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Abstract 
 

Sensor networks have opened new horizons and 
opportunities for a variety of environmental monitoring, 
surveillance and healthcare applications. One of the 
major tasks of sensor networks is the distributed 
collection and processing of sensor readings over 
extended periods of time. We propose an energy-
efficient hierarchical indexing approach for spatial 
data in sensor networks. Our indexing technique allows 
roaming users to navigate through sensor networks 
distributed over large geographical areas and to pose 
spatial queries about the location of the data in the 
network. The major challenge in designing such indexes 
is the minimization of the total amount of traffic needed 
to create and maintain the indexes, which is a function 
of region activity and the actual query rates. Given the 
dynamic character of the setting, these parameters 
might in fact change during the network operation, 
calling for a very adaptive solution. 

 
 

1. Introduction 
 

Sensor networks are ad hoc networks consisting of 
tiny low-powered computing devices with extremely 
restricted computational, communication and battery 
capabilities. Each device may be equipped with a 
physical sensor for reading temperature, sound, pressure 
or other physical phenomena and can operate both as a 
sensor and a wireless router. Scalability, self-
configuration, ease of deployment and low cost have 
made sensor networks very attractive for a wide range 
of environmental monitoring, distributed surveillance, 
healthcare and control applications. 

Energy is the most critical factor when designing 
sensor networks. Measurements suggest that sending 
1bit is equivalent to performing approximately 1000 
CPU instructions [10]. Therefore, any solution devised 
for sensor networks has to minimize the amount of 
communication overhead it imposes on the network. In 
this paper we present an energy-aware indexing 
approach for spatial data retrieval in sensor networks. 
There are a large number of applications where a 
requester needs to know the location of data sources 
available within a given geographical area. A typical 

query for this scenario could be “What are the locations 
of all critical events within a range R from a point with 
coordinates (X, Y)”? Also, similar information could be 
used by a mobile user to quickly find relevant 
information and efficiently navigate through 
geographically vast areas. Answering these questions 
would require a distributed index of data of entire 
network. Furthermore, given the variability of the data 
and query rates, an index would need to be dynamically 
reconfigured. 

The problems of energy-efficient data retrieval and 
distributed indexing in sensor networks have been 
previously addressed in [4][11][13][14][16]. In general, 
there are two techniques that help creating and 
maintaining an index infrastructure: what we call a 
proactive approach and a reactive one. In proactive 
mode,  sensors periodically report all events to a cluster 
head[4]. A cluster head maintains up-to-date 
information about all events in the area and provides a 
quick response to lookup queries. This approach has 
some drawbacks: excessive communication overhead in 
the case of dynamic data sources; also, an index has to 
be maintained even when there are no lookup queries. 
In reactive mode data is pulled from sensors only in 
response to an incoming query [15]. However, because 
the query has to be flooded over the network the cost of 
each query can be prohibitively high, so this technique 
is recommended only when the data is highly dynamic 
and the proactive approaches would not perform well. 

In this paper, we present a distributed index that 
adapts to local event and lookup query rates to 
minimize the amount of energy needed to create and 
maintain the infrastructure. Our approach is based on 
quad-trees, which are created on demand. All data 
sources use a combination of proactive and reactive 
modes for index updates. Our design goal is to (i) 
minimize the amount of traffic needed to create and 
maintain a distributed index, by adapting to local event 
and lookup query rates and (ii) provide a bounded 
response time to lookup queries. To the best of our 
knowledge this is the first work on adaptive distributed 
indexing for sensor networks. 

The rest of the paper is organized as follows: Section 
2 formulates our assumptions and illustrates the system 
model. Section 3 describes the details of our approach. 
Section 4 illustrates our dynamic adaptation technique, 
while Section 5 contains a discussion and related work. 



We conclude by a summarizing the results and by 
identifying the directions for future work. 

 
2. Assumptions and System Model 
 

We consider a static sensor network distributed over a 
flat area. All sensors are aware of their geographical 
position. Each sensor could be equipped with GPS 
device or use location estimation techniques such as [2]. 
We rely on geographical routing protocols such as 
GPSR [9] for routing packets. When sending the query 
to multiple nodes we assume the presence of existing 
multicast protocols [1] for efficient data dissemination. 
We do not make strong assumptions about spatial 
distribution of events, event generation rates and 
incoming queries rates. In our scenario, this means that 
certain network regions might have more dynamic data 
rates than others. It also means that certain network 
regions might receive more lookup queries than others. 

We assume that sensors spend most of their energy on 
communication[10]. The communication cost depends 
on a number of factors such as transmission power, 
medium access protocol, channel conditions and 
network topology. For simplicity, the communication 
cost is calculated as linear function of geographical 
distance from the node to a cluster head and message 
size. We believe that this will capture the most salient 
features of the setting, while keeping the model clear. 

 
3. Description of the Approach 
 

We decompose the entire network into a set of 
disjoint hierarchical square cells, where each cell 
consists of four smaller cells and so on (Figure 1). A 
cell at each level of hierarchy has a cluster head 
responsible for indexing data in that cell. Cluster heads 
at the lowest level of hierarchy collect information 
directly from sensors. Similarly to [4], the availability 
of data in the cell is represented as a binary value and is 
forwarded to a cluster head at a higher level of a 
hierarchy in the form of a histogram. There can be 
several of such histograms, one for each event type in 
the network. Consequently, cluster heads at the highest 
level of hierarchy have a complete view of all types of 
events in the area. 

Each cluster head is located inside its cell at a fixed 
relative location. In the example given in Figure 1 the 
cluster head is located in the centre of each cell. This 
location in the picture was chosen quite arbitrarily, but 
it has to be uniform throughout all cells. Since all the 
cluster heads are located at predetermined coordinates 
there is no need for cluster selection algorithms or 
advertising cluster head location. This allows us to 
create a distributed indexing hierarchy without any 
communication overhead. Given any pair of coordinates  

 
Figure 1. Space decomposition with hierarchical 
grids. 

 
(X,Y), the location of all cluster heads responsible for 
this area, at any level of the hierarchy, is easy to 
calculate. In the example given in Figure 1, the cluster 
heads responsible for region (X,Y) are A, E, H, 
respectively. There is always a possibility that a 
predetermined geographical location does not contain 
any nodes or the node at that location has failed. In this 
case, a node which is geographically closest to a 
predetermined location is chosen as cluster head 
instead. A similar choice is made in [13]. 

We now show how the index tree is created and how 
it adapts to query and local event rates. Maintaining an 
index involves a certain amount of communication 
overhead as sensors keep sending all event information 
periodically to cluster heads. To minimize this overhead 
the index tree is created on demand; that is, it is created 
and maintained only for those parts of the network that 
do receive queries. The tree is also adaptive in the way 
it resolves incoming queries. Each branch of the tree 
can be in on the following three states: i) proactive ii) 
reactive iii) pruned. Proactive branches periodically 
send information about all the events to their parent. 
The parent cluster head then always has up-to-date 
information about the availability of data and can use 
that information to answer queries. Reactive branches 
do not send updates to their parents, however, they 
periodically send keep-alive requests which piggyback 
binary information about the availability of each data 
type in that region. Pruned branches are not active 
because they have never been used or there has been no 
recent activity on them. The difference between reactive 
and pruned modes is that, in reactive mode, cluster 
heads still send binary information about each event 
type to their parent. In pruned mode the cluster heads do 
not send any information to their parent, although they 
can still serve local queries. The state of each branch 
depends on the rate of event updates and lookup queries 
for data in the relevant cell. In general, our approach 
uses reactive mode requests for branches with high data 
update rates, proactive mode for children with less 
frequent update rates and it prunes inactive branches. 

As an example, let us consider how a query is formed 
and resolved. A requester sends the query to a cluster 
head responsible for the minimum bounding square 



covering the area of interest. As was noted earlier, the 
location of all cluster heads is predefined, so it should 
be easy to calculate. The query should contain 
information about an area of interest (in the form of a 
polygon), the type of events it is interested in and the 
maximum tolerated latency. Upon receiving a query a 
cluster head creates a tree, if this does not exist, and 
forwards the query down all the branches covering the 
spatial area of interest. If the tree does already exist, it 
checks the mode of each of its branches before 
forwarding the query. In case of proactive branches, 
there is no need to forward the query, as all information 
should be already available. The cluster head has to 
forward the query to reactive and pruned branches. For 
the reactive branches it will check if the branch contains 
the given data type before forwarding the query. As we 
have seen from the example, the tree branches can have 
different operating modes, depending on the rate of 
queries and event updates. The cluster head constantly 
evaluates those rates and switches to the mode which 
imposes the smallest communication overhead. 
Assuming that sensors are long-lived processes with 
relatively constant arrival rate, we need to identify 
criteria for mode switching for tree branches and for 
individual sensors. Our approach is presented in the 
next section. 
 
4. Dynamic Adaptation 
 

Our primary goal is to minimize the amount of 
communication overhead in the network. As noted 
earlier some sensors can be very active, whereas others 
can generate very few events. The basic idea of our 
approach is that each data source constantly compares 
the potential amount of traffic generated in proactive 
and reactive modes and always switches to the best 
mode. There are at least two times when sensors have to 
do that: i) after initial deployment to adapt to a local 
environment and lookup rates for data. ii) when there is 
a change in either the environment or the demand. 

Let us illustrate our idea with an example shown on 
Figure 2. The sensors A, B, C and D are distributed 
over a large space and measure pollution levels in the 
air. An inspector visits an area daily and queries a local 
index F for the location of all sensors with abnormal 
pollution levels. Sensor D is located near a highway and 
therefore its measurements change more frequently, on 
average every hour. Sensors A, B and C are relatively 
stable and report changes on average once per day. It is 
easy to see that in this scenario sensors A, B and C 
should operate in proactive mode immediately reporting 
any changes to an index F whereas D should stay in 
reactive mode all the time. However, when the 
requirements of an environmental application change, 
for example, an inspector needs to take measurements 
every 5 minutes, then sensor D might need to switch to 

 
Figure 2. Measuring air pollution  
 
proactive mode. In the other extreme case, if it turns out  
that the measurements have to be taken only once per 
week, then all of the sensors should switch to a reactive 
mode. 

The rest of the section identifies a condition for 
switching between reactive and proactive modes in 
more detail. The communication cost of operating in 
proactive and reactive modes depends primarily on the 
rates of event update and incoming lookup. We assume 
that all data sources are long-lived processes with 
relatively constant arrival rates. In the example with air 
pollution, the readings of sensor D would change on 
average every hour depending on traffic on the road. 
Given this assumption, the communication costs of 
operation in proactive and reactive modes, for each 
individual data source, are: 

 
Cproactive(i) = Cup (i) λup (i)    (1) 
Creactive(i) = λreq (Cup (i) + Creq (i) )   (2) 
 

Where Cup(i) – cost of sending an update or reply to a 
query, Creq – cost of sending a request to a sensor, λup –
average rate of event updates monitored by each node, 
λreq – average rate of lookup queries received by a 
cluster head. The rate of incoming requests λreq is the 
same for the entire cluster, whereas λup is different for 
each individual data source. 
 
The ratio of costs of operation in proactive and reactive 
modes is: 

 
T = Cproactive / Creactive    (3) 
 

Intuitively, when T > 1, the cost of operating in 
proactive mode is higher and the node should switch to 
reactive mode. Similarly, when T < 1 the node should 
switch to proactive mode. The sensors can use condition 
(3) to switch between reactive and proactive modes. To 
avoid the continuous flapping between the modes, data 
sources can switch to a reactive mode when the ratio T 
exceeds a certain upper threshold θreactive and to 
proactive mode when T goes below a θproactive threshold. 
The value of thresholds θproactive and θreactive will affect 
the level of system responsiveness. For example, a 
value of θproactive close to one will make the system very 
responsive to the slightest changes in query or event 



update rates. On the other hand, higher values of 
θproactive would tell the system to switch to proactive 
mode only when it will lead to substantial benefits in 
terms of communication overhead. These thresholds can 
be programmed into the sensors at deployment time. 

As we have just seen, our approach relies on the 
ability of data sources to estimate their average arrival 
rate of event updates λup(i). This value might be 
evaluated over a certain time window, with more weight 
assigned to more recent values. In general, we cannot 
make any assumptions about the statistical properties of 
event and query rates, which makes the estimation of 
those parameters a difficult task. But in practice, the 
estimation algorithm could be application specific. For 
example, in case of linear stochastic processes, Kalman 
filter can be effectively used to predict the value of the 
next outcome [8]. This is particularly attractive for 
sensor networks because it is not computationally 
expensive, does not require storing of history 
information and therefore requires very little memory. 

Let us look in detail on how this technique works. 
After deployment, the network starts operating in 
reactive mode to prevent indexing network data when it 
is not needed. When the cluster head can estimate the 
average request rate, it broadcasts an estimated lookup 
request rate in the cell. Depending on local event update 
rates, sensors then decide whether to select reactive or 
proactive mode; sensors which decide to switch the 
mode notify the cluster head on their decision. When 
resolving queries, a cluster head forwards the query to 
all reactive nodes in the cell. During operation a cluster 
head constantly monitors the incoming query rate. 
When λreq crosses an upper threshold θreactive or lower 
threshold θproactive a cluster head sends notification to 
relevant sensors specifying a new request rate so that 
they can switch their mode. For example, when λreq 
increases, some reactive nodes will need to switch to 
proactive mode. In case λreq decreases, it would be more 
efficient for some proactive nodes to become reactive. 

Finally we apply the same adaptation technique not 
only to individual data sources, but also to all cluster 
heads which have parent clusters. We now observe that 
each cluster head acts as a data source for its parent 
cluster which allows us to apply the same adaptation 
technique to each cluster head. Let us consider an 
example. The cluster head A at the lowest level of 
hierarchy receives lookup queries from its parent cluster 
head B. B estimates the incoming query rates and 
periodically sends this information to A so that A can 
decide whether to use proactive or reactive mode of 
updates. When the request rate drops below a certain 
threshold, B sends a notification request to A so that it 
switches to reactive or pruned mode. 
 
 
 

5. Discussion and Related Work 
 

In this section we discuss the advantages and some 
drawbacks of our approach and then discuss how it 
relates to other works in the field. 

The combination of reactive and proactive 
approaches should perform better than proactive or 
reactive modes alone [5] because it will always choose 
a mode which generates less traffic. This optimisation 
comes at a certain cost. Firstly, the cluster head has to 
keep the state information about all reactive sensors in 
its area. This requires little memory as the state of the 
sensor can be represented as 1bit of information. The 
potential problem is that the state has to be recreated 
after a cluster head failure. Secondly, the adaptation 
technique introduces a certain amount of signalling 
traffic into the network. For example, a cluster head 
needs to notify data sources about changes in the 
incoming query rates. However, the amount of overhead 
can be minimized by adjusting the thresholds θproactive 

and θreactive. Our solution should perform better when 
the rates are more predictable, as in this case, it will 
reduce flapping between the modes and minimize 
signalling traffic. Lastly, we plan to address the 
problem of cluster heads becoming disproportionately 
heavily loaded and exhausting their batteries: some kind 
of load balancing mechanism is needed to address this 
issue. 

In general there is very little work dedicated to spatial 
indexing in sensor networks. However, the techniques 
that we use are somehow similar to those used in 
adaptive ad hoc routing protocols, location management 
for cellular scale networks and service discovery. Here 
we present a list of similar works and how they relate to 
our research. 

Reactive and proactive route discovery have been 
heavily researched in the area of ad hoc networks. In [5] 
Haas proposes a hybrid routing protocol, which uses a 
combination of proactive and reactive modes. Some 
service discovery protocols [6] also use a a mixture of 
proactive and reactive approaches to cope with the 
variability of pervasive networks. We draw an analogy 
between discovering routes and discovering data in 
sensor networks and apply the same hybrid approach 
for building a distributed index for sensor networks. 

There has been previous work on energy efficient 
distributed indexing and data retrieval in sensor 
networks. A centralized approach where all data are 
sent to a single place in the network suffers from 
scalability, reliability and excessive power consumption 
problems. Transferring updates across the entire 
network can quickly drain the energy of all the nodes 
along the routes. As queries might originate from any 
part of the network, an index placed at a specific 
location does not make much sense. Therefore, the 
index information should be located close to data to 



minimize the amount of overhead to maintain an index. 
The authors of Directed Diffusion [7] propose a data-
centric routing paradigm, where data is named using 
attribute-value pairs and the queries are expressed in 
terms of named data. A query sets up gradients showing 
a direction towards a sink as it is flooded throughout the 
network. Data matching the query start flowing along 
those gradients towards the sink. This approach works 
well when there is a need to collect all generated data 
from the network that match a certain interest. 
However, it relies on flooding to spread the query. Also, 
it assumes that the data need to be gathered in a static 
place in the network: this is not acceptable, given our 
scenario with roaming users. 

In [13] Ratnasamy et all describe a novel 
Geographical Hash Table (GHT) system which hashes 
keys into geographical coordinates. In GHT the data is 
stored at a node with location determined by a 
geographical hash function of its name. The advantage 
of this system is that it allows to lookup the location of 
data by its name. Its problem is that the location defined 
by a GHT function can be quite far from the data 
source. Spatially related data might become scattered 
across the network which can also be a problem. 

In DIFS [4] Greenstein et all propose a distributed 
index based on quad-trees optimised for efficient range 
queries. However, DIFS uses proactive updates which 
does not adapt to local conditions. We used some 
techniques from that work, such as using binary 
histograms for representing availability of data. The 
main difference is that our indexing structure is 
adaptive and, therefore, minimizes energy consumption. 
In [3] Demirbas et all propose an index for spatial 
queries based on distributed R-trees. We did not choose 
R-tree, but preferred quad-trees as they are more robust 
and offer a simpler solution.  

To the best of our knowledge, none of the existing 
approaches adapts to the level of actual data update and 
data lookup query rates to minimize the amount of 
messaging overhead. 

 
Conclusion and Future Work 
 

We have presented a novel distributed index for 
spatial queries in sensor networks which adapts to local 
conditions and reduces the amount of overhead. A 
combination of proactive and reactive updates to 
maintain an index allows us to reduce the message 
overhead and, consequently, energy consumption. 

Further work is necessary to address some of the 
design issues such as load balancing and selecting the 
optimal values of thresholds θproactive and θreactive. Our 
next objective is to simulate this system using an ns-2 
simulator, and compare its performance with existing 
approaches. 
 

References 
 
[1] S. Bhattacharya, H. Kim, S. Prabh, and T. Abdelzaher, 

Energy-Conserving Data Placement and Asynchronous 
Multicast in Wireless Sensor Networks, 1st Int. Conf. on 
Mobile Systems, Applications, and Services (MobiSys), 
San Francisco, 15 CA, May 2003  

[2] N. Bulusu, J. Heidemann, and D. Estrin, Gps-less low 
cost outdoor localization for very small devices. IEEE 
Personal Communications, Special Issue on Smart 
Spaces and Environments, 7(5):28–34, Oct. 2000. 
(Mobicom’00), pages 56–67, 2000. 

[3] M. Demirbas and H. Ferhatosmanoglu, Peer-to-peer 
spatial queries in sensor networks. In 3rd IEEE Int. Conf. 
on Peer-to-Peer Computing, (P2P'03). Linkoping, 
Sweden, Sep. 2003. 

[4] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, S. 
Shenker, DIFS: A Distributed Index for Features in 
Sensor Networks, In the Proc. of 1st IEEE Int.  Workshop 
on Sensor Network Protocols and Applications, May 
2003.  

[5] Z. Haas, A new routing protocol for the reconfigurable 
wireless networks. In Proc. of the IEEE Int. Conf. on 
Universal Personal Communications, Oct. 1997.  

[6] R. Harbird, S. Hailes, and C. Mascolo, Adaptive 
Resource Discovery for Ubiquitous Computing. In 2nd 
Workshop on Middleware for Pervasive and Ad-Hoc 
Computing, Toronto, Canada, Oct. 2004. 

[7] C. Intanagonwiwat, R. Govindan and D. Estrin, Directed 
Diffusion: A Scalable and Robust Communication 
Paradigm for Sensor Networks, ACM MobiCom‘00. 

[8] R. E. Kalman, A new approach to linear filtering and 
prediction problems. Transactions of the ASME Journal 
of Basic Engineering, Mar. 1960. 

[9] B. Karp and H.T. Kung, GPSR: Greedy Perimeter 
Stateless Routing for Wireless networks. Mobicom’00. 

[10] D. Culler, D. Estrin and M. Srivastava, Overview of 
Sensor Networks, IEEE Computer, Special Issue in 
Sensor Networks, Aug. 2004. 

[11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. 
Hong, TAG: a Tiny AGgregation Service for Ad-Hoc 
Sensor Networks. OSDI, Dec. 2002. 

[12] M. Musolesi, S. Hailes and C. Mascolo, Adaptive 
Routing for Intermittently Connected Mobile Ad Hoc 
Networks. In Proc. of IEEE 6th International Symposium 
on a World of Wireless, Mobile and Multimedia 
Networks (WOWMOM'05). Taormina, Italy. Jun. 2005. 

[13] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. 
Govindan, L. Yin, F. Yu, Data Centric Storage in 
SensorNets with GHT, a geographic hash table. Mobile 
Networks and Applications 8, 427–442, 2003. 2003 
Kluwer Academic Publishers. 

[14] E.M. Royer and C-K Toh, A Review of Current Routing 
Protocols for Ad-Hoc Mobile Wireless Networks. IEEE 
Personal Communications, Apr. 1999. 

[15] TinyDB project, http://telegraph.cs.berkeley.edu/tinydb/ 
[16] Y. Yao and J. Gehrke, "The Cougar Approach to In-

Network Query Processing in Sensor Networks," 
SIGMOD’02. 

 


