nations, 2014 Revision of World Urbanisation Prospects. http://esa.un.org
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Figure 5.6: Panel (a): Interconnected network model, where GL and GS are composed by different

entities coupled through interlayer edges I. Panel (b) shows the place neighbourhood of user u4, as

indicated by the shaded place nodes in the lower layer. Panel (c) illustrates the social neighbourhood of

visitors to place l5, indicated by the shaded user nodes in the upper social layer.

The social graph GS = (VS,ES) includes nodes which represent users (denoted as VS) and

undirected edges which are the friendship relationships between them (denoted as ES).

The neighbourhood of a user u can be denoted as Nh
S(u) and includes its contacts up to

h hops in the social network. The interconnected network GM = (GS,GL, I) contains the

geographic and social graph layers along with the interlayer edge set I. We associate a

weight wu,l to each edge which equals the number of visits (check-ins) that a user u has

made to a location l.

The social network of the individuals linked to a location l at distance h can be described as

its social neighbourhood, denoted by Nh
S(l). For example, the 1-hop social neighborhood

of location l would be composed of the individuals that visit location l, the 2-hop social

neighborhood would be composed of the individuals that visit location l and their friends

and so on. On the other hand, the place network of an individual u at hop distance h

can be denoted by Nh
L(u). It is a subgraph of the spatial network layer, where each place

l ∈ Nh
L(u) is at distance less or equal than h from user u. In the case of h = 1, it is the set

of places user u has visited. For h = 2 it contains the places visited by u and the places

connected to those visited by the user in the place network and so on.

Fig. 5.6 illustrates the interconnected geo-social network model in Panel (a). Locations

are connected based on their common visitors, and interlayer edges I represent visits made
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by users to locations. Panel (b) illustrates the place neighbourhood of a user node u4 as

a projection on to layer GL, while Panel (c) shows the reverse projection of a location l5

on to the social network GS. Both of these projections are used to construct measures of

urban social diversity in the following section.

5.2.2 Urban Social Diversity Measures

In this section, four measures of the social diversity associated with a place are defined

through its social network of visitors. Brokerage relates to the potential of a place to

bring together strangers as opposed to friends, serendipity measures the probability that

the set of visitors happened to visit that place, while entropy measures the diversity of

visits with respect to visitors. The diversity of visitors themselves is also measured by

comparing their characteristics in terms of venues.

Brokerage. As explored in the previous section, the brokerage potential of a person ex-

presses his or her ability to connect otherwise disconnected others. Extensively described

by Burt, it measures the extent to which an individual’s ego network is non-redudntant,

which in turn reflects the individual’s potential of brokering between otherwise discon-

nected contacts [37]. Within the context of geography, a place can possess brokerage po-

tential with respect to the social network of its visitors, if it can bring together otherwise

disconnected individuals in physical space. Based on the interpretation by Borgatti [23],

the brokerage potential B of node l at distance h can be expressed as:

B(l) = ∣Nh
S(l)∣ −

∑

u,v∈Nh
S (l)

eu,v

∣Nh
S(l)∣

(5.2)

where we subtract the redundant portion of a network, equivalent to the connectedness

(average number of edges eu,v) in the social neighbourhood of l, from its size ∣Nh
S(l)∣. This

can then be normalised by ∣Nh
S(l)∣, resulting in the fraction of non-redundant contacts of

l’s social neighbourhood: B(l)/∣Nh
S(l)∣. In this work we use a hop parameter h = 2, which

enables us to capture second-hand redundancy resulting from connections among friends

of visitors. If all visitors to a place are connected, the place has no brokerage power

(B(l) = 0), whereas if none of the visitors are connected, the place has high brokerage

power which results in a brokerage value of 1.

Serendipity. The serendipity of a place is the extent to which it can induce chance

encounters between its visitors. This can be measured as the average probability of an

edge wu,l, given the network of places u has visited prior to venue l. This expresses the

idea that all visitors to l have arrived there with a certain probability based on the network
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of places they have visited in the past. The lower the probability, the higher serendipity

a place can provide. More formally, we can define the serendipity D of a place l as:

D(l) = 1 −

∑

u∈Nh
S (l)

ptl(u)

∣Nh
S(l)∣

(5.3)

where:

ptl(u) =

∑

v∈Nh
L(u)<t

wv,l

∑

v∈Nh
L(l)<t

wv,l
(5.4)

is the probability of user u checking into place l based on their place neighbourhood

Nh
L(u)

<t, and t represents the first check-in to venue l made by user u. The probability

is measured as the sum of weights of the number of venues v with edges to l visited

by u prior to time t, over the weighted degree of l in the spatial network. The average

probability of a user u visiting location l provides a measure of what role chance plays in

the composition of the social neighbourhood of l. Places with a higher serendipity value

are more likely to induce chance encounters since the composition of their visitors is more

unexpected.

Entropy. The entropy of a place describes the extent to which it is diverse with respect

to visits. Its value can be measured as the Shannon entropy of a location:

H(l) = − ∑

u∈Nh
S (l)

pl(u) logpl(u) (5.5)

where pl(u) is the probability that a given check-in in place l is made by user u. This

measure is applied in a similar way to the authors in [50], where it is used to quantify the

diversity of visitors to a location. This is adapted to the definition of the the social neigh-

bourhood of a place, where places with highly entropic neighbourhoods are frequented by

many diverse visitors and vice versa.

Homogeneity Another important measure of the social diversity of a place is the extent

to which its visitors are homogeneous in their characteristics. The mean cosine similarity

between the place preferences of all pairs of visitors to a particular location can be used

to measure its overall social homogeneity as:

S(l) =

∑

u,v∈Nh
S (l)

sim(u, v)

∣Nh
S(l)∣(∣N

h
S(l)∣ − 1)

(5.6)

where sim(u, v) is the cosine similarity of the frequency vectors of the visits to locations

of a given category of user u and user v respectively. There are nine top categories in
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Foursquare for which we build a frequency vector for each user and then compare in a

pairwise manner for all visitors of a venue. These categories are further described in

the Dataset Section 5.2.3. We derive homogeneity between users in a similar way to the

authors in [48] in that we consider the cosine similarity of user activity.

This value is between 0 and 1 and indicates the extent to which the mobility patterns of

a pair of users in terms of categorical venue visits are the same (1) or completely different

(0). By averaging these values across the social neighbourhood of a place, we can derive

an estimate of the homogeneity of its visitors in terms of venue preferences. We will

describe the data which forms our interconnected network model next.

5.2.3 Dataset

The dataset on which evaluation was performed is the same as in the previous section

but applied in a novel way to reflect the interconnected nature of people and places. This

section describes how this data fits the interconnected geo-social network model.

Online Social Network. Similarly to the previous section, an undirected social net-

work is built from the directed Twitter network where user u follows v and v follows u

back for all Foursquare users who have shared their check-ins on Twitter and we there-

fore refer to two users with a reciprocal edge as friends in this analysis. The undirected

social network of London users consists of 432,929 unweighted reciprocal links between

36,926 users. In Fig. 5.7a we can observe the cumulative degree distribution of the social

network, having a long-tail with a minority of very well connected users and the majority

of users with less than 100 friends.

Place Network. The spatial network of places is constructed by the transition flows of

users going between locations. These spatial locations are referred to as places and their

network as a place network. If a user has transitioned between two places in their history

of check-ins, we draw an edge between them. The weight of the edge is proportional to

the number of transitions made by all users between two places and edges are directed.

In total, there are 3,151,741 directed edges between the 42,080 venues. The degree

distribution is shown in Fig. 5.7b.

Each venue in Foursquare is also characterised by a lower level category such as coffee

shop and a higher level category such as Food. There are nine top-level categories: Arts

& Entertainment, Colleges & Universities, Food, Nightlife Spots, Outdoors & Recreation,

Professional & Other Places, Residences, Shops & Services, Travel & Transport, which

we refer to for short in this work as Arts, Study, Food, Nightlife, Outdoors, Professional,

Residences, Shops and Travel. In addition, each venue falls within a geographic adminis-

trative boundary called a borough. Each borough consists of wards, which are sectioned
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Figure 5.7: Cumulative degree distributions of the social and place graphs as well as of interlayer edges

(check-ins).

by population density and the natural landscape of the city. We use categories and

geographical boundaries to distinguish between measurement effects in our results and

government statistics of deprivation.

Geo-social Interaction. The interaction between people and places in the dataset is

represented by Foursquare check-ins. There are more than half a million check-ins that

we have recorded in the area of London over a little less than a year. Figs. 5.7c and 5.7d

plot the distribution of check-ins per user and check-ins per venue respectively. A very

small fraction of users have made an exceptional number of check-ins over the time period

and similarly most venues have a low number of check-ins with the exception of some

highly popular venues. Heathrow Airport is the most popular venue in London with over

10,000 check-ins in our dataset.

Index of Multiple Deprivation. To quantify socioeconomic conditions within regions

of London the Index of Multiple Deprivation (IMD) is used, an official statistical exercise



100 5.2. THE SOCIAL DIVERSITY OF PLACES

conducted by the UK Department of Communities and Local Government to assess the

relative prosperity of neighbourhoods across England. The overall IMD for an area is a

composite of seven deprivation indices. In particular, a neighbourhood is assessed accord-

ing to the following domains: deprivation relating to low income (Income); deprivation

due to lack of employment among working-age inhabitants (Employment); lack of edu-

cation and skills among young persons and adults (Education); impaired quality of life

due to ill health and disability (Health); risks of crime at a local level (Crime); limited

provision of local services and lack of access to affordable housing (Housing); deprivation

relating to the local environment, including quality of housing and air quality (Living En-

vironment). The composite IMD and seven domain indices for each neighbourhood are

publicly available2, and provide a rich source of curated socioeconomic indicators across

London. The higher the score of an index, the more deprived the neighbourhood. In this

evaluation, the indices released with the two most recent reports are considered (2010 and

2015).

5.2.4 The Social Role of Places

The results of the evaluation of urban social diversity measurements are presented in

this section. First, a distinction between the bridging (bringing together strangers) and

bonding (bringing together friends) qualities on a per venue basis and between categories

is made. The diversity of visitors to those venues in terms of their characteristics is then

explored. Ultimately, these observations are related to neighbourhood deprivation and

the differences between central and peripheral boroughs of London with regards to social

diversity are reported.

The Brokerage Role of Places. One of the fundamental social roles of places is to

bring people together. Just like people in social networks, some places can act as bonding

hubs, bringing together friends to socialise and interact with each other, while others

are more likely to gather strangers and therefore act as bridging hubs, bringing together

otherwise disconnected individuals. The bridging or bonding role of a Foursquare venue

is here measured as its brokerage B(l) using Equation 5.2.

The role of a place to either bring together friends or strangers can be dependent on its

type. Fig. 5.8a shows the distribution of brokerage values across categories. In the box-

and-whisker plot, the distribution of brokerage is split into quartiles. Each box represents

the mid-quartile range with the black line in the middle being the median of the distribu-

tion. In a megacity such as London, it is unsurprising that most locations are frequented

by many diverse individuals who do not know each other. There are, however, notable

2English Indices of Deprivation, 2015.

https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015
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variations between some of the categories. Residences tend to be bonding hubs with 50%

of values below the distribution median value of 0.87, followed by Study, Professional,

Shops and Outdoors categories where people are more likely to be with friends. Places

with relatively high brokerage are in the Arts, Nightlife and Travel categories where most

places in these categories have a bridging role in bringing together strangers.

While the structure of the social network of visitors to a place can determine its broker-

age role, serendipity further explains how probable its composition of strangers or friends

is and to what extent it can foster encounters, which may lead to new social interac-

tions rather than pre-determined ones. It measures the average probability that a person

visited the location given their prior history of locations (Equation 2). Fig. 5.8b plots

brokerage against mean serendipity. While serendipity varies for low values of brokerage,

the relationship between the two is positively strong for higher values of brokerage. This

suggests that bonding hubs which are more socially cohesive may have a lower ability to

induce chance encounters, while high bridging places will have high serendipity.

We take a closer look at the sub-categories of places and their brokerage and serendipity

roles in Table 5.2 where the top bridging (highest value) and bonding (lowest value) types

of places and their serendipity values are listed. Firstly, within the Arts category there

is a clear distinction between the types of places that bridge which seem to be associated

with public spaces, while bonding places tend to be predominantly sports/team oriented.

Similarly in the Study category it is interesting to observe that academic buildings tend

to be bridging, while specific departments and classrooms are places that friends tend to

have visited together. Within the Food category, interestingly fast foods appear as having

a greater bonding role than international cuisines such as Australian and German. In the

case of Nightlife, however, more generic sub-categories such as Bar or Pub have greater

bridging roles than more specific nightlife venues such as Hookah Bar or Strip Club, which

tend to bring together friends. This table is provided only for intra-category comparison

as similarly to the distributions shown in Fig. 5.8a, the brokerage values are not entirely

distinct across categories and we use the overall brokerage in all subsequent analysis.

Similar to the Arts category, the Outdoors category seems to be split between sports-

related activities and public spaces. In contrast to Arts, however, here sports are being

played rather than watched and brokerage values are generally lower possibly because the

team activity is more bonding than the viewing activity. In the Professional category

we observe some public service places such as Courthouse and Hospital to be bridging

hubs, where mostly strangers visit with relatively high serendipity. On the other hand,

Doctor’s Office and Elementary Schools are venues where more friends check-in, similar

to religious venues such as Mosques and Synagogues. Because visitors to such venues are

likely to be locals, it is understandable that they may know each other and be regulars

at these venues.

The Residences category has only four sub-categories, which all have relatively low bro-
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(b) Brokerage vs mean serendipity

Figure 5.8: Brokerage per category and brokerage vs. serendipity. Outliers below brokerage values of

0.75 (3% of values) were excluded for readability.

Category Top Bridging < B > <D > Top Bonding < B > <D >

Arts

Aquarium 0.98 0.98 Basketball 0.85 0.72

Art Museum 0.95 0.84 Billiards 0.88 0.85

Opera House 0.96 0.97 Football 0.87 0.52

Cricket 0.94 0.75 Track 0.87 0.74

Theatre 0.94 0.87 Water Park 0.9 0.78

Study

Auditorium 0.92 0.9 Classroom 0.86 0.83

University 0.91 0.82 Communications 0.89 0.93

Lab 0.91 0.88 Engineering 0.85 0.56

Rec Center 0.88 0.84 Math 0.69 0.45

Bookstore 0.9 0.79 Medical School 0.84 0.7

Food

South American 0.92 0.78 Eastern European 0.88 0.75

Scandinavian 0.94 0.83 Wings 0.8 0.59

German 0.95 0.91 Indian 0.88 0.71

Dumplings 0.93 0.88 Friend Chicken 0.87 0.62

Australian 0.95 0.72 Felafel 0.89 0.76

Nightlife

Lounge 0.93 0.81 Hookah Bar 0.88 0.83

Gay Bar 0.92 0.86 Strip Club 0.89 0.77

Pub 0.93 0.85 Hotel Bar 0.89 0.7

Cocktail 0.92 0.84 Dive Bar 0.87 0.75

Bar 0.92 0.83 Whiskey Bar 0.88 0.83

Outdoors

Bridge 0.89 0.87 Athletics & Sports 0.85 0.6

Neighbourhood 0.9 0.83 Baseball Field 0.75 0.72

River 0.9 0.76 Campground 0.85 0.85

Park 0.9 0.79 Vineyard 0.69 0.63

Cemetery 0.9 0.8 Soccer Field 0.82 0.77

Professional

Hospital 0.91 0.87 Emergency Room 0.81 0.82

Landmark 0.91 0.81 Synagogue 0.83 0.79

Courthouse 0.9 0.8 Mosque 0.87 0.63

Convention Centre 0.91 0.77 Elementary School 0.68 0.88

Animal Shelter 0.93 0.93 Doctor’s Office 0.84 0.65

Residences

Residence 0.84 0.46 Housing Development 0.83 0.52

Apartment Building 0.86 0.75 Home 0.82 0.69

Shops

Photography Lab 0.96 0.9 Yoga Studio 0.88 0.79

Antiques 0.92 0.82 Laundry 0.72 0.83

Mall 0.93 0.9 Video Store 0.72 0.71

Gift Shop 0.93 0.74 Gaming Cafe 0.86 0.51

Travel Agency 0.95 0.3 Tanning Salon 0.84 0.6

Travel

Motel 0.91 0.81 Resort 0.88 0.69

Pier 0.94 0.84 B&B 0.87 0.61

Subway 0.95 0.93 Taxi 0.82 0.41

Light Rail 0.93 0.88 Plane 0.86 0.63

Platform 0.94 0.91 Bus 0.86 0.72

Table 5.2: Top bridging and bonding subcategories by category where < B > is the average brokerage

value for the subcategory, while <D > is its serendipity value.
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kerage values, but those which play more of a bonding role are Home and Housing Devel-

opment, while Residence and Housing Development seem to have higher bridging roles.

It is interesting to also consider the serendipity values for these sub-categories where

Residence and Housing Development are more predictable because visitors have arrived

there with higher probability than in the other two sub-categories. Shops have a more

unexpected mixture of top bridging places except for the Mall sub-category where it is

likely that many strangers cross paths. Bonding shops are mainly hobby-related and fur-

ther analysis of this category can reveal potentially intriguing business insight. Finally,

the Travel category has a definitive split between transportation (bridging), where people

tend to commute and travel, a bonding role where people tend to journey with friends.

There is, however, the notable exception of Motels, which have a bridging role and Buses,

which play a more bonding role. The brokerage role of places and their serendipity are

related but differ across categories. In this section, we have taken a close look at these

differences and will compare them to the diversity of visitors and their characteristics in

the following section.

Visitor Diversity. While bringing together strangers can ultimately lead to new social

exchanges, these might not be truly diverse if the population of visitors is homogeneous.

We measure the social composition of a place’s visitors with respect to their venue prefer-

ences derived from mobility patterns through check-ins. For every user who has checked

into a venue, we construct a vector of the frequency of their visits to the nine top-level

venue categories. By averaging the cosine similarity of vectors between all pairs of visitors

to a place, we obtain the homogeneity of a place as per Equation 5. In mobility studies

entropy has been used to observe the geographical diversity of contacts that people have

and the probability of co-location at diverse venues [63, 164]. However, a location with

high entropy is not necessarily one with visitors with diverse characteristics.

In Fig. 5.9 the mean homogeneity per venue to entropy and brokerage is compared. In

both graphs, we can see that homogeneity decreases as brokerage and entropy increase.

This relationship implies that the more diverse the visitors to a place are in terms of their

composition and social network connectivity, the more characteristically diverse they are

too as measured by homogeneity. Fig. 5.10 further shows the distribution of homogeneity

over different values of entropy across categories. The strongest relationships are present in

the Food and Nightlife categories where the highest frequency of values are those with low

entropy and high similarity, gradually becoming more spread out as entropy grows. Most

other categories exhibit similar patterns, with the notable exception of the Residences

category for which entropy and brokerage are in general low, yet the trend of decreasing

homogeneity with entropy is still present. Overall, venues, which exhibit high diversity in

terms of entropy and brokerage also have a less homogeneous composition of visitors.

The diversity measures that are introduced here take into account different projections

of subgraphs in the interconnected network such as the place network of users in the
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(b) Entropy vs mean homogeneity

Figure 5.9: Visitor diversity with respect to brokerage and entropy.

serendipity measure and the social network of a venue’s visitors in the other measures.

Some measures like entropy and serendipity are based on probability while brokerage is

purely structural. These differences could be of interest to the designers and developers

of mobile systems in improving recommendations for location-based services. In the fol-

lowing section, we focus further on the urban development applications of our research in

terms of identifying deprivation and neighbourhoods undergoing gentrification.

5.2.5 Diversity and Urban Deprivation

In social network analysis it has been suggested that individuals who act as brokers often

have higher social capital at their disposal [37]. In terms of human geography, it is known

that those who communicate with others in geographically diverse regions tend to come

from less deprived areas [63]. However, it is not yet understood whether within the urban

context, places which act as bridging hubs are in fact within more well-off areas. In this

section, we observe the geographical distribution of the four diversity measures across the

32 London boroughs. To address the above question, a correlation analysis is performed on

the diversity measures on a per-borough basis with the eight indicators of socioeconomic

wellbeing included in the IMD.

Fig. 5.11 shows the mean values of diversity measures aggregated per area. What becomes

immediately apparent is that there is a clear distinction to be made between inner and

outer boroughs in terms of diversity. Figs. 5.11a to 5.11c show notably higher diversity

within central boroughs and lower diversity in the periphery. This suggests that the social

diversity of places is highly dependent on geographic factors. Venues within the central

areas of London have higher entropy (Fig. 5.11b) and bring together more strangers

(Fig. 5.11a) who are less homogeneous (Fig. 5.11c). Geography, however, is not a big

factor for serendipity (Fig. 5.11d) and high serendipity can be high or low in both inner
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Figure 5.10: Entropy vs homogeneity distribution per category. Colour gradient reflects the frequency

of observation with red being high and blue being low.

and outer boroughs. Because the measures are normalised on a per user basis this does

not reflect the general popularity of an area on Foursquare.

The ranked correlation between the four diversity measures and deprivation is studied

next. While, with regards to social networks, studies have found a positive relationship

between diversity and prosperity, in our analysis of the social diversity properties of places,

however, we find that there is a positive relationship between deprivation and diversity

in London. In Fig. 5.12, we note that brokerage has the strongest relationship with

deprivation indicators, especially the Living Environment Deprivation score (ρ = 0.71).

This sub-domain of the IMD is made up of the following indicators: housing in poor

condition, housing without central heating, number of road traffic accidents involving

injuring pedestrians or cyclists and low air quality. This sub-domain is especially high

for central boroughs where there is more pollution, traffic and strains on housing and

health services as indicated also by the relationship with Housing and Health sub-domains

(ρ = 0.44 and ρ = 0.4 respectively). As an example, Westminster, one of the most popular

and visited boroughs in central London (home to Buckingham Palace), is also amongst the
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Figure 5.11: Geographic distribution of diversity metrics per London borough.

more deprived ones due to its lack of services, which could be a result of its low number

of residents. Correlations with these sub-domains also explain the overall correlation

with the IMD itself (ρ = 0.4), however, this is not to suggest that all socially diverse

neighbourhoods are deprived in all respects (they may still have high income for example).

Fig. 5.13 plots the relationship between brokerage diversity and IMD for the individual

borough. We find that there are in fact quite a few cases where the intuitive relationship

between diversity exists. City of London and Kensington and Chelsea, presently two

of the wealthiest areas in London, have high diversity in terms of brokerage and low

deprivation, while Brent and Lewisham have low diversity and high deprivation. So why

do some places with low diversity have low deprivation, and others with high diversity have

high deprivation? Low brokerage signifies high social cohesion and places which tend to

bring together friends have a bonding function. In the context of cities, where millions of

people come in contact every day, diversity varies between high and extremely high as we

have seen in the previous sections. Our results place emphasis on the value of bonding



CHAPTER 5. SOCIAL DIVERSITY IN GEO-SOCIAL NETWORKS 107

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

IM
D

In
co

m
e

E
m

pl
oy

m
en

t

H
ea

lth

E
du

ca
tio

n

H
ou

si
ng

C
rim

e

Li
vi

ng
 E

nv

brokerage

entropy

homogeneity

serendipity

Figure 5.12: Spearman rank correlation matrix of diversity metrics and indicators of deprivation for

London boroughs. All correlations are statistically significant with p-values <0.05.
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Figure 5.13: Scatterplot of IMD vs Brokerage rank. Size of each node is proportional to its entropy

value and colour represents the change in IMD between 2010 and 2015 from low change (light blue) to

high change (dark blue).

places within megacities such as London by showing that more socially cohesive venues

are within more well-off areas in terms of overall IMD.

Now we turn to areas where venues have high diversity and high brokerage, which may

seem counter-intuitive at first. In Fig. 5.13 the size of each node is proportional to its

entropy and its colour to the difference between the IMD rank for 2010 and the recently

released ranks for 2015 (darker blue nodes are associated with larger differences). A

further look at the boroughs at the top right corner reveals that they all have high entropy

- so highly diverse in terms of visitors (similar patterns were observed for homogeneity

and serendipity as previously shown in Fig. 5.11). These areas also experienced some of

the most dramatic improvements of IMD between 2010-2015. The London borough of
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Hackney, which has the highest brokerage value is the second most deprived but also one

of the boroughs with the highest improvement in IMD over the five-year period. It has

also been reported that Hackney is currently experiencing the most intense gentrification

with fast-rising house prices well above the London average, fast-decreasing crime rate

and an exceptionally diverse population [179].

Gentrification is a form of urban migration of affluent citizens to a relatively deprived area,

boosting economic development, lowering crime and triggering the renewal of infrastruc-

ture and buildings in the area. These benefits come at a cost to the original population of

the deprived area, dramatically increasing the cost of living and driving them out of the

area, eventually shifting the ethnic profile and characteristics of the neighbourhood which

has been found to decrease social capital [104]. In addition to Hackney, Tower Hamlets,

Greenwich, Hammersmith and Lambeth among other boroughs in the right-hand corner

of the scatterplot are also considered to be undergoing gentrification, suggesting an in-

teresting potential for quantifying this process at the intersection of high diversity and

deprivation through social media. Predicting gentrification of neighbourhoods could help

local governments and policymakers improve urban development plans and alleviate the

negative effects while harvesting economic growth.

5.3 Related Work

Social Capital and Network Diversity. Social capital refers to the value embedded

in social networks in the form of connections which can potentially offer support (strong

ties) and opportunities (weak ties), and more generally yield expected returns in the mar-

ketplace, including the community, the economic, financial, and political markets [109].

Individuals who maintain high social capital in the form of information brokerage are

known to have more diverse neighbourhoods both in terms of novelty [36] and geographic

dispersion [63], which provides them with advantageous resources as compared to their

peers. The competitive advantage of actors in social networks has been formalised as

a function of the structural holes that the actors span between otherwise disconnected

pairs of others. Spanning holes provides actors with access to negotiation and mediation

power [36]. Brokerage and structural holes have been studied in a variety of contexts

including online social networks [113]. However, relatively little work has so far examined

the interplay between online and offline relationships and their combined contribution to

the generation of social capital.

By placing emphasis on the correlation between tie weakness and the flow of information,

Granovetter set the stage for a conception of social capital based on discontinuities in

social structures and brokerage opportunities. The idea that social capital can originate

from brokerage opportunities stemming from structural holes has been further explored

by Burt, especially in organisational domains [36]. Burt defines a structural hole as the
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“separation between non-redundant contacts”, “a buffer” that enables the two contacts

to “provide network benefits that are in some degree additive rather than overlapping”

[36, p.18]. Burt further identifies two sources of the social capital originating from struc-

tural holes: information benefits and control benefits. The less an actor’s contacts are

already connected with each other, the more likely the actor is to obtain non-redundant

information and to reap control advantages by trading-off contacts’ requests against each

other. From this vantage point, an actor’s social capital is seen as a function of the bro-

kerage opportunities arising from the structural holes the actor’s social relationships span

[36, 109, 175].

Most research efforts in the area of online and offline social capital have focused on

establishing the role of the Internet and social media in the accumulation of social capi-

tal [190, 67, 68]. Notably, the authors in [197] find that the usage of the Internet supple-

ments social capital but does not increase or decrease it. More recent findings show that

the use of social networking sites such as Facebook may in fact increase offline social capi-

tal by converting latent ties into online weak ties [67] and by allowing for a larger number

of online heterogenous weak ties [174]. Users of Facebook and other social media have

been associated with an increased social capital when compared to non-users [100, 174].

Our work builds on these findings, and further explores the structural properties of bro-

kerage in two parallel online and offline networks. To the best of our knowledge it is the

first work to study structural holes and brokerage in a multilayer context.

Geography plays an important role in the diversity of social networks where individuals

with more geographically and structurally diverse networks are found to have higher so-

cial capital and come from more well-off areas in the UK [63]. The competitive advantage

of an individual in a social network has been defined as a function of the structural holes

that provide the individual with a brokerage position between otherwise disconnected

others. [38]. Network brokerage has been studied in a variety of contexts from organisa-

tions [39] to online social networks [113], and most recently in geo-social networks [88].

The diversity of locations with respect to visitors has also been explored in the context

of location-based social networks [50, 164]. We combine these approaches to consider the

social network diversity of places and to the best of our knowledge, this is the first time

that brokerage has been applied to interconnected networks [33, 22].

Urban Mobility & Deprivation. Human mobility in urban environments has received

much attention in recent years, enabled in part by the increasing availability of individual-

level data via online location-sharing services and mobile phone records. Human move-

ment in urban areas differs from other geographic regions in their strong dependence on

the spatial distribution of places within the city [135]. Location-sharing services have

also been used to explore urban mobility through its impact on the place network [138].

While such studies focus on place, other work has explored the interplay between space

and social ties, which are known to show strong inter-dependence [180]. In the context
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of location-based social networks, a variety of geo-social phenomena have been analysed,

including tie formation [9], co-location patterns [29, 44], homophily [201], and community

structure [31]. The relationship between human mobility and the urban social diversity

of places, however, has not been extensively studied before.

At present, government census studies are the most widely used measures of urban so-

cioeconomic wellbeing at the neighbourhood level. However, recent works proposing the

use of user-generated content and social media for measurement have emerged [111, 188,

151, 184] as part of a new science of cities, based on the availability of these new forms

of data [16]. Using interim real-time measures of the urban pulse is appealing from a

temporal and cost perspective but can be challenging due to the demographic biases of

digital media users [61]. It is precisely these biases, however, that could provide insight

into some of the most difficult to quantify and predict processes such as gentrification,

which is associated with the displacement of residents of a deprived area by an influx of an

(economically and digitally) affluent population. The link between urban social diversity

and deprivation as measured by social media has yet not been studied.

Previous work using curated national statistical data sources has shown that the mor-

phology of urban environments plays a key role in urban deprivation [185, 114], and that

socioeconomic prosperity can be linked with other neighbourhood-level features such as

human travel patterns [173], access to local facilities [114], and the prevalence of fast-food

outlets [145]. Identifying and understanding associations such as these is of great interest

to national policymakers, social reformers, and city planners. More recently, there has

been interest in using signals from technological systems to predict urban wellbeing and

deprivation. Many signals have proved useful in predicting deprivation indices, from pas-

senger transits recorded by automated fare collection systems [168, 101] to crowdsourced

data such as OpenStreetMap [188]. In the context of location-based networks, deprivation

has been studied in terms of Foursquare’s crowdsourced venue database [188, 152], but

there has so far been little analysis from a joint geo-social perspective.

5.4 Discussion and Implications

The sociological tradition that places emphasis on gaps in social structures can be traced

back to the late 1960s and early 1970s, when a group of sociologists began to develop

the general idea that it is advantageous to forge connections to multiple, otherwise dis-

connected, individuals or groups [45, 72, 198]. One of the most celebrated theoretical

endeavours in the social sciences that draws on this tradition is Granovetter’s influential

study of the bridging role of weak ties [79]. The broader the access to weaker ties, the

closer an actor is likely to be placed to discontinuities in the social structure, which in turn

enables the actor to be connected to various social circles of contacts and to be exposed

to novel and diverse sources of information.
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Brokerage has been studied in various contexts within the boundaries of a single network

- e.g., organisational relations [40], online social network friendship [113], or mobile com-

munication [63]. Brokerage, however, is not limited to one type of context. The same

individuals may be engaged in different types of social relationships, and as a result may

benefit from various brokerage positions that affect each other in complex ways. For in-

stance, people can be brokers both online and offline. Recent studies have suggested that

online social networking is directly linked to bridging and bonding social capital [68, 190],

where social media sites such as Facebook have been shown to have a significant role in

maintaining distant and near-by contacts, and in sustaining social capital [35]. However,

while an individual may seem to be embedded in a socially cohesive neighbourhood on-

line (offline), there may be opportunities for brokerage arising from the non-redundant

contacts the individual has offline (online). Despite the growing availability and ubiquity

of online social media, it is still unclear whether there is a trade-off between the brokerage

positions that individuals occupy online and offline.

In this chapter, a multi-relational perspective on brokerage using a multilayer network

approach to social capital was presented, where both online social network structure

and physical co-location are taken into account to detect brokerage positions. With the

goal of informing the advancement of location-based services and urban development

in terms of deprivation and gentrification indices, in this chapter we also measure the

bridging and bonding potential of various types of places and their visitor diversity using

an interconnected network model of people and places. As opposed to a classic network

model, this approach allows for social network projections of the spatial network and

spatial network projections of the social network, enabling the measurement of the social

properties of places and the geographical properties of people based on their place (spatial)

network of visits. We use geo-social online data in Europe’s largest metropolitan city –

London – and introduce an interconnected people-place network paradigm, which aims

to more realistically model urban social diversity. Using the Twitter social network of

visitors to define the diversity of Foursquare venues, we are able to distinguish between

categories, geographies and socioeconomic factors across London’s neighbourhoods.

Venue recommendations have become a large part of urban discovery, especially for new-

comers to the city. While aspects such as popularity or rating of a place are easily

accessible through location-based services, the social role a place plays within the urban

context is normally only well known by locals through experience. Whether a place is

touristy or quiet, artsy or mainstream can be integrated into mobile system design for

empowering newcomers or visitors to feel like locals. The role of serendipity and brokerage

as described in the chapter can be particularly impactful when applied to location-based

dating applications, where recommendations of places with new and diverse people play

a fundamental role. Situation and mood dependent queries such as ‘I want to have drinks

alone at a place where it is socially acceptable and I can meet new people’ will become

increasingly popular given the social challenges cities present, in particular for the multi-
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tude of newcomers. Despite the challenges of integrating data from different sources and

running such metrics in real-time, the conceptual framework and urban social diversity

metrics presented in this thesis can greatly benefit local businesses as well as innovative

location-based discovery applications.

Another important implication of this work is its ability to underpin novel analysis of

urban dynamics. The distribution of deprivation across neighbourhoods in relation to

diversity is a topic, which affects local governments and policymakers. In particular, the

finding that more socially cohesive and homogeneous communities tend to be either very

wealthy or very poor but neighbourhoods with both high entropy and deprivation are

the ones which are currently undergoing processes of gentrification is in agreement with

previous literature on homophily where tightly knit communities are more resistant to

change and resources remain within the community [123]. This suggests that affluent

communities remain affluent and poor communities remain poor through isolation. On

the other hand, areas where there is high diversity and deprivation, communities are un-

dergoing change and what can be described as a gentrification process. This is confirmed

by the sharp improvement of their IMD scores between 2010 and 2015. Although fur-

ther investigation is needed into confounding factors and generalisability to other areas

of the UK and the world, the inherent biases of social media demographics [61] work to

the advantage of identifying a sudden rise in the affluence of visitors to a particularly

deprived neighbourhood. Diversity metrics applied to social media data as in the present

analysis can act as good predictors of gentrification when measured through indices of

deprivation. Building applications that not only serve users and businesses but are also

conscious of their impact on urban life in the longer run can become detrimental to urban

development.



Chapter 6

Reflections and Outlook

Decades of disciplinary studies have advanced our understanding of urban and social

dynamics where the preconception that only domain experts can tackle certain domain-

specific problems has prevailed in science. However, with the emergence of new sources

of geographic and social data, empirically grounded and large-scale studies of old and

new problems have become possible through a combination of computational data-driven

analysis and domain-specific theory. This thesis has demonstrated the use of such methods

and more importantly has demonstrated some of the advantages of a multilayer approach

to social and geographical systems.

The work presented in this dissertation is the product of two recent advancements: the

increased availability of large-scale geo-social data and the rekindled interest in the mod-

elling of multilayer networks. Leveraging both of these, a multilayer approach to the

analysis of social, urban and international geo-social interactions was demonstrated, of-

fering novel insights into these systems. By augmenting social networks with geographical

interactions and place networks with social interaction data, this dissertation has applied

the extension of traditional measures of centrality, diversity and overlap as well as new

perspectives on geo-social networks not possible without the large-scale contribution of

online data streams.

The approach taken has been incremental, first introducing a minimal multiplex network

model for measuring global connectivity and socioeconomic similarity using a number

of physical and digital networks, followed by a multiplex model of tie strength in small

but interaction-rich social multiplexes and larger-scale geo-social networks. The aim has

been to fill the gap in multilayer literature between theoretical and empirical research and

to present a data-driven approach which reflects the current state of geo-social network

data as produced by online and offline systems. Through this perspective, new models

of multilayer interactions are also needed and an interconnected geo-social network was

presented to this end, which demonstrates how people-place interactions can be modelled

to gain novel insights about the dynamics of cities.

113
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6.1 Summary of Contributions

The thesis that a multilayer approach to urban and social theory can advance our un-

derstanding of geo-social networks beyond what is possible from studying their social and

geographical components in isolation has been substantiated through the following con-

tributions presented in this dissertation:

Approximating socioeconomic indicators through multiplex interactions: In

Chapter 3, we introduced a simple multiplex model for the analysis of complex systems

applied to international relations. We built a global multiplex as a collection of graphs

of the postal, trade, migration, flights, digital communication and physical Internet lay-

ers. These physical and digital layers of international resource flows were combined and

studied together through the multiplex framework, revealing novel insight about the dis-

tribution of wealth and other resources and showing that a combined multiplex degree

correlates better with critical socio-economic indicators. We also introduced the commu-

nity multiplexity index, a measure of community membership similarity, and applied it to

approximating the socioeconomic profiles of countries, which allows for critical indicators

for international development purposes to be estimated from community similarity when

such data is missing for a particular country.

Homophily in multirelational networks: Influential sociologists have long called

for a dimensional exploration of homophily, both in terms of similarity characteristics

and methodology. In Chapter 4, we applied the concept of multiplexity to the study of

homophily within a student community. Using multiplex weighted distance, measuring

the multichannel communication of students and the strength of their ties, we showed

that those at closer distance in the multiplex network, were more similar than those

further away, evaluating a number of dimensions such as music taste, political affiliation,

situational factors and health habits. This is also a validation of the media multiplexity

theory, which has not been examined in the multilayer context or applied as a measure

of multiplex tie strength.

Link prediction in multilayer online networks: In Chapter 4, we further explored

the classic problem of link prediction in social networks from the multilayer perspective.

We formulated a number of location-based, social and mixed features which we use to

predict Twitter links from Foursquare features and vice versa. Additionally, in a second

task we demonstrate how mixed multilayer features can be used to predict which links

exist across layers, extending current link prediction literature to heterogeneous cross-

platform prediction and introducing the problem of multilayer link prediction for the first

time.
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Social capital and structural holes in the multilayer context: The concept of

social capital is explored in Chapter 5 from a geo-social perspective, where the notion

that social capital can be generated on both offline geographic and online social networks

is presented. It is then empirically observed that by considering just one layer - social or

geographic - social capital can be under or over estimated. A unified view of brokerage

for measuring social capital across online and offline layers of interaction was presented to

ameliorate this problem. This is the first study of social capital, brokerage and structural

holes from a multilayer perspective.

An interconnected network of people and places: With the goal of providing

realistic modelling for cities as they face more and more complex problems due to over-

population and globalisation, Chapter 5 introduces an interconnected model of geo-social

interactions between people and places. This model combines the social network of citi-

zens with the place network of places around the city. The concept of brokerage is then

redefined for places in terms of redundancy in the social network of its visitors. We also

introduce the concept of serendipity as the probability of the social composition of a place,

given the previously visited place network of each visitor. Ultimately, these measures of

urban diversity were compared to indices of deprivation for London, where neighbour-

hoods which are characterised by high social diversity in terms of the interconnected

network model but have high deprivation, were identified as neighbourhoods which are

undergoing processes of change such as gentrification. This was validated by observing the

percent change in terms of improvement of these neighbourhoods as well as independent

urban research pointing to those neighbourhoods as gentrifying.

6.2 Future Directions & Outlook

This dissertation has presented a data-driven computational approach to multilayer net-

works, which has been under-explored in the predominantly theoretical field of multilayer

complex networks. The domain of geo-social networks is a particularly fascinating one

as it holds the key to understanding the online and offline human dynamics that govern

our modern world. With the new availability of geographic and social interaction data,

studying how humans navigate the virtual and physical world in parallel will become in-

creasingly popular. Moreover, interfaces which intersect both dimensions will necessitate

the use of models beyond the single-layer, shifting data-driven multilayer networks from

an approach to a necessary method of evaluating multidimensional data.

The multilayer approach demonstrated in extending the theories of homophily, media

multiplexity and brokerage in this dissertation is not limited to these theories and can be

widely applied in cross-disciplinary research such as computational social science. The-

ories such as Bourdieu’s cultural capital [24] can be applied as extensions of Chapter 5,
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where not only social capital but also the economic and cultural capital of individuals and

places can be studied in parallel. Further candidates for multilayer analysis are Hofst-

ede’s cultural dimensions [87], which can be seen as a layer of the network of cross-cultural

interaction each and where the pattern of each culture can be characterised as a multi-

layer construct, as well as Campbell’s hero’s journey patterns of storytelling [42] where

an interconnected network can be used to describe the causality and cascading effects in

applications to large-scale language processing. All of these examples have in common

multiple factors which contribute to their formation but this dimensionality has not been

studied as a network yet. This dissertation has not explored time and dimension varying

multilayer networks which can prove useful constructs in understanding these theories

in a data-driven computational manner. Revisiting our understanding of social and ge-

ographical systems from a multilayer perspective, as this body of research has hopefully

shown, can provide a deeper perspective on the broader human condition.

Future directions in multilayer analysis will present themselves in many other domains

where massive amounts of data are collected such as ecology, organisational studies and

marketing. With one of the biggest challenges we face being climate change, more efforts

of collecting data about CO2 emissions and pollution are made. Studying these from

a geographic and human activity perspective as a multilayer interconnected network can

shed light on the processes driving pollution and key measures to prevent it. Furthermore,

organisational studies have long explored hierarchies of companies but as organisations

become more flat, new models for understanding how groups form in an ad-hoc fashion in

open office spaces are needed. Multilayer perspectives on groups and more in general on

human activity can increase the effectiveness of marketing strategies as people and places

redefine each other as has been suggested in Chapter 5 of this dissertation.

From an application-based perspective, as discussed in Chapter 4, there is more and more

integration between online services which provides rich user interaction data on many

levels. Apart from the obvious marketing value of this information, it will become increas-

ingly important to have seamless integration between devices and services, which poses a

number of security threats as well as design opportunities. Identifying users across online

social media platforms is still a developing research thread [77], which will also manifest

itself in better recommendations based on multidimensional data from across services. For

example, obtaining a person’s interests from Pinterest, their social network from Face-

book and mobility network from Foursquare could lead to a revolution in personalised

non-transient recommendations such as where to live or work in order to augment your

social and cultural capital as opposed to short-term item based recommendations.

The idealised concept of a “smart city” [16], where technological advancements allow

for fluid and seamless interactions between citizens and cities is the focus of architects,

designers, governments and computer scientists alike. However, in order to build the

cities of the future together, common conceptual models are needed to advance ideas into
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practice. In Chapter 5 we introduced such a model, which is generalisable to different

types of people-place interactions. This can be extended, for example, to understand

optimal urban transit strategies by adding an intermediary layer of transportation as a

medium of transition between people and places. Ultimately, the most important aspect of

a smart city is that it is adaptable to its resident’s ever-changing needs and interconnected

network models could be the common language and insight which relates to these needs.

All together these chapters suggest that multilayer modelling of geo-social data is an

effective way to gain novel insights about the world and has put forward a framework

which aims to inspire more interdisciplinary research and data-driven multilayer research

not only in the realm of geo-social networks but also beyond.
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