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Abstract

Motivated by the absence of rigorous ex-
perimentation in the area of spam filter-
ing using realistic email data, we present
a newly-assembled corpus of genuine
and unsolicited (spam) email, dubbed
GenSpam, to be made publicly avail-
able. We also propose an adaptive model
for semi-structured document classifica-
tion based on smoothedn-gram language
modelling and interpolation, and report
promising results when applying the clas-
sifier to the spam filtering problem using
a specifically assembled test set to be re-
leased as part of theGenSpamcorpus.

1 Introduction

The well-documented problem of unsolicited email,
or spam, is currently of serious and escalating con-
cern1. In lieu of effective legislation curbing the dis-
semination of mass unsolicited email,spam filter-
ing, either at the server or client level, is a popular
method for addressing the problem, at least in the
short-term. While various spam filters have begun
to find their way onto the market, little in the way
of rigorous testing has been carried out to evaluate
their relative effectiveness. This is due, in part, to
the lack of a realistic, heterogeneous corpus of email
data containing both spam and genuine messages.
In this paper, we present such a corpus, dubbed

1See research byMessageLabs(www.messagelabs.co.uk)
andFerris (www.ferris.com).

GenSpam2, along with an adaptive LM-based classi-
fication model for spam filtering, or more generally
semi-structured document classification, that builds
on recent work in the field.

2 Related Work

Some of the first published work on statistical spam
filtering was carried out by Sahami et al. (1998) us-
ing a multi-variate Bernoulli NB model; however the
training and test sets are small (less than 2000 total
messages), and not publicly available, thus render-
ing the experiments non-replicable.

Androutsopoulos et al. (2000) present results for
spam filtering on the most widely-used spam filter-
ing data set, theLingSpamcorpus. They compare
a multinomial NB classifier with a kNN variant, the
results favouring NB. Carreras and Marquez (2001)
build on this work, publishing improved results on
the same corpus using boosting decision trees with
theAdaBoostalgorithm.

TheLingSpamcorpus consists of messages drawn
from a linguistics newsgroup, and as such the gen-
uine messages are largely homogeneous in nature
(linguistic discussion) and thus non-representative
of the general spam-filtering problem, where gen-
uine messages typically represent a wide range of
topics. Additionally, the corpus consists predom-
inantly of genuine messages (2412 genuine, 481
spam) whereas in reality the balance is more often
in favour of spam, and is too small to allow experi-
mentation into the important issue of how a classifier

2The corpus will be made publicly available on the web at
the time of publication of this paper.



adaptsas the nature of spam and/or genuine email
changes over time and between different users.

Drucker et al. (1999) publish results comparing
the use of SVM’s with various other discriminative
classification techniques on the spam filtering prob-
lem, with binary-featured SVM’s and boosting de-
cision trees performing best overall. Unfortunately
the test sets they used are not publicly available.

The spam filtering problem is usually presented
as an instance of atext classification problemon the
basis that most email contains some form of iden-
tifiable textual content. In reality, the structure of
email is richer than that of flat text, with meta-level
features such as the fields found in MIME compli-
ant messages. Researchers have recently acknowl-
edged this, setting the problem in asemi-structured
document classificationframework. Bratko and Fil-
ipic̈ (2004) take this approach on theLingSpamcor-
pus, reporting a significant reduction in error rate
compared with the flat text baseline. The semi-
structured document classification framework is of
course applicable to a wider range of problems than
just spam filtering, as in (Yi and Sundaresan, 2000;
Denoyer and Gallinari, 2004; Bratko and Filipic̈,
2004). In all these cases the NB classification model
is extended to take account of the componential doc-
ument structure in question. We note that the lim-
iting conditional independence assumptionof NB
can be relaxed in a classification framework based
on smoothed higher-order n-gram language mod-
els. This is also recognised by Peng and Schu-
urmans (2003), who report state-of-the-art results
using a higher-order n-gram based LM text classi-
fier on a number of data sets. We define a similar
classification model, but extend it into an adaptive
semi-structured framework by incorporating recur-
sive structural componentinterpolation. We apply
the resulting classification model to the newly as-
sembledGenSpamemail corpus.

3 A New Email Corpus

The need for a large-scale corpus of realistic email
data is evident from the lack of rigorous experimen-
tation and comparison in the area of spam filtering.
The corpus we have assembled consists of:

• 9072 genuine messages
• 32332 spam messages

The imbalance in the number of messages is due
in part to the difficulty of obtaining genuine email
- persuading people to donate personal email data
is a challenge. In fact, the corpus is not as unbal-
anced as it may appear; on the whole, spam mes-
sages tend to be significantly shorter than genuine
ones, so in terms of actual content the balance is
somewhat more even.

The genuine messages are sourced from fifteen
friends and colleagues and represent a wide range
of topics, both personal and commercial in nature.
The spam messages are sourced from sections 10-
29 of thespamarchive3 collection, as well as a batch
of spam collected over recent months.

Releasing personal, potentially confidential email
data to the academic community requires an
anonymisation process that protects the identities of
senders and recipients, as well as those of persons,
organisations, addresses etc. referenced within the
email body. We have investigated various anonymi-
sation procedures utilising NER and other statistical
NLP techniques, which will be discussed in detail in
a subsequent paper. Fig 1 gives an example of the
GenSpamemail representation in XML format.

<MESSAGE>
<FROM> net </FROM>
<TO> ac.uk </TO>
<SUBJECT>
<TEXT_NORMAL> ^ Re : Hello everybody </TEXT_NORMAL>
</SUBJECT>
<DATE> Tue, 15 Apr 2003 18:40:56 +0100 </DATE>
<CONTENT-TYPE> text/plain; charset="iso-8859-1" </C ONTENT-TYPE>
<MESSAGE_BODY>
<TEXT_NORMAL>
^ Dear &NAME ,
^ I am glad to hear you 're safely back in &NAME .
^ All the best
^ &NAME
^ - On &NUM December &NUM : &NUM &NAME ( &EMAIL ) w rote :
...
</TEXT_NORMAL>
</MESSAGE_BODY>
</MESSAGE>

Figure 1:GenSpamrepresentation

The corpus is divided as follows:

• Training set: 8018 genuine, 31235 spam
• Adaptation set: 300 genuine, 300 spam
• Test set: 754 genuine, 797 spam

We source the adaptation and test sets from the
contents of two users inboxes, collected over a num-
ber of months, retaining both spam and genuine
messages. We take this approach rather than simply

3http://www.spamarchive.org



extracting a test set from the corpus as a whole, so
that the test set represents a real-world spam filtering
instance. The 600 messages making up the adapta-
tion set are randomly extracted from the same source
as the test set, facilitating experimentation into the
behaviour of the classifier given a small set of highly
relevant samples and a large background corpus.

4 Classification Model

4.1 Introduction

We use the following terminology and definitions:

• Document: a discrete item of information (i.e.
a single email message).

• Token: an atomic unit within a document.

• Component: a section of a document. A com-
ponent can either berecursive, consisting of
one or more sub-components, ornon-recursive,
consisting of a finite set of tokens. A document
is itself a recursive component.

• Field: a non-recursive component within a doc-
ument (eg.Subjectfield).

• Class: a well-defined (possibly infinite) set of
documents.

Figure 2: Example document structure

Given these definitions, a semi-structured docu-
ment is a tree with nodes as recursive components
and leaves as non-recursive components (see Fig. 2).

The classification model we present is aninterpo-
lated generative model. That is, recursive compo-
nent posterior probabilities are computed as an in-
terpolation of sub-component posteriors, while non-
recursive component (field) posteriors are estimated

in the traditional generative fashion. The interpo-
lation weights are estimated under the discrimina-
tive classification function; consequently the model
bears some relation to the class ofHybrid Gen-
erative/Discriminativeclassifiers, eg. (Raina et al.,
2004). By incorporating smoothed higher-ordern-
gram language models4, local phrasal dependencies
are captured without the undesirable independence
violations associated with mixing higher and lower-
ordern-grams in a pure Naı̈ve Bayesian framework
(Tan et al., 2002). Additionally, through the use
of interpolation, we incorporate a well-studied tech-
nique for combining probabilities to exploit docu-
ment structure.

Although we only consider application of the pro-
posed classification model to the 2-class classifica-
tion problem, it is in principle scalable to the more
general N-class problem.

4.2 Formal Classification Model

We make the following assumptions:

1. A document belongs to exactly one class
(though the model can be extended to the multi-
class variant).

2. Classification is carried out within a single do-
main, and within that domain, all documents
have the same structure.

Given a set of documentsD and a set of classes
C, we seek to discover a set of classifications of
the typeDi → Cj for i = 1 . . . |D| wherej ranges
from 1 . . . |C| (given assumption 1).

By analogy to the standard generative classifica-
tion model, the interpolated generative decision rule
chooses the class with the highest interpolated pos-
terior probability for the document in question:

Decide(Di → Cj)

wherej = arg max
k

[P (Ck|Di)] (1)

The posterior probability of a recursive com-
ponent (such as a document) is calculated as a

4We usen-grams for efficiency and simplicity, though more
advanced LM technology could be investigated.



weighted linear interpolation of the posterior prob-
abilities of itsN sub-components:

P (Cj |Di) =
N

∑

n=1

λn[P (Cn
j |D

n
i )] (2)

where

Cn
j is thenth sub-component of classCj

Dn
i is thenth sub-component of docDi

λn is thenth sub-component weight

The formula is applied recursively to each of the
recursive sub-components. Aninterpolation scheme
is used to find the optimal values for theλ’s (4.5).

The non-recursive component (field) posterior
probability is expanded usingBayes Rule:

P (Cn
j |D

n
i ) =

P (Cn
j ) • P (Dn

i |C
n
j )

P (Dn
i )

(3)

Cn
j represents a specific field within classCj , and

Dn
i the corresponding field within the document.

Under the structure uniformity assumption (2), these
fields are necessarily equivalent.

P (Cn
j ) is the prior probability for the field in

question. We take all field priors within a given class
to be equal to the class prior, i.e.P (Cj).

The denominator,P (Dn
i ), is constant with respect

to class and thus often ignored in Bayesian classifi-
cation models; however, valid interpolation requires
true probabilities; thus we retain the denominator.
Dividing by P (Dn

i ) can also be seen as normalis-
ing for unequal field lengths, i.e. scaling the class-
conditional probability of a field (dependent on the
length of the field by virtue of the fact that proba-
bilistic intersection equates to multiplication) by a
value constant with respect to class but multiplica-
tively proportional to the length of the field.

P (Dn
i ) can be expanded to

|C|
∑

k=1

P (Cn
k ) • P (Dn

i |C
n
k )

which is the sum over all classes of the prior times
the class-conditional likelihood for the given field.

P (Dn
i |C

n
j ) is the language model probabilityof

the fieldDn
i givenCn

j . In other words, it is the like-
lihood that the LM chosen to model fieldCn

j gener-
ated the sequence of tokens comprisingDn

i . Bearing

in mind the definition of a field, we represent the LM
probability by the following formula:

P (Dn
i |C

n
j ) = P (Dn

i = {ti . . . tK}|LMCn
j
) (4)

For our experiments we usen-gram LM’s. The
n-gram model is based on the assumption that the
existence of a token at a given position in a sequence
is dependent only on the previousn−1 tokens. Thus
then-gram LM probability for aK-length token se-
quence can be defined (with allowances for the ini-
tial boundary cases) as

PN (t1, . . . , tK) =
K
∏

i=1

P (ti|ti−N+1, . . . , ti−1)

The formula is specialised forn = 1, 2, 3 . . .

4.3 LM Construction

We adopt the basic formalisation for higher-ordern-
gram smoothing introduced by Katz (1987). This
approach has been shown to perform well across a
number of recognised data sets (Chen and Good-
man, 1996), and is the most widely used smoothing
technique in fields such as speech recognition. In the
bigram case, the formula is as follows:

P (tj |ti) =

{

d(f(ti, tj))
f(ti,tj)
f(ti)

if f(ti, tj) > C

α(ti)P (tJ) otherwise

where

f is the frequency-count function

d is the discounting function

α is the back-off weight

C is then-gram cutoff point

For higher-ordern-grams the same principles are
applied to form aback-off chainfrom higher to
lower-order models. Then-gram cut-off point,C,
is the threshold below which the observed number
of occurrences is too low to draw reliable statistics
from. The discounting function,d, is used to deduct
some of the probability mass from observed events,
making it available to unobserved events. We use
mixed Good-Turing/Lineardiscounting for our ex-
periments, a widely-used strategy, though arguably
weaker than some more recent variants, eg. (Orlit-
sky et al., 2003). The discounted probability mass is



spread over lower-order distributions with the back-
off weight insuring conformance to the probability
model. A small probability must also be assigned
to events that remain unobserved at the end of the
back-off chain. We can use this to model the likeli-
hood of encountering unknown tokens given a par-
ticular class. This can be useful in modelling prob-
lems such as spam filtering (see results, 7.1).

4.4 Adaptivity

A realistic classification model for spam filtering
must be able to accomodate the evolving nature of
spam and the variation in genuine email between
different users. In light of this, we extend our clas-
sification model to incorporate a top-level interpo-
lation of posteriors from both astatic anddynamic
element.

The decision rule (1) is thus expanded to:

Decide(Di → Cj) where

j = arg max
k

[λsPs(Ck|Di) + λdPd(Ck|Di)] (5)

This is equivalent to adding a new binary-
branching recursive top-level node to the document
structure, one branch representing the static infor-
mation, the other the dynamic (as in Fig. 3). The
subscriptss andd denote the static and dynamic el-
ements respectively, and the probabilities are inter-
polated such thatλs + λd = 1 (see 4.5). In practice,
the static element represents a classification model
built from a large background corpus, while the dy-
namic element represents a much smaller model that
is regularly retrained on newly-classified data.

4.5 Interpolation

The purpose of an interpolation scheme is to opti-
mise the weights of two or more interpolated com-
ponents with respect to their performance on a given
data set, under a specified objective function, eg.
(Jelinek and Mercer, 1980). In our case, a compo-
nent is the posterior probability for a particular re-
cursive or non-recursive structural component. We
choose the classification function itself (under a suit-
able evaluation metric) as the objective function,
which has the advantage of precisely reflecting the
nature of the problem. On the negative side, the clas-
sification function isnon-differentiable, thus opti-
mality of the interpolation weights cannot be derived

Figure 3: Example adaptive doc structure

using differential-motivated optimisation techniques
which converge to optimality in a reasonably effi-
cient manner. Rather, we must use an approximation
algorithm to achieve near-optimality. In our experi-
ments we only interpolate two components (see 5) so
a simple hill-climbing algorithm suffices. However
if a greater number of fields were available, a more
complex algorithm would need to be investigated.

To maintain efficiency, we estimate interpolation
weights in a bottom-up fashion, propagating up-
wards through the structural tree rather than itera-
tively re-estimating throughout the whole structure.

5 Experimental Method

Our experiments consisted of two phases:

• Phase 1: divide the GenSpamTraining Setinto
two disjoint sections, one for training the clas-
sifier and the other for measuring performance,
allowing us to experiment with basic model
features such as term-capitalisation andn-gram
cutoff.

• Phase 2: train the classifier using theTraining
SetandAdaptivity Set, classify theTest Setand
record results.

To train the classifier we extract a number of mes-
sages from the training data for each class to esti-
mate the interpolation weights, and use the rest to
estimate LM parameters.

Our experiments make use of only two email
fields -SubjectandBody. These are of primary in-



terest in terms of content, though other fields such as
From, To, Dateetc. are also of potential use. This is
an avenue of further research.

6 Evaluation Measures

The 2-class classification task is often evaluated us-
ing the accuracymeasure, which combines preci-
sion and recall for both classes and represents a per-
centage of correctly classified documents. We report
bothaccuracy, andrecall for both classes separately,
defined in the usual manner:

accuracy =
TP

T
recall(C) =

TPC

TC

where

TP = number of true positives

T = total number of documents

Assessing the performance of the classifier on
spam and genuine email separately is vital in the
area of spam filtering, where high recall of genuine
messages is of utmost importance.

7 Results and Analysis

We present results and analysis for our classifier us-
ing unigram and bigram language models. Experi-
ments with higher ordern-gram models resulted in
degraded performance, perhaps due to:

• insufficient quantity of data
• noisy and inconsistent data
• over-fitting

7.1 Phase 1 Experiments

During the phase 1experiments (see 5) we var-
ied certain features of the language models and ob-
served results on held-back sections of the training
data to determine the better-performing configura-
tions. We also ran experiments to assess the advan-
tage of modelling fields separately. The results led
us to draw a number of conclusions:

• In both the unigram and bigram cases, mod-
elling each field with a specific language model
is more effective than using a combined LM.

• Ignoring tokens that occur only once in the
training data provides a marginal increase in

performance. This is intuitive, as such to-
kens are unlikely to well-represent the language
being modelled, especially when dealing with
noisy data. Ignoring single occurrences is also
beneficial for reducing LM size, especially in
the spam case where noise is deliberately intro-
duced to confuse filters.

• Case normalisation has a detrimental effect in
the unigram case, presumably because the pos-
itive effect in terms of reducing sparsity is out-
weighed by the negative effect of losing cer-
tain intended semantic distinctions. However,
in the bigram instance case normalisation has a
marginally positive effect on performance, due,
we suspect, to the extra contextual information
in the bigram model making up for the lost se-
mantic information in certain cases.

• Intuitively, we might expect spam to contain
more unknown words than genuine email, due
to the additional lexical noise. Thus, by assign-
ing a slightly higher probability to unknown
words in the SPAM class, we would expect
some performance gain. This was bourne out
in the bigram case, but not in the unigram case
(perhaps due to the prior removal of single
word occurences). We suspect that a more prin-
cipled, data-driven method for assigning un-
known event probabilities would evidence an
improvement in performance across the board.

• The discrepancy in LM size between differ-
ent classes as a result of unbalanced train-
ing data can lead to classification errors be-
cause parameters in larger LMs receive pro-
portionally less of the overall probability mass.
This is especially noticeable in higher-order
LMs where the potential feature space is much
larger. One method for countering this is to
raise then-gram cutoff point (see 4.3) for the
larger class. We call this techniqueLM balanc-
ing, and found it to have a positive effect on
performance, especially in the bigram case.

7.2 Phase 2 Experiments

Having discussed general model features established
in phase 1, we now present results for our experi-
ments on the unseen test data using theTrainingand



LM type Recall GENUINE Recall SPAM Accuracy
unigram 98.94 96.11 97.49
bigram 98.94 98.75 98.84

Table 1: Results for adaptive LM classifier onGenSpamcorpus.
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Figure 4: ClassifierRecall(GEN and SPAM) andAccuracyunder adaptive weight interpolation

Adaptivity sets. Given a small amount of data for
adaptivity (300 messages per class in our case), we
are unlikely to be able to estimate from it reliable in-
terpolation weights for the adaptivity decision rule
(5). In practice, therefore, we might choose to set
these manually. Given that the distribution of inter-
polation weights can itself be interpreted as a proba-
bility distribution with each weight representing the
probability that a particular component contains rel-
evant information, we choose the distribution that is
most uncertain, governed by the principle ofmaxi-
mum entropy. Without any prior knowledge about
the optimal weight distribution, this equates to bal-
ancing the weights across all components (two in

this case).
Table 1 shows the performance of the classifier

on theTest Setfrom thephase 2experiments, with
balanced static/dynamic weights as described above.
The bigram classifier cannot improve on the uni-
gram performance in terms of genuine email recall,
though it reduces the error rate for spam signifi-
cantly by around two-thirds. Most of the misclas-
sified genuine messages were either corporate circu-
lars or ’impersonal’ automated responses, and thus
hard to distinguish as genuine. We suspect that a
shortwhitelist of trusted corporations would elimi-
nate almost all such mistakes.

Figure 4 shows how classification performance



varies as the adaptive interpolation weight distribu-
tion ranges from static to dynamic. Primarily this
highlights the fact that a combination of static and
dynamic models performs better than either of the
models separately. We can also see that the unigram
classifier is quite skewed towards genuine messages
in the dynamic case, making its behaviour less pre-
dictable as the weights vary. Finally, it is interest-
ing to note that the recall distribution for genuine
messages is significantly more rounded than the cor-
responding distribution for spam (especially in the
bigram case), suggesting that combining static and
dynamic information about genuine email is partic-
ularly important. This may reflect the fact that gen-
uine email varies more between users than spam.

8 Conclusions

We have presented a new corpus of genuine and un-
solicited email,GenSpam, which we believe repre-
sents a more realistic test-bed for the spam filter-
ing problem than anything currently available. Ob-
taining spam is relatively easy, thus the corpus can
be updated to include the latest unsolicted email
without a great deal of effort. We believe that the
anonymised genuine email content represents a sig-
nificant contribution in itself, and may be useful for
a wider range of NLP tasks than just spam filtering.

We have also presented an adaptive classification
model for semi-structured documents that builds
on similar work in the semi-structured and hybrid
generative/discriminative classification fields. We
achieve quite promising results when applying the
classifier to the spam filtering task on the new cor-
pus, demonstrating the benefit of using smoothed
n-gram language models and exploiting document
structure. We suspect that carefully-constructed
higher-order language models could prove espe-
cially beneficial in addressing NLP problems in
which the text follows stricter grammatical patterns
and contains less noise than in the email domain.
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