
Adaptive Distributed Indexing
for Spatial Queries in Sensor Networks

Vladimir Dyo and Cecilia Mascolo
Department of Computer Science, University College London, UK

Email: {v.dyo| c.mascolo }@cs.ucl.ac.uk

Abstract

Sensor networks have opened new horizons and
opportunities for a variety of environmental monitoring,
surveillance and healthcare applications. One of the
major tasks of sensor networks is the distributed
collection and processing of sensor readings over
extended periods of time. We propose an energy-
efficient hierarchical indexing approach for spatial
data in sensor networks. Our indexing technique allows
roaming users to navigate through sensor networks
distributed over large geographical areas and to pose
spatial queries about the location of the data in the
network. The major challenge in designing such indexes
is the minimization of the total amount of traffic needed
to create and maintain the indexes, which is a function
of region activity and the actual query rates. Given the
dynamic character of the setting, these parameters
might in fact change during the network operation,
calling for a very adaptive solution.

1. Introduction

Sensor networks are ad hoc networks consisting of
tiny low-powered computing devices with extremely
restricted computational, communication and battery
capabilities. Each device may be equipped with a
physical sensor for reading temperature, sound, pressure
or other physical phenomena and can operate both as a
sensor and a wireless router. Scalability, self-
configuration, ease of deployment and low cost have
made sensor networks very attractive for a wide range
of environmental monitoring, distributed surveillance,
healthcare and control applications.

Energy is the most critical factor when designing
sensor networks. Measurements suggest that sending
1bit is equivalent to performing approximately 1000
CPU instructions [10]. Therefore, any solution devised
for sensor networks has to minimize the amount of
communication overhead it imposes on the network. In
this paper we present an energy-aware indexing
approach for spatial data retrieval in sensor networks.
There are a large number of applications where a
requester needs to know the location of data sources
available within a given geographical area. A typical

query for this scenario could be “What are the locations
of all critical events within a range R from a point with
coordinates (X, Y)”? Also, similar information could be
used by a mobile user to quickly find relevant
information and efficiently navigate through
geographically vast areas. Answering these questions
would require a distributed index of data of entire
network. Furthermore, given the variability of the data
and query rates, an index would need to be dynamically
reconfigured.

The problems of energy-efficient data retrieval and
distributed indexing in sensor networks have been
previously addressed in [4][11][13][14][16]. In general,
there are two techniques that help creating and
maintaining an index infrastructure: what we call a
proactive approach and a reactive one. In proactive
mode, sensors periodically report all events to a cluster
head[4]. A cluster head maintains up-to-date
information about all events in the area and provides a
quick response to lookup queries. This approach has
some drawbacks: excessive communication overhead in
the case of dynamic data sources; also, an index has to
be maintained even when there are no lookup queries.
In reactive mode data is pulled from sensors only in
response to an incoming query [15]. However, because
the query has to be flooded over the network the cost of
each query can be prohibitively high, so this technique
is recommended only when the data is highly dynamic
and the proactive approaches would not perform well.

In this paper, we present a distributed index that
adapts to local event and lookup query rates to
minimize the amount of energy needed to create and
maintain the infrastructure. Our approach is based on
quad-trees, which are created on demand. All data
sources use a combination of proactive and reactive
modes for index updates. Our design goal is to (i)
minimize the amount of traffic needed to create and
maintain a distributed index, by adapting to local event
and lookup query rates and (ii) provide a bounded
response time to lookup queries. To the best of our
knowledge this is the first work on adaptive distributed
indexing for sensor networks.

The rest of the paper is organized as follows: Section
2 formulates our assumptions and illustrates the system
model. Section 3 describes the details of our approach.
Section 4 illustrates our dynamic adaptation technique,
while Section 5 contains a discussion and related work.

We conclude by a summarizing the results and by
identifying the directions for future work.

2. Assumptions and System Model

We consider a static sensor network distributed over a
flat area. All sensors are aware of their geographical
position. Each sensor could be equipped with GPS
device or use location estimation techniques such as [2].
We rely on geographical routing protocols such as
GPSR [9] for routing packets. When sending the query
to multiple nodes we assume the presence of existing
multicast protocols [1] for efficient data dissemination.
We do not make strong assumptions about spatial
distribution of events, event generation rates and
incoming queries rates. In our scenario, this means that
certain network regions might have more dynamic data
rates than others. It also means that certain network
regions might receive more lookup queries than others.

We assume that sensors spend most of their energy on
communication[10]. The communication cost depends
on a number of factors such as transmission power,
medium access protocol, channel conditions and
network topology. For simplicity, the communication
cost is calculated as linear function of geographical
distance from the node to a cluster head and message
size. We believe that this will capture the most salient
features of the setting, while keeping the model clear.

3. Description of the Approach

We decompose the entire network into a set of
disjoint hierarchical square cells, where each cell
consists of four smaller cells and so on (Figure 1). A
cell at each level of hierarchy has a cluster head
responsible for indexing data in that cell. Cluster heads
at the lowest level of hierarchy collect information
directly from sensors. Similarly to [4], the availability
of data in the cell is represented as a binary value and is
forwarded to a cluster head at a higher level of a
hierarchy in the form of a histogram. There can be
several of such histograms, one for each event type in
the network. Consequently, cluster heads at the highest
level of hierarchy have a complete view of all types of
events in the area.

Each cluster head is located inside its cell at a fixed
relative location. In the example given in Figure 1 the
cluster head is located in the centre of each cell. This
location in the picture was chosen quite arbitrarily, but
it has to be uniform throughout all cells. Since all the
cluster heads are located at predetermined coordinates
there is no need for cluster selection algorithms or
advertising cluster head location. This allows us to
create a distributed indexing hierarchy without any
communication overhead. Given any pair of coordinates

Figure 1. Space decomposition with hierarchical
grids.

(X,Y), the location of all cluster heads responsible for
this area, at any level of the hierarchy, is easy to
calculate. In the example given in Figure 1, the cluster
heads responsible for region (X,Y) are A, E, H,
respectively. There is always a possibility that a
predetermined geographical location does not contain
any nodes or the node at that location has failed. In this
case, a node which is geographically closest to a
predetermined location is chosen as cluster head
instead. A similar choice is made in [13].

We now show how the index tree is created and how
it adapts to query and local event rates. Maintaining an
index involves a certain amount of communication
overhead as sensors keep sending all event information
periodically to cluster heads. To minimize this overhead
the index tree is created on demand; that is, it is created
and maintained only for those parts of the network that
do receive queries. The tree is also adaptive in the way
it resolves incoming queries. Each branch of the tree
can be in on the following three states: i) proactive ii)
reactive iii) pruned. Proactive branches periodically
send information about all the events to their parent.
The parent cluster head then always has up-to-date
information about the availability of data and can use
that information to answer queries. Reactive branches
do not send updates to their parents, however, they
periodically send keep-alive requests which piggyback
binary information about the availability of each data
type in that region. Pruned branches are not active
because they have never been used or there has been no
recent activity on them. The difference between reactive
and pruned modes is that, in reactive mode, cluster
heads still send binary information about each event
type to their parent. In pruned mode the cluster heads do
not send any information to their parent, although they
can still serve local queries. The state of each branch
depends on the rate of event updates and lookup queries
for data in the relevant cell. In general, our approach
uses reactive mode requests for branches with high data
update rates, proactive mode for children with less
frequent update rates and it prunes inactive branches.

As an example, let us consider how a query is formed
and resolved. A requester sends the query to a cluster
head responsible for the minimum bounding square

covering the area of interest. As was noted earlier, the
location of all cluster heads is predefined, so it should
be easy to calculate. The query should contain
information about an area of interest (in the form of a
polygon), the type of events it is interested in and the
maximum tolerated latency. Upon receiving a query a
cluster head creates a tree, if this does not exist, and
forwards the query down all the branches covering the
spatial area of interest. If the tree does already exist, it
checks the mode of each of its branches before
forwarding the query. In case of proactive branches,
there is no need to forward the query, as all information
should be already available. The cluster head has to
forward the query to reactive and pruned branches. For
the reactive branches it will check if the branch contains
the given data type before forwarding the query. As we
have seen from the example, the tree branches can have
different operating modes, depending on the rate of
queries and event updates. The cluster head constantly
evaluates those rates and switches to the mode which
imposes the smallest communication overhead.
Assuming that sensors are long-lived processes with
relatively constant arrival rate, we need to identify
criteria for mode switching for tree branches and for
individual sensors. Our approach is presented in the
next section.

4. Dynamic Adaptation

Our primary goal is to minimize the amount of
communication overhead in the network. As noted
earlier some sensors can be very active, whereas others
can generate very few events. The basic idea of our
approach is that each data source constantly compares
the potential amount of traffic generated in proactive
and reactive modes and always switches to the best
mode. There are at least two times when sensors have to
do that: i) after initial deployment to adapt to a local
environment and lookup rates for data. ii) when there is
a change in either the environment or the demand.

Let us illustrate our idea with an example shown on
Figure 2. The sensors A, B, C and D are distributed
over a large space and measure pollution levels in the
air. An inspector visits an area daily and queries a local
index F for the location of all sensors with abnormal
pollution levels. Sensor D is located near a highway and
therefore its measurements change more frequently, on
average every hour. Sensors A, B and C are relatively
stable and report changes on average once per day. It is
easy to see that in this scenario sensors A, B and C
should operate in proactive mode immediately reporting
any changes to an index F whereas D should stay in
reactive mode all the time. However, when the
requirements of an environmental application change,
for example, an inspector needs to take measurements
every 5 minutes, then sensor D might need to switch to

Figure 2. Measuring air pollution

proactive mode. In the other extreme case, if it turns out
that the measurements have to be taken only once per
week, then all of the sensors should switch to a reactive
mode.

The rest of the section identifies a condition for
switching between reactive and proactive modes in
more detail. The communication cost of operating in
proactive and reactive modes depends primarily on the
rates of event update and incoming lookup. We assume
that all data sources are long-lived processes with
relatively constant arrival rates. In the example with air
pollution, the readings of sensor D would change on
average every hour depending on traffic on the road.
Given this assumption, the communication costs of
operation in proactive and reactive modes, for each
individual data source, are:

Cproactive(i) = Cup (i) λup (i) (1)
Creactive(i) = λreq (Cup (i) + Creq (i)) (2)

Where Cup(i) – cost of sending an update or reply to a
query, Creq – cost of sending a request to a sensor, λup –
average rate of event updates monitored by each node,
λreq – average rate of lookup queries received by a
cluster head. The rate of incoming requests λreq is the
same for the entire cluster, whereas λup is different for
each individual data source.

The ratio of costs of operation in proactive and reactive
modes is:

T = Cproactive / Creactive (3)

Intuitively, when T > 1, the cost of operating in
proactive mode is higher and the node should switch to
reactive mode. Similarly, when T < 1 the node should
switch to proactive mode. The sensors can use condition
(3) to switch between reactive and proactive modes. To
avoid the continuous flapping between the modes, data
sources can switch to a reactive mode when the ratio T
exceeds a certain upper threshold θreactive and to
proactive mode when T goes below a θproactive threshold.
The value of thresholds θproactive and θreactive will affect
the level of system responsiveness. For example, a
value of θproactive close to one will make the system very
responsive to the slightest changes in query or event

update rates. On the other hand, higher values of
θproactive would tell the system to switch to proactive
mode only when it will lead to substantial benefits in
terms of communication overhead. These thresholds can
be programmed into the sensors at deployment time.

As we have just seen, our approach relies on the
ability of data sources to estimate their average arrival
rate of event updates λup(i). This value might be
evaluated over a certain time window, with more weight
assigned to more recent values. In general, we cannot
make any assumptions about the statistical properties of
event and query rates, which makes the estimation of
those parameters a difficult task. But in practice, the
estimation algorithm could be application specific. For
example, in case of linear stochastic processes, Kalman
filter can be effectively used to predict the value of the
next outcome [8]. This is particularly attractive for
sensor networks because it is not computationally
expensive, does not require storing of history
information and therefore requires very little memory.

Let us look in detail on how this technique works.
After deployment, the network starts operating in
reactive mode to prevent indexing network data when it
is not needed. When the cluster head can estimate the
average request rate, it broadcasts an estimated lookup
request rate in the cell. Depending on local event update
rates, sensors then decide whether to select reactive or
proactive mode; sensors which decide to switch the
mode notify the cluster head on their decision. When
resolving queries, a cluster head forwards the query to
all reactive nodes in the cell. During operation a cluster
head constantly monitors the incoming query rate.
When λreq crosses an upper threshold θreactive or lower
threshold θproactive a cluster head sends notification to
relevant sensors specifying a new request rate so that
they can switch their mode. For example, when λreq
increases, some reactive nodes will need to switch to
proactive mode. In case λreq decreases, it would be more
efficient for some proactive nodes to become reactive.

Finally we apply the same adaptation technique not
only to individual data sources, but also to all cluster
heads which have parent clusters. We now observe that
each cluster head acts as a data source for its parent
cluster which allows us to apply the same adaptation
technique to each cluster head. Let us consider an
example. The cluster head A at the lowest level of
hierarchy receives lookup queries from its parent cluster
head B. B estimates the incoming query rates and
periodically sends this information to A so that A can
decide whether to use proactive or reactive mode of
updates. When the request rate drops below a certain
threshold, B sends a notification request to A so that it
switches to reactive or pruned mode.

5. Discussion and Related Work

In this section we discuss the advantages and some
drawbacks of our approach and then discuss how it
relates to other works in the field.

The combination of reactive and proactive
approaches should perform better than proactive or
reactive modes alone [5] because it will always choose
a mode which generates less traffic. This optimisation
comes at a certain cost. Firstly, the cluster head has to
keep the state information about all reactive sensors in
its area. This requires little memory as the state of the
sensor can be represented as 1bit of information. The
potential problem is that the state has to be recreated
after a cluster head failure. Secondly, the adaptation
technique introduces a certain amount of signalling
traffic into the network. For example, a cluster head
needs to notify data sources about changes in the
incoming query rates. However, the amount of overhead
can be minimized by adjusting the thresholds θproactive

and θreactive. Our solution should perform better when
the rates are more predictable, as in this case, it will
reduce flapping between the modes and minimize
signalling traffic. Lastly, we plan to address the
problem of cluster heads becoming disproportionately
heavily loaded and exhausting their batteries: some kind
of load balancing mechanism is needed to address this
issue.

In general there is very little work dedicated to spatial
indexing in sensor networks. However, the techniques
that we use are somehow similar to those used in
adaptive ad hoc routing protocols, location management
for cellular scale networks and service discovery. Here
we present a list of similar works and how they relate to
our research.

Reactive and proactive route discovery have been
heavily researched in the area of ad hoc networks. In [5]
Haas proposes a hybrid routing protocol, which uses a
combination of proactive and reactive modes. Some
service discovery protocols [6] also use a a mixture of
proactive and reactive approaches to cope with the
variability of pervasive networks. We draw an analogy
between discovering routes and discovering data in
sensor networks and apply the same hybrid approach
for building a distributed index for sensor networks.

There has been previous work on energy efficient
distributed indexing and data retrieval in sensor
networks. A centralized approach where all data are
sent to a single place in the network suffers from
scalability, reliability and excessive power consumption
problems. Transferring updates across the entire
network can quickly drain the energy of all the nodes
along the routes. As queries might originate from any
part of the network, an index placed at a specific
location does not make much sense. Therefore, the
index information should be located close to data to

minimize the amount of overhead to maintain an index.
The authors of Directed Diffusion [7] propose a data-
centric routing paradigm, where data is named using
attribute-value pairs and the queries are expressed in
terms of named data. A query sets up gradients showing
a direction towards a sink as it is flooded throughout the
network. Data matching the query start flowing along
those gradients towards the sink. This approach works
well when there is a need to collect all generated data
from the network that match a certain interest.
However, it relies on flooding to spread the query. Also,
it assumes that the data need to be gathered in a static
place in the network: this is not acceptable, given our
scenario with roaming users.

In [13] Ratnasamy et all describe a novel
Geographical Hash Table (GHT) system which hashes
keys into geographical coordinates. In GHT the data is
stored at a node with location determined by a
geographical hash function of its name. The advantage
of this system is that it allows to lookup the location of
data by its name. Its problem is that the location defined
by a GHT function can be quite far from the data
source. Spatially related data might become scattered
across the network which can also be a problem.

In DIFS [4] Greenstein et all propose a distributed
index based on quad-trees optimised for efficient range
queries. However, DIFS uses proactive updates which
does not adapt to local conditions. We used some
techniques from that work, such as using binary
histograms for representing availability of data. The
main difference is that our indexing structure is
adaptive and, therefore, minimizes energy consumption.
In [3] Demirbas et all propose an index for spatial
queries based on distributed R-trees. We did not choose
R-tree, but preferred quad-trees as they are more robust
and offer a simpler solution.

To the best of our knowledge, none of the existing
approaches adapts to the level of actual data update and
data lookup query rates to minimize the amount of
messaging overhead.

Conclusion and Future Work

We have presented a novel distributed index for
spatial queries in sensor networks which adapts to local
conditions and reduces the amount of overhead. A
combination of proactive and reactive updates to
maintain an index allows us to reduce the message
overhead and, consequently, energy consumption.

Further work is necessary to address some of the
design issues such as load balancing and selecting the
optimal values of thresholds θproactive and θreactive. Our
next objective is to simulate this system using an ns-2
simulator, and compare its performance with existing
approaches.

References

[1] S. Bhattacharya, H. Kim, S. Prabh, and T. Abdelzaher,

Energy-Conserving Data Placement and Asynchronous
Multicast in Wireless Sensor Networks, 1st Int. Conf. on
Mobile Systems, Applications, and Services (MobiSys),
San Francisco, 15 CA, May 2003

[2] N. Bulusu, J. Heidemann, and D. Estrin, Gps-less low
cost outdoor localization for very small devices. IEEE
Personal Communications, Special Issue on Smart
Spaces and Environments, 7(5):28–34, Oct. 2000.
(Mobicom’00), pages 56–67, 2000.

[3] M. Demirbas and H. Ferhatosmanoglu, Peer-to-peer
spatial queries in sensor networks. In 3rd IEEE Int. Conf.
on Peer-to-Peer Computing, (P2P'03). Linkoping,
Sweden, Sep. 2003.

[4] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, S.
Shenker, DIFS: A Distributed Index for Features in
Sensor Networks, In the Proc. of 1st IEEE Int. Workshop
on Sensor Network Protocols and Applications, May
2003.

[5] Z. Haas, A new routing protocol for the reconfigurable
wireless networks. In Proc. of the IEEE Int. Conf. on
Universal Personal Communications, Oct. 1997.

[6] R. Harbird, S. Hailes, and C. Mascolo, Adaptive
Resource Discovery for Ubiquitous Computing. In 2nd
Workshop on Middleware for Pervasive and Ad-Hoc
Computing, Toronto, Canada, Oct. 2004.

[7] C. Intanagonwiwat, R. Govindan and D. Estrin, Directed
Diffusion: A Scalable and Robust Communication
Paradigm for Sensor Networks, ACM MobiCom‘00.

[8] R. E. Kalman, A new approach to linear filtering and
prediction problems. Transactions of the ASME Journal
of Basic Engineering, Mar. 1960.

[9] B. Karp and H.T. Kung, GPSR: Greedy Perimeter
Stateless Routing for Wireless networks. Mobicom’00.

[10] D. Culler, D. Estrin and M. Srivastava, Overview of
Sensor Networks, IEEE Computer, Special Issue in
Sensor Networks, Aug. 2004.

[11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong, TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks. OSDI, Dec. 2002.

[12] M. Musolesi, S. Hailes and C. Mascolo, Adaptive
Routing for Intermittently Connected Mobile Ad Hoc
Networks. In Proc. of IEEE 6th International Symposium
on a World of Wireless, Mobile and Multimedia
Networks (WOWMOM'05). Taormina, Italy. Jun. 2005.

[13] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R.
Govindan, L. Yin, F. Yu, Data Centric Storage in
SensorNets with GHT, a geographic hash table. Mobile
Networks and Applications 8, 427–442, 2003. 2003
Kluwer Academic Publishers.

[14] E.M. Royer and C-K Toh, A Review of Current Routing
Protocols for Ad-Hoc Mobile Wireless Networks. IEEE
Personal Communications, Apr. 1999.

[15] TinyDB project, http://telegraph.cs.berkeley.edu/tinydb/
[16] Y. Yao and J. Gehrke, "The Cougar Approach to In-

Network Query Processing in Sensor Networks,"
SIGMOD’02.

