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Continuous audio analysis from embedded and mobile devices is an increasingly important application domain. More and
more, appliances like the Amazon Echo, along with smartphones and watches, and even research prototypes seek to perform
multiple discriminative tasks simultaneously from ambient audio; for example, monitoring background sound classes (e.g.,
music or conversation), recognizing certain keywords (‘Hey Siri’ or ‘Alexa’), or identifying the user and her emotion from
speech. The use of deep learning algorithms typically provides state-of-the-art model performances for such general audio
tasks. However, the large computational demands of deep learning models are at odds with the limited processing, energy
and memory resources of mobile, embedded and IoT devices.

In this paper, we propose and evaluate a novel deep learning modeling and optimization framework that speci�cally targets
this category of embedded audio sensing tasks. Although the supported tasks are simpler than the task of speech recognition,
this framework aims at maintaining accuracies in predictions while minimizing the overall processor resource footprint. The
proposed model is grounded in multi-task learning principles to train shared deep layers and exploits, as input layer, only
statistical summaries of audio �lter banks to further lower computations.

We �nd that for embedded audio sensing tasks our framework is able to maintain similar accuracies, which are observed in
comparable deep architectures that use single-task learning and typically more complex input layers. Most importantly, on an
average, this approach provides almost a 2.1⇥ reduction in runtime, energy, and memory for four separate audio sensing
tasks, assuming a variety of task combinations.
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systems organization→ Embedded systems;
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1 INTRODUCTION
For a wide range of sensory perception tasks, current state-of-the-art techniques rely on various forms of deep
learning; typical examples include: recognizing an object [24] or face [51] from an image, and identifying the
speaker [53], or classifying their emotions [22], from the audio of spoken words. Performing discriminative tasks
like these is critical for a growing class of low-resource embedded and IoT devices worn by consumers (e.g.,
Fibit Surge [5]), or installed in homes or workplaces (e.g., Amazon Echo [3]): they allow the device to interpret
and react to the user and environment in support of applications like health care, automation assistants and
smart homes. However, this presents a signi�cant challenge as the use of deep neural networks, even just for the
inference, can require large amounts of memory, computation and energy that overwhelm the resources available
to this class of hardware [11]. For this reason, a variety of methods [12, 14, 15, 23, 30] are currently being explored
as to how the inference-time usage of deep learning models can be optimized to �t within the embedded device
limits.
Within this emerging area of research, the majority of the proposed solutions focus on optimizing a single deep
network; for instance: compressing layer weights within the network [12, 15, 29, 30] or removing dependencies
between units that are determined to be expendable [23]. These approaches often ignore the fact that applications
supported by the embedded devices commonly needmultiple types of related perception tasks to be performed [44].
For example, the Amazon Echo device responds to simple home user requests (such as, “turn on the light”), which
requires it to perform multiple learning tasks on a continuous audio stream, including: (i) recognize if spoken
words are present (and not any other type of sound); (ii) perform spoken keyword spotting (as all commands
should begin with the same key word); and, (iii) speech recognition, along with additional dialog system analysis
that allows it to understand and react to the voice commands. Each of these tasks typically require an individual
model. While optimizing each model in isolation is important for their usage on embedded devices, we explore
novel opportunities of gaining better resource utilization through the development of a deep and cross-task audio
model optimization framework by adopting multi-task learning techniques. The key idea is in identifying joint
representations of audio input that can be shared across various audio inference models, e.g., through sharing of
hidden layers. However, prior formulations of multi-task learning do not understand the resource implications of such
decisions and therefore are unable to best optimize both the accuracy and performance of shared deep architectures.

Closely related learning tasks are often bene�tted when modeled under a multi-task learning approach [13].
Moreover, feature representations learned using deep neural networks often demonstrate a degree of transferability
between related tasks [58]; and naturally, examples of multi-task deep learning have emerged [16, 37]. However,
typically these approaches are used towards improving model robustness and accuracy. In this paper, we ask if
they can also play an important role in reducing the computational resources necessary for deep neural networks.

We investigate this by evaluating a deep multi-task optimization framework that seeks to share hidden layers
between tasks for the purposes of improving the runtime performances (e.g., model size and execution time)
but do so selectively. Not all audio tasks will bene�t from having mixed layers, with negative consequences to
accuracy potentially occurring. As a result, a framework that carefully considers the e�ciency gains in sharing
layers among various network architectures, while maintaining accuracies of each audio task, is needed. To
further facilitate cross-task model sharing, we also study alternative data input options that unify and simplify
the feature extraction process for audio sensing scenarios – these are captured as automated hyper-parameter
choices.
There are two key underlying sources of novelty in this research and the devised framework that results. (i)
This is one of the �rst attempts to identify methods to optimize across deep learning models within multi-model
scenarios. As mentioned previously, the majority of deep learning optimization techniques to date have focus on
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Existing Embedded Related Audio
or Mobile System Analysis Tasks
Amazon Echo [3] Sound-type Recognition
Google Home [6] Keyword Spotting

Speech Recognition
Auto Shazam [4] Sound-type Recognition

Song Recognition
EmotionSense [47] Emotion Recognition

Speaker Identi�cation
SocialWeaver [43] Speaker Identi�cation

Conversation Analysis
Text-dependent Speaker Identi�cation
Speaker Veri�cation [53] Keyword Spotting

Table 1. Example embedded audio processing systems each requiring multiple related audio analysis tasks.

optimizing a single model in isolation. (ii) While the act of conventional multi-task learning, as a by-product,
often reduces the performance overhead of a model compared to training models individually – this occurs within
these frameworks on an ad-hoc basis. E�ciencies derived from conventional multi-task learning are produced by
representation sharing decisions that do not delicately balance the impact on accuracy on a per-task basis, nor the
impact on overall model performance.We design the �rst training and optimization multi-task learning framework
that systematically explores varieties of deep architectures that include di�erent forms of representation sharing
between tasks towards the goal of a joint objective of a compact representation with the best possible aggregate
task accuracy. In this paper we explore two model architectures, namely Restricted-Boltzmann Machines (RBM)
and Deep Neural Networks (DNN), while learning a shared network for a number of related audio sensing tasks.
To evaluate our proposed approach, we focus on a set of commonly used audio-related learning tasks and consider
the challenge of when they are deployed to hardware representative of the embedded device constraints of
today, and in the future. Speci�cally, we examine the tasks of: (i) speaker identi�cation, (ii) emotion recognition,
(iii) stress detection and (iv) ambient acoustic scene analysis. These tasks are selected as they are often used
in combination within many commercial embedded systems and research prototypes, examples of which are
provided in Table 1. We study these audio tasks within the constraints of an embedded-class DSP and CPU;
speci�cally the QualcommHexagon DSP [8] and ARMCortex A7 CPU [2] both of which are present in commercial
wearables (like the Motorola Moto 360 smartwatch [7]) and embedded home devices. This DSP, in particular,
is representative of highly-constrained processors that are increasingly performing audio sensing: they are
low-power enough to operate all day without recharging, but still computationally powerful enough to support
moderately sized neural networks (for example, 3 hidden layers of 900 nodes in this case).
The scienti�c contributions of this work include:

• a novel framework for training and optimizing deep audio models that learns an architecture, which
selectively shares representations between tasks towards balancing performance gains with losses in
inference accuracy;

• an empirical understanding of the degree to which simple audio tasks integrate together under multi-task
shared-representation models;

• a comprehensive evaluation of the gains in resource utilizations (e.g., memory footprint, computational
needs) for embedded-class processors, when shifting from multiple individual models to shared multi-task
networks;
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We �nd that for the class of background audio sensing tasks, that are not as commonly studied as the more
complex ones (such as speech recognition), the data input layer can often be much simpler than the once used
commonly. Interestingly, we found that the models can exhibit a surprising amount of sharing. For the studied
four audio analysis tasks, the reductions in runtime, memory and energy consumption are on average 2.1⇥ across
deployment con�gurations with virtually no impact on accuracy (a mean accuracy loss of no more than 1.5%).

2 EFFICIENT MULTI-TASK OPTIMIZATION FRAMEWORK
We now detail the techniques and algorithms behind audio input representation and the multi-task optimization
framework. This section begins with a high-level overview of the shared model architecture and is followed by a
detailed description of two main approaches of training the model. Speci�cally, we explore two multi-task training
procedures using (i) RBM and (ii) DNN. Lastly, we devote an entire separate section on the implementation of a
prototype designed for embedded devices.

2.1 Overview
Multi-task learning is a well known concept within the machine learning community, where the main objective
is to apply an inductive transfer, i.e., use domain information from one related training set to another, while
learning representations in parallel. Typically in a multi-task learning problem, T supervised learning tasks are
considered, each with a training dataset St = {x ti ,�ti }

nt
i=1. Given a loss function L(·) that measures the prediction

error per task, the objective of multi-task learning is to minimize:

min
T’
t=1

1
nt

nt’
i=1

L(�ti , ft (x ti )) + � | | f | |2 (1)

We propose a novel approach to modeling the multiple continuous audio sensing tasks that are routinely required
on embedded and IoT systems (see Table 1). We adopt multi-task learning that results in a varying degree of
shared hidden layers between each audio task, depending on the cross-task impact on accuracy, and on the overall
memory/computational constraints of the underlying embedded platform. This has multiple bene�ts:

• the potential for supporting a larger number of inference tasks through a shared representation that
complies with embedded memory constraints;

• the advantage of �tting bigger and potentially more accurate networks with more parameters instead of
compromising model size to make room for multiple models;

• a substantially reduced runtime and energy facilitated by the evaluation of a single shared model as opposed
to performing multiple classi�cations separately.

The main novelties of our work are as follows: (i) we allow the adoption of statistical summaries of conventional
audio �lter banks as the input layer to our deep architectures, (ii) we propose a new search-mechanism (Sec. 2.5)
to identify shared con�gurations of deep neural networks suitable for performing simultaneously a number
of audio-based inferencing, (iii) contrary to the deep audio model training, our proposed approach optimizes
inference time costs, e.g., memory, latency and energy, on resource constrained wearable and IoT devices in order
to popularize deep learning-based inferencing on tiny wearables.
We �nd that multi-task learning successfully integrates tasks while preserving accuracy due to their similar
structure and lower complexity (relative to other challenging audio tasks like speech recognition) using summaries
of �lter banks. This is an unusually simple representation, but again because audio analysis tasks are by their
nature low-complexity, we observe empirically that it is – counter to existing practice – su�cient. Building shared
representations and deploying them on the embedded device is preceded by an o�ine training optimization step,
the purpose of which is to determine a deployment con�guration. The con�guration indicates to what extent the
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audio sensing tasks should be integrated to have a shared representation and what would be the overall size
of the deployed model given the memory and computational constraints. A con�guration also results in some
subsets of the tasks having a shared representation (possibly all), while others might end up with individual
models. The �nal chosen con�guration is subject to change depending on the goal of the deployment; typically
we strive for the most accurate, energy e�cient and fastest (low-latency) con�guration.
The rest of this section introduces an unusually simple alternative to the commonly adopted features in audio
processing, and describes the most salient points of the shared-layer training approach. The section concludes
with a description of the o�ine optimization process that prepares a multi-task con�guration for constrained use
on embedded hardware.

2.2 Reducing Input Feature Complexity
To build a shared feature representation across multiple audio analysis tasks, we need to unify the feature
extraction process to compute common acoustic observations. Until now, usual practice has been to de�ne model
speci�c features or use variants of Perceptual Linear Predictive (PLP) coe�cients [26] or Mel Frequency Cepstrum
Coe�cients (MFCC) [18]. Good candidates for common features across the various audio processing tasks are
the log �lter banks [50] which are an early step in the PLPs and MFCCs computational pipelines. It has been
shown that the use of �lter banks in speech recognition tasks [17] does not compromise, and can potentially
boost, the accuracy of the trained deep neural network models.
In our design, we take the use of �lter banks one step further by using summaries of �lter bank coe�cients that
have the bene�t of requiring signi�cantly fewer processing resources. We extract N �lter banks from each frame
over a small time window of 30 msec (with 10 msec stride) and summarize the distribution of the values for each
coe�cient across successive frames within a large context window with statistical transformations (min, max,
std, mean, median, 25-percentile and 75-percentile). This signi�cantly reduces the number of features used in
the classi�cation process. For instance, a Speaker Identi�cation pipeline [47] that extracts features every 10ms
over a 5-second (context) window would result in 500 ⇥ N �lter bank coe�cients, whereas with summaries we
would need only a fraction (7 ⇥ N ) of coe�cients. Further, using summaries allows us to have an input layer
with the same size across all audio sensing tasks, regardless of the length of the inference context window. For
example, a 5-second audio window used in Speaker Identi�cation would have the same input layer dimension as
a 1.28-second window used in Ambient Scene Analysis (these tasks are detailed in the next section).

2.3 Deep Model Base Architecture
We base our multi-task architecture on a Deep Belief Network (DBN) that has given the state-of-the-art perfor-
mance in scenarios such as text-dependent speaker veri�cation [53] or small-footprint keyword spotting [14]. A
distinguishing characteristic of the DBN is that it is trained in two stages. A greedy layer-wise pretraining phase
initializes the weights of the network in an unsupervised manner from the training data. The second stage is
�ne-tuning which applies a standard backpropagation algorithm to the pre-trained network. The building blocks
of the DBN are RBMs, which are a special case of Random Markov Fields (RMF) with visible and hidden units.
RBMs are stacked to form the layers of the network, where the hidden units from one RBM act as the visible
layer for the next.
During the feed forward inference stage, the DBN behaves like an ordinary neural network (DNN). Each unit n
from the RBMs computes its state xn based on the weights from the connections to the previous layer (win ), the
output states from the prior layer units (zi ), and a unit-speci�c bias (bn ):

xn = bn +
’
i
ziwin (2)
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Input Layer

Hidden Layers

Shared feature
representation

Audio task 1 Audio task 2 Audio task 3 Audio task 4

Fig. 1. Architecture of the multi-task deep neural network.

This intermediate state xn is subject to transformation by applying an activation function a(xn) that gives the
result of the �nal state zn . Recti�ed linear units (ReLU) are commonly adopted as an activation function [45]
as they speed up the training process, while maintaining the performance. A standard practice when modeling
audio is to construct the input layer using Gaussian RBMs [54], which are able to cope with real-valued data
(�lter-banks or handcrafted MFCC/PLP features) used to represent the raw audio frames. The output layer uses
an alternative softmax activation, which normalizes the output node values so that they adds to 1. In a way, this
estimates a posterior probability of belonging to a certain class since the last layer units correspond to the audio
inference classes.
As the second alternative model architecture we use the popular DNN model, comprising of an input layer,
an output layer and a number of hidden layers. Contrary to the DBN training, the DNN is trained using the
Stochastic Gradient Descent (SGD) algorithm, without employing the unsupervised pre-training.

2.4 Simplified Architecture by Sharing Layers
Figure 1 portrays an example architecture of the proposed multi-task audio Deep Neural Network. In this �gure,
all tasks are shared; the decision to integrate all tasks into a single network is left as a hyper-parameter decision
based on how accuracies of each tasks vary when tasks are combined.
In our architecture, the input and hidden layers are shared across potential combinations of audio analysis tasks.
These layers can be considered as a universal feature transformation front-end that captures acoustic observations.
The softmax output layers of tasks that are combined are not shared, but each audio sensing task has its own
softmax layer that acts as a classi�er that estimates the posterior probabilities of the sound categories speci�c to
each audio sensing task. Any task that is not determined to be joined within shared layers remains as a separate
network within the collection. Figure 2 illustrates an overview of the overall training process, which uses either
stacked RMBs or DNN training approach to obtain the parameters for the shared layers.
The key to the successful learning of the multi-task deep architecture is to train the model for all the audio
tasks simultaneously. First, we describe the RBM-based training approach. We adopt minibatch SGD, where
each batch contains samples from all training data available (see Figure 2). To accomplish this, we �rst extract
�lter bank summaries, normalize the features across individual datasets and randomize the samples across audio
tasks before feeding them into the training procedure. Each minibatch contains strati�ed samples, i.e. the larger
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Training Using RBM

- Greedy Layer-wise     
   Pretraining
- Fine-tuning using 
  task-specific data 

Training Using DNN

- Iterative training 
  on mini-batches   
  using SGD 

Audio Task 1

Audio Task 2

Audio Task 3

Audio Task 4

Hidden Layers

Filter Bank
Summary

(Input Layer)

Mini-batch for
Hidden Layers

Mini-batch for
Output Layer

Overview of Mini-batch 
Training

Audio signal (8 KHz)

Filter Bank 
Coefficients

Mean/Stddev 
Normalization

Summary

RBM / DNN Training

Multi-task Learning
Pipeline Deep Architecture 

Training Algorithms

1

2

Fig. 2. Overview of the multi-task learning pipeline, mini-batch training procedure and two training algorithms.

datasets cast proportionally more samples (see Figure 2). The �ne-tuning of the multi-task deep architecture
can be carried out using a conventional backpropagation algorithm. However, since a di�erent softmax layer is
used for each separate audio sensing task, the algorithm is adjusted slightly. When a training sample is presented
to the multi-task trainer, only the shared hidden layers and the task-speci�c softmax layer are updated. Other
softmax layers are kept intact. The entire multi-task architecture and its training procedure can be considered
as an example of multi-task learning. After being trained, the multi-task architecture can be used to recognize
sounds from any task used during the training process.
A variant of the RBM training procedure is to consider standard DNN architecture training using the back-
propagation algorithm. Under DNN training, we begin by creating the minibatch as in the case of RBM training,
i.e., each minibatch contains strati�ed samples from all datasets. We then apply SGD to update parameters in the
shared hidden layers and task-speci�c softmax layer (see Figure 2).

2.5 Optimizing the Multi-task Configuration
Prior to placing a multi-task con�guration on the embedded platform, we perform an o�ine optimization step
that aims to decide the level of integration of the various tasks – a shared representation may be built for only a
subset of the tasks if the accuracy is critically impacted otherwise. A deployment con�guration consists of the
set of deep models (shared and/or individual) that cover the range of inferences supported by the audio sensing
tasks. The optimization process is guided by a set of hyperparameters that control the search space. Depending
on the end goal or required level of accuracy for each task, one deployment con�guration may be preferred over
another at di�erent times. The hyperparameters are:

• Accuracy criterion – it compares a list of accuracies against another one. Each candidate deployment
con�guration has an associated list of accuracies as observed on the validation sets for each audio task. At
the end of the training optimization process, the con�guration that is best according to the criterion is
chosen. Example criteria are picking the candidate con�guration that gives the highest average accuracy,
or selecting the con�guration that minimizes the mean accuracy loss across tasks.
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t1 t2

t3

t1 t2 t3

t1 t2 t3

t1 t2t3

t1t2t3

Fig. 3. Di�erent deployment configurations for 3 audio sensing tasks (t1, t2, and t3). We can have independent models
for each task (le�), all tasks can share the layers of the DNN (middle), or we can deploy a pair of tasks with a shared
representation and a task with an independent model (right).

• Network topology – it speci�es the overall deep neural network layout but not the exact size of the model.
By default, we explore deep architecture with hidden layers each of which has an identical number of
nodes. This topology has proven e�ective in a variety of audio analysis tasks such as keyword spotting [14],
text-dependent speaker veri�cation [53], and emotion recognition [32]. We vary the number of nodes per
layer, but to limit the search space we constrain the numbers to being powers of two. Typical small-footprint
networks trained for embedded devices feature 128 [14], 256 [53], or 512 nodes [32] in one hidden layer.

• Embedded memory limit – the total size of the deep model in a con�guration is largely constrained by
the maximum amount of memory that can be used at runtime. Audio tasks that perform continuous sensing
are typically deployed on a low-power co-processor (e.g., the Qualcomm Hexagon DSP) that runs its own
real-time OS and operates independently from the power-hungry general-purpose CPU. A prominent
limitation is the amount of runtime memory available to such low-power units. To maximize energy
e�ciency we would want to maintain the co-processor operation largely independent of the CPU, and
use its own memory without resorting to interactions with the CPU for processing or parameter transfers.
We use this hyperparameter as a leading constraint, any con�guration for which the model exceeds the
memory limit is discarded by the multi-task optimization process.

• Combination search policy – this parameter restricts the search space to the exploration of certain types
of con�gurations in an attempt to speed the optimization process. When the number of audio analysis
tasks is small, the search policy could simply be a brute-force exhaustive search, which is what we adopt
by default. With the increase in number of tasks, the search space grows exponentially. With a total of 3
related tasks the number of di�erent combinations is 5 as shown in Figure 3 – one possibility is having a
shared representation across all tasks; another one is having individual models for each task as is common
practice; there are also 3 con�gurations where two of the tasks share the hidden layers of a DNN, and one
is separate. An example policy to restrict the search space is to explore only con�gurations that have no
more than 2 deep models in total across tasks.
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(a) �alcomm Snapdragon 800 Mobile Development
Board (MDP/S) used for the DSP multi-task deployment.

(b) �alcomm Snapdragon 400 Mobile Development
Board used for the multi-task deployment.

Fig. 4. Hardware SoCs used for computing the runtime performance of multi-task deep models.

The optimization process works as follows. For each combination of tasks in our search policy we build various
sized networks of the topology supplied as a hyperparameter. We also vary the input layer feature type, choosing
among MFCC [18], PLP [26], �lter banks or summaries of these. We train the deep models and obtain for each
audio analysis task the accuracy observed on its validation set. Given that the con�guration complies with the
memory limit, we use the accuracy criterion to compare the current con�guration with the best one found so far.
At the end, we have one con�guration that de�nes how audio analysis tasks are combined with the sizes and
parameters of the deep neural networks.

3 PROTOTYPE IMPLEMENTATION
The multi-task optimization framework that performs the o�ine training process is implemented in Python,
using Theano [52] and TensorFlow [9] backends. We re-implement the Deep Belief Network source code provided
by the Theano library of examples to support the sharing of the input and hidden layers across multiple tasks.
We also modify the Stochastic Gradient Descent algorithm to take training samples from multiple datasets and
propagate classi�cation errors across the shared network nodes. Multi-task classi�er models with feed-forward
propagation are implemented in C for the Hexagon Digital Signal Processor (DSP) of a Qualcomm Snapdragon
800 Mobile Development Board (MDP/S) [8] shown in Figure 4a. This development board allows us to precisely
measure DSP performance, and expect measurements to generalize to situations where the DSP is installed
in di�erent platforms with the same Snapdragon processor architecture (e.g., smartwatches, home appliances
and phones). Lastly, for completeness of our runtime experiments, we implemented multi-task inferencing in
Torch [10] to measure run-time performances on the Snapdragon 400 SoC (Figure 4b) running the Cortex A7
CPU.
We evaluate multi-task performances on the Hexagon DSP and Snapdragon 400, as common alternatives like
CPUs (in phones, or even watches) are prohibitively expensive energy-wise for continuous sensing tasks often
needed for audio data. Although, we use Snapdragon CPU in our experiments, in the following we present a
number of energy measurement experiments with the on board Hexagon DSP. With an average power of 1695mW
as demonstrated in Table 2, the continuous CPU processing could easily drain a fully charged 2300mAh battery
in a few hours. Cloud o�oading is often applied, but for continuous sensing cloud can be ine�cient as it needs to
keep the power-hungry CPU on. As shown in Table 2, the average power consumed during a WiFi transfer with
an active CPU is an order of magnitude higher than the energy used by a low-power Digital Signal Processor
(DSP) computing locally. Low-power DSP units are becoming increasingly available in embedded systems but
come with hardware constraints such as a fairly limited amount of memory and reduced clock frequency. As a
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Average power (DSP)
CPU sleep 30mW

CPU on with WiFi transfer 403mW
CPU processing 1695mW
DSP processing 47mW

Table 2. Average power consumed by the CPU or a low-power Digital Signal Processor (DSP) under a variety of operational
modes. Processing refers to Deep Neural Network classification. Measurements are performed on a Snapdragon 800 mobile
development board with a Monsoon Power Monitor a�ached to the board.

result, DSP computation is often both memory-constrained and slower. This problem is exacerbated in the case
of multiple concurrently running mobile learning tasks that share scarce DSP resources. Applications often need
to simplify the inference algorithms, apply compression techniques or compromise the accuracy just to match
the DSP constraints so that they can maintain acceptable levels of energy consumption.

3.1 Model Architecture
The size of the explored models for audio sensing are fairly constrained compared to the larger networks used
in computer vision and image recognition. Reduced network sizes are preferred to comply with runtime and
memory constraints where processing should typically happen in real time on the mobile device to be useful
(e.g., speech recognition). We examine model sizes that are comparable to other models applied in embedded
settings: 3 hidden layers with 128 nodes each for keyword spotting [14] and 4 hidden layers with 256 nodes each
for speaker veri�cation [53]. Our default network topology has 3 hidden layers with 512 nodes each, which is
similarly architected to [14], but has more nodes per layer. With 900 nodes per layer, the model already completely
exhausts the runtime memory limit of the DSP. Having the network parameters preloaded in DSP memory is
essential because the alternative of using the CPU to continuously transfer network parameters on demand is
too costly energy-wise. We stress that we aim to provide best results possible within the constraints of embedded
hardware, where particularly the memory footprint can severely restrict the overall size and architecture of the
models used.

4 EVALUATION
In this section we provide a comprehensive evaluation of our multi-task optimization process, showing accuracy
and performance bene�ts overwidely usedmodels and baselines. Themost prominent results from the experiments
are:

• Accuracy Robustness to Multi-task Mixing. Multi-task audio inference performs surprisingly well
when various combinations of related but distinctly di�erent tasks are mixed together to have a shared
representation. On average across multi-task con�gurations we never observe accuracy drops larger than
1.5% (in case of multi-task training using RBMs) compared to the best performing similarly sized individual
models.

• Improvements to Runtime, Energy and Memory. When sharing the models across di�erent combi-
nations of audio tasks, the performance gains in terms of reduced runtime and memory footprint are on
average 2.1x across both hardware platforms.

• Scalability to Number of Integrated Tasks. With our multi-task optimization framework, classi�cation
e�ciency scales extremely well with the number of related tasks that are mixed together. Due to the high
degree of sharing with n audio tasks the gains in runtime, energy and memory are almost n-fold in the best
case when all tasks are combined. Critically, this often comes with little to no loss in accuracy.
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Audio Task Inferences Made
Speaker Identi�cation 106 speakers
Emotion Recognition afraid, angry, happy, neutral, sad
Stress Detection stressed, neutral
Ambient Scene Analysis 19 sound categories (street, cafe, etc.)

Table 3. Audio analysis tasks investigated.

Experimental Setup. We train our Deep Belief Networks with a �xed learning rate of 0.05 and train the DNNs
with a learning rate of 0.001. As is common for multi-class audio inference tasks [33], we report classi�cation
accuracy averaged over 10 trials as a model performance metric. The datasets are divided into training, develop-
ment and test sets with an 80%-10%-10% split. We limit the total training time to 200 epochs across experiments,
but generally observe that for the larger datasets the accuracy improves further if we allow a slower training
time with an increased number of epochs. When the �lter bank summaries are used for the input layers of the
DNNs, we extract 7 summaries over the frames for each of 24 �lter bank coe�cients (as described in §2.2).

4.1 Audio Analysis Tasks
For our experiments we focus on the following popular audio analysis tasks with large-scale or widely adopted
datasets. An overview of the tasks and their inferences is given in Table 3.
Speaker Identi�cation. The goal of this task is to identify the current speaker based on microphone data.
We use utterances from 106 speakers from the Automatic Speaker Veri�cation Spoo�ng and Countermeasures
Challenge [55] with a total of ⇡ 61 hours of speech. The dataset bears similarity to the TIMIT dataset used for
Speaker Identi�cation [33]. An audio sample in our case consists of 5 seconds of speech from a speaker, as this
duration has been used for mobile sensing tasks in social psychology experiments [47].
Emotion Recognition. This audio task recognizes 5 emotional categories from voice – neutral, happy, sad, angry,
and frightened. We use the Emotional Prosody Speech and Transcripts library [36] where 2.5 hours of emotional
speech is delivered by professional actors. There are 14 narrow emotions that are grouped into the more general
categories introduced above in a manner similar to Rachuri et al. [47]. For this task, a sample consists of 5 seconds
of emotional speech, from which �lter bank summaries are extracted.
Stress Detection. The original application [39] detects stressed speech from human voice. We use a 1-hour
dataset of stressed and neutral speech which is a subset of the above mentioned emotions dataset. The length
of the inference window for the Stress Detection is set to 1.28 seconds in a manner similar to the StressSense
mobile sensing system [39].
Ambient Scene Analysis. The aim of this audio analysis task is to categorize the dominant ambient sound in
the environment (such as being on the street, in a cafe, etc.). We use the LITIS Rouen Audio Scene dataset [49]
with ⇡ 24 hours of ambient sounds grouped into 19 sound categories. Each sound sample is 1.28 seconds long, a
commonly adopted window in mobile audio sensing [41] when the goal is to capture a variety of sounds that
may come and go in the environment.

4.2 Filter Bank Summaries vs. Handcra�ed Features
We now investigate the runtime and accuracy trade-o�s of adopting the unusually simpler �lter bank summary
features instead of the handcrafted MFCC and PLP coe�cients that dominate the audio processing landscape.
Improved Runtime. In Figure 5a we plot the time needed to extract features from a single 30ms frame as a
function of the feature type. The �lter banks computation occupies only a fraction of the total time needed to
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Fig. 5. (a) Runtime needed to compute features from one 30ms frame. (b) Size of the DNN input layer (number of features
per audio processing window) across the various audio sensing tasks compared against the use of window-agnostic filter
banks (FB)

Domain-speci�c feature Filter banks (RBM) Filter banks (DNN)
Speaker Identi�cation 84.7% (PLP, �) 85.8%* 84.0%
Emotion Recognition 81.0% (PLP, �) 81.5% 82.9%*

Stress Detection 80.1% (MFCC) 80.7% 82.6%*
Ambient Scene Analysis 79.2% (MFCC) 85.2%* 84.1%*

Table 4. Accuracy of deep models on four datasets while using domain-specific features (e.g., MFCC or PLP with delta
components) and filter bank features. For the filter bank features we presents results using two underlying deep model
architectures, e.g., RBM and DNN. Significance tests (compared to the base lines) are carried out using McNemar �2-test
with Yates’ correction (* = p < 0.01).

extract the PLPs used in Emotion Recognition and Speaker Identi�cation or MFCCs used in Ambient Scene
Analysis and Stress Detection. The runtime reduction is 4.9x for the former and 1.6x for the latter. Further, as
shown in Table 4 replacing handcrafted features with �lter bank summaries does not compromise the accuracy of
the deep models. Adopting the summaries results in accuracy levels that match or surpass the originally provided
features across all audio sensing tasks.
Input Layer E�ciency. The extracted �lter bank summaries serve as the input layer to the deep networks, and
as discussed in the second section they succinctly describe the distribution of the �lter bank values across the
frames in a window. The advantages of this representation are that i) we can have a shared input layer for all
audio sensing tasks regardless of the size of the inference window and number of frames inside it; and ii) the size
of the DNN input layer is signi�cantly reduced as shown in Figure 5b. Compared to an input layer that contains
all PLP coe�cients for Emotion Recognition or Speaker Identi�cation, the size of the �lter banks variant is 2
orders of magnitude less, resulting in an input layer propagation that is about 95x faster.
As a result of these performance gains, our multi-task framework will often prefer the �lter bank summaries over
the alternative feature representations when building deployment con�gurations. These summaries are not only
much simpler to compute than MFCC and PLP alternatives, but also for the class of studied audio analysis tasks
provide immense accuracy and performance bene�ts.

4.3 Multi-task Classification E�iciency
We now study the performance bene�ts of using deep architectures with shared hidden layers for sound classi�-
cation as opposed to models built separately for each audio sensing task.
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Multi-task (RBM) Avg. Mixing Multi-task (DNN) Avg. Mixing
Speaker Identi�cation 85.1% 84.7% (±1.2%) 77.8% 81.3% (±2.0%)
Emotion Recognition 83.4% 85.8% (±1.6%) 87.9% 86.6% (±2.2%)

Stress Detection 85.4% 83.3% (±2.0%) 86.5% 86.1% (±1.9%)
Ambient Scene Analysis 84.8% 83.7% (±1.0%) 82.5% 84.1% (±0.7%)

Table 5. Accuracy of the multi-task models using RBM and DNN with shared hidden layers. In all cases the deep architecture
has 3 hidden layers with 512 nodes per layer. All models are trained with the same hyper-parameters and the same number
of epochs. The Multi-task DNN combines all audio analysis tasks. The average mixing accuracy shows the mean performance
when the corresponding audio task is mixed with the other tasks in pairs or triples. Numbers in brackets show the standard
deviation.

Accuracy. A key issue accompanying the many techniques that typically compress deep model sizes is the extent
to which the original model accuracy is changed. Often, performance bene�ts in the runtime dimension go hand
in hand with accuracy drops that may or may not be acceptable. In this case, however, we observe that training
shared-hidden-layer does not compromise accuracy when pairing di�erent combinations of audio analysis tasks,
i.e. the accuracy remains comparable with no signi�cant reductions. In fact, as demonstrated in Table 5, for some
of the audio sensing tasks there are even tangible accuracy boosts when using all tasks to train a shared DNN.
For instance, the Stress Detection score raises from 80.7% to 85.4% (p < 0.01), and the Emotion Recognition
from 81.5% to 83.4% (p < 0.01). This phenomenon can be explained by the fact that the shared hidden layers
perform non-trivial feature transformations of the audio input using multiple datasets simultaneously, resulting
in overall more data being used to learn discriminative feature transformations. The multi-task transfer learning
is especially bene�cial for the smaller datasets such as the Stress Detection and Emotion Recognition ones, where
the learning process is augmented with audio knowledge (training samples) from other datasets.
Note that if we were to reduce the network size to �t all models in scarce DSP memory, we would typically
pay the price of lower accuracy. Instead, having a shared network model allows us to use a much larger model
within the same amount of space and with the same number of concurrent sensing tasks, without the need to
compromise accuracy because of hardware constraints.
Runtime and Energy Reductions. The total runtime and energy for performing audio classi�cation for several
tasks with a shared deep model is comparable to that of evaluating a single deep model for one task. For example,
the runtime and energy spent cumulatively for all tasks can be up to 4x less when using a 4-task DNN with
shared hidden layers as can be seen from Figures 6a and 6b. Similar results are observed when measuring runtime
of the deep models on Snapdragon 400 SoC (see Fig. 6c and 6d). On average the performance improvements when
pairing di�erent subsets of the audio analysis tasks are 2.1x as illustrated in Table 6. When combining pairs of
tasks, for instance, there are 12 di�erent con�gurations that can be explored by our optimization process – 6 of
these con�gurations feature a paired DNN plus 2 individual networks, and the other 6 consist of 2 coupled DNNs
both with shared hidden layers. On average for these con�gurations inferences are obtained approximately 1.7x
faster while also critically consuming that much less energy for the computation. These massive reductions in
the runtime and energy footprint of the audio tasks are possible because the majority of the compute time for
the DNN forward propagation is spent in the hidden layers. The softmax output layer typically has much fewer
nodes which match the number of inferred sound categories, and is just one out of the multiple layers of the
deep network architecture.
A prominent result that can be extracted from these observations is that use of joint representations across audio
tasks scales extremely well with the increase in the number of tasks. As demonstrated, for n tasks the expected
performance gains are n-fold in the best case when our optimization process decides to integrate all tasks. More
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Fig. 6. Runtime and energy for performing DNN classification on the low-power Hexagon DSP and on Snapdragon 400 CPU
when all single models (All), a single model (Single), or the DNN with shared hidden layers (Shared) are run. Single models
are run sequentially where each model does each task separately, and the shared one leverages the multi-task design to
output all inferences.

Single Pairs Triples Quadruple Global
Reduction factor 1.0x 1.7x 2.0x 4.0x 2.1x
# of con�gurations 1 12 4 1 18

Table 6. Total average reductions in the runtime and energy when the audio tasks are combined in pairs, triples, or quadruples.
Total number of di�erent configurations is 18 with an average reduction of 2.1x across all configurations.

3 hidden layers 3 hidden layers 3 hidden layers
256 nodes each 512 nodes each 1024 nodes each

Single 0.73MB 2.6MB 9.2MB
Shared 0.80MB 2.7MB 9.4MB
All 2.92MB 10.4MB 36.8MB

Table 7. Memory required by the various DNN models as a function of the size of the hidden layers.

importantly, we have also shown this coupling of models can be achieved with very little to no loss in accuracy
across the audio analysis scenarios despite their largely disparate types of inference tasks.

Memory Savings. In terms of memory, a 4-task DNNwith hidden layers can occupy up to 4x less space compared
to laying out the parameters for multiple individually built networks. The total amount of memory occupied by
this space-optimized DNN is 2.7MB when the network has 3 hidden layers with 512 nodes each. If we were to
use single networks that are almost similarly sized for each of 4 audio sensing tasks, we would need more than
10MB of memory which exceeds the runtime memory limit of 8MB for the Qualcomm Hexagon DSP. Instead, the
shared representation allows us to save scarce DSP memory resources.

4.4 Shared Representation vs Alternatives
The type of audio analysis tasks closely matches the one studied by the DeepEar audio sensing system [32]
that is deployed on the same series of Snapdragon embedded platforms. Whereas DeepEar also resorts to a DSP
implementation to enable e�cient continuous background sensing, its architecture is limited in several ways.
First, the range of the supported audio inference tasks at runtime is lower which is a natural consequence of
modeling each audio analysis task with a dedicated deep network model. In its deployment, DeepEar is forced to
leave out one of the investigated 4 tasks and downsize another just to meet the embedded memory requirements.
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In contrast, a shared representation is extremely scalable since it allows an arbitrary number of simple audio
sensing tasks to be integrated together, as long as accuracy is preserved to be su�ciently high. In fact, as we
have demonstrated, accuracy not only remains comparatively the same, for some tasks it can even be superior
due to the advantages of adopting extra training data from related tasks. Further, downsizing the models as is
done by DeepEar may result in unwanted accuracy drops depending on the complexity of the inferences or the
dataset. Our ambient scene analysis task features a large-scale dataset and supports a much wider range of 19
inference classes compared to the corresponding 4-class ambient sound classi�cation used by DeepEar. We �nd
that a similarly sized DNN (3 layers with 256 nodes each) trained identically, and adopting the best performing
�lter bank summaries as input, on this more comprehensive dataset would yield an accuracy of 82% which is
lower compared to the shared-layer alternative we propose here (84.8%). Finally, the shared model representation
enables the total inference time and energy consumption to be about 2 to 3 times lower compared to DeepEar.
Our �ndings suggest that new cross-task modeling approaches such as the one introduced here are necessary to
overcome limits of mobile hardware.

5 DISCUSSION
In this work we study deep multi-task learning and simpli�ed input layer representations to improve the
e�ciency for multiple audio analysis task scenarios. This is needed since applications deployed on mobile
systems often require multiple simultaneous inferences of low-complexity audio learning tasks (e.g., recognizing
coarse categories of sounds like music). Other existing methods targeting embedded inference algorithms (e.g.,
compression techniques, or computing/architectures with limited precision) are typically focused on optimizing a
single model with one task. Our approach is complementary to such techniques as they can be applied in addition
to our method for even greater performance gains.
Purpose-built hardware for embedded and resource-constrained devices that rely on deep models are growing.
Despite this, hardware limitations (e.g., memory or compute power) still exist as these devices are still orders
of magnitude less powerful than server class processors. Furthermore, there is a tendency for larger and larger
networks and datasets that they encode. For instance, in 2012 the winner of the ImageNet challenge was a model
12 layers deep [28], but by 2015 the winner had more than 150 [24]. This trend will place increasing pressure
even on purpose-built hardware for more e�cient, largely runtime focused, methods to use models on embedded
devices. Hardware alone will not be the answer.

6 RELATED WORK
Ubiquitous Computing and Deep Learning. Audio sensing applications are cornerstone elements in mobile
ubiquitous computing as evidenced by the rich array of behavioral insights they provide for mobile users.
Examples are song recognition [4], speaker identi�cation [38], emotion recognition [39, 48], speaker counting
[56], conversation analysis [34], voice commands [14], ambient sound analysis [40, 42]. Until now modeling
has focused primarily on discovering new sensing modalities or inference capabilities from human behavior
rather than optimizing embedded resource use. In addition, the machine learning algorithms behind these works
have been largely used in proof-of-concept implementations and have been based on variants of Gaussian
Mixture Models and Decision Trees. An increasing number of example deep learning deployments in mobile
and ubiquitous settings are becoming available, however, due to the state-of-the-art performance achieved by
deep learning techniques in critical application scenarios such as speech recognition. Learning features for
human activity recognition [46], assessment of disease state in realistic environments [20], or performing activity
recognition on wearables [21] are some recent instances of the deep learning revolution in ubiquitous settings.
The speech recognition models used by phones today exploit deep learning techniques [1], although a large
number of them operate o�-device, in the cloud. The simpler keyword spotting task [14], a core functionality for
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natural user interfaces adopted in mobile devices, also relies on a small-footprint deep network model. Mobile
sensing use cases have been found to bene�t from deep learning when it comes to accuracy and scalability to
number of inference classes (i.e., recognized activities) [31]. In addition, deep learning has proven the method of
choice for robust audio sensing in acoustic environments with arbitrary background noise levels [32].
Optimizing Deep Models for Embedded Platform Constraints. Due to memory being a key bottleneck for
embedded systems and deep models considerable e�orts are underway to investigate di�erent forms of model
compression. A common approach is to use SVD to approximate matrices such as those that describe the weights
between layers, usage of these methods for audio modeling have been common for quite some time [25, 57].
Related approaches use hash functions to also aggregate parameters [15] and as well as use forms of quantization
towards similar ends [19]. Instead of approximating the network architecture, alternative methods seek to prune
the connections of the network determined to be unimportant [23]. However, collectively these methods sit as
complementary to the one we explore here. We study a framework that will consider replacing multiple networks
with fewer networks that perform more than one task through multi-task learning as a means to reduce resource
consumption at inference time. Therefore, any of these approaches for optimizing a single network also remain
applicable to an network within a collection of multi-task networks – as results from our framework.
Multi-task Learning for Deep Neural Networks. Of course, we are not the �rst to attempt to train a deep
network with a shared set of hidden layers that is able to support multiple learning tasks. However, we were
unable to �nd prior examples of this multi-task learning being used to overcome limits of embedded hardware.
Motivations related model robustness have been known for quite some time; empirical �ndings demonstrate for
instance exposure to related – yet still distinct – inference tasks can lead to the learning of robust features and
assisting in the generalizability of the whole model. Domains where such results are seen include: multi-language
audio discrimination [27] and information retrieval tasks [37]. In [16], a deep multi-task learner is shown that
provides inferences including: parts-of-speech tags, named entity tags, semantic role assignment. This approach
has also proven to be e�ective in blending complementary objectives towards �nal discrimination; one example
of this being [35] where image segmentation and saliency detection are treated as two tasks within a multi-task
deep framework for salient object detection. Although adopting such techniques does not always lead to a
reduction in network footprint, that is necessary to reduce resource consumption – for example, when non-shared
task-speci�c components of the architecture are larger than those that are shared. For this reason, we examine an
approach where shared layers dominate, which maximizes the reduction in resource usage (like memory), and in
terms of accuracy simply attempt to match the levels seen in models with an identical architecture but focused
on a single audio analysis task.

7 CONCLUSION
Continuous audio sensing is becoming paramount to many mobile applications. We have described how a
multi-task learning framework, that uses statistical summaries of log �lter banks as input, can greatly improve
audio analysis tasks required in embedded devices.
Our experiments have shown, on average, a 2.1⇥ reduction in runtime, energy, and memory is possible under
this framework when assuming common combinations of 4 typical audio analysis inferences. Critically, we
demonstrate that for the modest-scale DNNs able to be supported in representative low-power DSP hardware this
approach does not reduce accuracy for any tested audio analysis task, despite such resource gains. Our �ndings
contribute valuable empirical observations for the less frequently studied class of audio analysis tasks, which are
lower complexity to more familiar audio task, such as speech recognition; but nonetheless are important drivers
of new continuous audio applications. Furthermore, our approach and �ndings run counter to existing practice
in the �eld, and indicate changes to how embedded audio models are designed should be considered.
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