
Programming with Intersection Types

and Bounded Polymorphism

Benjamin C. Pierce

December 20, 1991

CMU-CS-91-205

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-
90-C-1465, Arpa Order No. 7597; in part by the Office of Naval Research under Contract N00013-84-K-0415; in part by
the National Science Foundation under Contract CCR-8922109; and in part by Siemens.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: Lambda calculus and related systems, language theory, programming, type struc-
ture, data types and structures, polymorphism, subtyping, bounded quantification, intersection
types.

Abstract

Intersection types and bounded quantification are complementary mechanisms for extend-
ing the expressive power of statically typed programming languages. They begin with a
common framework: a simple, typed language with higher-order functions and a notion of
subtyping. Intersection types extend this framework by giving every pair of types � and
� a greatest lower bound, � � � , corresponding intuitively to the intersection of the sets of
values described by � and � . Bounded quantification extends the basic framework along a
different axis by adding polymorphic functions that operate uniformly on all the subtypes of
a given type. This thesis unifies and extends prior work on intersection types and bounded
quantification, previously studied only in isolation, by investigating theoretical and practical
aspects of a typed � -calculus incorporating both.

The practical utility of this calculus, called F� , is established by examples showing, for
instance, that it allows a rich form of “coherent overloading” and supports an analog of
abstract interpretation during typechecking; for example, the addition function is given a
type showing that it maps pairs of positive inputs to a positive result, pairs of zero inputs
to a zero result, etc. More familiar programming examples are presented in terms of an
extension of Forsythe (an Algol-like language with intersection types), demonstrating how
parametric polymorphism can be used to simplify and generalize Forsythe’s design. We
discuss the novel programming and debugging styles that arise in F� .

We prove the correctness of a simple semi-decision procedure for the subtype relation
and the partial correctness of an algorithm for synthesizing minimal types of F� terms. Our
main tool in this analysis is a notion of “canonical types,” which allow proofs to be factored
so that intersections are handled separately from the other type constructors.

A pair of negative results illustrates some subtle complexities of F� . First, the subtype
relation of F� is shown to be undecidable; in fact, even the subtype relation of pure second-
order bounded quantification is undecidable, a surprising result in its own right. Second,
the failure of an important technical property of the subtype relation — the existence of
least upper bounds — indicates that typed semantic models of F� will be more difficult to
construct and analyze than the known typed models of intersection types. We propose, for
future study, some simpler fragments of F� that share most of its essential features, while
recovering decidability and least upper bounds.

We study the semantics of F� from several points of view. An untyped model based on
partial equivalence relations demonstrates the consistency of the typing rules and provides
a simple interpretation for programs, where “� is a subtype of � ” is read as “� is a subset
of � .” More refined models can be obtained using a translation from F� into the pure
polymorphic � -calculus; in these models, “� is a subtype of � ” is interpreted by an explicit
coercion function from � to � . The nonexistence of least upper bounds shows up here in the
failure of known techniques for proving the coherence of the translation semantics. Finally,
an equational theory of equivalences between F� terms is presented and its soundness for
both styles of model is verified.

To Angela, Bern, Dave, and Susan

Contents

1 Introduction 7

1.1 Motivation � 7
1.1.1 Programming languages � 7
1.1.2 Types � 8
1.1.3 Typed � -calculi � 9
1.1.4 Subtyping � 9

1.2 Claims � 12
1.3 Outline of Results � 12

2 Background 14
2.1 Notational Preliminaries � 14
2.2 Simply Typed � -Calculus with Subtyping � 16
2.3 Intersection Types � 19
2.4 Semantic Frameworks for Intersection Types � 22

2.4.1 Untyped Semantics � 22
2.4.2 Typed Semantics � 23
2.4.3 Operational semantics � 27
2.4.4 Discussion � 28

2.5 Expressiveness of the Intersection Type Discipline � � � � � � � � � � � � � � � � � � � 29
2.6 Bounded Polymorphism � 30

3 The F� Calculus 35

3.1 Explicit Alternation: The for Construct � 36
3.2 Syntax, Subtyping, and Typing � 37
3.3 Linear Notation for Derivations � 38
3.4 Discussion � 40

3.4.1 Top vs.
�

� 40
3.4.2 Encoding Primitive Subtyping � 41

3.5 Alternative Formulations � 42
3.5.1 Unbounded Quantifiers � 42
3.5.2 Additional Subtyping Rules � 42
3.5.3 Bounded Existential Types � 43

4 Typechecking 44
4.1 Basic Properties � 44
4.2 Subtyping � 48

4.2.1 Canonical Types � 48

1

CONTENTS 2

4.2.2 Canonical Subtyping � 51
4.2.3 Weakening and Narrowing � 52
4.2.4 Subtyping Derivation Normalization Rules � � � � � � � � � � � � � � � � � � � 55
4.2.5 Termination of the Normalization Rules � 58
4.2.6 Shapes of Normal-Form Subtyping Derivations � � � � � � � � � � � � � � � � 60
4.2.7 Equivalence of Ordinary and Canonical Subtyping � � � � � � � � � � � � � � � 61
4.2.8 Subtyping Algorithm � 64

4.3 Typechecking � 67
4.3.1 Finite Bases for Applications � 68
4.3.2 Type Synthesis � 72
4.3.3 Conservativity � 75

5 Semantics 77
5.1 Untyped Semantics � 77

5.1.1 Total Combinatory Algebras � 78
5.1.2 Partial Equivalence Relations � 79
5.1.3 PER Interpretation of F� 80

5.2 Nonexistence of Least Upper Bounds � 84
5.3 Translation Semantics � 89

5.3.1 Target Calculus � 89
5.3.2 Ordinary Derivations � 91
5.3.3 Algorithmic Derivations � 93

5.4 Coherence (Preliminary Results) � 94
5.5 Equational Theory � 94

5.5.1 Definitions � 95
5.5.2 Basic Properties � 96
5.5.3 Soundness for the Untyped Semantics � 100
5.5.4 Soundness for the Translation Semantics � 103

6 Undecidability of Subtyping 109
6.1 A Flawed Decidability Argument for F� 110
6.2 Nontermination of the F� Subtyping Algorithm � 111
6.3 A Deterministic Fragment of F� 112
6.4 Eager Substitution � 114
6.5 Rowing Machines � 117
6.6 Encoding Rowing Machines as Subtyping Problems � � � � � � � � � � � � � � � � � � 119
6.7 Two-counter Machines � 122
6.8 Encoding Two-counter Machines as Rowing Machines � � � � � � � � � � � � � � � � � 123
6.9 Undecidability of F� Typechecking � 126
6.10 Undecidability of F� 127
6.11 Related Systems � 128
6.12 Discussion � 128

7 Examples 130

7.1 Conventions � 130
7.2 Examples from the Forsythe Report � 132
7.3 Procedures With Optional Arguments � 136
7.4 User-defined Coherent Overloading � 137

CONTENTS 3

7.5 Modeling Abstract Interpretation � 138
7.5.1 Booleans � 138
7.5.2 Lists � 140
7.5.3 Natural Numbers � 142

7.6 Modelling Strictness Analysis � 143
7.7 Refining Pure Encodings of Inductive Types � 145

7.7.1 Church Arithmetic � 145
7.7.2 Booleans � 149

7.8 Observations on Programming with F� 150
7.9 An Experiment with a Simpler Formulation of F� 152

8 Evaluation and Future Work 155

8.1 Alternative Formulations � 156
8.2 Foundations � 157

8.2.1 Semantics � 158
8.2.2 Coherence � 158

8.3 Extensions � 160
8.3.1 Records � 160
8.3.2 Recursive Types � 161
8.3.3 Union Types � 161
8.3.4 Type Reconstruction � 161

8.4 Implementation � 161

A Summary of Major Definitions 163
A.1 F� 163

A.1.1 Subtyping � 163
A.1.2 Typing � 163
A.1.3 Syntax-Directed Subtyping � 164
A.1.4 Type Synthesis � 164

A.2 F� 165
A.2.1 Subtyping � 165
A.2.2 Typing � 165

A.3 � 165
A.3.1 Subtyping � 165
A.3.2 Typing � 166

B Glossary of Notation 167

Bibliography 168

Acknowledgements

A dissertation is supposed to be the ultimate individual project. But if it were written in a vacuum,
the result would not be remotely worth the trouble. If this document is the product of my efforts
these two years, then it is just the harvest of the kindness and generosity of the countless people
who have helped, taught, supported, and loved me for these past two years and the previous
twenty six.

I’m especially grateful to my parents, Alexandra and Roger Pierce, and my grandparents,
Louise and Ralph Young, for introducing me to the life of the mind; to my early mentors at
Stanford, Brian Reid, Terry Winograd, and Forest Baskett, for opening the doors to computer
science; and to my colleagues and teachers at CMU for creating the friendly and stimulating
environment I’ve enjoyed here.

While writing my thesis, I have had the good fortune to work with four of the finest computer
scientists I know. The vision, creativity, and energy of Luca Cardelli, Nico Habermann, Bob
Harper, and John Reynolds will be an example to me for the rest of my life.

I’ve also learned a great deal from Peter Lee, Frank Pfenning, David Garlan, Nevin Heintze,
Spiro Michaylov, QingMing Ma, Tim Freeman, and the rest of the Gandalf and Ergo groups.

Sharon Burks helped chart a safe course through more perils than I care to think about.
During the final months of research and writing, Juliet Langman kept me more-or-less sane

and made this an unexpectedly happy time. She and all my other dear friends, especially Penny
Anderson, Violetta Cavalli-Sforza, Susan Finger, Nevin Heintze, Angela Hickman, Bernadette
Kowalski, Kim McCall, Spiro Michaylov, Jessica Pierce, and Dave Plaut, have meant more to me
than I could begin to say.

Pittsburgh, PA
December 20, 1991

5

Chapter 1

Introduction

This thesis describes an experiment in the foundations of programming languages. Our aim is to
study the interaction of two powerful linguistic primitives, bounded quantification and intersec-
tion types, both of which have attracted significant attention recently in the research community.
The result of the study is a new typed � -calculus, an elegant “core programming language”
combining the power of second-order polymorphism with the fine-grained expressiveness of
intersection types.

1.1 Motivation

The activity of programming — the formalization of ideas and their expression in forms suitable
for interpretation by computers — is characterized by a certain cognitive mode, a state of mind
simultaneously creative and analytical. Like writing, it begins with a rough idea, an intuition,
picture, sketch, or analogy, which is gradually refined and clarified, details added, and internal
consistency established. In both writing and programming, formalization is by far the most
difficult part, since it often involves redefining the original idea over and over as its ramifications
are better understood. Then (or concurrently) the detailed, formalized mental picture is written
out in some concrete, external form.

1.1.1 Programming languages

In programming, the original mental picture is of some computational behavior: a task to be
performed or a value to be calculated by some machine, real or imaginary, operating according to
a well-understood set of formal rules. A programming language is a concrete, formal notation for
effectively describing such computational behaviors.

Natural languages like English are clearly not programming languages according to this defi-
nition: they are neither formal, since a great deal of “speaking English” involves the shared social
and physical context of speakers and listeners, nor are they, in our sense, effective. Specification
languages like Larch and Z, though they are perfectly formal, are also not programming lan-
guages because the connection between descriptions and behaviors is not effective: like the rules
of classical harmony in music composition, they constrain a class of behaviors, but, in themselves,
do not provide any method for constructing an element of this class.

On the other hand, our definition does admit all the forms of conventional programming
languages: machine and assembly codes; imperative languages (Fortran, Algol, Ada); functional
languages (Haskell, Miranda); mixed functional and imperative languages (Lisp, Scheme, ML);

7

1.1. MOTIVATION 8

object-oriented languages (Simula, Smalltalk); and macro languages (TeX, Lotus 123). Logic pro-
gramming languages (Prolog) are also admitted, since their declarative style of presentation is
completely formal and the connection between description and behavior is effective; similar argu-
ments can be made for process-control languages; simulation languages; languages for statistical
calculations; and the many declarative languages used in the AI community. Also included are
languages whose notion of behavior is more abstract (Turing machines, � -calculi, recursive func-
tion theory, term rewriting systems, cellular automata) and languages that include behavioral
primitives like nondeterminacy, randomness, concurrency, and oracles for undecidable problems.

Depending on the discussion at hand, it may be useful to loosen the requirements of effective-
ness or precision so that notations like pseudo-code or the fragments of English used in recipes
and tax forms are also admitted. Likewise, the very simple languages used to describe regular
expressions, typesetting styles in display-oriented editors, and the behavior of microwave ovens
can either be taken as programming languages or relegated to some broader category.

1.1.2 Types

The appropriateness of a programming language for a given task can significantly affect both
aspects — formalization and expression — of programming. The process of translation from
an internal, mental description of a desired behavior into a concrete program implementing this
behavior is much smoother if the conceptual primitives of the mental picture are reflected by
analogous constructs in the programming language. Ideally, the concrete language provides
such a clear and useful set of conceptual structures that this translation step is almost trivial.
Conversely, and more importantly, the formal concepts embodied in a programming language
tend to become a part of the internal conceptual language that programmers use to develop and
refine their ideas.

The notion of type plays a crucial role in facilitating this translation of ideas from abstract
conceptual structures to concrete realizations and vice versa.

Essentially all programming languages have some notion — at least informally — of a collection
of conceptual categories, or types, appropriate to the intended domain of discourse. Machine lan-
guages deal with registers, words, memory pages, and device interrupts. Typesetting languages
manipulate characters, words, boxes and glue, paragraphs, and pages. Functional languages use
numbers, records, lists, and higher-order functions. The more coherent, clean, and simple the
system of types, the better. Ideally, the type system becomes an organizing principle for the entire
language, guiding its design, application, and even implementation.

Statically typed programming languages take the point of view that the type system should
be made simple enough and given a sufficiently rigorous foundation that it becomes possible to
detect certain kinds of category errors in programs automatically. Though this requirement often
restricts the expressiveness of the type system, it has a number of practical benefits. The most
obvious is that a compiler for a statically typed language can, in principle, guarantee the absence
of these type errors. Since many of the errors made by programmers are of exactly this sort,
compilers with static typecheckers are valuable tools for pinpointing mistakes early in the process
of developing a program. More subtly, it has often been observed that for certain languages and
programming tasks there is such a close correspondence between the type structures provided (and
checked) by the language and the appropriate conceptual structures for imagining the behavior
of the program that once all type errors have been removed, the program is usually completely
correct — not only with regard to simple category errors, but even with regard to properties of
its behavior that lie completely outside the apparent purview of the type system. In a sense, each

1.1. MOTIVATION 9

type contains very few programs, one of which is the intended one. Other well-known benefits of
static type systems include the fact that they can support the generation of smaller and faster object
code by giving compilers better information about possible optimizations; that they sometimes
suggest an appropriate architecture for the compiler itself; and that they can form part of the
“documentation” of a program, allowing it to be understood more easily by other programmers.

1.1.3 Typed
�

-calculi

One valuable tool in the study of statically typed programming languages is a class of formal
systems known as typed � -calculi. These calculi are programming languages in their own right,
since they can be described and reasoned about mathematically, they incorporate notions of
behavior, and they admit an effective translation from programs to the behaviors they describe.
But they are languages of a much simpler order than those used in the day-to-day work of
most programmers. They omit all niceties of punctuation and syntax, sacrifice readability for
compactness, provide only the most impoverished collections of built-in types and operations (or
sometimes none at all), and usually include only a tiny collection of basic conceptual structures
instead of the rich and varied facilities offered by most full-fledged languages. In short, they are
intended as objects of study rather than vehicles for expression of complex ideas. Nevertheless,
experience has shown that new ideas in language design — in particular, the behavior and
interactions of various kinds of type structures — can be studied very productively in these
isolated settings and the results transferred to larger languages constructed on the basis of the
same ideas. Of course, significant attention must still be paid to the numerous engineering issues
involved in full-scale language design; but the core type system will retain its essential properties.

Of course, some care must be used in generalizing from properties of � -calculi to larger
programming languages with “similar” type systems, since this process is only sound when the
core conceptual structures of the small and large languages are truly analogous. One important
situation where the correspondence is sometimes misstated is the case where the � -calculus and
the larger programming language have different notions of evaluation. For example, the core
type system of the Standard ML language, which uses a call-by-value evaluation regime, where
arguments are fully evaluated before being passed to functions, is often analyzed in terms of a
� -calculus with normal-order evaluation, where arguments are passed to functions unevaluated.
For simple fragments of the full SML language, this mismatch turns out to be harmless; but the
addition of computational effects such as updateable cells, exceptions, or unbounded recursion
leads to unsoundness of the naive type system for the full language [68] (this point is also discussed
in recent unpublished manuscripts of Robert Harper).

1.1.4 Subtyping

During the past decade, researchers in static type systems have been particularly successful in
developing formal accounts of the notion of subtyping. In 1984, Cardelli [23] suggested that the
basic concepts of object-oriented programming [8, 54, 67] could be understood type-theoretically
using the following rough correspondence:

1.1. MOTIVATION 10

Object-oriented languages Typed lambda-calculi

Classes Record types

Objects Records

Subclass Subtype

Methods Functions

Message passing Function call

Some parts of this picture have been filled in during the intervening years [33, 133, 134, 113, 29,
101, 32, 71, 11, 130, 82, 26, 112, 18, 124, 39, 63, 83, 24, 135, 115, 133, 21, 22, 114, 25, 96, 111, 64, etc.]:

Object-oriented languages Typed lambda-calculi

Classes Record types

Objects Records

Subclass Subtype

Methods Functions

Message passing Function call

Object modification Functional record update

Method inheritance Cascaded record construction

self Recursive records

SelfType Recursive record types

Accounting for other aspects of object-oriented programming in this framework — method inher-
itance, in particular — remains the subject of active research. But whatever the ultimate success
of this research program, the basic framework has proven to be a fruitful source of innovations in
language design.

Informally, a type � is a subtype of a type � if any element of � may sensibly be considered as
an element of � . In the simplest case, this just means that every element of � is an element of � ,
as when � is “monkey” and � is “mammal.” In general, though, this need not be the case. On
many computers, integers are represented in a completely different format from floating-point
numbers, so, although we may abstractly think of the integers as being a subset of the floating-
point numbers, the truth is that every integer may be coerced to an equivalent floating-point
number. A more accurate formulation of the notion of subtype, then, is that � is a subtype of � if
every element of � contains sufficient information that it can be coerced to an appropriate element
of � .

Hiding in the word “appropriate” is another important observation: when we speak of a
coercion from one type to another, we do not intend that this be any mapping whatsoever; it
must preserve the identity of the original values, as much as possible, in their new forms. The
coercion from integers to floating point numbers must take each integer to “the same number” in
the floating-point representation.

This discussion can be formalized as a general architecture for constructing typed � -calculi
with subtyping. We begin with a collection of types (� , � , . . .), a collection of expressions or terms
(� ,

�
, . . .), and some formal rules describing the circumstances under which we may validly assert

that a term � has a type � . To handle subtyping, we introduce an order structure on the collection
of types — a relation � � � . Again, this relation is presented as a collection of rules describing
the circumstances under which we may validly assert that a type � is a subtype of � . To make
a connection between the two systems of rules, we add to the typing rules a rule of subsumption
formalizing the intuitive notion that when � � � every term that may validly be considered an
element of � may also be considered an element of � .

1.1. MOTIVATION 11

This skeletal framework can be extended in many ways, depending on the definitions of
the sets of types and terms and the typing and subtyping relations. Two instances that are of
special importance here are the first-order (simply typed) � -calculus with intersection types — called
� � (“lambda-meet”) here — and the second-order (polymorphic) � -calculus with bounded quantification
— usually called � � (“F-sub”).

The idea of intersection types is extremely simple and natural, though its ramifications in
programming are only beginning to be understood. Essentially, it consists of enriching the
collection of types with a new type � � � for every pair of types � and � (including the case where �
and � themselves contain intersections). This new type is thought of as containing all the elements
of � that are also elements of � ; using our more general notion of subtyping, every element of
� � � contains enough information to coerce it either to an element of � or to an element of � .
Furthermore, � � � should be the “best” such type, in the sense that it is a supertype of every other
type whose elements contain sufficient information to coerce them to either � or � . In terms of the
order structure, this is precisely the greatest lower bound of � and � .

The most intriguing and potentially useful property of intersection types is their ability
to express an essentially unbounded (though of course finite) amount of information about
the components of a program. For example, the addition function � can be given the type
Int� Int� Int � Real� Real� Real, capturing both the general fact that the sum of two real numbers
is always a real and the more specialized fact that the sum of two integers is always an integer.
A compiler for a language with intersection types might even provide two different object-code
sequences for the two versions of � , one using a floating point addition instruction and one using
integer addition. For each instance of � in a program, the compiler can decide whether both
arguments are integers and generate the more efficient object code sequence in this case. This
kind of finitary polymorphism or coherent overloading is so expressive, that (in a sense that can be
made theoretically precise; c.f. Section 2.5) the set of all valid typings for a program amounts to a
complete characterization of the program’s behavior.

Intersection types can also be viewed as a natural type-theoretic analog of multiple inheritance.
If � � � is read as “� is a subclass of � ,” then � � � is a name for a class with all the common
properties of � and � . Of course, this analogy, like the subtype� subclass analogy, is not exact. In
particular, it says nothing about the complex mechanisms supporting code reuse in object-oriented
programming languages with multiple inheritance. But it is intuitively appealing and, like the
rest of Cardelli’s analogy, can perhaps be made more precise in a sufficiently enriched calculus
based on intersection types. We shall return to this point in Chapter 8.

Bounded quantification is an extension of the simpler notion of ordinary second-order quan-
tification, or polymorphism. This was introduced in the early 1970’s by Girard and Reynolds to
capture the intuitive concept of a function that takes a type as a parameter. For instance, the “poly-
morphic reverse” function, which accepts a type � and returns the monomorphic reverse function
that reverses lists whose elements are all of type � , has the quantified type � � � List � � 	 � List � � 	 .
Cardelli and Wegner integrated this mechanism with the notion of subtyping by allowing a quan-
tified type to give a bound for its parameter; for example, � � �
 � � � � � � List � � 	 � List � � 	 takes, as its
first parameter, an arbitrary subtype of the type Student and returns a function on lists of this type.
This form of universal or parametric polymorphism is both broader (since the number of possible
instantiations of a polymorphic type is infinite) and more rigid (since all instances must have
the same basic shape) than the finitary polymorphism provided by intersection types. Its main
practical advantage is compile-time efficiency: it allows polymorphic expressions to be written,
typechecked, and compiled just once.

1.2. CLAIMS 12

1.2 Claims

This thesis is a detailed investigation of a typed � -calculus combining intersection types and
bounded quantification.

Since intersection types and polymorphism can each be formulated in different ways with
varying degrees of expressiveness and technical difficulty, there is actually not just a single calculus
combining the two notionsbut a whole space of such calculi; our first task is selecting one or more of
these as our object of study. We chose to focus on just one in order to study it in the greatest possible
depth. This calculus, called F� , was formed by combining the most expressive formulations of
intersection types and bounded quantification, so that any positive results obtained for it would
apply to as many as possible of the other calculi combining intersections and polymorphism.
(This choice is discussed in greater depth in Section 3.5.)

Our major claims are as follows:
� Bounded quantification and intersection types fit together very naturally. The syntax of

our calculus combining them is elegant and relatively simple. The two different kinds of
polymorphism — finitary and parametric — complement each other, leading to a variety of
novel and useful programming idioms.

� Natural algorithms exist for subtyping and typechecking; these can (with some work) be
proved partially correct. However, the subtype relation of F� turns out to be undecidable.
This comes as a surprise, since the undecidability result also applies to the pure calculus of
bounded quantification, which was generally thought to be decidable.

� Untyped semantic models of F� , where subtyping is interpreted as simple inclusion, are
unproblematic. Appealing typed models, where subtyping is interpreted by actual coercion
functions, can also be sketched, but we encounter difficulties with the details.

� Our negative results — the undecidability of subtyping and the difficulty of constructing
typed models — indicate that in some ways F� is too powerful. Future investigations in
this area might profitably concentrate on weaker fragments for which the same positive
results can be proven more easily and for which comparable negative results do not hold,
provided that such fragments retain most of F� ’s expressive power. We propose some likely
candidates in Chapter 8.

1.3 Outline of Results

The development of the technical chapters may be easier to follow for readers with some back-
ground in � -calculus [5, 77], type systems [33, 120], and, for Section 2.4, basic category the-
ory [3, 7, 90, 106].

Chapter 2 is a self-contained introduction to the major precursors of the F� calculus: the
simply typed � -calculus with subtyping, the first-order calculus of intersection types, and the
second-order calculus of bounded quantification. Besides introducing the notation and conceptual
background needed for later development, this chapter gives a conceptual and terminological
framework in which the semantics of these languages can be understood. Although it presents no
novel results, this framework may contribute to the organization and clarification of terminology
for these systems in the literature.

The F� calculus itself is introduced in Chapter 3 and some basic design issues arising in its for-
mulation are discussed. In particular, we introduce a new language construct, the for expression,

1.3. OUTLINE OF RESULTS 13

which controls the search behavior of the typechecker and the introduction of intersection types.
This construct generalizes similar ideas from Reynolds’ Forsythe language and provides a cleaner
separation of mechanism than earlier formulations.

Chapter 4 undertakes a thorough proof-theoretic investigation of the properties of F� . We
begin by analyzing the subtype relation using “canonical types,” a well-behaved fragment with
sufficient expressive power to capture the essential aspects of the whole language. Using an
extension of Curien and Ghelli’s method of proof normalization by rewriting [50, 63], we show
that every canonical derivation can be transformed into a derivation in a restricted normal form.
This fact is used to prove the soundness and semi-completeness of a straightforward algorithm
for checking the subtype relation for arbitrary types. This algorithm forms a major component of
a type synthesis procedure for F� expressions, which is shown to be sound and semi-complete, in
the sense that whenever it terminates it computes a minimal type. The definition of this algorithm
can be thought of as defining a class of normal-form typing derivations similar to the normal-form
subtyping derivations that arise in the subtyping algorithm; the existence of these normal forms
yields a simple proof of the conservativity of F� over first-order intersection types.

Chapter 5 offers a preliminary semantic investigation of F� . First, a simple untyped model
is defined using partial equivalence relations and the soundness of the typing rules is proved.
We next present the major obstacle to a full account of the typed semantics of F� : the fact that
there are pairs of F� types with no least upper bound. This result implies that standard methods
for constructing models of intersection types and proving them coherent cannot be extended
straightforwardly to F� . Nevertheless, we can give a partial account of the typed interpretation of
F� as a programming language by exhibiting a translation from F� typing derivations into a cal-
culus with a number well-studied typed models: the ordinary polymorphic � -calculus extended
with surjective tuples. This translation extends work on the semantics of � � by Breazu-Tannen,
Coquand, Gunter, and Scedrov [10] by interpreting intersection types as “coherent tuples” in the
target language. An alternative explanation of the semantics of F� is given by an equational theory
of equivalences between F� terms; this theory is shown to be a sound description of the earlier
untyped and translation semantics (assuming in the latter case that the translation is coherent).

Next (Chapter 6), we consider the completeness of the typechecking algorithm and discover,
unfortunately, that the typechecking problem for F� turns is undecidable. Indeed, we prove a
stronger result: the subtyping problem (“given a set of assumptions

�
and two types � and � , is

it the case that � is a subtype of � under
�

?”) is already undecidable in � � , the pure calculus of
second-order bounded quantification. This result is of significant independent interest, since � �
subtyping has long been thought to be decidable and numerous theoretical studies and language
designs have been based on it. However, we argue that both � � and F� are “decidable in practice,”
in the sense that the natural type synthesis algorithms terminate for every case of conceivable
practical importance. Moreover, it is easy to show that some large and useful fragments of these
calculi are decidable.

The last technical chapter, Chapter 7, presents a collection of programming examples in F�
including many new examples of programming with intersection types and type-theoretic formu-
lations of simple abstract interpretation and strictness analysis. We close with some observations
on programming with the for construct and techniques for debugging programs written in this
style.

Chapter 8 presents a critical evaluation of our results and outlines a program for further study.

Chapter 2

Background

This chapter sets the stage for the F� calculus by establishing notational conventions and reviewing
its two immediate ancestors. We first define a common core calculus, a simply typed � -calculus
with subtyping, and then discuss two extensions of this core, a first-order calculus with intersection
types and a second-order calculus with bounded quantification.

� � (simple types + subtyping)

� � (. . . + intersections) � � (. . . + bounded quantification)

�����
� � �� �

Each section includes additional notation and terminology for the mechanisms it introduces;
these are carried over or trivially extended in later sections.

2.1 Notational Preliminaries

2.1.1. Definition: A finite sequence with elements � 1 through � � is written � � 1 � � � � � . Concatenation
of finite sequences is written � 1 	 � 2 or � 1
 � 2. Single elements are adjoined to the right or left of
sequences with a comma: � � �
 � � � or � � �
 � � � . The length of a finite sequence � is written len � � 	 .

Sequences are sometimes written in a “comprehension” notation: � � . . .� . For example, if� � � � � �
 � � �
 � � � � , then the comprehension � � 2 � 1 � � 2 � �
and � 1

� � � stands for the finite
sequence � �
 � � .
2.1.2. Definition: It is sometimes convenient to ignore the ordering of a finite sequence and
treat it as a finite set. Conversely, we say that a finite sequence � enumerates a finite set � if
� � � � � � � � .

2.1.3. Notation: Throughout the thesis, the metavariables � and � range over type variables; � ,
� , � , � , � , and � range over types; � ,

�
, � , � , � , and � range over finite sequences of types; �

and
�

range over terms; and � and � range over term variables. (See Appendix B for a complete
glossary of metavariables.)

2.1.4. Definition: A context
�

is a finite sequence of typing and/or subtyping assumptions for a
set of variables and/or type variables, with no variable listed twice. The empty context is written
� � . More explicit definitions of the contexts of particular calculi are given below.

14

2.1. NOTATIONAL PRELIMINARIES 15

2.1.5. Definition: A subtyping statement is a phrase of the form
� � � � � , where � and � are types.

A typing statement is a phrase of the form
� �

� � � , where � is a term and � is a type. The body of
a statement is the portion to the right of the turnstile.

2.1.6. Definition: A derivation of a subtyping or typing statement � is a proof tree, valid according
to some collection of inference rules, whose root is � . We write � :: � to indicate that � is a
derivation of � .

2.1.7. Notation: The metavariable � ranges over both subtyping and typing statements; �
and � range over derivations of subtyping statements; � and � range over derivations of typing
statements.

2.1.8. Convention: When two or more systems of inference rules are being considered simultane-
ously, the turnstile symbol will often be annotated with a superscript indicating which calculus a
derivation belongs to; for example, derivations in the pure F� calculus are marked

��
.

2.1.9. Convention: Types, terms, contexts, statements, and derivations that differ only in the
names of bound variables are considered identical.

It is formally clearer to think of variables not as names but, as suggested by deBruijn [56],
as pointers into the surrounding context. This point of view is notationally too inconvenient to
adopt explicitly in what follows, but will be a significant aid in understanding the behavior of the
rules that manipulate variables.

2.1.10. Definition: When � and � � are identical phrases (types, terms, contexts, finite sequences
of types, statements, derivations, etc.) up to renaming of bound variables, we write � � � � . If
� � contains free metavariables, then � � � � denotes pattern matching; for example

“if � � �
1 � �

2, then. . . ”

means

“if � has the form �
1� �

2 for some �
1 and �

2, then. . . ”

2.1.11. Definition: The number of nodes in a derivation � is written size� � 	 .
2.1.12. Definition: The capture-avoiding substitution of � for � in

�
is written � � � � � �

. The
capture-avoiding substitution of � for � in � or � is written � � � � � � or � � � � � � . The capture-
avoiding substitution of � for � in the range of

�
is written � � � � � �

.

2.1.13. Notation: The functional application of one phrase to another is normally denoted by
juxtaposition: � 1 � 2. When � 1 or � 2 is a long or complex expression, the application is sometimes
emphasized with an explicit marker: � 1 	 � 2. Similarly, type applications, usually written � � � � ,
sometimes appear as � 	 � � � to improve readability.

2.1.14. Notation: Sessions with the prototype typechecker for F� are set in a typewriter font using
only ascii symbols. The mathematical symbols used in the � -calculus notation are transliterated
as follows:

2.2. SIMPLY TYPED � -CALCULUS WITH SUBTYPING 16

Ascii TEX
s, t � � �
A, B � � �
-> �
/\ � � �
T 	
\x:s. e
 � :� �
\\a<s. e � � � � �
All a<s. t � � � � � �
< �
plus, times � , �

Lines of input to the running typechecker are prefixed with a > character and followed by the
system’s response:

> f = \x:Int. x;
f : Int -> Int

2.1.15. Convention: The type constructors � and � are assumed to bind more tightly than � ,
allowing most parentheses to be dropped. Also, � associates to the right and � obeys the usual
“dot rule” where the body � of a quantified type � � � � � � is taken to extend to the right as far as
possible.

For example, the type expression� � � � � � � �
1 � �

2 � � � � � � � � � � � � � � � � � � � � � �
is written

� � � � � �
1 � �

2 � � � � � � � � � � � � � � �
2.1.16. Remark: The word algorithm is used throughout the thesis in the sense of “recursively
defined procedure,” with no intended connotation of totality. When a given algorithm is known
to terminate for all inputs, we call it a decision procedure.

2.2 Simply Typed ! -Calculus with Subtyping

The F" calculus may be viewed as a “least upper bound” of two calculi: a first-order � -calculus with
intersection types (� ") and a second-order � -calculus with bounded quantification (# �). These,
in turn, are both extensions of the simply typed � -calculus enriched with a subtyping relation
(� �). The latter system was proposed by Cardelli [20, 23] as a “core calculus of subtyping” in a
foundational framework for object-oriented programming languages.

2.2.1. Definition: The types of � � consist of a set of primitive types (ranged over by the metavariable$) closed under the function space type constructor � :

� ::= $ % � 1� � 2

2.2.2. Definition: The terms of � � consist of a countable set of variables (ranged over by &), to-
gether with all the phrases that can be built from these by functional abstraction and application:

' ::= & % � & :� � ' % '
1

'
2

2.2.3. Remark: The presence of the domain-type annotation � in the syntax of � -abstractions marks
a fundamental design choice, which we shall maintain throughout the thesis: all of the calculi we
consider are explicitly typed systems (as opposed to type assignment systems). This requires that a

2.2. SIMPLY TYPED � -CALCULUS WITH SUBTYPING 17

programmer exert firm control over the typechecker ’s behavior, making programs more verbose
but rendering typechecking decidable in many cases where type inference would be undecidable.
Section 2.4 discusses these issues in more detail.

2.2.4. Definition: A � � context is a sequence of typing assumptions�
::= � � % � � & :�

with no variable mentioned twice. The function dom
� � � denotes the set of variables defined by

�
;

the range of
�

is the collection of right-hand sides of bindings in
�

.
� � & � denotes the type of & in�

, if it has one.

2.2.5. Definition: The set of free variables of a term ' is written FV
� ' � .

2.2.6. Definition: A term ' is closed with respect to a context
�

if FV
� ' � � dom

� � � . A typing
statement

� � ' � � is closed if ' is closed with respect to
�

.

2.2.7. Convention: In the following, we assume that all statements under discussion are closed.
In particular, we allow only closed statements in instances of inference rules.

The typing relation of � � is formalized as a collection of inference rules for deriving typing
statements of the form

� � ' � � (“under assumptions
�

, expression ' has type � ”), where
�

contains a typing assumption for each of the free variables of ' . The rules for variables, abstractions,
and applications are exactly the same as in the ordinary simply typed � -calculus [37]. In addition,
we introduce a rule of subsumption stating that whenever a term ' has a type � and � is a subtype
of another type � , the type of ' may be promoted to � .

2.2.8. Definition: The � � typing relation
� � ' � � is the least three-place relation closed under

the following rules: � � & � � � & � (VAR)� � & :� 1
� ' � � 2� � � & :� 1 � ' � � 1 � � 2

(ARROW-I)

� � '
1

� � 1� � 2
� � '

2
� � 1� � '

1
'

2
� � 2

(ARROW-E)

� � ' � � 1
� � � 1 � � 2� � ' � � 2

(SUB)

2.2.9. Remark: This definition may be viewed in two different ways:

1. as a three-place relation constructed as the limit of a sequence beginning with the empty
relation and successively enriching it according to the rules VAR, ARROW-I, ARROW-E, and
SUB, or

2. as a simple logic whose derivable judgements are those appearing as conclusions of valid
derivation trees built from these rules.

We adopt both views, interchangeably, in what follows. For example, the consequent in the
sentence

If
� � ' � � , then

� � � � �
may be read as asserting the existence of a valid derivation with conclusion

� � � � �
, as well as

the presence of the tuple 	 � � � � �

in the graph of the typing relation.

2.2.10. Remark: By analogy with types, we might expect the definition of � � terms to include a
collection of constants. These can be added to the calculus, but they are not strictly necessary:

2.2. SIMPLY TYPED � -CALCULUS WITH SUBTYPING 18

we can write programs involving “built-in values” like numbers and arithmetic operators simply
by considering these as variables and providing a pervasive context — call it

� �
— assigning them

appropriate types. When contexts are extended in Section 2.6 to allow assumptions for type
variables, primitive types can also be dropped, although not every conceivable ordering on the
primitive types can be encoded as a pervasive context (c.f. 2.6.6 and 3.4.2.5).

It remains to define the subtype relation. Intuitively, a subtyping statement
� � � � �

corresponds to the assertion that � is a refinement of � , in the sense that every element of � contains
enough information to meaningfully be regarded as an element of � . In some models this means
simply that � is a subset of � ; more generally, it implies the existence of a distinguished coercion
function from � to � .

These considerations immediately entail that the subtype relation should be both reflexive and
transitive — i.e., that it should be a preorder. We assume that the subtype relation on primitive
types is given in advance by some preorder � � . This relation is extended to the smallest preorder
closed under the following subtyping rule for function types: � 1 � � 2 is a subtype of � 1� � 2 iff
� 1 is a subtype of � 1 and � 2 is a subtype of � 2. Notice that, as usual, this relation is covariant in
the right-hand side and contravariant in the left-hand side of the � constructor: a collection of
functions can be refined either by narrowing the range into which their results must fall or by
enlarging the domain over which they must behave properly.

2.2.11. Remark: A key feature of this notion of subtyping is that it is structural: the ordering of
two arrow types is completely determined by their left- and right-hand sides. In logical terms, the
only extended theories we consider are those whose non-logical rules are restricted to statements
about primitive types. This feature is retained in the other calculi we consider in the thesis.

In fact, the subtype relation of � � is not only structural, but compositional: the ordering on
arrow types may be computed as a function of the ordering of their left- and right-hand sides.
The introduction of intersection types in the next section will invalidate this stronger property.

2.2.12. Definition: The � � subtyping relation
� � � � � is the least three-place relation closed

under the following rules: � � � � � (SUB-REFL)� � � 1 � � 2
� � � 2 � � 3� � � 1 � � 3

(SUB-TRANS)

� � $
1 � � $

2� � $
1 � $

2
(SUB-PRIM)

� � � 1 � � 1
� � � 2 � � 2� � � 1 � � 2 � � 1� � 2

(SUB-ARROW)

2.2.13. Remark: The context
�

plays no part in these rules and could be dropped without changing
the system. We include it here for notational compatibility with later systems, in which contexts
will also contain subtyping assumptions about type variables.

2.2.14. Notation: When
� � � � � , we call � a supertype of � .

2.2.15. Notation: When
� � � � � and

� � � � � , we say that � and � are equivalent under
�

,
written

� � � � � .

2.2.16. Notation: We write
� � � � � to deny the derivability of the statement

� � � � � .

2.2.17. Convention: When necessary to prevent confusion with other calculi, turnstiles in � �
derivations are written

�� �
.

2.3. INTERSECTION TYPES 19

2.3 Intersection Types

Intersection types in the pure � -calculus were developed in the late 1970s by Coppo and Dezani-
Ciancaglini [40], and independently by Sallé [46, 127] and Pottinger [110]. Since then, they
have been studied extensively by members of the group at the university of Turin and many
others [6, 35, 41, 42, 43, 44, 45, 57, 58, 75, 76, 121, 123, 125, 126, 131, 132]. The original motivation
for their introduction was the desire for a type-assignment system in the spirit of Curry [52], but
with two additional properties:

1. The typing of a term should be invariant under � -conversion. (Under Curry’s system,
� -reduction preserves types but � -expansion, in general, does not.)

2. Every term possessing a normal form should be given a meaningful typing.

Various extensions of the original intersection type discipline have also been explored. These
include the notion of infinite intersections [88], the dual notion of union types [4, 73, 105, 107], and
the relationship between intersection types and models of polymorphism [81, 104, 136]. Some
related extensions to ML-style type inference systems are represented by the notions of refinement
types [60, 72, 107] and soft typing [36, 59].

Reynolds provided the first demonstration that intersection types can be used as the basis for
practical programming languages [118, 121]. A primary goal of this thesis is to extend Reynolds’
work by studying the interaction of intersection types with other important type-theoretic prin-
ciples, primarily parametric polymorphism, and to develop a larger suite of interesting examples
illustrating their utility in programming.

2.3.1. Definition: The first-order calculus of intersection types, � " , is formed from � � by adding
intersections to the language of types:

� ::= $ % � 1� � 2
% � � � 1 � � � � �

2.3.2. Definition: For presenting examples, our formulation of the � " type system in terms of� -ary intersections is somewhat cumbersome. We therefore introduce the following abbreviations:

� � � def� � � � � � �� def� � � � �
Of course, the whole system could equally well be formulated in terms of a binary constructor �
and a nullary constructor

�
. However, for the theoretical analysis of the system (and its extension,

F"), the � -ary formulation leads to shorter and clearer proofs of its properties.

2.3.3. Remark: The notations � � � , � &� , and � � � have all been used to denote the intersection
of � and � ; the universal type (usually corresponding to a nullary intersection) has been written
as both � and ns (“nonsense”). To emphasize the order-theoretic intuition that the intersection of
� and � is their greatest lower bound (or “formal meet”) in the subtype preorder — and to de-
emphasize the common intuition that � � � denotes the set-theoretic intersection of the denotations
of � and � — we use the � symbol for binary and � -ary intersections. The phrase � � � (or � � � � � �)
is pronounced “� meet � ,” “� intersect � ,” or “� and � .” For the nullary intersection, we use the
symbol

�
(“top”) by analogy with the binary case.

Two new subtyping rules capture the order-theoretic properties of the � operator:

for all � � � � � � � 	� � � � � � � 1 � � � � � (SUB-INTER-G)

2.3. INTERSECTION TYPES 20

� � � � � 1 � � � � � � � 	 (SUB-INTER-LB)

(Complete sets of inference rules for � " and the other major systems introduced in the thesis
appear in Appendix A. Here we discuss just the extensions to � � that are required to form
� " .) Note that the premise of the first rule actually stands for � different premises, one for each
� � � 1 � � � � ; similarly, the second rule stands for � different rules, one for each value of � .

One additional subtyping rule captures the relation between intersections and function spaces,
allowing the two constructors to “distribute” when an intersection appears on the right-hand side
of an arrow: � � � � � � � 1 � � � � � � � � � � � � � 1 � � � � � (SUB-DIST-IA)

(This inclusion is actually an equivalence, since the the other direction may be proved from the
rules for meets and arrows.)

This rule, though intuitively reasonable, will have a strong effect on both syntactic and semantic
properties of the language. For example, it implies that

� � � � �
for any � .

The typing rules must also be extended slightly. As for any type constructor, we expect to find
a pair of an introduction rule, by which terms can be shown to possess intersection types, and
an elimination rule, by which this fact may later be exploited. The introduction rule allows an
intersection type to be derived for a term whenever each of the elements of the intersection can
be derived for it separately:

for all � � � � ' � � 	� � ' � � � � 1 � � � � � (INTER-I)

The corresponding elimination rule would allow us to infer, on the basis of a derivation of a
statement like

� � ' � � � � 1 � � � � � , that ' possesses every � 	 individually. But this follows already
from the rule SUB-INTER-G and the rule of subsumption; we need not add the elimination rule
explicitly to the calculus.

The nullary case of this rule is worth particular notice, since it allows the type
�

to be derived
for every term of the calculus, including terms whose evaluation intuitively encounters a run time
error

> 5 true;
it : T

or fails to terminate:

> (\x:T. x x) (\x:T. x x);
it : T

The system as we have described it so far supports the use of intersection types in programming
only to a limited degree. Suppose, for example, that the primitive subtype relation has Int � Real
and the addition function in the pervasive context is overloaded to operate on both integers and
reals: � � � � � � Int� Int� Int � Real� Real� Real �

Expressions involving addition of integers and reals will be given type Int if possible, otherwise
type Real:

> plus 0 0;
it : Int

> plus pi pi;
it : Real

2.3. INTERSECTION TYPES 21

> plus 0 pi;
it : Real

(Note that the typechecker attempts to simplify the type it derives for each term, so that, for
example, the type of plus 0 0 is printed as Int instead of as Int/\Real.)

But using just the constructs introduced so far, there is no way of writing our own functions
that behave in this way. For example, the doubling function � & :? � & � & cannot be given the type
Int� Int � Real� Real, since replacing the ? with either Int or Real (or even Int� Real) gives a typing
that is too restrictive:

> double1 = \x:Int. plus x x;
double1 : Int -> Int

> double2 = \x:Real. plus x x;
double2 : Real -> Real

> double3 = \x:Int/\Real. plus x x;
double3 : Int -> Int

This led Reynolds [121] to introduce a generalized form of � -abstraction allowing explicit
programmer-controlled generation of alternative typings for terms:

' ::= . . . % � & :� 1 � � � � � '
The typing rule for this form allows the typechecker to make a choice of any of the � ’s as the type
of & in the body: � � & :� 	 � ' � � 	� � � & :� 1 � � � � � ' � � 	 � � 	 (ARROW-I’)

This rule can be used together with INTER-I to generate a set of up to � alternative typings for
the body and then form their intersection as the type of the whole � -abstraction:

> double = \x:Int,Real. plus x x;
double : Int->Int /\ Real->Real

One peculiar property of the generalized � is that adding extra alternatives to the set of possible
domain types for & can only improve the typing of the whole expression. If some alternative results
in a “typechecking failure,” the best type for the body under this assumption will be equivalent
to

�
(typically via the SUB-DIST-IA rule), and may therefore be dropped from the final type of the

expression without changing its equivalence class in the subtype ordering:

> double = \x:Int,Real,Char. plus x x;
double : Int->(Int/\Real) /\ Real->/\[Real] /\ Char->T

i.e. Int->Int /\ Real->Real

Another point worth noting is that, in � � , the embedding of the primitive subtype relation � �

into the full relation � preserves both greatest lower bounds and least upper bounds. In � " , this
is true only for least upper bounds; that is:

� In both � � and � " , if $ � is a least upper bound of $
1 and $

2 in the � � relation, then it is also
a least upper bound in � .

� In � � , if $ � is a greatest lower bound of $
1 and $

2 in the � � relation, then it is also a greatest
lower bound in � .

� In � " , if $ � is a greatest lower bound of $
1 and $

2 in the � � relation, then it is not a greatest
lower bound in � ; in particular, it is strictly greater than $

1 � $
2.

2.3.4. Convention: When necessary to prevent confusion with other calculi, turnstiles in � "
derivations are written

�� �
.

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 22

2.4 Semantic Frameworks for Intersection Types

Work in the semantics of typed programming languages and � -calculi may roughly be divided
into two philosophical camps. One, sometimes called Curry-style semantics, takes the semantics
of an expression to be the semantics of the pure � -term found by erasing any type annotations
it may contain. The other, sometimes called Church-style semantics, views the expressions of a
typed calculus as a linear shorthand for fully typed forms in which every phrase and subphrase
is annotated with its typing; it is these fully explicit forms, i.e., the typing derivations of the
calculus, to which a semantic interpretation is given. In general, Curry-style systems correspond
to the left-hand side of the following diagram, while Church-style presentations correspond to
the right-hand side:

untyped model typed model

pure � -terms typing derivations

source expressions������
erasure

�
[[�]]

� � � � � �
type reconstruction

�
[[

� � ' � �]]

These two perspectives have also been called the epistemological and the ontological views
of types [87], since one is primarily concerned with knowledge, the other with being; extrinsic and
intrinsic have also been suggested. Both views yield sensible and useful interpretations of systems
with intersection types, and of F" in particular.

2.4.1. Remark: The distinction between typed and untyped models is not a clear as it might
appear from this sketch. For example, one of the mysteries of the polymorphic � -calculus is that
every known typed model is based on an underlying untyped model [Reynolds, personal com-
munication, 1991]. Even so, the difference between typed and untyped semantic interpretations
of terms is quite distinct.

2.4.1 Untyped Semantics

Curry-style type systems are often called type assignment systems. Terms in these systems typically
contain no type annotations at all, in which case the erasure step is trivial. The interpretation of
a term � is some element � of an untyped model � , given by a semantic function [[—]], which
is defined by induction on the structure of terms. Typing is a matter of predication: a typing
statement involving a term � is an assertion about [[�]].

According to this point of view, the interpretation of a type
�

is a predicate, a set of elements
of � for which the assertion expressed by

�
is true. For example, the interpretation of � � � is

[[� � �]] � � � � � % for all � � [[�]], � � � � [[�]]� �
A typechecker, in this context, can be thought of as proving theorems about programs —

theorems that show, on the basis of a set of typing rules that are known to be sound descriptions

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 23

of the semantics of terms, that the interpretations of terms behave in certain ways. A type inference
procedure is a deterministic procedure for discovering a principal theorem — a theorem of which
all other theorems about the behavior of the program are corollaries. (The term “type inference”
is occasionally used in an even more general sense, to describe algorithms that determine whether
a term is typeable, without actually synthesizing any particular type or set of types for it ([85, for
example]).

untyped model

pure � -terms

source expressions���������

erasure

�

[[�]]

typeability �
type inference

When � and � are regarded as predicates, the assertion that � � � simply means [[�]] � [[�]]; the
syntactic term subtype coincides with the semantic term subset. Similarly, the natural interpretation
of � � � is the logical conjunction of the predicates � and � , i.e., the intersection of the subsets of �
denoted by � and � ,

[[� � �]] � [[�]] � [[�]]
�

and [[
�

]] � � .

2.4.2 Typed Semantics

In Church-style type systems, commonly referred to as typed � -calculi, the picture is somewhat
more complicated. Typing, here, has behavioral force: it is not a description of semantics, but an
integral part of semantics. The interpretation function [[—]] is defined by induction on typing
derivations, not on the underlying terms. In cases where a typing derivation contains a sub-
sidiary subtyping derivation, the latter is mapped into a function between semantic domains —
a derivation whose conclusion is � � � is mapped into a coercion function from [[�]] to [[�]]. This
function will sometimes be just an identity injection, as in the untyped case, but in general it may
transform its inputs in some substantial way. For example, the coercion from [[Int]] to [[Real]] may
involve a change of representation, and the coercion from a record with many fields to one with
fewer fields may involve actually dropping the extra fields.

The typed interpretation of an expression ' of the source calculus involves the intermediate
step of constructing a typing derivation of

� � ' � � for some
�

and � . In other words, a bare
source expression underdetermines its semantic interpretation: its image in the semantic domain
depends on “more than meets the eye.” Indeed, even when

�
and � are fixed, there may be a

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 24

number of different derivations of the statement
� � ' � � , and these might, in general, lead to

different interpretations.
For practical programming languages, there must be some effective means of calculating a

type � and a valid derivation � ::
� � ' � � , whenever possible, for any given source expression '

and context
�

. An algorithm that performs this task is a type reconstruction procedure.
For certain calculi (e.g., languages based on system # with partial type reconstruction [9, 102,

109]), it is possible to pick out a subset of the source expressions, the fully typed terms, with the
special property that each fully typed term has at most one typing derivation for a particular
choice of

�
, and for which the type reconstruction problem is therefore particularly simple. Type

reconstruction for these terms might better be called typechecking, since this connotes a simpler sort
of algorithm than “reconstruction.” For such a calculus, our general picture of typed semantics
may be refined as follows:

typed model

typing derivations

source expressions� � � � � �
type reconstruction

�
[[

� � ' � �]]

fully typed terms�

�

� � � � � �

� � � � �

�
typechecking

None of the languages considered in this thesis have a notion of fully typed terms, however, so
the left-hand side of this diagram is the one that is important here.

Higher-order polymorphic � -calculi sometimes blur the syntactic distinction between ordi-
nary applications and type applications [47, 48]. In such situations, type reconstruction can be
generalized to a notion of argument synthesis [109]. On the other hand, some second-order calculi
with subtyping, such as # � and F" , require fully explicit type abstractions and applications, but
allow the types of terms to be implicitly promoted to supertypes at any point. In these cases,
coercion reconstruction may be a more appropriate term.

Just as some typings are more informative than others (for example, Int� Int� Int �
Real� Real� Real is a better type than Int� Int� Int for the

�
operator, and this is better, in turn,

than
�

), there may be some interpretations of (possible typings of) a source expression that are
more useful than others. In general, more informative typings yield more useful interpretations,
so it is desirable that the type reconstruction procedure calculate as good a typing as possible for
each source expression. In the best case, a calculus may have the property that there is a “least”
or principal typing for every typable source expression. Best of all is the case where an effective
procedure exists for computing this typing.

All of the calculi studied in this thesis have the principal typing property. Both � " and � �
have decidable principal typings. (Indeed, the type assignment system corresponding to our
explicitly typed � � has decidable principal typings.) Principal typings for # � , unfortunately, fail
to be decidable (c.f. Chapter 6), but a slightly weaker property does hold: whenever the type
synthesis procedure described in Section 2.6 terminates, it yields a principal typing; in fact, for

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 25

every source expression with any � � typing, the procedure is guaranteed to terminate and yield
a principal typing. This property is not meaningful in F� , since there, as in � � , every source
expression has some typing. But the cases where the natural type synthesis procedure diverges
seem extremely unlikely to arise in practice.

For the sake of precision in what follows, we pause to sketch a framework for the category-
theoretic semantics of a first-order typed � -calculus with subtyping, as suggested by Reynolds [121,
123]. (For the present discussion, we drop the context � from subtyping derivations to emphasize
that we are working with a first-order calculus. To deal rigorously with the more general case,
where � might depend on � , we would need a category-theoretic model for second-order bounded
quantification. The structure of such models is not well understood.)

� The semantics of derivations is based on a category K and a subcategory S sharing all of K’s
objects. The objects of K and S correspond to the types of the source calculus. We require
that K be Cartesian closed and that there be a functor ���	
 S op � S� S that is a restriction of

�� ��
 K op � K� K, the exponentiation functor. S, the subcategory of coercions, must include

morphisms corresponding to the primitive coercions, must be closed under all the coercion
constructors needed to interpret compound subtyping derivations, and must possess certain
limits (discussed below), including at least products. Moreover, a limit in S should also be
a limit of the same diagram in K. In other words, we require that every S-diagram of the
appropriate form have a K-limit.

� Each type � of the source calculus is interpreted as (denotes) an object [[�]] of K.
� A subtyping derivation � :: � � � is interpreted as a S-morphism [[�]]
 [[�]]� [[�]].
� A context � � � 1:� 1 � � � � :� � is interpreted as the S-product [[� 1]] � � � � � [[� �]].
� A typing derivation � :: � � �
 � is interpreted as a K-morphism [[�]]
 [[�]]� [[�]].

The fact that information must be added to the source text of a program to find its behavior
should be invisible to the programmer, in the sense that, whenever the same source expression
may lead to different proofs of the same typing statement and thus to different interpretations, it is
critical that these interpretations should behave identically. That is, the source expression should
completely determine the observable behavior of all its possible interpretations: “What you see is
what you get.” A language that violates this requirement may still be perfectly well defined, but it
will be impossible for programmers to predict the behavior of their programs, except, perhaps, by
according to the details of some particular algorithm for computing principal typings. (Algol-68
and PL/I have both been criticized on this score.)

This idea of invariant behavior under alternative interpretations was introduced by
Reynolds [117] for the specific case of the coercions associated with primitive operators like � .
Breazu-Tannen, Coquand, Gunter, and Scedrov later considered the problem in a more general
setting [10] and coined the term coherence to describe it.

An important special case of the coherence of the interpretation of typing is the coherence of
the interpretation of subtyping: for every pair of subtyping derivations � and � with the same
conclusion, it must be the case that [[�]] � [[�]]. (The appropriate notion of “=” depends on the
model.) If this requirement fails, we can easily use rule SUB to construct an incoherent pair of
typing derivations.

If we consider the subtype preorder as a category, then the coherence condition for subtyping
says precisely that the interpretation function is a functor.

The desire for a coherent semantics leaves very little choice in the interpretation of intersection
types. For the sake of simplicity, consider just the binary intersection of two types � and � . Then
the following observations follow directly:

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 26

1. Since rule SUB-INTER-LB stipulates that � � � � � and � � � � � , there must be coercion
functions proj1
 [[� � �]] � [[�]] and proj2
 [[� � �]] � [[�]] in S.

2. For every type � such that � � � and � � � , the composite coercions proj1 ; [[� � �]] and
proj2 ; [[� � �]] must be equal in order to achieve coherence — i.e., the S-diagram

[[� � �]]

[[�]] [[�]]

[[�]]

�
�

���
proj1 �

�
�� �
proj2

�
�

�� �
[[� � �]] �

�
���

[[� � �]]

must commute. (Here “;” denotes composition in diagrammatic order.)

3. For every type � such that � � � and � � � , rule SUB-INTER-G implies that there must be a
coercion from � to � � � . Call this coercion � � . To achieve coherence, the coercions [[� � �]]
and [[� � �]] that map directly from � to � and � must “factor through” � � — that is, the
S-diagram

[[� � �]]

[[�]] [[�]]

[[�]]

�
�

�
���

proj1 �
�

�
� � �

proj2

	

� �

�

[[� � �]]

�
�
�
�
�
�
�
�
�
�
��

[[� � �]]

must commute.

In order that the interpretation of subtyping derivations be well-defined, this coercion � �
should be determined by the coercions [[� � �]] and [[� � �]].

Taken together, these considerations lead us to a straightforward definition of the interpretation
of � � � as a categorical limit. (Note that we are not forced by the above considerations to interpret
� � � as a limit: any S-object that makes all the appropriate diagrams commute would do. But the
limit is a particularly natural choice.)

2.4.2.1. Definition: The interpretation [[� � �]] and the associated coercions proj1 and proj2 are given
as the limit, in S, of the diagram

[[�]] [[�]]

. . . [[� 1]] [[� 2]] [[� 3]] [[� 4]] [[� 5]] . . .

�
�

��� 	
�

�
�� �

� � � � � � �� �

� � � � � � � � � � � �� �

��������������

���������

�
�

��� 	
�

�
�� �

where � 1, � 2, etc. are all the common supertypes of � and � . (N.b. To avoid cluttering the picture,
the � s have been drawn as though they were mutually unrelated. Of course, the coercions between
them must also be included in the limit diagram.)

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 27

If � and � happen to have a least upper bound � � � in the subtype ordering (again omitting
subtype relations between the � s),

� �

� � �

�
�

� � �

�
�

���

. . . � 1 � 2 � 3 � 4 � 5 . . .

���������

�
�

��� 	

�
�

�� �

� � � � � � � � �

then — because, to achieve coherence, all the composite arrows must commute — the diagram
defining [[� � �]] may be summarized by a much simpler diagram with the same limit:

[[�]] [[�]]

[[� � �]]

�
�

�� �
�

�
���

The limit of this diagram is precisely the categorical pullback of [[�]] and [[�]] with respect to the
coercions [[� � � � �]] and [[� � � � �]].

The first-order calculus of intersection types, � � , can indeed be shown to possess a least upper
bound for every finite collection of types (under certain assumptions about the primitive subtype
relation), so we can use the latter interpretation of intersections, appropriately generalized to �
elements. The S-limits needed to make this construction well defined are guaranteed to exist if
we require that S have limits of all finite diagrams.

2.4.3 Operational semantics

A similar sort of distinction may be drawn between typed and untyped styles of operational
semantics:

values (canonical terms) values (canonical derivations)

pure � -terms typing derivations

source expressions
�

�
�

�
�

�
���

erasure

�

�
�

�
�

�
�

�� �
type reconstruction

�

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 28

An untyped operational semantics first strips a source expression � of any type annotations,
yielding a pure � -term � , which is then evaluated according to some collection of reduction rules
to produce a value � (typically also a � -term, though some formulations make use of auxiliary
notions like closures). A typed operational semantics, on the other hand, begins from a typing
derivation � � �
 � . This derivation itself is then transformed according to some collection of
evaluation rules to produce a derivation in a restricted canonical form. (Again, auxiliary notions
like the closure of a derivation may also be needed.)

The notion of an operational semantics of typing derivations is somewhat unfamiliar, even
though typed operational semantics have often been given for typed languages. The reason
for this is that these semantics have usually been presented as operating on typed terms, not
derivations. (Curien and Ghelli’s rewriting systems on � � typing derivations [50, 51, 63] might be
viewed as an exception.) This works because the calculi involved (explicitly typed presentations
of system � for example) are degenerate in a certain sense: there is a one-to-one correspondence
between valid typing statements and their typing derivations. We might say, in such cases, that
the type systems involved are unitary.

2.4.4 Discussion

The key distinctions between the two views of typing can be summarized as follows:

TYPE ASSIGNMENT SYSTEMS TYPED CALCULI

Curry-style
extrinsic
epistemological

Church-style
intrinsic
ontological

“type annotations are directives to the
typechecker”

“type annotations are part of the
program”

untyped models typed models

type inference typechecking
type reconstruction
argument synthesis
coercion reconstruction

subset interpretation of subtyping coercion interpretation of subtyping

intersection = intersection intersection = coherent overloading

2.4.4.1. Remark: In comparing Church-style and Curry-style semantics, we have been cautious
in our usage of a number of terms that are sometimes employed to distinguish the two. In some
neighborhoods of the programming language community where clear and rigorous meanings
have been agreed on for these terms, they function as useful shorthands. But the field as a whole
has seen them put to so many, often subtly different, uses that they can cause confusion among
broader audiences.

The phrases implicitly typed and explicitly typed calculus — referring to the presence or absence
of concrete-syntax annotations such as type abstractions, type applications, and our for construct
— are particularly confusing, since Church-style systems tend to include such annotations and
Curry-style systems tend to omit them. In the context of the above discussion, it can be seen
that the other pairings also make perfect sense: a type assignment system may be formulated so
that type annotations in source expressions limit the possible typing derivations involving them;
conversely, a typed semantics may be given to a language where the entire burden of discovering
typing derivations is placed on the typechecker. Indeed, Harper and Mitchell [69] have promoted

2.5. EXPRESSIVENESS OF THE INTERSECTION TYPE DISCIPLINE 29

a view of ML, the quintessential implicitly typed polymorphic language, as a typed � -calculus in
the style of Church. Thus, the distinction between explicit and implicit typing should be viewed
as a syntactic question (“what are the subjects of the type inference rules”) and an algorithmic
question (“how much and what kind of help must the programmer give to the typechecker”), but
not as a semantic question.

We have also been careful to use the phrase “type inference” only in the context of systems with
untyped semantic models. When the same term is used for typed systems, its historical association
with Curry-style presentations tends to lead to confusion. We prefer “type reconstruction” for the
typed case.

2.4.4.2. Remark: Intersection types are also sometimes called conjunctive types, but this termi-
nology has fallen into disfavor because it suggests a false analogy with the “and” connective of
intuitionistic logic. The well-known Curry-Howard isomorphism establishes a fruitful intuitive
correspondence between the type constructors of � -calculi and the connectives of intuitionis-
tic logic: functional types correspond to logical implication, polymorphic types to polymorphic
quantifiers, product types to logical conjunction, disjoint sum types to disjunction, and so on.
Roughly speaking, a term of a given type can be viewed as evidence (in the sense of a constructive
proof) of the truth of the corresponding logical proposition. The difference between the product
type � � � and the intersection � � � is that an element of � � � consists of two pieces of evidence,
one establishing � and the other establishing � , whereas an element of � � � consists of a single
piece of evidence that establishes both � and � . (To be completely faithful to the explicitly typed
perspective, we should go a step further and say that an element of the intersection type contains
a piece of evidence that can be coerced to evidence for � and, perhaps via a different coercion, to
evidence for � .)

2.5 Expressiveness of the Intersection Type Discipline

The expressive power of intersection types is clearly illustrated by the fact that they can be used
to type many pure � -terms that have no typed counterparts in � � . For example, it is easy to show
that there the term � � � � � has no simple typing (i.e., there are no � and � such that �

� �
� � :� � � �
 �).

But in � � it has many types — for example,

> \x:A/\A->B. x x;
it : (A/\A->B) -> B

for any A and B.
This particular � -term can also be typed in the pure polymorphic � -calculus (for example, by the

typed term � � :
� � �

�
� � � �

� � � � �
�

� � � � �), but it is known that there are strongly normalizing terms
that cannot be given polymorphic typings [65]. By contrast, various formulations of intersection
types can be used to exactly characterize the set of strongly normalizing terms and two similar
important sets of pure terms (see [35] for a more complete discussion, sketches of proofs, and
pointers to full proofs).

2.5.1. Remark: The classical results about the intersection type discipline have been proved for a
type assignment system, not an explicitly typed calculus. Strictly speaking, they cannot be taken
as having any immediate bearing on the explicitly typed calculi we consider here. For example,
it does not make sense to talk about “typing terms of the pure � -calculus” in an explicitly typed
calculus whose semantic models are also typed, since there is no straightforward way to relate the
semantics of a typed term to the semantics of its erasure. Nevertheless, these results do provide

2.6. BOUNDED POLYMORPHISM 30

a good intuitive gauge of the expressive power we may expect from intersection types in typed
calculi.

2.5.2. Definition:

1. The type assignment system � � � � � � is the implicitly typed analog of � � .

2. The type assignment system � � is the implicitly typed analog of a version of � � where
the � relation and the rule SUB are dropped in favor of an explicit INTER-E rule and the �
constructor is restricted to the binary case.

2.5.3. Definition:

1. A type � is tail-proper if � � � 1 � � 2� � � � � � � � � for some � � 0.

2. The positive and negative occurrences of a subphrase � in a type � are defined inductively as
follows:

� if � � � , then � occurs positively in � ;
� if � occurs positively (resp. negatively) in � 1, then it occurs negatively (positively) in

� 1 � � 2; if it occurs positively (negatively) in � 2, then it occurs positively (negatively) in
� 1 � � 2;

� if � occurs positively (negatively) in � � , then it occurs positively (negatively) in � � � 1 � � � � �
.

3. A type is proper if it contains only negative occurrences of � , anti-proper if it contains only
positive occurrences of � , and strictly proper if it contains no occurrences at all of � .

4. A context is proper (anti-proper, etc.) if its range contains only proper types.

2.5.4. Theorem: Let � be a pure � -term. Then � is normalizable iff there is an anti-proper � � � � � �
context � and a proper type � such that � � � � � � � �
 � .

2.5.5. Theorem: Let � be a pure � -term. Then � is head-normalizable iff there is some � � � � � �
context � and a tail-proper type � such that � � � � � � � �
 � .

2.5.6. Theorem: Let � be a pure � -term. Then � is strongly normalizing iff there is a context �
in � � and a strictly proper type � such that � � � �
 � .

2.5.7. Remark: An easy corollary of these theorems is that the full type inference problem for the
type assignment presentation of intersection types is undecidable.

2.5.8. Remark: The classical intersection type discipline can be formulated without the subtype
relation, distributivity law, or nullary intersections, while retaining much of the expressive power
of the full-blown systems with these features. This leads one to wonder whether a simpler
formulation would also suffice for the uses of intersection types in a programming language
setting, although, for the sake of generality in this thesis we have chosen to deal with the richer,
more complex formulation. This point is discussed in more detail in Section 3.4.1.

2.6 Bounded Polymorphism

The notion of bounded quantification was introduced by Cardelli and Wegner [33] in the lan-
guage Fun. Based on informal ideas by Cardelli and formalized using techniques developed by
Mitchell [94], Fun integrated Girard-Reynolds polymorphism [66, 116] with Cardelli’s first-order
calculus of subtyping [20, 23].

2.6. BOUNDED POLYMORPHISM 31

Fun and its relatives have been studied extensively by programming language theorists and
designers. Cardelli and Wegner’s survey paper gives the first programming examples using
bounded quantification; more are developed in Cardelli’s study of power kinds [24]. Curien and
Ghelli [50, 63] address a number of syntactic properties of � � . Semantic aspects of closely related
systems have been studied by Bruce and Longo [12], Martini [91], Breazu-Tannen, Coquand,
Gunter, and Scedrov [10], Cardone [34], Cardelli and Longo [29], Cardelli, Martini, Mitchell, and
Scedrov [30], Curien and Ghelli [50, 51], and Bruce and Mitchell [14]. � � has been extended to
include record types and richer notions of inheritance by Cardelli and Mitchell [32], Bruce [11],
Cardelli [26], and Canning, Cook, Hill, Olthoff, and Mitchell [18]. Bounded quantification also
plays a key role in Cardelli’s programming language Quest [25, 29] and in the Abel language
developed at HP Labs [17, 18, 19, 39].

The original Fun was simplified and slightly generalized by Bruce and Longo [12], and again
by Curien and Ghelli [50]. Curien and Ghelli’s formulation, called minimal Bounded Fun or � �
(“� -sub”), is the one considered here.

Like other second-order � -calculi, the terms of � � include the variables, abstractions, and
applications of � � , plus the type abstractions and type applications of the second-order � -calculus
— slightly refined to take account of the subtype relation: each type abstraction gives a bound
for the type variable it introduces and each type application must satisfy the constraint that the
argument type is a subtype of the bound of the polymorphic function being applied. Also, like
that of � � , the � � subtype ordering includes a maximal element. (Since the two are not exactly
the same (c.f. 3.4.1), the maximal � � type is called here by its conventional name, Top, instead of� .)

� ::= Top � � � � 1 � � 2 � � � � � 1 � � 2

� ::= � � � � :� � � � � 1 � 2 � � � � � � � � � � � �
To accomodate the subtyping assumptions introduced by type abstractions, we enrich the

notion of “context” to include bindings for both term variables (as before) and type variables:

2.6.1. Definition: A context is a finite sequence of distinct type variables with associated bounds
and term variables with associated types:

� ::= � � � � � � � � � � � � :�
The function dom

� � �
gives the set of type and term variables defined by � . � � � �

denotes the bound
of

�
in � if it has one; � � � �

denotes the type of � in � if it has one.

2.6.2. Definition: The set of free type variables of a type � or a term � is written FTV
� � �

or FTV
� � �

.
The set of free type variables of a context � is the union of the sets of free type variables of the
elements of the range of � . The set of all type variables in a type � is written TV

� � �
.

2.6.3. Definition: A type � is closed with respect to a context � if FTV
� � � �

dom
� � �

. A term � is
closed with respect to � if FTV

� � � �
FV

� � � �
dom

� � �
. A context � is closed if

1. � � � � , or

2. � � � 1 � � � � , with � 1 closed and � closed with respect to � 1, or

3. � � � 1 � � :� , with � 1 closed and � closed with respect to � 1.

A subtyping statement � � � � � is closed if � is closed and � and � are closed with respect to � ;
a typing statement � � �
 � is closed if � is closed and � and � are closed with respect to �
2.6.4. Convention: (c.f. 2.2.7) In the following, we assume that all statements under discussion
are closed. In particular, we allow only closed statements in instances of inference rules.

2.6. BOUNDED POLYMORPHISM 32

Type abstractions have almost the same typing rule as in other second-order � -calculi; they
are checked by moving their stated bound for the type variable they introduce into the context
and checking the body of the abstraction under the enriched set of assumptions:

� � � � � 1 � �
 � 2

� � � � � � 1 � �
 � � � � 1 � � 2
(ALL-I)

Type applications check that the type being passed as a parameter is indeed a subtype of the
bound of the corresponding quantifier:

� � �
 � � � � 1 � � 2 � � � � � 1

� � � � � �
 � � � � � � 2
(ALL-E)

The subtype relation of � � is also extended with several rules. First, we stipulate that Top is a
maximal element of the subtype order:

� � � � Top (SUB-TOP)

(One of the main uses of Top — in fact, the original reason it was introduced by Cardelli and Wegner
— is to recover ordinary unbounded quantification as a special case of bounded quantification:� �

� � becomes
� � � Top � � .)

Type variables are subtypes of the bounds given for them in the prevailing context:

� � � � � � � �
(SUB-TVAR)

Like arrow types, subtyping of quantified types is contravariant in their bounds and covariant
in their bodies:

� � � 1 � � 1 � � � � � 1 � � 2 � � 2

� � � � � � 1 � � 2 � � � � � 1 � � 2
(SUB-ALL)

This rule deserves a closer look, since it causes considerable difficulties (c.f. Chapter 6 in
particular). Intuitively, it reads as follows:

A type � � � � � � 1 � � 2 describes a collection of polymorphic values (functions from
types to values), each mapping subtypes of � 1 to instances of � 2. If � 1 is a subtype
of � 1, then the domain of � is smaller than that of � � � � � � 1 � � 2, so � is a stronger
constraint and describes a smaller collection of polymorphic values. Moreover, if, for
each type � that is an acceptable argument to the functions in both collections (i.e., one
that satisfies the more stringent requirement � � � 1), the � -instance of � 2 is a subtype
of the � -instance of � 2, then � is a “pointwise stronger” constraint and again describes
a smaller collection of polymorphic values.

Thus, quantified types may be thought of as a kind of function spaces. We sometimes abuse this
analogy and speak of the body and bound of a quantified type as its “left-hand” and “right-hand”
sides.

2.6.5. Convention: When necessary to prevent confusion, turnstiles in � � derivations are written

�
�

.

2.6.6. Remark: (c.f. 2.2.10) Since contexts now include assumptions about free type variables,
we can drop the separate notion of “primitive types.” For each primitive type of � � , we add a

2.6. BOUNDED POLYMORPHISM 33

variable with the same name to the pervasive context � � . The bounds given to these variables
encode the subtype relation � � . For example, the primitive subtype relation

� � � � � � �
� 	 �
 �

� �� ����

is represented by the pervasive context

� � � � 	 �
 � � Top � � � � � � 	 �
 � � � � � � � � 	 �
 �
�

Note, however, that this encoding sacrifices a degree of flexibility: it will only work for “tree-
shaped” order structures where each primitive type has at most one immediate parent; for exam-
ple, the preorders

� � � � � � �
� 	 �
 �

� � �

� �� ����
���� � �� � � � 	 � � � � � � � � � � � � � � � � � � ���

cannot be encoded in this way. Luckily, some of this lost flexibility is regained in F� , which allows
cycle-free directed graphs like the one on the left to be encoded as well.

2.6.7. Remark: The encoding of primitive types as type variables also results in a modest gain in
expressiveness over their formulation in � � and � � : in both of these calculi, the only things that
can be supertypes of primitive types are other primitive types (and, in � � , intersections involving
only primitive types). Here, the upper bound given in � � for a variable may be any � � type whose
free variables are all defined to the left of the variable being introduced.

This extra freedom might be used, for example, to express the fact that natural numbers can
be viewed as iterators (c.f. Section 7.7.1), in terms of an implicit coercion from a primitive type
Nat to the appropriate polymorphic type:

� � � � 	 � � � � �
�

� � � � � � � � �

2.6.8. Definition: We use the following abbreviations in examples:
� �

� � def� � � � Top � �� �
1
� �

1 � �
� � � � � � � def� � �

1
� �

1 � � �
� � � � � � � � �

The rules defining � � do not directly constitute an algorithm for checking the subtype relation,
since they are not syntax-directed. In particular, the rule TRANS cannot effectively be applied
backwards, since this would involve “guessing” an appropriate value for the intermediate type
� 2. Curien and Ghelli (as well as Cardelli and others) use the following reformulation:

2.6.9. Definition: � �� (“� ” for “normal form”) is the least relation closed under the following
rules:

� � � � Top (NTOP)

� � � � �
(NREFL)

2.6. BOUNDED POLYMORPHISM 34

� � � � � � � �
� � � � � (NVAR)

� � � 1 � � 1 � � � 2 � � 2

� � � 1 � � 2 � � 1� � 2
(NARROW)

� � � 1 � � 1 � � � � � 1 � � 2 � � 2

� � � � � � 1 � � 2 � � � � � 1 � � 2
(NALL)

The reflexivity rule here is restricted to type variables. Transitivity is eliminated, except for
instances of the form

� � � � � � � � � � � � � � � �
� � � � � �

which are packaged together as instances of the new rule NVAR.

2.6.10. Definition: The rules defining � �� may be read as an algorithm (i.e., a recursively defined
procedure) for checking the subtype relation:

check
� � � � � � � �

1. if � � Top
then true

2. else if � � � 1� � 2 and � � � 1� � 2

then check
� � � � 1 � � 1

�
and check

� � � � 2 � � 2
�

3. else if � � � � � � 1 � � 2 and � � � � � � 1 � � 2

then check
� � � � 1 � � 1

�
and check

� � � � � � 1 � � 2 � � 2
�

4. else if � � �
and � � �

then true
5. else if � � �

then check
� � � � � � � � �)

� . else
false.

We write � �� to refer either to the algorithm or to the inference system, depending on context.

2.6.11. Lemma: [Curien and Ghelli] The relations � � and � �� coincide: � � � � � is derivable in
� � iff it is derivable in � �� .

The algorithm � �� may be thought of as incrementally attempting to build a normal form
derivation of a statement � , starting from the root and recursively building subderivations for the
premises. By Lemma 2.6.11, if there is any derivation whatsoever of a statement � , there is one in
normal form; the algorithm is guaranteed to recapitulate this derivation and halt in finite time.

2.6.12. Fact: [Curien and Ghelli] � � � � � is derivable in � �� iff the algorithm � �� halts and
returns true when given this statement as input.

Unfortunately, the algorithm is not a decision procedure for the subtype relation. Indeed,
the main result of Chapter 6 is that this relation is undecidable. We shall see, however, that the
convergence of the algorithm in practice is perfectly acceptable (c.f. 6.12).

Chapter 3

The F� Calculus

This chapter introduces F� , an explicitly typed second-order lambda calculus with bounded
quantification and intersection types. F� can roughly be characterized as the union of the concrete
syntax and typing rules for the systems � � and � � :

� �

� � � �

F�

�
�

���

�
�

� � �
�

�
� � �

�
�

���

To achieve a compact and symmetric calculus, however, a few small modifications and extensions
are needed:

� Since � � allows primitive types to be encoded as elements of the pervasive context, we drop
the primitive types of � � and � � and the rule SUB-PRIM.

� Since � and Top both function as maximal elements of their respective subtype orderings,
we drop Top and let � take over its job. Section 3.4 discusses this design decision in more
detail.

� Since
�

behaves like a kind of function space constructor, we add a new law SUB-DIST-IQ,
analogous to SUB-DIST-IA, which allows intersections to be distributed over quantifiers on
the right-hand side.

� We use the ordinary form of � -abstraction from � � rather than the generalized one intro-
duced by Reynolds for � � . The notion of deriving alternative typings for subphrases under
different sets of assumptions is captured by a new syntactic form, for.

The for construct is described in detail in Section 3.1. Section 3.2 then summarizes the concrete
syntax, subtyping rules, and typing rules of F� . Section 3.3 introduces a linear shorthand for F�
derivations. Section 3.4 discusses the major design choices in the formulation of F� .

35

3.1. EXPLICIT ALTERNATION: THE FOR CONSTRUCT 36

3.1 Explicit Alternation: The for Construct

The notions of type variables and type substitution inherited from � � can be used to define an
elegant generalization of the alternation inherent in � � ’s generalized � -abstraction construct. We
extend the concrete syntax of terms with a for form

� ::= . . . � for � in � 1 � � � 	 � �
whose typing rule allows a choice of any of the � ’s as a replacement for � in the body:

 � � � � � � � � �
 �
for � in � 1 � � � 	 � � � � (FOR)

This rule, like the generalized arrow introduction rule ARROW-I’ of � � , can be used together
with INTER-I to generate a set of up to � alternative typings for the body and then form their
intersection as the type of the whole for expression:

> double = for A in Int,Real. \x:A. plus x x;
double : Int->Int /\ Real->Real

Indeed, � � ’s generalized � -abstraction may be reintroduced as a simple syntactic abbreviation:

3.1.1. Notation: � � :� 1 � � � 	 � � def� for � in � 1 � � � 	 � � � :� � � � where � is fresh.

Besides separating the mechanisms of functional abstraction and alternation, the introduction
of the for construct extends the expressive power of the language by providing a name for the
“current choice” being made by the type checker:

> for A in Int,Real.
> \\B<A. \f:A->B. \x:A.
> f (double x);
it : All B<Int. (Int->B)->Int->B /\ All B<Real. (Real->B)->Real->B

Indeed, the finer control over alternation allowed by the explicit for construct may be used
to improve the efficiency of typechecking even for first-order languages with intersections, like
Forsythe. For example, Forsythe’s generalized � -abstraction allows the definition of polynomial
functions like the following:

> poly =
> \w:Int,Real. \x:Int,Real. \y:Int,Real. \z:Int,Real.
> plus (double x) (plus (plus w y) z);
poly : Int->Int->Int->Int->Int /\ Real->Real->Real->Real->Real

But the behavior of the typechecker on this program is unnecessarily inefficient. It is easy to see,
from the types of plus and double, that when all the arguments to poly have type Int, the result
type will be Int, and that otherwise the result type will be Real. So if we choose Real for the
type of any of the four parameters, we might as well choose Real for the others too. We can
realize a substantial gain in typechecking efficiency by making this observation explicit with a for
expression:

> poly =
> for A in Int,Real.
> \w:A. \x:A. \y:A. \z:A.
> plus (double x) (plus (plus w y) z);
poly : Int->Int->Int->Int->Int /\ Real->Real->Real->Real->Real

The second version of poly requires that the body be checked only twice, as compared to sixteen
times for the first version.

3.2. SYNTAX, SUBTYPING, AND TYPING 37

3.2 Syntax, Subtyping, and Typing

We now give a precise definition of the F� calculus, which forms the main object of study for the
remainder of the thesis. Since all of its components have already been discussed in detail, we
present just the bare facts here. (These definitions are also summarized in Appendix A for easy
reference.)

3.2.1. Definition: The set of F� types is defined by the following abstract grammar:
� ::= �

� �
1 � �

2

� � � � �
1 � �

2

� � � � 1 � � � 	 �
3.2.2. Definition: The set of F� terms is defined by the following abstract grammar:

� ::= �
� � � :� � �
� �

1
�

2

� � � � � � �
� � � � �
� for � in �

1 � � � 	 � �
3.2.3. Definition: The three-place F� subtype relation

 � � � � is the least relation closed under
the following rules:
 � � � � (SUB-REFL)
 � �

1 � �
2

 � �
2 � �

3
 � �
1 � �

3
(SUB-TRANS)

 � � �
 � � � (SUB-TVAR)

 � �

1 � � 1

 � � 2 � �

2
 � � 1 � � 2 � �
1� �

2
(SUB-ARROW)

 � �
1 � � 1

 � � � �
1

� � 2 � �
2
 � � � � � 1 � � 2 � � � � �

1 � �
2

(SUB-ALL)

for all 	 �
 � � � �
 � � � � � � 1 � � � 	 � (SUB-INTER-G)

 � � � � 1 � � � 	 � � � (SUB-INTER-LB)

 � � � � � �

1 � � � � � 	 � � � � � � � 1 � � � 	 � (SUB-DIST-IA)

 � � � � � � � � �

1 � � � � � � � � 	 � � � � � � � � � � 1 � � � 	 � (SUB-DIST-IQ)

3.2.4. Definition: The three-place F� typing relation

 � � � � is the least relation closed under the

following rules:
 � � �
 � � � (VAR)

 � � :� 1

� � � �
2
 � � � :� 1 � � � �

1 � �
2

(ARROW-I)

 � �
1

� �
1 � �

2

 � �

2
� �

1
 � �
1

�
2

� �
2

(ARROW-E)

3.3. LINEAR NOTATION FOR DERIVATIONS 38

 � � � �
1

� � � �
2
 � � � � �

1 � � � � � � �
1 � �

2
(ALL-I)

 � � � � � � �
1 � �

2

 � � � �

1
 � � � � � � � � � � � �
2

(ALL-E)

 � � � � � � � � �
 �
for � in � 1 � � � 	 � � � � (FOR)

for all 	 �
 � � � �
 � � � � � � 1 � � � 	 � (INTER-I)

 � � � �
1

 � �
1 � �

2
 � � � �
2

(SUB)

3.2.5. Convention: When necessary to prevent confusion, turnstiles in F� derivations are written��
.

3.3 Linear Notation for Derivations

It is convenient to have a linear notation for typing and subtyping derivations, so that operations
on proofs such as cut-elimination transformations can be expressed as textual rules rather than as
pictures. Our notation is a modified version of Curien and Ghelli’s [50].

3.3.1. Definition: The sets of subtyping derivation abbreviations � and typing derivation abbreviations� are defined by the following abstract grammar:
� ::= id

� �
1 ; �

2

� � �
� �

1� �
2

� � � � �
1 � �

2

� � �
1 � � � 	 �

� proj
� dist-ia
� dist-iq

� ::=
� �

� � � :� � �
� �

1
�

2

� � � � � � �
� � � � �
� for � in � 1 � � � 	 � �
� � �

1 � � � 	 �
� � � �

3.3.2. Definition: The translation function
�
— � 	 , which maps derivation trees to their abbreviated

forms, is defined as follows. (Recall that � ::
 is read as “� is a derivation whose conclusion is the
judgement
 .”)

3.3. LINEAR NOTATION FOR DERIVATIONS 39

�
(SUB-REFL)
 � � � � � 	 � id� �

1 ::

 � �

1 � �
2

�
2 ::

 � �
2 � �

3
 � �
1 � �

3
(SUB-TRANS)� 	 � � 	

1 ; � 	
2�

(SUB-TVAR)
 � � �
 � � � � 	 � � �
� �

1 ::

 � �

1 � � 1
�

2 ::

 � � 2 � �

2
 � � 1 � � 2 � �
1 � �

2
(SUB-ARROW)� 	 � � 	

1 � � 	
2� �

1 ::

 � �

1 � � 1
�

2 ::

 � � � �

1
� � 2 � �

2
 � � � � � 1 � � 2 � � � � �
1 � �

2
(SUB-ALL)� 	 � � � � � 	

1 � � 	
2�

for all 	 � � ::

 � � � �
 � � � � � � 1 � � � 	 � (SUB-INTER-G)� 	 � � � 	

1 � � � 		 ��
(SUB-INTER-LB)
 � � � � 1 � � � 	 � � � � 	 � proj�

(SUB-DIST-IA)
 � � � � � �
1 � � � � � 	 � � � � � � � 1 � � � 	 � � 	 � dist-ia�

(SUB-DIST-IQ)
 � � � � � � � � �
1 � � � � � � � � 	 � � � � � � � � � � 1 � � � 	 � � 	 � dist-iq�

(VAR)
 � � �
 � � � � 	 � � �
� � ::

 � � :� 1
� � � �

2
 � � � :� 1 � � � �
1 � �

2
(ARROW-I)� 	 � � � :� 1 � � 	� �

1 ::

 � �

1
� �

1 � �
2

�
2 ::

 � �
2

� �
1
 � �

1
�

2
� �

2
(ARROW-E)� 	 � � 	

1
� 	

2� � ::

 � � � �

1
� � � �

2
 � � � � �
1 � � � � �

1 � �
2

(ALL-I)� 	 � � � � �
1 � � 	� � ::

 � � � � � � �
1 � �

2
� ::

 � � � �
1
 � � � � � � � � � � � �

2
(ALL-E)� 	 � � 	 � � 	 �� � ::

 � � � � � � � � �
 �
for � in � 1 � � � 	 � � � � (FOR)� 	 � for � in � 1 � � � 	 � � 	�

for all 	 � � ::

 � � � �
 � � � � � � 1 � � � 	 � (INTER-I)� 	 � � � 	 � � � 		 �� � ::

 � � � � � ::

 � � � �

 � � � � (SUB)� 	 � � 	 � � 	

3.4. DISCUSSION 40

For example, the subtyping derivation

(SUB-TVAR)
 � �
Int � Real

(SUB-REFL)
 � � � � Int
� � � �

(SUB-INTER-G)
 � � � � Int
�

Int � �

 � � � � Int

� � � Int � � � � (SUB-ARROW)

 � � � � � Real � � � Int � � � � Int � � � � (SUB-ALL)

is abbreviated by the linear shorthand
� � � � � � � � id� � � �

3.3.3. Remark: Strictly speaking, our linear abbreviations should contain sufficient information
that they uniquely determine proof trees; in other words,

�
— � 	 should be injective. Clearly, we

could decorate our linear abbreviations with additional information and extend
�
—� 	 to a bijection.

For example, each abbreviation could include an explicit indication of the judgement it derives.
However, this would make the abbreviations much larger and less readable, eliminating most of
the benefit of introducing them in the first place. We therefore use the present abbreviatory forms
as if they contained sufficient information to unique determine derivation trees, relying on the
reader to imagine the necessary annotations.

Again, when we need to be explicit about the conclusion of a derivation written in linear form,
we use the notation � ::
 .

3.4 Discussion

We pause now to discuss the design choices that arise in the formulation of F� and explore some
of its properties.

3.4.1 Top vs. �
In forming F� from � � and � � , we find, pleasantly, that most of their features are quite orthogonal:
for a given feature, either it is found already in � � or else it exists in either � � or � � in a form that
interacts smoothly with all the features of the other. The one exception is the maximal types

�
and Top. In the best case, we might hope that these would coincide in F� , but this, unfortunately,
is not the case.

The difference arises from the INTER-I rule of � � , which, in its nullary form, states that any
term whatsoever has type

�
. � � has no such rule: the only way a term � can be assigned type

Top is by the rules SUB and SUB-TOP, which require that the term already have some type � with
� � � . In other words,

� Top is the type of all well-typed terms;
� �

is the type of all terms.

Order-theoretically, the two types are equivalent (each is a subtype of the other), since each is
explicitly axiomatized as a maximal type.

For the sake of conceptual parsimony, we drop Top here and retain
�

, since
�

can perform the
same jobs as Top (in particular, it allows unbounded quantification to be recovered from bounded
quantification), while requiring no extra typing or subtyping rules beyond those defining the
behavior of general � -ary intersections.

The alternative system with both
�

and Top, though messier and probably not much more
expressive than F� , makes reasonable syntactic sense and does not seem much harder to typecheck.

3.4. DISCUSSION 41

More interesting, though, would be the system with Top instead of
�

, where intersections are
restricted to two or more elements: this language would have much of the practical expressiveness
of F� while avoiding the unfamiliar notion of a “type of all terms, even ill-behaved ones.” This
system supports the notion of typechecking failure, which in F� is simply equated with

�
.

3.4.2 Encoding Primitive Subtyping

As in � � , both term and type constants are absent from F� , and programs involving them are
expressed as terms with free variables whose typing and subtyping behavior are declared in a
pervasive context

 �
.

The presence of intersection types allows a greater variety of primitive subtype relations to be
encoded in this way than was possible in � � . For example, the relation

� � � � � � �

� � � � 	

�
 �

� ��� �

� � ���

is represented by the pervasive context
 � � � � � � 	 � � � � � � � � � � � 	 � � � � � � � � � � 	 � �
 � � � � � � � � � � �
Primitive subtype order structures that are not partially ordered, such as� � � � � � � � � � 	 � � 	 � � � � � � � 	 ���

are still not expressible, though.
The encodability of primitive subtype relations can be stated formally as follows:

3.4.2.1. Definition: A topological sort of a finite collection of primitive types � is a bijective mapping
index� � � � �

1 � � � � � � such that � � � � implies index� � � � � index� � � � .
3.4.2.2. Definition: Let � be a collection of primitive types topologically sorted by index� . Let
� �

index� 1� � 	 � . Then � is encoded by the following F� context:
 � � . . . � � � � � � � � � � � � � . . .

3.4.2.3. Remark: Note that every finite partial order can be topologically sorted.

3.4.2.4. Lemma: Let

be an � � context and assume that the primitive subtype relation � � can be
topologically sorted by some function index� . If

 �! � � � � , then

 � �
 �� � � � .

Proof: By induction on the structure of the given derivation. All of the � � rules translate directly
into F� rules, except for SUB-PRIM; an instance of this rule with conclusion

 � � � � is translated
into the following F� derivation:

(SUB-TVAR)
 � �
 �� � � � � � � � � � � �
(SUB-INTER-LB)
 � �
 �� � � � � � � � � � � �
 � �
 �� � � � � (SUB-TRANS)

"
3.4.2.5. Lemma: Let

by a � � context and assume that the primitive subtype relation � � can be

topologically sorted by some function index� . Then

 �! � � � � only if

 � �
 �� � � � .

(In fact, the derivation-normalization results of the following chapter can be used to show the
converse, so

 �! � � � � iff

 � �
 �� � � � .)

3.5. ALTERNATIVE FORMULATIONS 42

3.5 Alternative Formulations

The formulation of F� presented in Section 3.2 represents a natural combination of the most elegant
formulations of pure bounded quantification and first-order intersection types. However, a few
alternative formulations are worthy of mention.

3.5.1 Unbounded Quantifiers

Probably the most important alternative is a system based on pure unbounded quantification,
with the same formulation of intersection types. It would appear, at first sight, that this system
is much less expressive than the one with bounded quantifiers. While this is certainly true of the
quantification-only fragments, when intersection types are added it becomes possible to “encode”
bounded quantification by reading a bounded quantifier as an abbreviation for an unbounded
one with a slightly modified body:

� � � � � � def� � � � � � � � � � � �
Intuitively, the type

� � � � � � takes an argument that is forced, in advance, to fall beneath � .
On the other hand,

� � � � � � � � � � � takes an argument that may be any type whatsoever, but at
each point where this type is used it squeezes it down to below � using a

�
. (This abbreviation

was suggested by John Mitchell.)
According to a typed view of the semantics of quantification and intersections, where “� � ”

signals the existence of a coercion into � rather than simply a proof that something already given
falls within � , this transformation makes little sense. In the simpler, untyped view, however, it is
fairly appealing.

This is not, however, an encoding of bounded quantification in a full sense. For example, it
does not validate the SUB-ALL rule. The derivable F� statement
 � � � � Real � � � � � � � � Int � � � �
translates to the non-derivable statement
 � � � � � � �

Real � � � � �
Real � � � � � � � �

Int � � � � �
Int � �

It is somewhat surprising, in view of this weakness, that many programming examples using
bounded quantification still behave as expected under the translation. This point is explored at
more length in Section 7.9.

3.5.2 Additional Subtyping Rules

It is also possible to strengthen F� in various ways, the most obvious being the addition of rules
allowing quantifiers to be introduced and eliminated independent of the syntactic forms � � � � � �
and � � � � :

 � � � �
1
 � � � � �

1 � �
2 � � � � � � � (SUB-ALL-E)

 � � � �
1

� � � �
2
 � � � � � � �

1 � �
2

(I-ALL-I)

The resulting system is almost certainly too strong to form a suitable foundation for a program-
ming language. For example, the problem of typechecking for the quantification-only fragment

3.5. ALTERNATIVE FORMULATIONS 43

of this calculus is not known to be decidable; it is similar to the full type inference problem
for polymorphic lambda-calculus, which is also open, but known to be of at least exponential
complexity [74].

3.5.3 Bounded Existential Types

Another natural extension of F� would be to allow bounded existential types in addition to its
bounded universal types. Bounded existentials are discussed by Cardelli and Wegner [33], who
use them to obtain a notion of partially abstract type based on Mitchell and Plotkin’s correspondence
between abstract types (modules or packages) and existential types [97].

This extension seems straightforward. However, since bounded existential types can be
encoded as bounded polymorphic types using the abbreviation

� � � � � � def� � � � � � � � � � � � � � � � �
we can forgo their extra complication for the purposes of the present study.

Chapter 4

Typechecking

This chapter develops the proof theory of the F� calculus, leading up to the definition and cor-
rectness proof of an algorithm for synthesizing minimal types of F� terms. The major results we
establish are as follows:

� We give an alternative formulation of the subtype relation in terms of “canonical types,”
where intersections appear only on the left of arrows and quantifiers. This formulation is
equivalent to the original, in the sense that there is some canonical type in the equivalence
class of each ordinary type. More formally, the “flattening” map from ordinary to canonical
types both preserves and reflects derivability of subtyping statements.

� A proof-normalization argument based on the one used by Curien and Ghelli [50] shows
that every derivable canonical subtyping statement has a “normal form” derivation with a
particular, restricted shape.

� The existence of normal-form canonical derivations is used to prove the semi-completeness
of a syntax-directed algorithm for checking the subtype relation.

� The soundness of a syntax-directed type synthesis algorithm for F� terms is established by
showing that there exist finite bases for the collections of arrow types and quantified types
lying above a given type. This argument also shows that the subroutine for checking the
subtype relation is the only source of possible nontermination in the typechecking algorithm.

� The shapes of the typing derivations discovered by this algorithm are used to prove that F�
is a conservative extension of the first-order intersection calculus

� � . Because of the different
behavior of Top and � , however, � � cannot similarly be embedded in F� .

4.1 Basic Properties

We begin by establishing some basic proof-theoretic properties of the subtype relation � � � 	

and the typing relation � � � �
 .

First, we state several useful derived rules of inference.

4.1.1. Lemma:
� � � � �
 1 � � � �
 � � � � � �
 1 � �
 � � (D-DIST-IA)

� � � � � � � �
 1 � � � � � � �
 � � � � � � � � �
 1 � �
 � � (D-DIST-IQ)

Proof: Straightforward. �

44

4.1. BASIC PROPERTIES 45

4.1.2. Lemma:

� � � � 1 � � � � � � � � 1 � � � � � � � � (D-ABSORB)

� and � � enumerate the same finite set

� � � � � � (D-REINDEX)

for all
 � there is some � � such that � � � � 	
 �
� � � � 1 � � � � � 	 �
 1 � �
 � � (D-ALL-SOME)

Proof: Straightforward. �
4.1.3. Lemma: [Permutation] If � � is a permutation of � and both � and � � are closed, then

1. � � � 	
 iff � � � � 	

2. � � � �
 iff � � � � �
 .

Proof: By induction on derivations. �
4.1.4. Convention: Lemma 4.1.3 justifies a notational simplification: two closed contexts � and � �
that differ only in the order of their bindings will be considered identical from here on, so that, for
example, a derivation of � � � 	
 is taken to be a derivation of � � � � 	
 .

Whenever a subtyping statement can be derived from a given context, it can also be derived
from any larger context. In logic, this property is called weakening.

4.1.5. Lemma: [Weakening] If � 1 	 � 2 is closed and � 1 � � 	
 , then � 1 	 � 2 � � 	
 .

Proof: By induction on the structure of a derivation of � 1 � � 	
 . At each stage of the induction,
we proceed by a case analysis on the rule used in the last step of the derivation.

Case SUB-REFL: �

Immediate by SUB-REFL.

Case SUB-TRANS:

By the induction hypothesis and SUB-TRANS.

Case SUB-TVAR: �
 �

 � 1 � � �
Since � 1 � � � � � � 1 	 � 2 � � � � , SUB-TVAR immediately gives � 1 	 � 2 � � 	 � 1 � � � .

Case SUB-ARROW: �
 � 1 � � 2

 1 �
 2

By the induction hypothesis and SUB-ARROW.

Case SUB-ALL: �
 � � � � 1 � � 2

 � � �
 1 �
 2

By assumption, � 1 �
 1 	 � 1 and � 1 	 � �
 1 � � 2 	
 2. We may also assume that � �� dom � � 1 	 � 2 � .
Then � 1 	 � 2 	 � �
 1 is closed, and, by the induction hypothesis, � 1 	 � 2 �
 1 	 � 1 and (using
Convention 4.1.4) � 1 	 � 2 	 � �
 1 � � 2 	
 2. By SUB-ALL, � 1 	 � 2 � � � � � 1 � � 2 	 � � �
 1 �
 2.

Case SUB-INTER-G:

 �
 1 � �
 � �
By the induction hypothesis and SUB-INTER-G.

Case SUB-INTER-LB: �
 � � 1 � � � � �

 � �
Immediate.

Case SUB-DIST-IA: �
 � � � �
 1 � � � � �
 � �

 � � � �
 1 � �
 � �
Immediate.

4.1. BASIC PROPERTIES 46

Case SUB-DIST-IQ: �
 � � � � � � �
 1 � � � � � � � �
 � �

 � � � � � � �
 1 � �
 � �
Immediate. �
A different kind of weakening lemma will also be needed. Rather than adding a new variable

to the context, this one states that a derivable subtyping statement remains derivable when the
bounds of some of the existing type variables are replaced by “narrower” bounds.

4.1.6. Lemma: [Narrowing] Let � and � � be closed contexts such that, for each � � � dom � � � ,
� � � � � � � � � 	 � � � � � . Then � � � 	
 implies � � � � 	
 .

Proof: By induction on a derivation of � � � 	
 . Proceed by cases on the final rule.

Cases SUB-REFL, SUB-TRANS, SUB-ARROW, SUB-INTER-G, SUB-INTER-LB, SUB-DIST-IA, and SUB-
DIST-IQ:

Either immediate or by straightforward use of the induction hypothesis.

Case SUB-TVAR: �
 �

 � � � �
By SUB-TVAR, � � � � 	 � � � � � . By assumption, � � � � � � � � 	 � � � � . By SUB-TRANS, � � � � 	
� � � � .

Case SUB-ALL: �
 � � � � 1 � � 2

 � � �
 1 �
 2

By assumption, � �
 1 	 � 1 and � 	 � �
 1 � � 2 	
 2. By the induction hypothesis, � � �
 1 	 � 1.
By assumption and weakening (Lemma 4.1.5), � � 	 � �
 1 � � � � � � � 	 � � � � � for each � � � dom � � � .
By SUB-REFL, � � 	 � �
 1 � � � � 	 � �
 1 � � � � 	 � � 	 � �
 1 � � � � . The induction hypothesis then gives
� � 	 � �
 1 � � 2 	
 2. By SUB-ALL, � � � � � � � 1 � � 2 	 � � �
 1 �
 2. �
Using narrowing, we can show that the equivalence relation induced by the subtype relation

is a congruence:

4.1.7. Lemma:
� �
 1 �
 �1 � �
 2 �
 �2

� �
 1�
 2 �
 �1 �
 �2
(D-CONG-ARROW)

� �
 1 �
 �1 � 	 � �
 �1 �
 2 �
 �2
� � � � �
 1 �
 2 � � � �
 �1 �
 �2

(D-CONG-ALL)

for all � 	 � �
 � �
 ��
� � �
 1 � �
 � � � �
 �1 � �
 �� � (D-CONG-INTER)

Proof: Easy except for D-CONG-ALL, which requires Lemma 4.1.6. �
4.1.8. Lemma: [Subtyping Substitution]
If

� 1 	 � � � 	 � 2 � � 	

� 1 � � 	 � 	

then

� 1 	 � � � � � � 2 � � � � � � � 	 � � � � �
 �
Proof: By induction on a derivation of � 1 	 � � � 	 � 2 � � 	
 .

Cases SUB-REFL, SUB-TRANS, SUB-ARROW, SUB-INTER-G, SUB-INTER-LB, SUB-DIST-IA, and SUB-
DIST-IQ:

Either immediate or by straightforward use of the induction hypothesis.

Case SUB-TVAR: �
 �

 � � 1 	 � � � 	 � 2 � � � �

4.1. BASIC PROPERTIES 47

Subcase: �
 �
By assumption,

� 1 � � 	 � �
By weakening (4.1.5),

� 1 	 � � � � � � 2 � � 	 � 	
that is,

� 1 	 � � � � � � 2 � � � � � � � 	 � � � � � � 	
as required.

Subcase: � �
 �
By SUB-TVAR,

� 1 	 � � � � � � 2 � � 	 � � 1 	 � � � � � � 2 � � � � 	
that is,

� 1 	 � � � � � � 2 � � � � � � � 	 � � � � � � � 1 	 � � � 	 � 2 � � � � �
Case SUB-ALL: �
 � � � � 1 � � 2

 � � �
 1 �
 2

By assumption,

� 1 	 � � � 	 � 2 �
 1 	 � 1

� 1 	 � � � 	 � 2 	 � 	
 1 � � 2
�
 2 �

By the induction hypothesis,

� 1 	 � � � � � � 2 � � � � � �
 1 	 � � � � � � 1

� 1 	 � � � � � � 2 	 � � � � � � �
 1 � � � � � � � 2 	 � � � � �
 2 �
By SUB-ALL and the definition of substitution,

� 1 	 � � � � � � 2 � � � � � � � � � � � 1 � � 2 � 	 � � � � � � � � �
 1 �
 2 � � �
We would also like to show that whenever a variable � or � in dom � � � is unused in a statement

� � � 	
 or � � � �
 , we may drop it from � without affecting derivability. Because the
rule SUB-TRANS allows subtyping derivations that can contain internal uses of arbitrary types, we
cannot prove this property for type variables with the machinery we have developed so far (it is
an easy corollary of Theorem 4.2.8.12). But for term variables it is straightforward:

4.1.9. Lemma: [Term variable strengthening]

1. If � 	 � :� � � 	
 , then � � � 	
 .

2. If � 	 � :� � � �
 and � �� FV � � � , then � � � �
 .

Proof: By induction on derivations. �
4.1.10. Lemma: [Term substitution in terms] If � 	 � :� � � �
 and � � � � � , then � � � � � � � � �
 .

Proof: By induction on a derivation of � 	 � :� � � �
 , using weakening (4.1.5) for the ARROW-I
and ALL-I cases and term strengthening (4.1.9) for the ALL-E and SUB cases. �
4.1.11. Lemma: [Type substitution in terms] If � 1 	 � � � 	 � 2 � � �
 , then � 1 	 � � � � � � 2 � � � � � � � �
� � � � �
 .

Proof: By induction on a derivation of � 1 	 � � � 	 � 2 � � �
 , using the subtyping substitution
lemma (4.1.8) for the ALL-E and SUB cases. �

4.2. SUBTYPING 48

4.2 Subtyping

In this section, we give a straightforward semi-decision procedure for the F� subtype relation.
This relation can be shown to be undecidable (see Chapter 6), so a semi-decision procedure is the
best we can hope for; however, the same algorithm forms a decision procedure for several useful
fragments of F� (see Section 6.12).

We present the algorithm as an alternative collection of syntax-directed rules and then show
that the relation defined by these rules coincides with F� . It is technically convenient to make
this argument using an intermediate representation called canonical types (roughly analogous to
conjunctive-normal-form formulas in logic):

� We identify the set of canonical types (Section 4.2.1) and define a canonical subtyping relation
(marked �

�
) over this set (Section 4.2.2).

� We show (Sections 4.2.3 and 4.2.4) that derivations of canonical subtyping statements can be
transformed into normal form derivations of a certain restricted shape (Section 4.2.6).

� We give a flattening transformation
�

mapping F� types into canonical types (Section 4.2.7)
and show that

� � � 	
 iff � � �
�

� � 	
 � �
� Finally, we define a syntax-directed subtyping relation on ordinary types (marked �!) and

show (Section 4.2.8) that it coincides with canonical subtyping after flattening:

� � �
�

� � 	
 � iff � �! � 	

4.2.1 Canonical Types

We might naively hope to develop an algorithm for checking F� subtyping simply by extending
the � � subtyping algorithm � �� (2.6.10) to include a case for intersections. Including cases 1 to 5
as before, the complete algorithm would then be:

check� � � � 	
 � �
1. if

 Top

then true
2. else if �
 � 1� � 2 and

 1�
 2

then check� � �
 1 	 � 1 �
and check� � � � 2 	
 2 �

3. else if �
 � � � � 1 � � 2 and

 � � �
 1 �
 2

then check� � �
 1 	 � 1 �
and check� � 	 � �
 1 � � 2 	
 2 �

4. else if �
 � and

 �
then true

5. else if �
 �
then check� � � � � � � 	
)

6. else if �
 � � 1 � � � � � and

 �
 1 � �
 � �
then for each
 �

choose some � �
such that check� � � � � 	
 � �

� . else
false.

4.2. SUBTYPING 49

That is, to check whether � � 1 � � � � � is a subtype of �
 1 � �
 � � , check that for each
 � there is some � �
such that � � 	
 � . (The selection of � � is expressed here as a nondeterministic choice; in practice,
this is implemented using backtracking.)

But this rule, though clearly sound (by Lemma 4.1.2), is not complete, since there are many
cases where a meet lies above or below a type that does not have the form of a meet. For example,

� � � � � 	 � � �
� � � � � � � 	 � �

These two cases can be handled by splitting the proposed rule into two,

6a. else if

 �
 1 � �
 � �
then for each
 �

check� � � � 	
 � �
6b. else if �
 � � 1 � � � � �

then choose some � �
such that check� � � � � 	
 � ,

but we must be careful to apply 6a before 6b in order to respond correctly to the input

� � � 	 � � � � � � 	 � � 	 � � 	 � � �
Unfortunately, the real problem is more subtle than this: in the presence of the distributivity
axioms SUB-DIST-IA and SUB-DIST-IQ, steps 2 and 3 of the � �� algorithm are also incomplete. For
example,

� � � 	 � � � � � � � 	 � � � 	
is derivable (using SUB-DIST-IA and SUB-TRANS, with intermediate type �), although

� � � 	 � � � � � 	 � �
To get things under control, we need to deal with the distributivity laws before doing anything

else. We take the inverses of these laws (i.e., the other half of the equivalences D-DIST-IA and
D-DIST-IQ given in 4.1.1) as rewrite rules

� � �
 1 � �
 � � � � � � � �
 1 � � � �
 � �
� � � � � �
 1 � �
 � � � � � � � � � � �
 1 � � � � � � �
 � � 	

and apply them to a given F� type as many times as possible to obtain an equivalent type with no
intersections on the right-hand sides of arrows or quantifiers. For example, the type

 � � 1 	 � 2 � � � � 3 	 � � � � � 4 � � � 5 	 � 6 � � �
becomes

 � � � 1 	 � 2 � � � 3 	
 � � � 1 	 � 2 � � � � � � 4 � � 5 	

 � � 1 	 � 2 � � � � � � 4 � � 6 � � �
Since this type contains no meets on the right-hand sides of arrows or quantifiers, there is no way
to use it (or any subphrase of it) in an instance of either of the distributivity rules.

Once the distributivity rules are eliminated, there remain just four subtyping rules in Defi-
nition 3.2.3 that can be used to prove subtyping statements where both sides of the conclusion
are meets: SUB-REFL, SUB-TRANS, SUB-INTER-G, and SUB-INTER-LB. The reflexivity and transitivity
rules can be eliminated by a normalization argument that shows how to transform any derivation
into one that applies transitivity and reflexivity only to variables (Sections 4.2.4 to 4.2.6). This
leaves just SUB-INTER-G and SUB-INTER-LB, the behavior of which is completely captured by our
rules 6a and 6b.

4.2. SUBTYPING 50

For the proof-theoretic analysis in the following sections, it is convenient to work with types
in an even more restricted form, where every type has a single as its outermost constructor
and as the outermost constructor on the left-hand sides of arrows and quantifiers, and where no
immediate component of a is another . Our example, in this form, is:

 � � � 1 	 � 2 � � � 3 	
 � � 1 	 � 2 � � � � � � � 4 � � � 5 	
 � � 1 	 � 2 � � � � � � � 4 � � � 6 � �

This transformation effectively separates the set of types into two syntactic sorts: those whose
outermost constructor is (called “composite canonical types”) and those whose outermost
constructor is � , � , or a variable (called “individual canonical types”). This separation is useful
because our proposed rule 6 now captures all of the valid subtyping statements involving pairs
of composite canonical types, while the original rules 2–5 are valid and complete for pairs of
individual canonical types.

4.2.1.1. Definition: The sets of composite canonical types � and individual canonical types � are
defined by the following abstract grammar:

� ::= � � 1 � � � � �
� ::= � � � � � � � � � � � �

4.2.1.2. Convention: The metavariables � and � range over composite canonical types; � and �
range over individual canonical types; � and � range over both sorts of canonical types.

4.2.1.3. Notation: It will often be convenient in the remainder of this chapter to treat a composite
canonical type � � 1 � � � � � as a finite set whose elements are the individual canonical types � 1

through � � . The following notational conventions support this point of view:

� � � def� �
 � � 1 � � � � � and �
 � � for some �
 � � � � � � � � � � def� � � � � 1 � � � � � � � � � 	 where �
 � � 1 � � � � �
� � � def� � � 1 � � � � 	 � 1 � � � � � 	 where �
 � � 1 � � � � � and �
 � � 1 � � � � � �

4.2.1.4. Remark: Our canonical types are not as sparse as one could imagine. For example, we
could try to define a notion of fully canonical types such that each � -equivalence class of types
contains exactly one fully canonical type. For present purposes, though, the canonical types we
have defined are refined enough.

The idea of canonical types comes from a proof by Reynolds [personal communication, 1988] of
the soundness and completeness of a decision procedure for the subtype relation of Forsythe [121].
(Related formulations of intersection types are studied in [41, 43, 44, 126, 131, 132].) In fact, the
entire type system of Forsythe can be reformulated in terms of canonical types, making this
proof trivial. Such is not the case here, unfortunately, because the operation of substituting a
canonical type for a variable in another canonical type yields a non-canonical type. We could, of
course, change the definition of substitution so that it re-canonicalized its result, but it would be
unfortunate to place such a complicated mechanism in such a basic piece of technical machinery.
Also, an implementation based directly on canonical types would be less efficient than the one
described in Section 4.2.8, which uses a data structure based on ordinary types. We therefore take
the original system unchanged and make the translation to canonical form explicitly for purposes
of analysis.

4.2. SUBTYPING 51

4.2.2 Canonical Subtyping

We now define the canonical subtype relation formally.

4.2.2.1. Definition: A canonical context � is a context whose range contains only canonical types.

4.2.2.2. Definition: The subtype relation on canonical types is defined as follows:

� � � � � � � � � � 	 � �
� � � � 1 � � � � � 	 � � 1 � � � � � (CSUB-AE)

� � � 	 � (CSUB-REFL)

� � � 1 	 � 2 � � � 2 	 � 3

� � � 1 	 � 3
(CSUB-TRANS)

� � � � � � 	 � � �
� � � 	 � (CSUB-TVAR)

� � � 1 	 � 1 � � � 2 	 � 2

� � � 1 � � 2 	 � 1� � 2
(CSUB-ARROW)

� � � 1 	 � 1 � 	 � � � 1 � � 2 	 � 2

� � � � � � 1 � � 2 	 � � � � 1 � � 2
(CSUB-ALL)

4.2.2.3. Remark: Note that individual and composite canonical types cannot be mixed in canonical
subtyping statements: we have statements of the form � � � 	 � and � � � 	 � , but never
� � � 	 � or � � � 	 � .
4.2.2.4. Notation: The turnstile symbol is sometimes decorated �

�
to distinguish canonical subtyp-

ing derivations from derivations in other calculi.

4.2.2.5. Remark: Anticipating the requirements of the normal-form derivations to be defined in
the following section, we have slightly generalized the type variable rule, in effect embedding an
instance of CSUB-TRANS and an instance of CSUB-AE in each instance of CSUB-TVAR.

Again, it is convenient to have a linear notation for canonical subtyping derivations.

4.2.2.6. Definition: The set of canonical subtyping derivation abbreviations is defined by the following
abstract grammar:

�
::= AE � � 1 � � � � �

� id
� �

;
�

� ::= id
� � 1 ; � 2

� � � � � �
� � � �
� � � � � � �

4.2.2.7. Notation: The metavariables
�

and � range over derivations of subtyping statements
between composite canonical types; � and � range over derivations of subtyping statements
between individual canonical types; 	 and
 range over both sorts of derivations.

As in Section 3.3, we can define a mapping from canonical derivation trees to linear abbrevi-
ations, which, though not injective, could easily be extended to an injective map at some cost in

4.2. SUBTYPING 52

readability. Again, we will prefer readability over rigor and impose on the reader’s imagination
to supply the evident annotations on our linear abbreviations.

4.2.2.8. Definition: The translation function � — � � from canonical derivation trees to their abbre-
viated forms is defined as follows.�

� � � � � � � � :: � � � � 	 � �
� � � � 1 � � � � � 	 � � 1 � � � � � (CSUB-AE)� �

� AE � � �
1 � � � �� ��

(CSUB-REFL)

� � � 	 � � �
� id�

	 1 :: � � � 1 	 � 2 	 2 :: � � � 2 	 � 3

� � � 1 	 � 3
(CSUB-TRANS)� �

� 	 �
1 ; 	 �

2� �
:: � � � � � � 	 � � �

� � � 	 � (CSUB-TVAR)� �
� � � � � � �� �

1 :: � � � 1 	 � 1 � 2 :: � � � 2 	 � 2

� � � 1� � 2 	 � 1 � � 2
(CSUB-ARROW)� �

� � �
1 � � �

2� �
1 :: � � � 1 	 � 1 � 2 :: � 	 � 	 � 1 � � 2 	 � 2

� � � � � � 1 � � 2 	 � � � � 1 � � 2
(CSUB-ALL)� �

� � � � � �
1 � � �

2

4.2.2.9. Lemma: [Canonical context permutation] If � � is a permutation of � and both � � and �
are closed, and if 	 :: � � � 	 � , then there is a subtyping derivation 	 � , identical to 	 except for the
ordering of contexts, such that 	 � :: � � � 	 � .

If � �� FTV � � � and 	 :: � 1 	 � � � 	 � � � 	 � 2 � � 	 � , then there is a subtyping derivation 	 � ,
identical to 	 except for the ordering of contexts, such that 	 � :: � 1 	 � � � 	 � � � 	 � 2 � � 	 � .
Proof: By induction on the structure of 	 . �
4.2.2.10. Convention: As for ordinary subtyping (c.f. Convention 4.1.4), this lemma justifies the
convention that closed canonical contexts differing only in the ordering of their bindings are
regarded as identical.

4.2.3 Weakening and Narrowing

The proof transformations used to normalize canonical subtyping derivations rely on analogues
of the weakening and narrowing lemmas proved in Section 4.1. These properties need to be
formulated here as explicit operations on subtyping derivations.

By analogy with extending a context, our linear notation for weakening is “	 	 � � � .” If 	 is
a derivation term whose conclusion is � � � 	 � , then 	 	 � � � is a derivation with conclusion
� 	 � � � � � 	 � .
4.2.3.1. Remark: For the same of explicitness in what follows, this definition is more concrete than
the definition of weakening for ordinary types (4.1.5), which allowed many variables to be added
at once.

4.2. SUBTYPING 53

4.2.3.2. Definition: The weakening of a derivation 	 with a new binding � � � , written 	 	 � � � , is
defined as follows:

� AE � � 1 � � � � � � 	 � � � � AE � � � 1 	 � � � � � � � � � 	 � � � � �
id 	 � � � � id
� 	 1 ; 	 2 � 	 � � � � � 	 1 	 � � � � ; � 	 2 	 � � � �
� � � � � � � 	 � � � � � � � � 	 � � � �
� �

1� � 2 � 	 � � � � � �
1 	 � � � � � � � 2 	 � � � �

� � � � �
1 � � 2 � 	 � � � � � � � � �

1 	 � � � � � � � 2 	 � � � � �

4.2.3.3. Remark: Since weakening only changes contexts, this operation is an identity on our
abbreviated linear forms, where contexts are always elided.

4.2.3.4. Lemma: [Weakening for canonical subtyping] If

	 :: � � � 	 � 	
then

	 	 � � � :: � 	 � � � � � 	 � �
Proof: By induction on the structure of 	 .

Cases CSUB-AE, CSUB-TRANS, CSUB-REFL, CSUB-ARROW:

Either immediate or by straightforward use of the induction hypothesis.

Case CSUB-TVAR: �
 � � � �
 � � �
 �
	
 � � � � � �

:: � � � � � � 	 � � �
By the induction hypothesis,� 	 � � � :: � 	 � � � � � � � � 	 � � � 	
that is,� 	 � � � :: � 	 � � � � � � 	 � � � � � � � 	 � � � �
By CSUB-TVAR,

� � � � 	 � � � � :: � 	 � � � � � 	 � 	
that is,

� � � � � � � 	 � � � :: � 	 � � � � � 	 � �
Case CSUB-ALL: �
 � � � � 1 � � 2 �
 � � � � 1 � � 2

	
 � � � �
1 � � 2

�
1 :: � � � 1 	 � 1 � 2 :: � 	 � � � 1 � � 2 	 � 2

(Also, since � is bound, we may assume that � �
 � .) By the induction hypothesis,�
1 	 � � � :: � 	 � � � � � 1 	 � 1

and

� 2 	 � � � :: � 	 � � � 	 � � � 1 � � 2 	 � 2 �
By CSUB-ALL,

� � � � � �
1 	 � � � � � � � 2 	 � � � � � :: � 	 � � � � � � � � 1 � � 2 	 � � � � 1 � � 2 	

that is,

� � � � � �
1 � � 2 � 	 � � � � :: � 	 � � � � � � � � 1 � � 2 	 � � � � 1 � � 2 � �

4.2. SUBTYPING 54

As for ordinary types, the narrowing transformation allows the context in the conclusion of a
derivation to be modified by replacing the bound of a variable by a subtype of the current bound.
For example,

� 1
� � 	 � 2

� � � 1 � 	 � 3
� � � 1 � � � � 1 � � � 3 	 � � 1 � � � 1

can be narrowed to

� 1
� � 	 � 2

� � � 1 � 	 � 3
� � � 2 � � � � 1 � � � 3 	 � � 1 � � � 1 �

Note, however, that the structure of the old derivation must be altered in order for the result of
narrowing to be valid: wherever the assumption � 3

� � 1 was used in the original, we must use the
new assumption � 3

� � � 2 � plus the fact that � 2
� � � 1 � . To take this into account, we use the linear

notation 	 � � @� � � � , where 	 is a subtyping derivation, � is a variable in dom� � � , � is its new
bound, and � is a derivation establishing that the new bound is a subtype of the existing one.

4.2.3.5. Definition: Let 	 and � be subtyping derivations such that

	 :: � 	 � � � � � 	 �
� :: � � � 	 � �

The narrowing of 	 with the binding � � � (justified by �) is written 	 � � @� � � � and defined as
follows:

� AE � � 1 � � � � � � � � @� � � � � AE � � � 1 � � @� � � � � � � � � � � � @� � � � � �
id � � @� � � � � id
� 	 1 ; 	 2 � � � @� � � � � � 	 1 � � @� � � � � ; � 	 2 � � @� � � � �
� � � � � � � � � @� � � � where � �
 � � � � � � � � @� � � � �
� � � � � � � � � @� � � � � � � � � � 	 � � � � ; � � � � @� � � � � �
� �

1� � 2 � � � @� � � � � � �
1 � � @� � � � � � � � 2 � � @� � � � �

� � � � �
1 � � 2 � � � @� � � � � � � � � �

1 � � @� � � � � � � � 2 � � � 	 � � � 1 � @� � � � �
where

�
1 	 � � � :: � � � 1 	 � 1 �

4.2.3.6. Lemma: [Narrowing for canonical subtyping] If

	 :: � 	 � � � � � 	 �
� :: � � � 	 � 	

then

� 	 � � @� � � � � :: � 	 � � � � � 	 � �
Proof: By induction on 	 .

Cases CSUB-AE, CSUB-REFL, CSUB-TRANS, CSUB-ARROW:

Either immediate or by straightforward induction.

Case CSUB-TVAR: �
 � � � �
 � � �
 �
By the induction hypothesis and CSUB-TVAR.

Case CSUB-TVAR: �
 � �
 �
	
 � � � � � �

:: � 	 � � � � � 	 � � �
By the induction hypothesis,

� � � � @� � � � � :: � 	 � � � � � 	 � � � �
By weakening (4.2.3.4),

� � 	 � � � � :: � 	 � � � � � 	 � �

4.2. SUBTYPING 55

By CSUB-TRANS,

� � � 	 � � � � ; � � � � @� � � � � � :: � 	 � � � � � 	 � � � �
By CSUB-TVAR,

� � � � � 	 � � � � ; � � � � @� � � � � � :: � 	 � � � � � 	 � 	
that is,

� � � � � � � � � @� � � � :: � 	 � � � � � 	 � �
Case CSUB-ALL: �
 � � � � 1 � � 2 �
 � � � � 1 � � 2

	
 � � � �
1 � � 2�

1 :: � 	 � � � � � 1 	 � 1 � 2 :: � 	 � � � 	 � � � 1 � � 2 	 � 2

By the induction hypothesis on the first subderivation,

� �
1 � � @� � � � � :: � 	 � � � � � 1 	 � 1 �

By weakening (4.2.3.4) on the second main hypothesis,

� � 	 � � � 1 � :: � 	 � � � 1 � � 	 � �
By the induction hypothesis on the second subderivation,

� 2 � � � 	 � � � 1 � @� � � � :: � 	 � � � 1 	 � � � � � 2 	 � 2 �
By CSUB-ALL,

� � � � � �
1 � � @� � � � � � � � 2 � � � 	 � � � 1 � @� � � � � � :: � 	 � � � � � � � � 1 � � 2 	 � � � � 1 � � 2 	

that is,

� � � � �
1 � � 2 � � � @� � � � :: � 	 � � � � � � � � 1 � � 2 	 � � � � 1 � � 2 � �

4.2.4 Subtyping Derivation Normalization Rules

To construct an algorithm for checking the canonical subtype relation, we need a notion of normal
form derivations (similar to the one described in Section 2.6 for � � subtyping) and an effective pro-
cedure for transforming arbitrary derivations into this form. The main task of this normalization pro-
cedure is to push instances of CSUB-TRANS toward the leaves of the derivation, until they eventually
disappear into instances of the CSUB-TVAR rule. For example, if �
 � 1

� � 	 � 2
� � � 1 � 	 � 3

� � � 2 � ,
then the derivation

� � � 3 	 � 2 � � � 2 	 � 1

� � � 3 	 � 1
(CSUB-TRANS)

becomes the following normal-form derivation:

� � � 1 	 � 1
(CSUB-REFL)

� � � � 1 � 	 � � 1 � (CSUB-AE)

� � � 2 	 � 1
(CSUB-TVAR)

� � � � 2 � 	 � � 1 � (CSUB-AE)

� � � 3 	 � 1 � (CSUB-TVAR)

The normalization procedure is presented as a collection of rewrite rules on subtyping deriva-
tions. These rules are separated into two groups to simplify the presentation of a rewriting strategy
later on (Section 4.2.5) and the proof that this strategy always terminates.

We first list the abbreviated linear forms of the rules, then justify them by discussing how they
operate on proof trees.

4.2. SUBTYPING 56

4.2.4.1. Definition: The one-step, outermost simplification relation on subtyping derivations, � � �1, is
defined by the following rewrite rules:

I. Reflexivity simplification
1 � id :: � � � 1� � 2 	 � 1� � 2

� � �1 id� id
2 � id :: � � � � � � 1 � � 2 	 � � � � 1 � � 2

� � �1 � � � id � id
3 � id :: � � � � 1 � � � � � 	 � � 1 � � � � �

� � �1 AE � id � � id�
II. Cut simplification

1 � id ; 	
� � �1 	

2 � 	 ; id
� � �1 	

3 � AE � � 1 � � � � � ; AE � � 1 � � � � � where each � � :: � � � � � 	 � �
� � �1 AE � � � �

1
; � 1 � � � � � � � ; � � � �

4 � � � � AE � � � � ; �
� � �1 � � � AE � � ; � � �

5 � � � � id� ; �
� � �1 � � � AE � � � �

6 � � � � ; � � �
� � �1 � � ;

� � � � � ; � �
7 � � � � � � � � � ; � � � � � � � � where � :: � � � 3 	 � 2

� � �1 � � � � � ;
� � � � � � � @� � � 3 � ; � �

Rules I.1, I.2, and I.3 together restrict the form of instances of reflexivity in normal form
derivations to reflexivity between variables.

Rules II.1 and II.2 eliminate instances of transitivity with an instance of reflexivity as one of
their immediate subderivations.

Rule II.3 simplifies instances of transitivity whose subderivations are both instances of
CSUB-AE by pushing the application of transitivity toward the leaves of the derivation. Simi-
larly, rule II.4 simplifies instances of transitivity whose left-hand subderivation ends with the rule
CSUB-TVAR by pushing the application of transitivity deeper, toward the leaves of the derivation.
(Rule II.5 handles the simpler situation where the premise of CSUB-TVAR is an instance of CSUB-ID,
in which case no new instance of transitivity need be created.) Rule II.6 simplifies instances of
transitivity whose subderivations are both instances of CSUB-ARROW by pushing the applications
of transitivity toward the leaves of the derivation.

Rule II.7 — the keystone of the definition — simplifies instances of transitivity whose sub-
derivations are both instances of CSUB-ALL. Pictorially, it rewrites the derivation

�

� � � 2 	 � 1

�
� 	 � � � 2 � � 1 	 � 2

� � � � � � 1 � � 1 	 � � � � 2 � � 2

�
� � � 3 	 � 2

�
� 	 � � � 3 � � 2 	 � 3

� � � � � � 2 � � 2 	 � � � � 3 � � 3

� � � � � � 1 � � 1 	 � � � � 3 � � 3

4.2. SUBTYPING 57

as

�
� � � 3 	 � 2

�

� � � 2 	 � 1

� � � 3 	 � 1

� � � @� � � 3 �
� 	 � � � 3 � � 1 	 � 2

�
� 	 � � � 3 � � 2 	 � 3

� 	 � � � 3 � � 1 	 � 3

� � � � � � 1 � � 1 	 � � � � 3 � � 3 �
4.2.4.2. Definition: Let � � 1 be the compatible closure of � � �1, that is:

if 	 � � �1 	 � , then 	 � � 1 	 �
if � � � � 1 � �� , then AE � � 1 � � � � � � � � � � � 1 AE � � 1 � � � �� � � � � �
if 	 � � 1 	 � , then � 	 ;
 � � � 1 � 	 � ;
 �
if
 � � 1
 � , then � 	 ;
 � � � 1 � 	 ;
 � �
if

� � � 1
� � , then � � � � � � � 1 � � � � � �

if
� � � 1

� � , then � � � � � � � � � � 1 � � � � � � � � �
if � � � 1 � � , then � � � � � � � � � � 1 � � � � � � � � �
if

� � � 1
� � , then � � � � � � � 1 � � � � � �

if � � � 1 � � , then � � � � � � � 1 � � � � � � �
4.2.4.3. Remark: A redex in a subtyping derivation 	 is a subderivation
 that matches the left-hand
side of one of the simplification rules. The corresponding right-hand side,
 � , is the contractum of

 . When 	 � � 1 	 � by replacing
 with
 � , we say that 	 reduces to 	 � in one step.

4.2.4.4. Definition: A normal-form subtyping derivation is one that contains no redices. Similarly,
a I-normal-form subtyping derivation is one that contains no I-redices (instances of the left hand
sides of any of the rules in group I).

4.2.4.5. Definition: Let � � �

be the reflexive and transitive closure of � � 1.

Having shown already that weakening and narrowing preserve validity, it is a simple matter
to check that the rewriting rules do too.

4.2.4.6. Lemma: [Replacement] If 	 is a valid subtyping derivation and 	 � is formed from 	 by
replacing some subderivation
 by a valid derivation
 � with the same conclusion as
 , then 	 � is
valid and has the same conclusion as 	 .

Proof: Immediate, since none of the CSUB rules place any requirements on the shape of the
derivations of their hypotheses. �
4.2.4.7. Remark: In type assignment systems (c.f. 2.4), a typing statement � � � �
 is often
thought of as a kind of sentence, where � is the subject and
 is the predicate. When � � � � � �
according to some system of rewrite rules (usually read “� evaluates to � � ”) we speak of “reducing
the subject.” If the type assignment system in question has the property that whenever � � � �

is derivable and � � � � � � the statement � � � � �
 is also derivable, we say that the typing relation
is closed under subject reduction, or that the system in question has the subject reduction property.

The same terminology can conveniently be applied to statements of the form 	 :: � � � 	 �
if we think of � � � 	 � as a kind of predicate — true of valid subtyping derivations with this
conclusion — and derivation simplification as a kind of evaluation.

4.2.4.8. Lemma: [Subject reduction for the simplification rules] If 	 is a valid subtyping derivation
such that 	 :: � � � 	 � and 	 � � �
 , then
 :: � � � 	 � .
Proof: First, note that all of the rewrite rules map valid subtyping derivations to valid derivations
with the same conclusions (except for rule II.7 the argument is straightforward; the case for II.7

4.2. SUBTYPING 58

follows from the narrowing lemma for canonical types (4.2.3.6)). This observation extends to � � 1

by the replacement lemma (4.2.4.6) and to � � �

by induction. �

4.2.5 Termination of the Normalization Rules

Now we must show that every canonical subtyping derivation can be rewritten into one in normal
form. The crux of the argument will be that whenever an instance of transitivity is reduced, the
size of the intermediate type — or cut type — is decreased in any new instances of transitivity in
the result. The argument is slightly delicate, because both rule II.3 and the narrowing operation in
rule II.7 can create copies of subderivations that may themselves contain redices. This is handled
by reducing redices with the largest cut types first.

The argument is also slightly complicated by the fact that rule II.4 creates a new instance of
transitivity whose intermediate type is exactly the same as that of the original. In this case, we
argue that the resulting derivation is simpler because an instance of transitivity has been pushed
toward the leaves of the derivation.

4.2.5.1. Definition: A subtyping derivation of the form 	 ;
 is called a compound derivation.

4.2.5.2. Definition: The cut type of a compound derivation � 	 :: � � � 1 	 � 2 � ; �
 :: � � � 2 	 � 3 � ,
written cut-type � 	 ;
 � , is � 2.

4.2.5.3. Definition: The cut size of a compound derivation 	 ;
 is

cut-size � 	 ;
 � � size � cut-type � 	 ;
 � � �
4.2.5.4. Definition: The complexity of a compound derivation 	 , written complexity� 	 � , is the pair�
cut-size � 	 � 	 size � 	 � � , ordered lexicographically.

4.2.5.5. Definition: A II-redex 	 is an innermost redex of complexity � if no proper subderivation
of 	 is a II-redex of complexity � .

4.2.5.6. Definition: The rewriting strategy for normalizing subtyping derivations comprises the
following steps:

1. Perform I-reductions in any order until a I-normal form is reached.

2. If there are any remaining II-redexes, let � be the largest complexity of any remaining II-redex.
Choose an innermost redex of complexity � , reduce it, and return to step 2.

Since each I-reduction decreases the size of the types in the conclusions of any new I-redices it
creates, the I-rules are clearly strongly normalizing. Moreover, none of the II-rules can create new
I-redices when applied to I-normal forms, so we need worry no further about the I-rules.

Progress in normalizing the II-redices of a derivation 	 is measured as follows:

4.2.5.7. Definition: The total complexity of a derivation 	 , written total � 	 � , is the pair
� � 	 � � ,

where � is the maximum complexity of any compound subderivation of 	 and � is the number of
compound subderivations of this size, ordered lexicographically.

4.2.5.8. Lemma: For any derivation 	 , the weakening (� � �) contains no II-redices not already
present in 	 .

Proof: Immediate from the definition of weakening (4.2.3.2). �
4.2.5.9. Lemma: Let 	 :: � 	 � � � � � 	 � � and � :: � � � 	 � . Then the cut type of every new
II-redex in the narrowing 	 � � @� � � � is � .

Proof: By induction on the structure of 	 .

4.2. SUBTYPING 59

Case: 	
 AE � � 1 � � � � �
By the induction hypothesis and CSUB-AE.

Case: 	
 id
Immediate.

Case: 	
 	 1 ; 	 2

Can’t happen.

Case: 	
 � � � � �
Subcase: � �� �

By the induction hypothesis and CSUB-TVAR.

Subcase: � � �
By the definition of narrowing (4.2.3.5),

� � � � � � � � � @� � � � � � � � � � 	 � � � � ; � � � � @� � � � � � �
By the induction hypothesis, the cut type of every new II-redex in

� � � @� � � � is � . By
Lemma 4.2.5.8, there are no new redices in � � 	 � � � � . The cut type of the new redex
� � � 	 � � � � ; � � � � @� � � � � � is � .

Case: 	
 � � �
By the induction hypothesis and CSUB-ARROW.

Case: 	
 � � � � � �
By the definition of narrowing (4.2.3.5),

� � � � � � � � � � @� � � � � � � � � � � � @� � � � � � � � � � � 	 � � � 1 � @� � � � � 	
where

�
:: � 	 � � � � � 1 	 � 1. By the induction hypothesis, every new II-redex in

� � � @� � � �
has cut type � . By Lemma 4.2.5.8, � � 	 � � � 1 � :: � 	 � � � 1 � � 	 � has no new redices. By the
induction hypothesis, every new II-redex in � 2 � � � 	 � � � 1 � @� � � � has cut type � . �

4.2.5.10. Lemma: Let � be a derivation and � 	 ;
 � an innermost II-redex of maximum complexity
in � . Then total � � � � total � � � � , where � � is the result of replacing � 	 ;
 � by its contractum, � .

Proof: By cases on the rule used to reduce 	 ;
 to � .

Case II.1: 	
 id �

This reduction removes one II-redex of maximum complexity from � .

Case II.2:

 id �
 	
Similar.

Case II.3: 	
 AE � � 1 � � � � �

 AE � � 1 � � � � � � � :: � � � � � 	 � � �
 AE � � � �
1

; � 1 � � � � � � � ; � � � �
This reduction removes one redex of maximum complexity with cut-size � size � � � 1 � � � � � � and
creates � new redices of cut sizes size � � �

1
� , . . . , size � � � � � , all of which are strictly smaller. In

addition, some redices in the � � ’s may be copied, but these must also have smaller cut size
because 	 ;
 is an innermost redex of maximal complexity.

Case II.4: 	
 � � � AE � � � �

 � �
 � � � AE � � ; � � �
This reduction removes one redex of maximum complexity and creates one new one with
exactly the same cut type. However, the size of the new redex is size� � ; � � � size � 	 ;
 � , so its
complexity is smaller. The complexities of other redices in � are unchanged.

Case II.5: 	
 � � � id �

 � �
 � � � AE � � � �
This reduction removes one redex of maximum complexity and creates no new redices.

4.2. SUBTYPING 60

Case II.6: 	 ;

 � � � � � ; � � � � �
�
 � � ;

� � � � � ; � �
where

�
::� � � 2 	 � 1

� ::� � � 3 	 � 2

� ::� � � 1 	 � 2

� ::� � � 2 	 � 3 �
This reduction removes one redex of maximal complexity with cut type � 2 � � 2 and creates
two new redices, one with cut type � 2 and one with cut type � 2.

Case II.7: 	 ;

 � � � � � � � � ; � � � � � � � �
�
 � � � � � ;

� � � � � � � � @� � � 3 � � ; � �
where

�
::� � � 2 	 � 1

� ::� � � 3 	 � 2

� ::� 	 � � � 2 � � 1 	 � 2

� ::� 	 � � � 3 � � 2 	 � 3 �
The cut type of � 	 ;
 � is � � � � 2 � � 2. The new II-redices in � are:

� � � ;
� � , with cut type � 2;

� � � � � 1@� � � 3 � ; � � , with cut type � 2; and
� new redices in � � � @� � � 3 � , with cut type � 2 (by Lemma 4.2.5.9).

Thus, rewriting � 	 ;
 � as � removes one redex of maximal complexity with cut type � � � � 2 � � 2

and creates some new redices with strictly smaller cut types � 2 and � 2. �
Since steps 1 and 2 of our rewriting stretegy each terminate, and since step 2 introduces no

new I-redices, we are assured that every derivation is eventually rewritten by this strategy to one
in I/II-normal form:

4.2.5.11. Theorem: The given rewriting strategy is normalizing.

4.2.5.12. Corollary: If there is any derivation of a canonical subtyping statement � � � 	 � , then
there is one in normal form.

4.2.6 Shapes of Normal-Form Subtyping Derivations

4.2.6.1. Lemma: If id :: � � � 	 � is a normal-form subtyping derivation, then �
 �
 � for some
variable � .

Proof: By the form of the I-rules (4.2.4.1). �
4.2.6.2. Lemma: If � is a normal-form subtyping derivation, then � �
 � 	 ;
 � .
Proof: By induction on the size of � , with a case analysis on the possible forms of 	 and
 . In
each case, either the induction hypothesis or one of the II-rules guarantees that a well-formed
derivation of the form 	 ;
 is not in normal form:

4.2. SUBTYPING 61

	
 Reason

id any II.1
	 1 ; 	 2 any induction hypothesis
any id II.2
any
 1 ;
 2 induction hypothesis
AE � � 1 � � � � � AE � � 1 � � � � � II.3
� � � 	 1 ; 	 2 � � induction hypothesis
� � � AE � � � � � II.4
� � � id� � II.5� � � � � � � � ill formed� � � � � � II.6� � � � � � � � � ill formed
� � � � � � � � � � � ill formed
� � � � � � � � � ill formed
� � � � � � � � � � � � II.7 �

4.2.6.3. Lemma: [Syntax-directedness of canonical subtyping]

1. If � � � 	 � , then for every � � � there is some � � � such that � � � 	 � .
2. If � � � 1� � 2 	 � , then �
 � 1� � 2 with � � � 1 	 � 1 and � � � 2 	 � 2.

3. If � � � � � � 1 � � 2 	 � , then �
 � � � � 1 � � 2 with � � � 1 	 � 1 and � 	 � � � 1 � � 2 	 � 2.

4. If � � � 	 � , then either �
 � or else � � � � � � 	 � � � .
Moreover, when the given derivation is in normal form, the derivations promised in each clause
are proper subderivations of the original.

Proof: In each case, we are given a derivation of � � � 	 � . By Corollary 4.2.5.12, there exists
a normal-form derivation of the same statement. By Lemmas 4.2.6.1 and 4.2.6.2, this normal
derivation does not end with an instance of CSUB-REFL (except CSUB-REFL applied to variables)
or CSUB-TRANS. The desired result follows by inspection of the remainder of the CSUB rules. �
4.2.6.4. Corollary: If � � � 	 � , then either �
 � or else �
 � for some � with � � � � � � 	 � � � .

4.2.7 Equivalence of Ordinary and Canonical Subtyping

Our next task is to establish that the subtyping relations on ordinary types and on the correspond-
ing canonical types are equivalent in an appropriate sense. We accomplish this by defining a
flattening mapping

�
from ordinary types to canonical types with the following properties:

1. Flattening preserves subtyping: if � �� � 	
 , then � � �
�

� � 	
 � .
2. Flattening yields a type equivalent to the original: � ��
 � �
 �

The second observation (plus narrowing and the fact that the identity injection from the set of
canonical types into the set of ordinary types preserves subtyping — if � �

�
� 	 � , then � �� � 	 �)

implies the converse of the first: if the translation of a statement is provable in the canonical
system then the original statement is also provable. Thus, the flattening mapping also reflects
subtyping.

4.2. SUBTYPING 62

4.2.7.1. Definition: The flattening mapping
�

from ordinary types to composite canonical types is
defined as follows:

� � � � � �
� � �
 � � � � � � � � � � �
 � �
� � � � � �
 � � � � � � � � � � � � � �
 � �
 �
 1 � �
 � � � � � �
 � �

This mapping is extended pointwise to contexts:

� � � � � �
� � 	 � �
 � � � � � 	 � �
 �
� � 	 � :
 � � � � � 	 � :
 �

4.2.7.2. Lemma: [
�

preserves subtyping] If � �� � 	
 then � � �
�

� � 	
 � .
Proof: By induction on a derivation of � �� � 	
 . Proceed by cases on the final step of the
derivation.

Case SUB-REFL: �

By CSUB-REFL.

Case SUB-TRANS:

By the induction hypothesis and CSUB-TRANS.

Case SUB-TVAR: �
 �

 � � � �
By the definition of canonical subtyping, � � � � � � �
 � � � � �
 � � 1 � � � � � . The desired result is
checked by constructing the following derivation:

(CSUB-TVAR)

(CSUB-AE)

� � �
�

� 1 	 � 1

� � �
�

� � � � � 	 � � 1 �
� � �

�
� 	 � 1

� � �

� � �
�

� � 	 � �
� � �

�
� � � � � 	 � � � � (CSUB-AE)

� � �
�

� 	 � � (CSUB-TVAR)

� � �
�

 � � � 	 � � 1 � � � � � (CSUB-AE)

Case SUB-ARROW: �
 � 1 � � 2

 1�
 2

� �
 1 	 � 1 � � � 2 	
 2

By the induction hypothesis, � � �
�

 �1 	 � �1 and � � �
�

� �2 	
 �2 . By the syntax-directedness
of canonical subtyping (Lemma 4.2.6.3(2)), for every � � �
 �2 there is some � � � � �2 such
that � � �

�
� � 	 � � ; in each case, CSUB-ARROW gives � � �

�
� �1 � � � 	
 �1 � � � . By CSUB-AE,

� � �
�

 � � �1� � � � � � �2 � 	 �
 �1 � � � � �
 �2 � , as required.

Case SUB-ALL: �
 � � � � 1 � � 2

 � � �
 1 �
 2

Similar.

Case SUB-INTER-G:

 �
 1 � �
 � � � � � 	
 � for each
 �
For each
 � , the induction hypothesis gives � � �

�
� � 	
 �� . By the syntax-directedness of

canonical subtyping (Lemma 4.2.6.3(1)), for each � � � �
 �� there is some � � � � � � such that
� � �

�
� � � 	 � � � . Combining these derivations for all the
 � ’s, we have � � �

�
� � 	 � �
 �� by

CSUB-AE.

4.2. SUBTYPING 63

Case SUB-INTER-LB:

 � � �
 � � 1 � � � � �
Let � � �
 � � � 1 � � � � � � . Then the derivation

� � �
�

� �� 1 	 � �� 1 � � � � � �
�

� �� � 	 � �� �
� � �

� � � � �� 	 � ��
(CSUB-AE)

establishes the desired result.

Case SUB-DIST-IA: �
 � � � �
 1 � � � � �
 � �

 � � � �
 1 � �
 � �
By the definition of flattening, � �

 � . The result follows by CSUB-REFL.

Case SUB-DIST-IQ: �
 � � � � � � �
 1 � � � � � � � �
 � �

 � � � � � � �
 1 � �
 � �
Similar. �
Next, we remark that subtyping on canonical types is preserved when canonical types are read

as ordinary types.

4.2.7.3. Lemma: If � �
�

� 	 � , then � �� � 	 � .
Proof: By induction on the structure of a canonical subtyping derivation. �

The last fact needed to establish the equivalence of subtyping on ordinary and canonical types
is that the flattening transformation always yields a type equivalent to the original.

4.2.7.4. Lemma: � ��
 � �
 for all F� types
 and contexts � .

Proof: By induction on the structure of
 .

Case:

 �
By SUB-INTER-LB and SUB-INTER-G.

Case:

 1�
 2

By the definition of flattening (4.2.7.1),
 �
 �
 �1 � � � � �
 �2 � . By derived rule D-DIST-IA
(4.1.1), � �
 � � �
 �1 � � � � � �
 �2 � � , i.e., � �
 � �
 �1 �
 �2 . By the induction hypothesis,
� �
 �1 �
 1 and � �
 �2 �
 2. The desired result follows by D-CONG-ARROW (4.1.7) and
SUB-TRANS.

Case:

 � � �
 1 �
 2

Similar.

Case:

 �
 1 � �
 � �
By the induction hypothesis, � �
 �� �
 � for each � . By D-CONG-INTER (4.1.7), � � �
 �1 � �
 �� � �
 �
 1 � �
 � � . The result then follows by D-ABSORB (4.1.2) and SUB-TRANS. �
Combining this with the previous lemma, we can show that the translation from ordinary to

canonical types reflects subtyping in F� .

4.2.7.5. Lemma: [
�

reflects subtyping] If � � �
�

� � 	
 � , then � �� � 	
 .

Proof: By Lemma 4.2.7.3, � � �� � � 	
 � . By Lemma 4.2.7.4, � �� � � � � 	 � � � � � for each � � dom � � � � .
By narrowing (4.2.3.6), � �� � � 	
 � . By Lemma 4.2.7.4 again, � �� � 	 � � and � ��
 � 	
 . By two
applications of SUB-TRANS, � �� � 	
 . �

Lemmas 4.2.7.2 and 4.2.7.5 together show that the subtype relations on ordinary and canonical
types correspond appropriately:

4.2.7.6. Theorem: [Equivalence of ordinary and canonical subtyping]

� �� � 	
 iff � � �
�

� � 	
 � �

4.2. SUBTYPING 64

4.2.8 Subtyping Algorithm

The definition of canonical subtyping leads directly to one algorithm for deciding the subtype
relation on F� types: to check whether � � � 	
 , flatten � , � , and
 and check whether � � �

�
� � 	
 � .

In this section we describe an alternative algorithm that operates directly on F� types, effectively
performing the flattening translation on the fly.

Given � , � , and
 , the new algorithm first performs a complete analysis of the structure of
 .
Whenever
 has the form
 1 �
 2 or � � �
 1 �
 2, it pushes the left-hand side —
 1 or � �
 1 — onto a
queue of pending left-hand sides and proceeds recursively with the analysis of
 2. When
 has the
form of an intersection, it calls itself recursively on each of the elements. When
 has finally been
reduced to a type variable, the algorithm begins analyzing � , matching left-hand sides of arrow
and polymorphic types against the queue of pending left-hand sides from
 . In the base case,
when both � and
 have been reduced to variables, the algorithm first checks whether they are
identical; if so, and if the queue of pending left-hand sides is empty, the algorithm immediately
returns true. Otherwise, the variable � is replaced by its upper bound from � and the analysis
continues as before.

The algorithm presented here generalizes one described by Reynolds for deciding the subtype
relation of Forsythe [personal communication, 1988].

4.2.8.1. Definition: Let � be a finite sequence of elements of the set

�
 �
 a type � � � � �
 � � a type variable and
 a type � �
Define the type � �
 as follows:

� � �
 �

� � 	 � � �
 � � � � � �
 �
� � � � 	 � � �
 � � � � � � � � �
 � �

From the definitions of
�

and � �
 , the following facts are immediate:

4.2.8.2. Lemma:

1. � � � � �
 1 � �
 � � � � � � � � � � �
 � � � �
2. � � � �
 1�
 2 � � � � � �� 	
 1 � �
 2 � � � �
3. � � � � � � �
 1 �
 2 � � � � � �� 	 � �
 1 � �
 2 � � �

4.2.8.3. Remark: Note that every type
 has either the form � � � or the form � � �
 1 � �
 � � for a
unique � .

4.2.8.4. Definition: The four-place algorithmic subtyping relation � �! � 	 � �
 is the least
relation closed under the following rules:

for all � 	 � � � 	 � �
 �
� � � 	 � � �
 1 � �
 � � (ASUBR-INTER)

for some � 	 � � � � 	 � � �
� � � � 1 � � � � � 	 � � � (ASUBL-INTER)

� �
 1 	 � � � � 1 � � � 2 	 � 2 � �
� � � 1� � 2 	 �
 1 	 � 2 � � � (ASUBL-ARROW)

� �
 1 	 � � � � 1 � 	 � �
 1 � � 2 	 � 2 � �
� � � � � � 1 � � 2 	 � � �
 1 	 � 2 � � � (ASUBL-ALL)

4.2. SUBTYPING 65

� � � 	 � � � � (ASUBL-REFL)

� � � � � � 	 � � �
� � � 	 � � � (ASUBL-TVAR)

4.2.8.5. Notation: We sometimes decorate the turnstile symbol �! to distinguish algorithmic
derivations from derivations in other calculi.

4.2.8.6. Definition: We write DIST
�� � � � � � �

1 � � � � � � � (or just DIST
�

when the appropriate subscript is
clear) for the following compound derivation:

DIST
�� � � � � � � �

1 � � � � � � � � � (SUB-REFL)

� �� � � � �
 1 � � � � �
 � � 	 � � � �
 1 � �
 � �

DIST
�� � � � 	
 � � � � �

1 � � 	
 � � � � � � � �

(SUB-DIST-IA)

� �� � � � � � � �
 1 � � � � � � � � �
 � � �
	 � � � � � �
 1 � � � � �
 � �

� � � 	 � DIST
�� � � � � � � �

1 � � � � � � � �
� �� � � �� � �
 1 � � � � �
 � �

	 � � � � � � �
 1 � �
 � � �
(SUB-ARROW)

� �
� � � � � � � �
 1 � � � � � � � � �
 � � � 	 � � � � � � �
 1 � �
 � � � (SUB-TRANS)

DIST
�� � � � � � � 	 � � � � � �

1 � �� � � 	 � � � � � � � � �

(SUB-DIST-IQ)

� �� � � � � � � � � � �
 1 � � � � � � � � � � � �
 � � �
	 � � � � � �� � �
 1 � � � � �
 � �

� � � 	 � DIST
�� � � � � 	 � � � � � � �

1 � � � � � � � �
� �� � � � � � �� � �
 1 � � � � �
 � �

	 � � � � � � � � � �
 1 � �
 � � �
(SUB-ALL)

� �� � � � � � � � � � �
 1 � � � � � � � � � � � �
 � � � 	 � � � � � � � � � �
 1 � �
 � � � (SUB-TRANS)

4.2.8.7. Definition: Let 	 :: � �! � 	
 be an algorithmic subtyping derivation. Then 	 �
:: � �� � 	

is the following ordinary derivation:�
for all � 	 	 � :: � �! � 	 � �
 �

� �! � 	 � � �
 1 � �
 � � (ASUBR-INTER)� �
�

	 �
1 � � � 	 �

�
� �� � 	 �� �
 1 � � � �
 � � (SUB-INTER-G) DIST

�

:: � �� �� �
 1 � � � �
 � �
	 � � �
 1 � �
 � �

� �� � 	 � � �
 1 � �
 � ��
for some � 	 	 � :: � �! � � 	 � � �

� �! � � 1 � � � � � 	 � � � (ASUBL-INTER)� �
�

� �� � � 1 � � � � � 	 � � (SUB-INTER-LB) 	 �
�

� �� � � 1 � � � � � 	 � � �

4.2. SUBTYPING 66

�
	 1 :: � �!
 1 	 � � � � 1 	 2 :: � �! � 2 	 � � �

� �! � 1 � � 2 	 �
 1 	 � � � � (ASUBL-ARROW)� �
�

	 �
1 	 �

2

� �� � 1 � � 2 	 �
 1 	 � � � � (SUB-ARROW)�
	 1 :: � �!
 1 	 � � � � 1 	 2 :: � 	 � �
 1 �! � 2 	 � � �

� �! � � � � 1 � � 2 	 � � �
 1 	 � � � � (ASUBL-ALL)� �
�

	 �
1 	 �

2

� �� � � � � 1 � � 2 	 � � �
 1 	 � � � � (SUB-ALL)�
� �! � 	 � � � � (ASUBL-REFL)� �

� � �
�

� 	 � � � � (SUB-REFL)

�
	 1 :: � �! � � � � 	 � � �

� �! � 	 � � � (ASUBL-TVAR)� �
� � �

� � 	 � � � � (SUB-TVAR) 	 �
1

� �� � 	 � � � (SUB-TRANS)

4.2.8.8. Theorem: [Soundness of the algorithm] If � �! � 	 � �
 then � �� � 	 � �
 .

Proof: By the well-formedness of the translation in Definition 4.2.8.7. �
We must now check that the relation defined by these rules coincides with the subtype relation

on canonical types, from which it follows, by Theorem 4.2.7.6, that the algorithm gives a semi-
decision procedure for the F� subtype relation.

4.2.8.9. Lemma: [Completeness of the algorithm with respect to canonical subtyping] If � � �
�

� � 	
� � �
 � � , then � �! � 	 � �
 .

Proof: By induction on the size of a normal-form derivation of � � �
�

� � 	 � � �
 � � , with a sub-
induction on the form of
 and, when

 � , a sub-sub-induction on the form of � . Proceed by
cases on the form of
 and � .

Case:

 �
 1 � �
 � � � � �
�

� � 	 � � � �
 1 � �
 � � � �
By Lemma 4.2.8.2(1), � � �

�
� � 	 � � � � �
 � � � . By the syntax-directedness of canonical subtyping

(4.2.6.3(1)), for every � � � � � � �
 � � � there is some � � � � and a subderivation of the original

whose conclusion is � � �
�

� 	 � . In particular, for each � and every � � � � �
 � � � there is

some � � � � such that � � �
�

� 	 � . By CSUB-AE, � � �
�

� � 	 � � �
 � � � . This derivation is no
larger than the original and
 � is smaller than
 , so, by the main or sub-induction hypothesis,
� �! � 	 � �
 � . Then by rule ASUBR-INTER, � �! � 	 �
 1 � �
 � � .

Case:

 � �
 � � 1 � � � � � � � �
�

 � � 1 � � � � � � 	 � � � � � �
Since � � � � � �
 � � � is a singleton, the syntax-directedness of canonical subtyping (4.2.6.3(1))
implies that for some � � � � we have � � �

�
� 	 � as a subderivation of the original. Since

� �
 � � � �� , there is some � � such that � � � �� . CSUB-AE then gives � � �
�

� �� 	 � � � � � � . This
derivation is no larger than the original and � � is strictly smaller than � , so by either the main
or the sub-sub-induction hypothesis, � �! � � 	 � � � . By rule ASUBL-INTER, � �! � 	 � � � .

4.3. TYPECHECKING 67

Case:

 � �
 � 1� � 2 � � �
� � � 1� � 2 � � 	 � � � � � �

Since � � � � � �
 � � � is a singleton, the syntax-directedness of canonical subtyping (4.2.6.3(1))
implies that for some � 1 � � 2 � � � we have � � �

�
� 1� � 2 	 � as a subderivation. By syntax-

directedness again (4.2.6.3(2)), � must have the form � 1 � � 2, with � � �
�

� 1 	 � 1 and � � �
�

� 2 	 � 2

as subderivations. By Definition 4.2.8.1, �
 �
 1 	 � 2 � , where � 1

 �1 and � � 2 �
 � � 2� � � � .
Since � 2 � � 2 � , we have � � �

�
� 2 � 	 � � 2� � � � by CSUB-AE. This derivation is no larger

than the original, and � is strictly smaller, so by either the main or the sub-sub-induction
hypothesis, � �! � 2 	 � 2� � . Also, by the main induction hypothesis, � �!
 1 	 � � � � 1. By rule
ASUBL-ARROW, � �! � 1 � � 2 	
 1� � � 2�
 2 � , i.e., � �! � 1� � 2 	 �
 1 	 � 2 � �
 2.

Case:

 � �
 � � � � 1 � � 2

Similar.

Case:

 � �
 � � � �
� � � 	 � � � � � �

Since � �
 � � � and � � � � � �
 � � � are both singletons, the syntax-directedness of canonical
subtyping (4.2.6.3(1)) gives � � �

� � 	 � as a subderivation. By syntax-directedness again
(4.2.6.3(4)), either �
 � or � � �

�
� � � � � 	 � � � . In the first case, rule ASUBL-REFL gives the desired

result immediately. In the second case, the main induction hypothesis gives � �! � � � � 	 � � � ,
from which rule ASUBL-TVAR again yields � �! � 	 � � � . �

4.2.8.10. Theorem: [Completeness of the algorithm with respect to ordinary subtyping] If � ��
� 	 � �
 then � �! � 	 � �
 .

Proof: By the equivalence of ordinary and canonical subtyping (Theorem 4.2.7.6) and the com-
pleteness of the algorithm with respect to canonical subtyping (Lemma 4.2.8.9). �
4.2.8.11. Definition: The more convenient three-place relation � �! � 	
 may be defined as

� �! � 	
 iff � �! � 	 � � � 	
where

 � � � and either �
 � � 1 � � � � � or �
 � .

4.2.8.12. Theorem: [Equivalence of ordinary and syntax-directed subtyping]

� �� � 	
 iff � �! � 	
 �

4.3 Typechecking

We now present an algorithm for synthesizing types for F� terms. Given a term � and a context �
(where � is closed in �), the algorithm constructs a minimal type � for � under � — that is, a type
� such that � � � � � , and such that any other type that can be derived for � from these rules is a
supertype of � .

The algorithm can be explained by separating the typing rules of Definition 3.2.3 into two sets:
the structural or syntax-directed rules (VAR, ARROW-E, ALL-I, ALL-E, and FOR), whose applicability
depends on the form of � , and the non-structural rules (INTER-I and SUB), which can be applied
without regard to the form of � . The non-structural rules are then removed from the system and
their possible effects accounted for by modifying the structural rules VAR, ARROW-E, ALL-E, and
FOR appropriately.

The main novel source of difficulty here is the application rules ARROW-E and ALL-E. An
application � � 1 � 2 � in the original system has every type
 2 such that � 1 can be shown to have some

4.3. TYPECHECKING 68

type
 1 �
 2 and � 2 can be shown to have type
 1, where the rule SUB may be used on both sides to
promote the types of � 1 and � 2 to supertypes with appropriate shapes. For example, if

� 1 � � � 1� � 2 � � � � � � � 3 � � 4 � � � � 5� � 6 � � � � 7� � 8 �
� 2 � � 1

� � � � � � 3 � � 4 � � � 5 	
then

� � 1 � 2 �
has both types � 2 and � 6, and hence (by INTER-I) also type � 2

� � 6.
To deal with this flexibility deterministically, we observe that the set of supertypes of � � 1� � 2 � �

� � � � � 3 � � 4 � � � � 5� � 6 � � � � 7 � � 8 � that have the appropriate shape to appear as the type of � 1 in
an instance of ARROW-E can be characterized finitely:

arrowbasis � � � 1� � 2 � � � � � � � 3 � � 4 � � � � 5� � 6 � � � � 7� � 8 � �
� � � 1� � 2 	 � 5� � 6 	 � 7� � 8 � �

It is then a simple matter to characterize the possible types for � � 1 � 2 � by checking whether the
minimal type of � 2 is a subtype of each domain type in the finite arrow basis of the minimal type
of � 1. Type applications are handled similarly.

4.3.1 Finite Bases for Applications

4.3.1.1. Definition: The functions arrowbasis� and allbasis� are defined as follows:

arrowbasis� � � � � arrowbasis� � � � � � �
arrowbasis� �
 1 �
 2 � � �
 1 �
 2 �
arrowbasis� � � � �
 1 �
 2 � � � �
arrowbasis� � �
 1 � �
 � � � � arrowbasis� �
 1 � � � � � � arrowbasis� �
 � �

allbasis� � � � � allbasis� � � � � � �
allbasis� �
 1�
 2 � � � �
allbasis� � � � �
 1 �
 2 � � � � � �
 1 �
 2 �
allbasis� � �
 1 � �
 � � � � allbasis� �
 1 � � � � � � allbasis� �
 � � �

4.3.1.2. Remark: To check that these definitions are proper, note that a closed context cannot
contain cyclic chains of variable references where � 0 � FTV � � � � 1 � � , � 1 � FTV � � � � 2 � � , . . . , � � �
FTV � � � � 0 � � .

The next two lemmas verify that arrowbasis� and allbasis� compute finite bases for the sets of
arrow types and polymorphic types above a given type.

4.3.1.3. Lemma: [Finite � basis computed by arrowbasis�]

1. � �� � 	 � arrowbasis� � � � � .
2. If � �� � 	
 1 �
 2, then � �� � arrowbasis� � � � � 	
 1 �
 2.

Proof:

1. By induction on the definition of arrowbasis� .

2. By the completeness of the subtyping algorithm (4.2.8.10), � �� � 	
 1�
 2 implies � �!
� 	 �
 1 	 � � � �
 2. We show, by induction on derivations, that � �! � 	 �
 1 	 � � � �
 �

implies � �� � arrowbasis� � � � � 	 �
 1 	 � � � �
 � , from which the desired result follows as a
special case, since
 1 �
 2 can always be written in the form �
 1 	 � � � �
 � , where the outermost
constructor of
 � is

�
or a variable.

Proceed by cases on the final step of a derivation of � �! � 	 �
 1 	 � � � �
 � �

4.3. TYPECHECKING 69

Case ASUBR-INTER:
 �
 �
 � 1 � �
 � � �
By assumption,

� �! � 	 �
 1 	 � � � �
 � �
for each � ; by the induction hypothesis,

� �� � arrowbasis� � � � � 	 �
 1 	 � � � �
 � � �
By derived rule D-CONG-INTER (4.1.7),

� �� � � arrowbasis� � � � � � � � arrowbasis� � � � � � 	 � � �
 1 	 � � � �
 � 1 � � � � �
 1 	 � � � �
 � � � � �
By D-ABSORB and D-REINDEX (4.1.2) and SUB-TRANS,

� �� � arrowbasis� � � � � 	 � � �
 1 	 � � � �
 � 1 � � � � �
 1 	 � � � �
 � � � � �
By len � �
 1 	 � � � � applications of SUB-DIST-IA and SUB-DIST-IQ (as appropriate) and
SUB-TRANS,

� �� � arrowbasis� � � � � 	 �
 1 	 � � � � �
 � 1 � �
 � � � �
Case ASUBL-INTER: �
 � � 1 � � � � �
 �
 �

By assumption, � �! � � 	 �
 1 	 � � � � � for some � . By the induction hypothesis,

� �� � arrowbasis� � � � � � 	 �
 1 	 � � � � � �
Since arrowbasis� � � � � � arrowbasis� � � � , SUB-REFL, D-ALL-SOME (4.1.2), and SUB-TRANS

give

� �� � arrowbasis� � � � � 	 �
 1 	 � � � � � �
Case ASUBL-ARROW: �
 � 1 � � 2
 �
 �

By the definition of arrowbasis� and the equivalence of ordinary and syntax-directed
subtyping (4.2.8.12).

Case ASUBL-ALL: �
 � � � � 1 � � 2
 �
 �
Can’t happen (�
 1 	 � � � has the wrong form).

Case ASUBL-REFL: �
 �
 �
 � �
 1 	 � � �
 � �
Can’t happen.

Case ASUBL-TVAR: �
 �
 �
 � � �! � � � � 	 �
 1 	 � � � � �
By the induction hypothesis,

� �� � arrowbasis � � � � � � � 	 �
 1 	 � � � � � �
By the definition of arrowbasis� ,

� �� � arrowbasis � � � � 	 �
 1 	 � � � � � � �
4.3.1.4. Lemma: [Finite � basis computed by allbasis�]

1. � � � 	 � allbasis� � � � � .
2. If � � � 	 � � � �
 1 �
 2 � , then � � � allbasis� � � � � 	 � � � �
 1 �
 2 � .

Proof: Similar. �
The crucial step in the correctness proof for the type synthesis algorithm is showing that

application and type application are correctly characterized by the sets computed by arrowbasis
and allbasis.

4.3. TYPECHECKING 70

4.3.1.5. Lemma: [Application]
If �

 � � 1� �
1 � � � � � � � �

�
 � � � � � � � 	 � � �
� �

�

	
 1 �
 2

� � � 	
 1 	
then

� � � 	
 2 �
Proof: By the equivalence of ordinary and canonical subtyping (4.2.7.6),

� � �
� �

�

� � 	 �
 1�
 2 � �
� � �

�
� � 	
 �1

�
 � � � � � � �
�

� � 	 � � � � �
By the definition of

�
(4.2.7.1),

� � �
� � � � � � � � � � � � � � � � � � 	 �
 �1 � � � � �
 �2 � �

By the syntax-directedness of canonical subtyping (4.2.6.3(1)),

for all � �
 �2
there is some � and some � � � � � such that

� � �
� � � � � � 	
 �1 � � .

By syntax-directedness again (4.2.6.3(2)),

for all � �
 �2
there is some � and some � � � � � such that

� � �
�

 �1 	 � � � and

� � �
�

� 	 � ,
that is,

for all � �
 �2
there is some � such that

� � �
�

 �1 	 � � � and

there is some � � � � � such that

� � �
�

� 	 � .
By CSUB-TRANS,

for all � �
 �2
there is some � such that

� � �
�

� � 	 � � � and

there is some � � � � � such that

� � �
�

� 	 � .
By CSUB-AE,

� � �
� � � � � � � � � � � � and � � �

�
� � 	 � � � � � 	
 �2 	

that is,

� � �
�

� � � � 	
 �2 �

4.3. TYPECHECKING 71

By the equivalence of ordinary and canonical subtyping (4.2.7.6),

� �� � 	
 2 � �

4.3.1.6. Lemma: [Type application]
If �

 � � � � � � 1 � �
1 � � � � � � � � � � � � � �

�
 � � � � � � � � � � � � 	 � � �
� �

�

	 � � � �
 1 �
 2 �
� � � 	
 1 	

then

� � � 	 � � � � �
 2 �
Proof: By the equivalence of ordinary and canonical subtyping (Theorem 4.2.7.6),

� � �
� �

�

� � 	 � � � �
 1 �
 2 � �
� � �

�
� � 	
 �1

�
 � � � � � � � � � � � �
�

� � 	 � � � � �
By the definition of

�
,

� � �
� � � � � � � � � � � � � � � � � � � � � 	 � � � �
 �1 � � � � �
 �2 � �

By the syntax-directedness of canonical subtyping (4.2.6.3(1)),

for all � �
 �2
there is some � and some � � � � � such that

� � �
� � � � � � � � � � � 	 � � � �
 �1 � � � .

By syntax-directedness again (4.2.6.3(3)),

for all � �
 �2
there is some � and some � � � � � such that

� � �
�

 �1 	 � � � and

� � 	 � �
 �1 � � 	 � ,
that is,

for all � �
 �2
there is some � such that

� � �
�

 �1 	 � � � and

there is some � � � � � such that

� � 	 � �
 �1 � � 	 � .
By CSUB-TRANS,

for all � �
 �2
there is some � such that

� � �
�

� � 	 � � � and

there is some � � � � � such that

� � 	 � �
 �1 � � 	 � .

4.3. TYPECHECKING 72

By CSUB-AE,

� � 	 � �
 �1 �
� � � � � � � � � � � and � � �

�
� � 	 � � � � � 	
 �2 	

that is,

� � 	 � �
 �1 �
�

� � � � � � � �
�

� � 	 � � � � � � 	
 �2 �
By the equivalence of ordinary and canonical subtyping (4.2.7.6),

� 	 � �
 1 �� � � � � � � � 	 � � � 	
 2 �
Then by the substitution property (4.1.8),

� �� � � � � � � � � � � � � � 	 � � � � 	 � � � � �
 2 	
that is,

� �� � 	 � � � � �
 2 � �

4.3.2 Type Synthesis

4.3.2.1. Definition: The three-place type synthesis relation � �! � �
 is the least relation closed under
the following rules:

� � � � � � � � (A-VAR)

� 	 � :
 1 � � �
 2

� � � � :
 1 � � �
 1 �
 2
(A-ARROW-I)

� � � 1 � � 1 � � � 2 � � 2

� � � 1 � 2 � � � � � � � � � � � � � arrowbasis� � � 1 � and � � � 2 	 � � � (A-ARROW-E)

� 	 � �
 1 � � �
 2

� � � � �
 1 � � � � � �
 1 �
 2
(A-ALL-I)

� � � � � 1

� � � �
 � � � �
 � � � � � � � � � � � � � � � � � allbasis� � � 1 � and � �
 	 � � � (A-ALL-E)

for all � 	 � � � � � � � � � �
 �
� � for � in � 1 � � � � � � � �
 1 � �
 � � (A-FOR)

4.3.2.2. Notation: Again, turnstiles in type synthesis derivations are sometimes marked �! to
distinguish them from derivations in other calculi.

4.3.2.3. Lemma: [Syntax-directedness of the type synthesis rules] For given � and � , there is at
most one rule that can be used to establish � �! � �
 for some
 . Moreover, the existence of such
a derivation can be established from the form of � and the results of applying the type synthesis
procedure to proper subphrases of � plus a finite number of applications of the subroutine for
checking the subtyping relation. In particular:

1. If � �! � � � , then �
 � � � � .
2. If � �! � � :
 1 � � � � , then �

 1 �
 2, where � 	 � :
 1 �! � �
 2 as a subderivation.

3. If � �! � 1 � 2 � � , then �
 � � � � � � � � � � � � arrowbasis� � � 1 � and � � � 2 	 � � � , where � �! � 1 � � 1

and � �! � 2 � � 2 as subderivations.

4. If � �! � � �
 1 � � � � , then �
 � � �
 1 �
 2, where � 	 � �
 1 �! � �
 2 as a subderivation.

4.3. TYPECHECKING 73

5. If � �! � �
 � � � , then �
 � �
 � � � � � � � � � � � � � � � � � allbasis� � � 1 � and � �
 	 � � � , where
� �! � � � 1 as a subderivation.

6. If � �! for � in � 1 � � � � � � � � , then �
 �
 1 � �
 � � , where � �! � � � � � � � �
 � , for each i, as a
subderivation.

Proof: By inspection. �
4.3.2.4. Remark: The syntax-directedness of algorithmic derivations permits us to skip introduc-
ing a linear shorthand, as we did for ordinary and canonical derivations, since terms themselves
are essentially the shorthand we need.

4.3.2.5. Definition: Let 	 :: � �! � �
 be a typing derivation from the algorithmic rules (4.3.2.1).
Then 	 �

:: � �� � �
 is the following derivation from the ordinary typing rules:�
� �! � � � � � � (A-VAR)� �

� � �� � � � � � � (VAR)�
	 1 :: � 	 � :
 1 �! � �
 2

� �! � � � :
 1 � � � �
 1�
 2
(A-ARROW-I)� �

� 	 �
1

� �� � � � :
 1 � � � �
 1�
 2
(ARROW-I)�

	 1 :: � �! � 1 � � 1 	 2 :: � �! � 2 � � 2

� �! � � 1 � 2 � � � � � � � � � � � � � � arrowbasis� � � 1 � and
 � :: � � � 2 	 � � � (A-ARROW-E)� �
�

� � �

	 �
1 4.3.1.3 :: � �� � 1 	 � � � � �

� �� � 1 � � � � � � (SUB)

	 �
2
 �

�
� �� � 2 � � � (SUB)

� �� � � 1 � 2 � � � � (ARROW-E) � � �
� �

� � � 1 � 2 � � � � � � � � � � � � � � arrowbasis� � � 1 � and � � � 2 	 � � � (INTER-I)�
	 1 :: � 	 � �
 1 �! � �
 2

� �! � � � �
 1 � � � � � � �
 1 �
 2
(A-ALL-I)� �

� 	 �
1

� �� � � � �
 1 � � � � � � �
 1 �
 2
(ALL-I)�

	 1 :: � �! � � � 1

� �! � �
 � � � �
 � � � � � � � � � � � � � � � � � allbasis� � � 1 � and
 � :: � �
 	 � � � (A-ALL-E)� �
�

� � �

	 �
1 4.3.1.4 :: � �� � 1 	 � � � � � � � �

� �� � � � � � � � � � � (SUB)
 �
�

� �� � �
 � � �
 � � � � � (ALL-E) � � �
� �� � �
 � � � �
 � � � � � � � � � � � � � � � � � allbasis� � � 1 � and � �
 	 � � � (INTER-I)�

for all � 	 	 � :: � �! � � � � � � � �
 �
� �! � for � in � 1 � � � � � � � � �
 1 � �
 � � (A-FOR)� �

�

� � �
	 �

� :: � �� � � � � � � � �
 �
� �

� � for � in � 1 � � � � � � � �
 � (FOR) � � �
� �� � for � in � 1 � � � � � � � � �
 1 � �
 � � (INTER-I)

4.3.2.6. Theorem: If � :: � �! � �
 , then �
�

:: � �� � �
 .

Proof: By induction on the structure of � . �
4.3.2.7. Theorem: [Minimal typing] If � �! � � � and � �� � �
 , then � � � 	
 .

Proof: By induction on a derivation of � �� � �
 . Proceed by cases on the final rule.

4.3. TYPECHECKING 74

Case VAR: �
 �

 � � � �
Immediate by A-VAR.

Case ARROW-I: �
 � � :
 1 � � � � 	 � :
 1 �� � � �
 2

 1 �
 2

By the syntax-directedness of the type synthesis rules (4.3.2.3), the last rule in the derivation
of � �! � � � must be A-ARROW-I, so

� 	 � :
 1 � � � � � 2

�

 1 � � 2 �
By the induction hypothesis, � �� � 2 	
 2. By SUB-REFL and SUB-ARROW,

� �
�

 1 � � 2 	
 1 �
 2 �
Case ARROW-E: �
 � 1 � 2 � �� � 1 �
 1 �
 2 � �� � 2 �
 1

 2

By the syntax-directedness of the type synthesis rules (4.3.2.3),

� �! � 1 � � 1

� �! � 2 � � 2

�
 � � � � � � � � � � � � arrowbasis� � � 1 � and � �! � 2 	 � � � �
By the equivalence of ordinary and syntax-directed subtyping (4.2.8.12),

�
 � � � � � � � � � � � � arrowbasis� � � 1 � and � �� � 2 	 � � � �
By the induction hypothesis,

� �� � 1 	
 1 �
 2

� �� � 2 	
 1 �
Since arrowbasis� � � 1 � is a finite basis for the arrow types above � 1 (4.3.1.3),

� �
� � arrowbasis� � � 1 � � 	
 1�
 2 �

By the application lemma (4.3.1.5),

� �
� � � � � � � � � � � � � arrowbasis� � � 1 � and � �

�

� 2 	 � � � 	
 2 �
Case ALL-I: �
 � � �
 1 � � � � 	 � �
 1 �� � � �
 2

 � � �
 1 �
 2

By the syntax-directedness of the type synthesis rules (4.3.2.3),

� 	 � �
 1 �! � � � � 2

�
 � � �
 1 � � 2 �
By the induction hypothesis,

� 	 � �
 1 �� � 2 	
 2 �
By SUB-REFL and SUB-ALL,

� �� � � � �
 1 � � 2 � 	 � � � �
 1 �
 2 � �
Case ALL-E: �
 � � �
 � � � �� � � � � � �
 1 �
 2 � ��
 � 	
 1

 �
 � � � �
 2

By the syntax-directedness of the type synthesis rules (4.3.2.3),

� �! � � � � 1

�
 � �
 � � � � � � � � � � � � � � � � � � allbasis� � � 1 � and � �!
 � 	 � � � �
By the equivalence of ordinary and syntax-directed subtyping (4.2.8.12),

�
 � �
 � � � � � � � � � � � � � � � � � � allbasis� � � 1 � and � ��
 � 	 � � � �
By the induction hypothesis,

� �� � 1 	 � � �
 1 �
 2 �
Since allbasis� � � 1 � is a finite basis for the polymorphic types above � 1 (4.3.1.4),

� �� � allbasis� � � 1 � � 	 � � �
 1 �
 2 �
By the type application lemma (4.3.1.6),

� �� � �
 � � � � � � � � � � � � � � � � � � allbasis� � � 1 � and � �
 � 	 � � � 	 �
 � � � �
 2 �

4.3. TYPECHECKING 75

Case FOR: �
 for � in � 1 � � � � � � � � �� � � � � � � � �
 �

 �
By the syntax-directedness of the type synthesis rules (4.3.2.3),

for all � 	 � �! � � � � � � � � � �
�
 � � 1 � � � � � �

By the induction hypothesis,

� �� � � 	
 � �
By SUB-INTER-LB and SUB-TRANS,

� �� � � 1 � � � � � 	
 � �
Case INTER-I: for all � 	 � �� � �
 �

 �
 1 � �
 � �

By the induction hypothesis,

for all � 	 � �� � 	
 � �
By SUB-INTER-G,

� �� � 	 �
 1 � �
 � � �
Case SUB: � �� � �
 1 � ��
 1 	
 2

 2

By the induction hypothesis,

� �� � 	
 1 �
By SUB-TRANS,

� �� � 	
 2 � �

4.3.3 Conservativity

F� was described as essentially the union of the two simpler calculi
� � and � � . We can gauge

the accuracy of this characterization by checking whether the features of the component calculi
operate “orthogonally,” so that each component system can be thought of as a restriction of F� —
i.e., by asking whether F� is a conservative extension of

� � and of � � .

4.3.3.1. Definition: Let
�

and
�

be two calculi and
� � —� � � � �

an injective mapping from
�

statements to
�

statements.
� � — � is said to be an embedding of

�
into

�
if, for every

�
statement � ,

� is derivable in
�

iff
� � � � is derivable in

�
.

Typically,
� � — � is just an identity injection. For instance, this is the case for the embedding of� � into F� .

4.3.3.2. Definition: If the identity injection is an embedding of
�

into
�

, then
�

is said to be a
conservative extension of

�
.

4.3.3.3. Theorem: Let � and
 be
� � types, � an

� � context, and � an
� � expression. Assume that

the primitive subtype relation of
� � is encoded as a context � � (c.f. 3.4.2.2). Then:

1. � � 	 � �� � 	
 iff � �� � � 	
 .

2. � � 	 � �� � �
 iff � �� � � �
 .

Proof:

1. (� �) Lemma 3.4.2.4.

(� �) If � � 	 � �� � 	
 , then by the completeness of the subtyping algorithm, � � 	 � �! � 	
 .
By the syntax-directedness of the subtyping algorithm and the fact that � ,
 , and � contain
no quantified types, this derivation will not contain any instances of ASUBL-ALL, the rule
that deals with quantified types. It may be therefore be rewritten as a derivation from the� � rules by a translation similar to the one in the proof of Theorem 4.2.8.8, dropping the

4.3. TYPECHECKING 76

bindings � � and translating instances of ASUBL-REFL as instances of SUB-REFL and instances
of ASUBL-TVAR as derivations of the following form:

(SUB-TRANS)

(SUB-INTER-G)

� � � � with � 	 � � .
� 	 � �

� �
� � � 	 �

(SUB-PRIM)

� �
� � � 	 � � � � � � 	 � � �

(induction hypothesis)

� �
� � � � � � � � 	 � � � 	 � � �

� �
� � � 	 � � � �

2. (� �) Lemma 3.4.2.5.

(� �) If � 	 � � �� � �
 , then by the completeness of the subtyping algorithm, � 	 � � �! � �
 .
By the syntax-directedness of the subtyping algorithm and the fact that � ,
 , and � contain
no type abstractions, type applications, or quantified types, this derivation will not contain
any instances of A-ALL-I or A-ALL-E. It may be therefore be rewritten straightforwardly as a
derivation from the

� � rules, using the previous case to handle the translation of subtyping
derivations. �

The mapping from the other subsystem, � � , into F� must take the type Top into � , and it is
here that it fails to be an embedding (as we might expect from the discussion in Section 3.4):

4.3.3.4. Example: The subtyping statement

� Top 	 � � � Top � Top

is derivable in F� (reading Top as �), but not in � � .

4.3.3.5. Conjecture: Since Top must be mapped to a maximal type by any embedding function
from � � to F� and � is the only such type (up to equivalence), there is probably no embedding of
� � into F� .

4.3.3.6. Conjecture: By replacing Top with � in � � and adding appropriate distributivity laws to
the subtyping relation and a � -introduction rule to the typing relation, we can construct a system
that can be embedded into F� (indeed, such that F� extends it conservatively), but this system is
only a technical curiosity: it has most of the problematic features of F� (the distributivity laws in
particular) but is much less expressive.

Chapter 5

Semantics

This chapter surveys a collection of preliminary results concerning the semantics of F� .
Section 5.1 gives a simple untyped semantics for F� based on Bruce and Longo’s partial

equivalence relation model for � � [12].
Section 5.2 discusses a negative technical result — the nonexistence of syntactic least upper

bounds — with some serious implications for the difficulty of constructing a typed model for F�
in which the subtype relation is interpreted by semantic coercion functions.

The remainder of the chapter presents two different partial accounts of the typed semantics
of F� . Section 5.3 defines a semantics for F� by translating F� typing derivations into the pure
second-order

�
-calculus with surjective pairing, system � � . This style of presentation avoids some

of the subtleties involved in giving a direct denotational semantics for F� , since � � itself has many
well-studied models, but it still yields a useful soundness theorem relating the semantics to the F�
type system: valid F� typing derivations are translated to well-typed (and hence well-behaved)
� � terms. We then (Section 5.5) define an equational theory of provable equivalences between
terms of pure F� . The equational theory is shown to be sound for both the untyped semantics and
the translation semantics (the latter in the sense that provably equal F� terms are translated into
equal terms in the target calculus, assuming that the translation is coherent).

5.1 Untyped Semantics

One of the simplest styles of semantics for typed
�

-calculi is based on partial equivalence relations
(PERs). A model in this style is essentially untyped (c.f. Section 2.4.1): terms are interpreted
by erasing all type information and interpreting the resulting pure

�
-term as an element of the

model. A type, in this setting, is just a subset of the model along with an appropriate notion of
equivalence of elements. Coercions between types are interpreted by inclusion of PERs.

The PER model given here for F� is based on Bruce and Longo’s model for � � [12]. However,
the full generality of Bruce and Longo’s construction, involving the category of � -sets, is not
required here.

The usual interpretation of a quantified type � � �
 in a second-order PER model is the PER-
indexed intersection of all possible instances of
 . Bruce and Longo showed how to extend this
definition to interpret a bounded quantifier � � � � �
 as the intersection of all the instances of

 where � is interpreted as a sub-PER of the interpretation of � . This intuition also serves for
intersection types: �
 1 � �
 � � is interpreted as the intersection of the PERs interpreting each of
the
 � ’s.

77

5.1. UNTYPED SEMANTICS 78

We need to make one significant departure here from PER models of � � : instead of allowing
the elements of our PERs to be drawn from the carrier of an arbitrary partial combinatory algebra�

, we require that
�

be a total combinatory algebra. This restriction is needed to validate nullary
instances of the distributive law SUB-DIST-IA, which have the form � � � 	 � � � . To see why, let
�
 � . The empty intersection � is interpreted by the everywhere-defined PER, i.e., [[�]] relates
every � to itself. To validate the distributivity law, it must therefore be the case that [[� � �]]
relates every element to itself. But this will only be true if the application of any element to any
other element is defined. This observation is due to QingMing Ma [personal communication,
1991].

The notation and fundamental definitions used in this section are based on papers of Bruce
and Longo [12], Freyd, Mulry, Rosolini, and Scott [61], and others. A good basic reference for PER
models of second-order

�
-calculi is [95]; also see [13] for more general discussion of second-order

models and [5, 77] for general discussion of combinatory models.

5.1.1 Total Combinatory Algebras

5.1.1.1. Definition: A total combinatory algebra is a tuple
� � � � 	 � 	 � 	 � � comprising

� a set � of elements,
� an application function � with type � � � � � � � ,
� distinguished elements � 	 � � � ,

such that, for all
 1 	
 2 	
 3 � � ,

� �
 1 �
 2 �
 1

� �
 1 �
 2 �
 3 � �
 1 �
 3 � � �
 2 �
 3 � �
5.1.1.2. Remark: Throughout this section, we work with a fixed, but unspecified, total combinatory
algebra

�
. (For example, Scott’s � � or � � [128] model [128].)

5.1.1.3. Definition: The set of pure
�

-terms is defined by the following abstract grammar:�

::= � � � � �
�

�
�

1

�

2

5.1.1.4. Definition: The set of combinator terms is defined by the following abstract grammar:
�

::= � � �
1

�
2 � � � �

5.1.1.5. Definition: The bracket abstraction of a combinator term
�

with respect to a variable � ,
written

� � � � �
, is defined as follows:

� � � � � � � �
when � �� FV � � �� � � � � � � � �� � � � �

1
�

2 � � � � � � � �
1 � � � � � � �

2 � when � � FV � �
1

�
2 �

5.1.1.6. Definition: The combinator translation of a pure
�

-term

�

, written �
�

�, is defined as
follows:

� � � � �
� � � �

�

� � � � � � �
�

�
�
�

1

�

2 � � �
�

1 � �
�

2 �
5.1.1.7. Definition: An environment � is a finite function from type variables to PERs (defined be-
low) and term variables to elements of � . When � �� dom � � � , we write � � � �
 � for the environment

5.1. UNTYPED SEMANTICS 79

that maps � to
 and agrees with � everywhere else; � � � � � � is defined similarly. We write � � � for
the environment like � except that � � � � is undefined; � � � similarly. We say that � � extends � when
dom � � � � dom � � � � and � and � � agree on dom � � � .
5.1.1.8. Definition: Let

�
be a combinatory term and � an environment such that FV � � � � dom � � � .

Then the interpretation of
�

under � , written [[
�

]]� , is defined as follows:

[[�]]� � � � � �
[[

�
1

�
2]]� � [[

�
1]]� � [[

�
2]]�

[[�]]� � �
[[�]]� � �

5.1.1.9. Lemma: If � � extends � and FV � � � � dom � � � , then [[
�

]]� � [[
�

]]� � .
Proof: Straightforward induction on

�
. �

5.1.1.10. Lemma: [[
� � � � �

]]� � � � [[
�

]]� � � � � � .
Proof: By induction on the form of

�
.

Case: � �� FV � � �
[[

� � � � �
]]� � � � [[� �

]]� � �
� � � [[

�
]]� � �

� [[
�

]]�
� [[

�
]]� � � � � � by Lemma 5.1.1.9 �

Case:
�
 �

[[
� � � � �

]]� � � � [[� � �]]� � �
� � � � � � � �
� �
� � � � � � � � � � � �
� [[

�
]]� � � � � � �

Case:
�
 �

1
�

2 � � FV � �
1

�
2 �

[[
� � � � �

]]� � � � [[� � � � � � �
1 � � � � � � �

2 �]]� � �
� � � [[

� � � � �
1]]� � [[

� � � � �
2]]� � �

� � [[� � � � �
1]]� � � � � � [[� � � � �

2]]� � � �
� � [[�

1]]� � � � � � � � � [[�
2]]� � � � � � � by the induction hypothesis

� � [[�
1

�
2]]� � � � � � � � �

5.1.2 Partial Equivalence Relations

5.1.2.1. Definition: A partial equivalence relation (PER) on
�

is a symmetric and transitive relation
� on � . We write � � � � � when � relates � and � . The domain of � , written dom � � � , is the set

� � � � � � � � � . Note that � � � � � implies � � dom � � � .
5.1.2.2. Definition: Let � and � be relations. Then � � � is the relation defined by

� � � � � � � iff for all � 	 � � � 	 � � � � � implies � � � � � � � � � �
5.1.2.3. Lemma: � � � is a PER when � and � are PERs.

Proof: (Symmetry) Let � � � � � � � . Then

for all � and � 	 � � � � � implies � � � � � � � � � 	

5.1. UNTYPED SEMANTICS 80

which by the symmetry of � and � implies that

for all � and � � � � � � � implies � � � � � � 	 � � �
that is, � � �
 � � 	 .

(Transitivity) Let 	 � �
 � � � and � � �
 � � � . Then

for all � , � , and � � � � � � � implies 	 � � � � � � � � � and � � � � � implies � � � � � � � � � ��
for all � , � , and � � � � � � � and � � � � � � implies 	 � � � � � � � � and � � � � � � � � � ��
for all � , � , and � � � � � � � and � � � � � � implies 	 � � � � � � � ��
for all � and � � � � � � � and � � � � � � implies 	 � � � � � � � ��
for all � and � � � � � � � implies 	 � � � � � � � � �

that is, 	 � �
 � � � . �
5.1.2.4. Definition: � is a subrelation of � , written � � � , iff 	 � � � � implies 	 � � � � for all
	 � � � � .

5.1.2.5. Definition: Let � � � � � � � be a set of relations indexed by a set � . Then � � � � � � is the relation
defined by

	 � � � � � � � � � iff for every � � 	 � � � � � �
5.1.2.6. Lemma: � � � � � � is a PER when all the � � ’s are PERs.

Proof: Straightforward. �

5.1.3 PER Interpretation of F�

5.1.3.1. Definition: The erasure of an F� term � , written erase � � , is the pure � -term defined as
follows:

erase � � � �
erase � � : � � � � � � � erase � �
erase � 1 � 2 � � erase � 1 � erase � 2 �
erase ! " # � � � � erase � �
erase � $ % � � erase � �
erase for " in & 1 � � & ' � � � � erase � �

5.1.3.2. Definition: Let (be an environment and � an expression such that FV � � � dom (� . Then
the interpretation of � under (, written [[�]]) , is [[*erase � � *]]) .

5.1.3.3. Remark: Since this style of semantics interprets the erasures of terms rather than inter-
preting typing derivations, it is coherent in a trivial sense.

5.1.3.4. Lemma: [[� � : � � +]]) � [[� , � � *erase � � *]]) .

Proof: Straightforward. �
5.1.3.5. Definition: Let (be an environment and a type expression such that FTV � � dom (� .
The interpretation of under (, written [[]]) , is the PER defined as follows:

[["]]) � (" �
[[1
 2]]) � [[1]])
 [[2]])
[[! " # 1 � 2]]) � � - . [[/ 1]]0 [[2]]) 1 2 3 - 4 where � is a PER

[[5 $ 1 � � ' %]]) � � 1# � # ' [[�]])
5.1.3.6. Definition: An environment (satisfies a context 6 , written (*� 6 , if dom (� � dom 6 � and

5.1. UNTYPED SEMANTICS 81

1. 6 � � � , or

2. 6 � 6 1 � � : , where (� � satisfies 6 1 and (� � � dom [[]]) � � � , or

3. 6 � 6 1 � " # , where (� " satisfies 6 1 and (" � � [[]]) � 2 .

5.1.3.7. Lemma: If (+ extends (and FV � � dom (� , then [[]]) � [[]]) � .
Proof: Straightforward. �
5.1.3.8. Lemma: (Soundness of subtyping) If 6 � & � and (*� 6 , then [[&]]) � [[]]) .

Proof: By induction on the structure of a derivation of 6 � & � .

Case SUB-REFL: & �
Immediate.

Case SUB-TRANS: 6 � & � � 6 � � �
By the induction hypothesis.

Case SUB-TVAR: & � " � 6 " �
Immediate from 5.1.3.6.

Case SUB-ARROW: & � & 1
 & 2 � 1
 2 6 � 1 � & 1 6 � & 2 � 2

	 � [[& 1
 & 2]]) � �
� 	 � [[& 1]])
 [[& 2]]) � �
� ! � � � � � � [[& 1]]) � � implies 	 � � � [[& 2]]) � � � �� ! � � � � � � [[1]]) � � implies 	 � � � [[2]]) � � � � by the induction hypothesis� 	 � [[1
 2]]) � � �

Case SUB-ALL: & � ! " # & 1 � & 2 � ! " # 1 � 2 6 � 1 � & 1 6 � " # 1 � & 2 � 2

	 � [[! " # & 1 � & 2]]) � �
� 	 � � - � [[1]]0 [[& 2]]) 1 2 3 - 4 � �
� ! � � [[& 1]]) � 	 � [[& 2]]) 1 2 3 - 4 � �� ! � � [[1]]) � 	 � [[2]]) 1 2 3 - 4 � � by the induction hypothesis
� 	 � [[! " # 1 � 2]]) � � �

Case SUB-INTER-G: � 5 $ 1 � � ' % for all � � 6 � & � �
By the induction hypothesis, [[&]]) � [[�]]) for each � ; so [[&]]) � � 1 # � # ' [[�]]) � [[5 $ 1 � � ' %]]) .

Case SUB-INTER-LB: & � 5 $ 1 � � ' % � �
Immediate from the definition of 5 .

Case SUB-DIST-IA: & � 5 $ & +
 1 � � & +
 ' % � & +
 5 $ 1 � � ' %
	 � [[5 $ & +
 1 � � & +
 ' %]]) � 	 +� 	 � � 1# � # ' [[& +
 �]]) � 	 +� ! � � 	 � [[& +]])
 [[�]]) � 	 +� ! � � ! � � � � � � [[& +]]) � � implies 	 � � � [[�]]) � 	 + � �

� ! � � � � � � [[& +]]) � � implies ! � � 	 � � � [[�]]) � 	 + � � �
� ! � � � � � � [[& +]]) � � implies 	 � � � [[5 $ 1 � � ' %]]) � 	 + � �� 	 � [[& +
 5 $ 1 � � ' %]]) � 	 + �

5.1. UNTYPED SEMANTICS 82

Case SUB-DIST-IQ: & � 5 $! " # & + � 1 � � ! " # & + � ' % � ! " # & + � 5 $ 1 � � ' %
[[5 $! " # & + � 1 � � ! " # & + � ' %]])

� � 1 # � # ' � - . [[�]]0 �
� � - . [[�]]0 � 1 # � # ' �
� [[! " # & � 5 $ 1 � � ' %]]) � �

5.1.3.9. Lemma:

1. [[� 1 � 2]]) � [[� 1]]) � [[� 2]]) .

2. erase � & � " � � � � erase � � .
3. [[]]) 1 2 3 [[]] 0 4 � [[� & � " �]]) .

4. [[�]]) 1 � 3 [[� �]]0 4 � [[� � + � � � �]]) .

5. � *erase � � * � � � *erase � � * � *erase � � � � � � � *.
Proof: Straightforward. �
5.1.3.10. Lemma: If

(1 *� 6
(2 *� 6
! " � dom 6 � � (1 " � � (2 " � � (" �
! � � dom 6 � � (1 � � � [[6 � �]]) � (2 � �
6 � � � �

then

[[�]])
1

� [[]]) � [[�]])
2

�
(Here (is just a convenient name for the portions of (1 and (2 dealing with type variables, which
must be identical.)

Proof: By induction on a derivation of 6 � � � .

Case VAR: � � � � 6 � �
Immediate.

Case ARROW-I: � � � � : 1 � � + 6 � � : 1 � � + � 2 � 1
 2

Choose 	 and � such that 	 � [[1]]) � � . Then 	 � [[1]]) � 	 and � � [[1]]) � � , so (1 $ � � 	 % *�
6 � � : 1 and (2 $ � � � % *� 6 � � : 1. The induction hypothesis gives

[[� +]])
1

1 � 3 � 4 � [[2]]) � [[� +]])
2

1 � 3 ' 4 �
But

[[�]])
1

� 	 � [[� , � � *erase � + � *]])
1

� 	 by definition
� [[*erase � + � *]])

1
1 � 3 � 4 by Lemma 5.1.1.10

� [[� +]])
1

1 � 3 � 4 by definition �
and similarly [[�]])

2
� � � [[� +]])

2
1 � 3 ' 4 . So

[[�]])
1

� 	 � [[2]]) � [[�]])
2

� � �
Since this holds for all 	 and � such that 	 � [[1]]) � � , the definition of
 gives

[[�]])
1

� [[1]])
 [[2]]) � [[�]])
2

�
i.e.,

[[�]])
1

� [[1
 2]]) � [[�]])
2

�

5.1. UNTYPED SEMANTICS 83

Case ARROW-E: � � � 1 � 2 6 � � 1 � 1
 2 6 � � 2 � 1 � 2

By the induction hypothesis,

[[� 1]])
1

� [[1
 2]]) � [[� 1]])
2

�
i.e.

[[� 1]])
1

� [[1]])
 [[2]]) � [[� 1]])
2

�
and

[[� 2]])
1

� [[1]]) � [[� 2]])
2

�
So, by the definition of
 ,

[[� 1]])
1

� [[� 2]])
1

� [[2]]) � [[� 1]])
2

� [[� 2]])
2

�
i.e. (by Lemma 5.1.3.9(1)),

[[� 1 � 2]])
1

� [[2]]) � [[� 1 � 2]])
2

�
Case ALL-I: � � � " # � � + 6 � " # 1 � � + � 2 � ! " # 1 � 2

Choose an arbitrary PER � � [[1]]) . By the induction hypothesis,

[[� +]])
1

1 2 3 - 4 � [[2]]) 1 2 3 - 4 � [[� +]])
2

1 2 3 - 4 �
By Lemma 5.1.1.9,

[[� +]])
1

� [[2]]) 1 2 3 - 4 � [[� +]])
2

�
Since this holds for every � � [[1]]) , the definition of � yields,

[[� +]])
1

� � - � [[/ 1]]0 [[2]]) 1 2 3 - 4 � [[� +]])
2

�
i.e.,

[[� +]])
1

� [[! " # 1 � 2]]) � [[� +]])
2

�
i.e. (by the definition of erase),

[[�]])
1

� [[! " # 1 � 2]]) � [[�]])
2

�
Case ALL-E: � � � + $ & % 6 � � + � ! " # 1 � 2 6 � & � 1 � 2

By the induction hypothesis,

[[� +]])
1

� [[! " # 1 � 2]]) � [[� +]])
2

�
i.e.,

[[� +]])
1

� � - � [[/ 1]]0 [[2]]) 1 2 3 - 4 � [[� +]])
2

�
Since, by Lemma 5.1.3.8, [[&]]) � [[1]]) ,

[[� +]])
1

� [[2]]) 1 2 3 [[]] 0 4 � [[� +]])
2

�
i.e. (by the definition of erase),

[[�]])
1

� [[2]]) 1 2 3 [[]]0 4 � [[�]])
2

�
i.e. (by Lemma 5.1.3.9(3)

[[�]])
1

� [[� & � " � 2]]) � [[�]])
2

�
Case FOR: � � for " in & 1 � � & ' � � � + 6 � � & � � " � � + � � � �

By the induction hypothesis,

[[� & � � " � � +]])
1

� [[�]]) � [[� & � � " � � +]])
2

�
By Lemma 5.1.3.9(2),

[[� +]])
1

� [[�]]) � [[� +]])
2

�
By the definition of erase,

[[�]])
1

� [[�]]) � [[�]])
2

�

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 84

Case INTER-I: 6 � � � � for each � � 5 $ 1 � � ' %
By the induction hypothesis,

[[�]])
1

� [[�]]) � [[�]])
2

for each � ; hence,

[[�]])
1

� � 1# � # ' [[�]]) � [[�]])
2

�
i.e.,

[[�]])
1

� [[5 $ 1 � � ' %]]) � [[�]])
2

�
Case SUB: 6 � � � & 6 � & �

By the induction hypothesis,

[[�]])
1

� [[&]]) � [[�]])
2

�
hence (by Lemma 5.1.3.8)

[[�]])
1

� [[]]) � [[�]])
2

� �
5.1.3.11. Corollary: (Soundness of typing) If 6 � � � and (*� 6 , then [[�]]) � dom [[]]) � .
Proof: Take (1 � (2 � (. �

5.2 Nonexistence of Least Upper Bounds

One important question about the order-theoretic properties of any calculus with subtyping is
the existence or nonexistence of least upper bounds (lubs) for finite sets of types. When they
are present, lubs often greatly simplify the presentations of both semantic and proof-theoretic
arguments; for example, Reynolds’ model construction for Forsythe depends on the existence and
special properties of lubs. Unfortunately, like its component system � # (though not for the same
reason), F� does not have a lub for every finite set of types.

To simplify the discussion, we consider only lubs of pairs of types. The fact that a calculus of
intersection types may be formulated in terms of an � -ary meet constructor, as we have done here,
or, equivalently, in terms of � and binary meets, implies that we may make this simplification
without loss of generality.

5.2.1. Definition: Let & and be types, both closed under a context 6 . Then a least upper bound of
& and under 6 is a supertype of both & and and a subtype of every common supertype of &
and — that is, a type � such that:

6 � & � �
6 � � �
6 � & � � and 6 � � � imply 6 � � � � �

(Note that least upper bounds are unique only up to equivalence.)

In systems with intersection types, it is simplest to define least upper bounds for canonical
types (c.f. Section 4.2.1) and then transfer the definition to ordinary types. Here is Reynolds’
definition of lubs for the canonical formulation of first-order intersection types:

5.2.2. Definition: Assume that we are given a partial function � � that yielding a least upper
bound for every pair of primitive types with any upper bound. That is:

if � 1 � � � 2 � � then � 1 � � � 1 � � � 2 �
� 2 � � � 1 � � � 2 �
� 1 � � � + and � 2 � � � + imply � 1 � � � 2 � � � � +

if � 1 � � � 2 � � then there is no � + such that � 1 � � � + and � 2 � � � + �

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 85

5.2.3. Definition: Let � and � be canonical � � types. Then the distinguished least upper bound of
� and � , written � � � , is defined by the following function (partial on individual canonical types
and total on composite canonical types):

� � � � 5 $ � � � * � � �
and � � � and � � � � � %

� 1 � � 2 � � 1 � � � 2

 �
 � � � �
 � � � � � � �
 � � � �
 �
 � � � � � �
� � �
 � � � � �

(Recall from 4.2.1.3 that
� � � is shorthand for the intersection of all the elements of

�
and � .)

5.2.4. Fact: [Reynolds]

1. If � � � is defined, then it is a least upper bound of � and � . If � � � is undefined, then � and
� have no common upper bounds.

2.
� � � is a least upper bound of

�
and � .

The existence of lubs for canonical types is easily shown to be equivalent to the existence of
lubs for ordinary types, using the first-order analog of Theorem 4.2.7.6.

In his Ph.D. thesis [63], Ghelli observed that � # possesses neither least upper bounds nor
greatest lower bounds.

5.2.5. Definition: A pair of types & and is downward compatible if there is some type that is a
subtype of both & and .

5.2.6. Fact: [63, p. 92] There exists a pair of downward-compatible � # types & and with no
greatest lower bound.

Proof: Consider the context

6 � " # Top � � # Top � " + # " � � + # �
and the types

& � ! � # "
 � � "
 �
 � ! � # " +
 � + � " +
 � + �

Then both

! � # " +
 � � "
 � +
and

! � # " +
 � � �
are lower bounds for & and , but these two types have no common supertype that is also a
subtype of & and . �
5.2.7. Fact: [Ghelli] There is a pair of � # types with no least upper bound.

Proof: Consider &
 Top and
 Top. �
Since F� , by definition, possesses greatest lower bounds for every pair of types, we might hope

that lubs would also be recovered in F� . Unfortunately, this is not the case.
For example, consider the individual canonical types

� � ! " # 5 $ % � ! � # 5 $ % � "
� � ! " # 5 $ % � ! � # 5 $ % � ��

1 � ! " # 5 $ % � ! � # 5 $ " % � "�
2 � ! " # 5 $ � % � ! � # 5 $ � % � � �

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 86

where � is any closed individual canonical type with the property that " # � � � � " . (For example,
take � � ! � # 5 $ % � � .) Then it is easy to check that the following subtype relations hold in the empty
context:

� �

�
1

�
2�

�
�

� � �

�
�

��� �

Note, however, that � �
1 � �

2.
Now, assume that � and � have some least upper bound; call it � . Then by the syntax-

directedness of canonical subtyping (4.2.6.3) and the fact that � is a supertype of � , � must have
the form

� � ! " # � 1 � ! � # � 2 � � 3 �
By syntax-directedness again and the fact that � � � �

1 (since �
1 is a common upper bound of �

and �),
� 5 $ % � � 1

i.e. � 1 � 5 $ %

" # 5 $ % � 5 $ " % � � 2

i.e. � 2 � � 2 implies " # 5 $ % � " � � 2

i.e. � 2 � � 2 implies � 2 � "
i.e. � 2 � 5 $ % or � 2 � 5 $ " % (up to equivalence) �

and if � 2 � 5 $ " % then

" # 5 $ % � � # 5 $ " % � � 3 � "
i.e. � 3 � " or � 3 � � �

while if � 2 � 5 $ % , then � 3 � " .
Using the assumption that � � � � , we may eliminate the case � 3 � � . Then, using � � � � ,

we may eliminate the case � 2 � 5 $ % . In short, if � and � have any lub then it is equivalent to �
1,

which must therefore also be a lub. But �
1 is not a subtype of �

2, which is a the common upper
bound of � and � ; so �

1 is not a lub of � and � . This contradicts our assumption.

To show that composite canonical types lack lubs, we actually need to show something stronger
about individual canonical types: that they do not even possess complete finite sets of upper
bounds.

5.2.8. Definition: Let & and be types, both closed under 6 . Then a complete finite set of upper
bounds for & and under 6 is a finite set � � � � 1 � � � ' � such that:

1. 6 � & � � � and 6 � � � � for each � � ;
2. if � is a type such that 6 � & � � and 6 � � � , then there is some � � such that 6 � � � � � .

5.2.9. Definition: Define the following infinite series of types:

� 0 � ! " # 5 $ % � "
� ' � 1 � ! " # 5 $ % � � ' �

5.2.10. Lemma: If 	 � � �
 � for some 	 and � , then � � � � .
Proof: By induction on � .

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 87

Case: � � 0
Since 	 � � 0 � � , syntax-directedness (4.2.6.3) gives � � ! " # � 1 � � 2 and 	 � " # � 1 � " � � 2.
From 	 � � � � 0, syntax-directedness gives 	 � 5 $ % � � 1, hence � 1 � 5 $ % . Performing this
substitution, we have 	 � " # 5 $ % � " � � 2, hence (by syntax-directedness again) � 2 � " .

Case: � � � � 1
By syntax-directedness, 	 � � ' � 1 � � gives

� � ! " # � 1 � � 2

	 � " # � 1 � � ' � � 2 �
Using syntax-directedness on 	 � � � � ' � 1, we also have

	 � 5 $ % � �
i.e. � � 5 $ %
	 � " # 5 $ % � � 2 � � ' �

By the induction hypothesis, � 2 � � ' , so � � ! " # 5 $ % � � ' , which is just � ' � 1. �
5.2.11. Lemma: There exists a pair of individual canonical types in F� with no complete finite set
of upper bounds.

Proof: Assume, for a contradiction, that � � � � 1 � � � ' � is a complete finite set of upper bounds
for the types

� � ! " # 5 $ % � ! � # 5 $ % � "
� � ! " # 5 $ % � ! � # 5 $ % � �

and let

� � � ! " # 5 $ � � % � ! � # 5 $ � � % � � �
for every � . Note that each � � is a common supertype of � and � . Also, since there are more � ’s than
� ’s, we can choose some � � � and some � � and � � (with � �� � � such that � � � � � and � � � � � .

From � � � � and � � � � , syntax-directedness gives

� � ! " # � 1 � ! � # � 2 � � 3

" # � 1 � � # � 2 � " � � 3

" # � 1 � � # � 2 � � � � 3 �
Since � � � � � , syntax-directedness again yields

� 5 $ � � % � � 1

" # 5 $ � � % � 5 $ � � % � � 2

" # 5 $ � � % � � # 5 $ � � % � � 3 � � � �
By canonical narrowing (4.2.3.6),

" # 5 $ � � % � � # � 2 � " � � 3

" # 5 $ � � % � � # � 2 � � � � 3 �
and again

" # 5 $ � � % � � # 5 $ � � % � " � � 3

" # 5 $ � � % � � # 5 $ � � % � � � � 3 �
Now by syntax-directedness,

� 3 � " or " # 5 $ � � % � � # 5 $ � � % � 5 $ � � % � 5 $ � 3 %
� 3 � � or " # 5 $ � � % � � # 5 $ � � % � 5 $ � � % � 5 $ � 3 % �

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 88

Since � � " and � � � cannot both be true, we have " # 5 $ � � % � � # 5 $ � � % � 5 $ � � % � 5 $ � 3 % , i.e. (by
syntax-directedness),

" # 5 $ � � % � � # 5 $ � � % � � � � � 3 �
Combining this with the type inclusion in the opposite direction (which we derived above), we
get

" # 5 $ � � % � � # 5 $ � � % � � �
 � 3 �
So, by Lemma 5.2.10, � 3 � � � .

But starting from � � � � � and reasoning analogously, we can also obtain � 3 � � � . Since
� � �� � � , this is a contradiction. Our assumption that � is a complete finite set of upper bounds for
� and � must therefore be false. �

Clearly, if � and � have no complete finite set of upper bounds, then the composite canonical
types 5 $ � % and 5 $ � % have no lub. As in the first-order case, by Theorem 4.2.7.6, F� has lubs iff its
canonical formulation does, so this counterexample for the canonical system amounts to a proof
of the nonexistence of lubs for the original formulation of F� . (Also, in ordinary F� a complete
finite set of upper bounds can always be conjoined to form a single least upper bound, so the
nonexistence of lubs is equivalent to the nonexistence of complete finite sets of upper bounds for
ordinary types.)

The most immediate implication of the nonexistence of least upper bounds is that standard
techniques developed by Reynolds [123] for constructing and analyzing models of first-order
intersection types will not generalize straightforwardly to F� .

Reynolds’ model construction proceeds as follows. First, the set of canonical type expressions
is defined as the limit of a series formed by beginning with the primitives and, at each stage,
first closing under the
 constructor and then forming all finite meets of the resulting set. The
semantics of types is defined by induction on the same series of sets of types: the interpretation of
a type at stage � � 1 is defined in terms of the interpretations of the components of at stage � .

The intended interpretation of an intersection & � is the limit of a diagram containing the
interpretations of & and and all their common supertypes (c.f. Section 2.4.2). But even if & and
 both exist at level � , there might be many common supertypes that will not appear until some
later stage, so the limit with respect to only those supertypes that exist at level � might be too
large. At each level, then, it appears that we would need to recalculate the interpretations of all
the intersection types from previous levels. It is not obvious that this process would converge.

Fortunately, in � � , every & and possess a least upper bound & � , which, furthermore, always
appears at the first stage containing both & and . So & � may be interpreted as the limit of a very
tidy diagram

[[&]] [[]]

[[& �]]

�
�

�� �

�
�

���

with no fear that this interpretation will ever need to be revised.
The nonexistence of least upper bounds in F� renders this important simplification useless. It

is not clear whether a model could be constructed by “incrementally revising” the interpretations
of intersections at each level, as described above. This kind of construction, if it worked at all,
would almost certainly be much more complex than the known models of � � .

5.3. TRANSLATION SEMANTICS 89

5.3 Translation Semantics

Our translation semantics for F� follows the style of Breazu-Tannen, Coquand, Gunter, and Sce-
drov’s translation semantics for � # [10], appropriately extended to deal with intersection types
(c.f. Section 2.4). Intuitively, we read F� typing derivations as terms of the ordinary second-order
� -calculus extended with surjective tupling (system � �) by taking explicit account of the coercions
introduced by the subtyping rules:

� Each F� type is translated to an � � type [[]]. In particular, a quantified type ! " # & � is
translated as ! " � "
 [[&]] �
 [[]], which makes explicit the required coercion function into
& from each appropriate value for " .

� Each subtyping derivation � :: 6 � & � is translated as an � � term [[�]] such that [[6]] �
[[�]] � [[&]]
 [[]].

� Each typing derivation � :: 6 � � � is translated as an � � term [[�]] such that [[6]] � [[�]] � [[]].
In particular, the translation of a type application supplies both a type and an appropriate
coercion function as arguments.

� Intersection types are translated as Cartesian products (leaving their coherence properties
implicit in the translation). This means, in particular, that a phrase of type � will be
interpreted as an empty tuple, effectively throwing away any ill-typed subphrases.

5.3.1 Target Calculus

This section gives the syntax, typing rules, and equational theory of the polymorphic � -calculus,
system � , extended with surjective tuples, which we call � � (c.f. [49]). Rather than choose a
particular denotational or operational semantics for � � , we state an equational theory constraining
a later choice of semantics; this gives us enough information to study both the properties of the
translation in the following section and the equational theory of F� given later on.

5.3.1.1. Definition: The set of � � types is defined by the following abstract grammar:

 ::= "
* 1
 2

* ! " �
* � $ 1 � � ' %

5.3.1.2. Definition: The set of � � terms is defined by the following abstract grammar:

� ::= �
* � � : � �
* � 1 � 2

* � " � �
* � $ %
* � � 1 � � � ' �
* proj� �

5.3.1.3. Convention: For the the following translations, we assume that the sets of term and type
variables of � � include at least the following: a term variable � for each F� term variable � ; a type
variable " and a term variable � 2 for each F� type variable " ; and the term variables � , � , � , � , � ,
and � .

5.3. TRANSLATION SEMANTICS 90

5.3.1.4. Definition: An � � context is a finite sequence of distinct type variables (with no bounds)
and term variables with associated types:

6 ::= � � * 6 � " * 6 � � :
5.3.1.5. Definition: The three-place typing relation 6 � � � of � � is the least relation closed
under the following rules:

6 � � � 6 � � (F-VAR)

6 � � : 1 � � � 2

6 � � � : 1 � � � 1
 2
(F-ARROW-I)

6 � � 1 � 1
 2 6 � � 2 � 1

6 � � 1 � 2 � 2
(F-ARROW-E)

6 � " � � �
6 � � " � � � ! " � (F-ALL-I)

6 � � � ! " �
6 � � $ & % � � & � " � (F-ALL-E)

for all � � 6 � � � � �
6 � � � 1 � � � ' � � � $ 1 � � ' % (F-PROD)

6 � � � � $ 1 � � ' %
6 � proj� � � � (F-PROJ)

5.3.1.6. Convention: When necessary to prevent confusion with other calculi, turnstiles in � �
derivations are written �

�
.

5.3.1.7. Definition: The equality relation on � � terms is the least four-place relation closed under
the following rules:

Conversion rules:
6 � � � :& � � � � �

6 � � � :& � � � � � � � � � � � � (FEQ-BETA)

6 � � " � � � $ � % �
6 � � " � � � $ � % � � � � " � � � (FEQ-BETA2)

6 � � � :& � � � � � �� FV � �
6 � � � :& � � � � � � (FEQ-ETA)

6 � � " � � $ " % � " �� FTV � �
6 � � " � � $ " % � � � (FEQ-ETA2)

6 � proj� � � 1 � � � ' � �
6 � proj� � � 1 � � � ' � � � � � (FEQ-PI)

6 � � � � 1 � � ' �
6 � � � � proj1 � � � � proj' � � � � � $ 1 � � ' % (FEQ-SURJ)

Congruence rules:
6 � � �

6 � � � � � (FEQ-REFL)

5.3. TRANSLATION SEMANTICS 91

6 � � � � + �
6 � � + � � � (FEQ-SYMM)

6 � � 1 � � 2 � 6 � � 2 � � 3 �
6 � � 1 � � 3 � (FEQ-TRANS)

6 � � :& � � � � + �
6 � � � :& � � � � � :& � � + � (FEQ-ABS)

6 � � 1 � � +1 � &
 6 � � 2 � � +2 � &
6 � � 1 � 2 � � +1 � +2 � (FEQ-APP)

6 � " � � � � + �
6 � � " � � � � " � � + � (FEQ-TABS)

6 � � � � + � ! " �
6 � � $ � % � � + $ � % � � � � " � (FEQ-TAPP)

for all � � 6 � � � � � +� � �
6 � � � 1 � � � ' � � � � +1 � � � +' � � � $ 1 � � ' % (FEQ-TUPLE)

6 � � � � + � � $ 1 � � ' %
6 � proj� � � proj� � + � � (FEQ-PROJ)

5.3.2 Ordinary Derivations

It is technically convenient to give translations for both ordinary subtyping and typing derivations
and the algorithmic forms discussed in Sections 4.2.8 and 4.3.2. We begin by translating ordinary
derivations.

5.3.2.1. Definition:

[["]] � "
[[1
 2]] � [[1]]
 [[2]]
[[! " # 1 � 2]] � ! " � "
 [[1]] �
 [[2]]
[[5 $ 1 � � ' %]] � � $[[1]] � � [[']]% �

5.3.2.2. Lemma: � [[&]]� " � [[]] � [[� & � " �]].

Proof: Straightforward. �
5.3.2.3. Definition: The following abbreviations for � � terms are used in the translation:

� 1 ; � 2
def� � � : 1 � � 2 � 1 � �

where 6 �
� � 1 � 1
 2 and 6 �

� � 2 � 2
 3

dist� 1 	 � / 1 � � 	 � / � 4 def� � � :[[5 $ &
 1 � � &
 ' %]] �
� � :[[&]] � � proj1 � � � � � proj' � � � �

dist� 1 � 2 # 	 � / 1 � �
� 2 # 	 � / � 4 def� � � :[[5 $! " # & � 1 � � ! " # & � ' %]] �

� " � � � 2 :"
 [[&]] � � proj1 � � $ " % � 2 � � proj' � � $ " % � 2 � �

5.3.2.4. Definition:

[[� �]] � � �
[[6 � � :]] � [[6]] � � :[[]]
[[6 � " #]] � [[6]] � " � � 2 :"
 [[]]

5.3. TRANSLATION SEMANTICS 92

5.3.2.5. Definition:

[[id :: 6 � �]]
� � � :[[]] � �

(T-SUB-REFL)

[[� ;
�

:: 6 � 1 � 3]]
� [[�]] ; [[

�
]]

(T-SUB-TRANS)

[[� 2 :: 6 � " � 6 " �]]
� � 2

(T-SUB-TVAR)

[[�
 �
:: 6 � & 1
 & 2 � 1
 2]]

� � � :[[1
 2]] � [[�]] ; � ; [[
�
]]

(T-SUB-ARROW)

[[! " # � � �
:: 6 � ! " # & 1 � & 2 � ! " # 1 � 2]]

� � � :[[! " # & 1 � & 2]] � � " � � � 2 :"
 [[1]] �
[[

�
]] � � � $ " % � � 2 ; [[�]] � �

(T-SUB-ALL)

[[� � 1 � � � ' � :: 6 � & � 5 $ 1 � � ' %]]
� � � :[[&]] � � [[� 1]] � � � � [[� ']] � � �

(T-SUB-INTER-G)

[[proj� :: 6 � 5 $ 1 � � ' % � �]]
� proj�

(T-SUB-INTER-LB)

[[dist-ia :: 6 � 5 $ &
 1 � � &
 ' % � &
 5 $ 1 � � ' %]]
� dist� 1 	 � / 1 � � 	 � / � 4

(T-SUB-DIST-IA)

[[dist-iq :: 6 � 5 $! " # & � 1 � � ! " # & � ' % � ! " # & � 5 $ 1 � � ' %]]
� dist� 1 � 2 # 	 � / 1 � �

� 2 # 	 � / � 4
(T-SUB-DIST-IQ)

5.3.2.6. Lemma: If 6 �
� & � , then [[6]] �

�
[[6 � & �]] � [[&]]
 [[]].

Proof: By induction on the structure of the given derivation. �
5.3.2.7. Definition:

[[� � :: 6 � � � 6 � �]]
� �

(T-VAR)

[[� � : 1 � � :: 6 � � � : 1 � � � 1
 2]]
� � � :[[1]] � [[�]]

(T-ARROW-I)

[[� 1 � 2 :: 6 � � 1 � 2 � � 2]]
� [[� 1]] � [[� 2]]

(T-ARROW-E)

[[� " # 1 � � :: 6 � � " # 1 � � � ! " # 1 � 2]]
� � " � � � 2 :"
 [[1]] � [[�]]

(T-ALL-I)

[[� $ � % :: 6 � � $ % � � � " � 2]]
� [[�]] � $[[]]% � [[�]]

(T-ALL-E)

[[for " in & 1 � � & ' � � � :: 6 � for " in & 1 � � & ' � � � �]]
� [[� �]]

(T-FOR)

[[� � 1 � � � ' � :: 6 � � � 5 $ 1 � � ' %]]
� � [[� 1]] � � [[� ']] �

(T-INTER-I)

[[� � � :: 6 � � �]]
� [[�]] � [[�]]

(T-SUB)

5.3.2.8. Theorem: If 6 �
� � � , then [[6]] �

�
[[6 � � �]] � [[]].

Proof: By induction on the structure of the given derivation, using Lemma 5.3.2.6 for the cases
involving subtyping derivations. �

5.3. TRANSLATION SEMANTICS 93

5.3.2.9. Remark: This amounts to a kind of type-soundness property for the pure calculus:
well-formed F� typing derivations translate to well-typed — hence well-behaved — � � terms.

5.3.3 Algorithmic Derivations

We can give an analogous translation for the forms of derivations used by the subtyping algorithm
of Section 4.2.8 and the type synthesis algorithm of Section 4.3.2. This is essentially just the
composition of the translation functions — � �

of Definitions 4.2.8.7 and 4.3.2.5 with the translation
given in the previous section, but it is worth writing out in its own right because it suggests a
possible architecture for the back end of a compiler for F� .

5.3.3.1. Definition:
dist�� � � 1 1 4 � / 1 � � 1 4 � / � 4 def� � � :[[5 $ $ % � 1 � � $ % � ' %]] � �
dist�� � � 1 	 � � � � / 1 � � �	 � � � � / � � 4 def� dist� 1 	 � � � � / 1 � � � 	 � � � � / � � 4 ; dist�� � � 1 � � / 1 � � � � / � 4
dist�� � � 1 � 2 # 	 � � � / 1 � �

� 2 # 	 � � � / � 4 def� dist� 1 � 2 # 	 � � � / 1 � �
� 2 # 	 � � � / � 4 ; dist�� � � 2 # 	 � � � 1 � � / 1 � �� � / � 4 �

5.3.3.2. Definition: We also need to introduce a tuple comprehension notation analogous to the
finite sequence comprehensions used earlier (c.f. 2.1.1). For example, the expression � � � � � � � � * � � �
$ � 1 � � � ' % � stands for the tuple of tuples � � � 1 � � 1 � � � � � ' � � ' � � .
5.3.3.3. Theorem: The composition of the translation — � �

and the translation [[—]] from or-
dinary F� subtyping and typing derivations into � � terms can be characterized by the following
equations:

[[6 �! & � � � 5 $ 1 � � ' %]]
� dist�� � � � � 1 / 1 � � / � 4 � � [[6 �! & � � � 1]] � � [[6 �! & � � � ']] �

(T-ASUBR-INTER)

[[6 �! 5 $ & 1 � � & ' % � � � "]]
� proj� ; [[6 �! & � � � � "]]

(T-ASUBL-INTER)

[[6 �! & 1
 & 2 � $ 1 � � 2 % � "]]
� � � :[[& 1]]
 [[& 2]] � [[6 �! 1 � $ % � & 1]] ; � ; [[6 �! & 2 � � 2

� "]]
(T-ASUBL-ARROW)

[[6 �! ! � # & 1 � & 2 � $ � # 1 � � 2 % � "]]
� � � : ! " � "
 [[& 1]] �
 [[& 2]] � � � " � � � 2 : "
 [[1]] � �

[[6 � � # 1 � & 2 � � 2
� "]] � � � $ " % � � 2 ; [[6 �! 1 � $ % � & 1]] � �

(T-ASUBL-ALL)

[[6 �! " � $ % � "]]
� � � :" � �

(T-ASUBL-REFL)

[[6 �! � � � � "]]
� � � ; [[6 �! 6 � � � � � "]]

(T-ASUBL-TVAR)

[[6 �! � � 6 � �]]
� �

(TA-VAR)

[[6 �! � � : 1 � � � 1
 2]]
� � � :[[1]] � [[6 � � : 1 � � � 2]]

(TA-ARROW-I)

[[6 �! � 1 � 2 � 5 $ 	 � * � �
 	 � � arrowbasis� & 1 � and 6 �! & 2 � � � %]]
� � [[6 �! & 1 � � �
 	 �]] � [[6 �! � 1 � & 1]] �

� [[6 �! & 2 � � �]] � [[6 �! � 2 � & 2]] �
* � �
 	 � � arrowbasis� & 1 � and 6 �! & 2 � � � �

(TA-ARROW-E)

[[6 �! � " # 1 � � � ! " # 1 � 2]]
� � " � � � 2 : "
 [[1]] � � [[6 � " # 1 � � � 2]]

(TA-ALL-I)

5.4. COHERENCE (PRELIMINARY RESULTS) 94

[[6 �! � $ % � 5 $ � � " � 	 � * ! " # � � � 	 � � � allbasis� & 1 � and 6 �! � � � %]]
� � [[6 �! & 1 � ! " # � � � 	 �]] � [[6 �! � 1 � & 1]] � � $[[]]% � [[6 �! � � �]]

* ! " # � � � 	 � � allbasis� & 1 � and 6 �! � � � �

(TA-ALL-E)

[[6 �! for " in & 1 � � & ' � � � 5 $ 1 � � ' %]]
� � [[6 �! � & 1 � " � � � 1]] � � [[6 �! � & ' � " � � � ']] �

(TA-FOR)

Proof: By induction on algorithmic derivations. �

5.4 Coherence (Preliminary Results)

This section states an appropriate coherence property (c.f. Section 2.4) for the translation functions
on ordinary subtyping and typing derivations. Unfortunately, because F� does not have least
upper bounds, a proof of this property lies beyond the scope of this thesis. Section 8.2.2 reviews
the difficulties with extending standard methods of proving coherence and suggests some possible
approaches.

5.4.1. Conjecture: [Coherence of subtyping] If � :: 6 �
� & � and

�
:: 6 �

� & � , then
[[6]] �

�
[[�]] � [[

�
]] � [[&]]
 [[]].

5.4.2. Conjecture: [Coherence of typing] If � :: 6 �
� � � and � :: 6 �

� � � , then [[6]] �
�

[[�]] � [[�]] �
[[]].

5.4.3. Remark: For the remainder of the chapter, we assume that the translation semantics is
coherent.

5.4.4. Lemma: If � :: 6 �
� & � , then [[6]] �

�
[[�]] � [[� !]] � [[&]]
 [[]], where � ! :: 6 �! & � is the

algorithmic derivation whose existence is guaranteed by Theorem 4.2.8.12.

Proof: By Theorem 5.3.3.3 and the coherence of subtyping (5.4.1). �
5.4.5. Lemma: If � :: 6 �

� � � , then [[6]] �
�

[[�]] � [[�]] � [[� !]] � [[]], where � ! :: 6 �! � � and
� ! :: 6 �! & � are the algorithmic derivations of 6 � � � & and 6 � & � whose existence is
guaranteed by Theorem 4.3.2.7 and Lemma 5.4.4.

Proof: By Theorem 5.3.3.3 and Lemma 5.4.4. �

5.5 Equational Theory

As an alternative perspective on the meaning of F� programs, we offer a theory of provable
equality for F� terms. Like the equational theory of � # studied by Cardelli, Martini, Mitchell, and
Scedrov [30], this equational theory is based on a notion of “equality at a type”: 6 � � � � + � .
It includes typed analogues of the familiar � and (conversion rules for both values and types,
plus the usual collection of rules to ensure that the equality relation forms a congruence. The two
novel elements are:

� A rule of intersection equality, EQ-INTER, which states that whenever � and � + are known to be
equal at all of the types 1 � � ' separately, they may be judged equal at 5 $ 1 � � ' % . In particular,
every pair of terms is equal at type � (c.f. Curien and Ghelli’s Top-equality rule [50]).

� A collection of rules for reorganizing for expressions. The main goal of these rules is to
ensure that the for marker can never block a � - or (-conversion step. For example, the
“potential � -redex”

 for " in & 1 � � & ' � � � :& � � � �

5.5. EQUATIONAL THEORY 95

is equal to the expression

for " in & 1 � � & ' � � � :& � � � �
with an actual � -redex.

We begin by presenting the equality rules, establishing some basic properties, and checking that
equality is well-defined with respect to the typing relation, in the sense that 6 � � � � + � implies
6 � � � and 6 � � + � . We then establish a connection between the equational theory and
both the untyped semantics of Section 5.1 and the translation semantics given in Section 5.3 by
showing that the equational theory correctly (though incompletely) describes the behavior of the
interpretations of terms. (A more informative equational description of F� ’s semantics might try
to characterize exactly the valid equivalences between F� derivations induced by the translation
semantics.)

The theory described in this section owes a great deal to conversations with QingMing Ma,
who has studied a related equational theory for an extension of F� [89].

5.5.1 Definitions

5.5.1.1. Definition: The pure equational theory of F� is the least four-place relation 6 � � � � + �
closed under the following rules:

Conversion rules:
6 � � � :& � � � � �

6 � � � :& � � � � � � � � � � � � (EQ-BETA)

6 � � " # & � � � $ � % �
6 � � " # & � � � $ � % � � � � " � � � (EQ-BETA2)

6 � � � :& � � � � 6 � � �
6 � � � :& � � � � � � (EQ-ETA)

6 � � " # & � � $ " % � 6 � � �
6 � � " # & � � $ " % � � � (EQ-ETA2)

Intersection rule:
for all � � 6 � � � � + � �

6 � � � � + � 5 $ 1 � � ' % (EQ-INTER)

Reorganization rules:
6 � for " in & 1 � � & ' � � �

6 � for " in & 1 � � & ' � � � � � (EQ-FOR/VAR)

6 � for " in & 1 � � & ' � � � :& � � � " �� FTV & �
6 � for " in & 1 � � & ' � � � :& � � � � � :& � for " in & 1 � � & ' � � � (EQ-FOR/ABS)

6 � for " in & 1 � � & ' � � 1 � 2 �
6 � for " in & 1 � � & ' � � 1 � 2 � for " in & 1 � � & ' � � 1 � for " in & 1 � � & ' � � 2 � � (EQ-FOR/APP)

6 � for " in & 1 � � & ' � � � # & � � � " �� FTV & �
6 � for " in & 1 � � & ' � � � # & � � � � � # & � for " in & 1 � � & ' � � � (EQ-FOR/TABS)

6 � for " in & 1 � � & ' � � $ & % � " �� FTV & �
6 � for " in & 1 � � & ' � � $ & % � for " in & 1 � � & ' � � � $ & % � (EQ-FOR/TAPP)

5.5. EQUATIONAL THEORY 96

6 � for " in & 1 � � & ' � for � in 1 � � ' � � � " �� � � FTV � �
6 � for " in & 1 � � & ' � for � in 1 � � ' � � � for � in 1 � � ' � for " in & 1 � � & ' � � � (EQ-FOR/FOR)

Congruence rules:
6 � � �

6 � � � � � (EQ-REFL)

6 � � � � + �
6 � � + � � � (EQ-SYMM)

6 � � 1 � � 2 � 6 � � 2 � � 3 �
6 � � 1 � � 3 � (EQ-TRANS)

6 � � :& � � � � + �
6 � � � :& � � � � � :& � � + � &
 (EQ-ABS)

6 � � 1 � � +1 � &
 6 � � 2 � � +2 � &
6 � � 1 � 2 � � +1 � +2 � (EQ-APP)

6 � " # & � � � � + �
6 � � " # & � � � � " # & � � + � ! " # & � (EQ-TABS)

6 � � � � + � ! " # & � 6 � � � &
6 � � $ � % � � + $ � % � � � � " � (EQ-TAPP)

6 � � & � � " � � � � & � � " � � + � �
6 � for " in & 1 � � & ' � � � for " in & 1 � � & ' � � + � � (EQ-FOR)

5.5.1.2. Remark: In general, the conversion, intersection, and reorganization rules are formulated
so that it is obvious that the left-hand side of each equality has the appropriate type, while the type
of the right-hand side is not explicitly mentioned. We could give both types as premises, of course,
but this extra clutter is unnecessary, since it will be easy to show that the right-hand side also has
the appropriate type (c.f. 5.5.2.10). The one exception is the rules EQ-ETA and EQ-ETA2, where the
proof that the right-hand side has the same type as the left-hand side requires a strengthening
lemma thas has not been proved for this system. We give typing premises for both sides of these
rules.

5.5.1.3. Remark: Note that the second premise in EQ-ETA implies the more familiar side condition
“� �� FV � � .” A similar remark applies to EQ-ETA2.

5.5.2 Basic Properties

5.5.2.1. Convention: By Lemmas 5.4.4 and 5.4.5, the interpretation of each algorithmic derivation
is equal to the interpretation of some ordinary derivation with the same conclusion. Since, by
the assumption of coherence, the interpretations of all ordinary derivations are equal, and since
arbitrary subphrases of � � equality statements may be replaced by equal subphrases without
affecting derivability, we often simplify arguments below by dropping the decorations �! and �

�

and regarding any two derivations of the same statement in either typing system as identical.

5.5.2.2. Lemma: [Equality context permutation] If 6 is a permutation of 6 + and both are closed,
then 6 � � � � + � iff 6 + � � � � + � .

Proof: By induction on derivations. �

5.5. EQUATIONAL THEORY 97

5.5.2.3. Convention: [c.f. Convention 4.1.4] Two equality statements or derivations differing only
in the ordering of contexts are considered identical.

5.5.2.4. Lemma: [Equality weakening] Let 6 � � :� � and 6 � " # � � be closed contexts. Then

1. 6 � � � � + � implies 6 � � :� � � � � + � .

2. 6 � � � � + � implies 6 � " # � � � � � + � .

Proof: Straightforward. �
5.5.2.5. Lemma: [Congruence] The following rule is derivable:

6 � � � � + � & 6 � � :& � � �
6 � � � � � � � � � � + � � � � � (EQ-CONG)

Proof: By induction on a derivation of 6 � � :& � � � , using equality strengthening for the base
case � � � �� � and equality weakening for the ARROW-I and ALL-I cases. �
5.5.2.6. Lemma: [Equality subsumption] The following rule is derivable:

6 � � � � + � & 6 � & �
6 � � � � + � (D-EQ-SUB)

Proof: Choose � �� dom 6 � . Then 6 � � :& � � � & by rule VAR. By Lemma 4.1.5, 6 � � :& � & � . By
SUB, 6 � � :& � � � . By EQ-REFL, 6 � � :& � � � � � . By EQ-ABS, 6 � � � :& � � � � � � :& � � � � &
 .
By EQ-APP and the left-hand assumption, 6 � � � :& � � � � � � � :& � � � � + � . By EQ-BETA (twice),
EQ-SYMM, and EQ-TRANS, 6 � � � � + � . �
5.5.2.7. Lemma: [for introduction] If 6 � for " in & 1 � � & ' � � � is a closed statement and 6 � � � ,
then 6 � � � for " in & 1 � � & ' � � � .

Proof: By induction on a derivation of 6 � � � , using, in turn, rules EQ-FOR/VAR . . . EQ-FOR/FOR,
EQ-INTER, and EQ-SUB. �

The next lemma verifies that the for construct never blocks potential � - or (reductions.

5.5.2.8. Lemma:

1. If 6 � for " in & 1 � � & ' � � � � � , then

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � � � �
2. If 6 � for " in & 1 � � & ' � � � $ � % � , then

6 � for " in & 1 � � & ' � � � $ � %
� for " in & 1 � � & ' � � $ � % �
� �

3. If 6 � � � :& � for " in & 1 � � & ' � � � � , then

6 � � � :& � for " in & 1 � � & ' � � �
� � � :& � for " in & 1 � � & ' � � � �
� �

4. If 6 � � � # & � for " in & 1 � � & ' � � $ � % � , then

6 � � � # & � for " in & 1 � � & ' � � $ � %
� � � # & � for " in & 1 � � & ' � � � $ � %
� �

5.5. EQUATIONAL THEORY 98

Proof:

1. By minimal typing (4.3.2.7), there is a type � such that

6 �! for " in & 1 � � & ' � � � � � �
6 � � � �

By the syntax-directedness of type synthesis (4.3.2.3),

6 �! for " in & 1 � � & ' � � � � 1

6 �! � � � 2

� � 5 $ 	 � * � �
 	 � � � arrowbasis� � 1 � and 6 � � 2 � � � % �
and again,

6 �! � & � � " � � � � 1
� for each �

� 1 � 5 $ � 11 � � � 1' % �
Choose 	 � � � . By SUB, 6 � � � � � . By the definition of arrowbasis� (4.3.1.1), there is some � 1

�
such that � �
 	 � � arrowbasis� � 1

� � , i.e. (by Lemma 4.3.1.3) such that 6 � � 1
� � � �
 	 � . By

SUB, 6 � � & � � " � � � � �
 	 � . By FOR, 6 � for " in & 1 � � & ' � � � � �
 	 � . Using for introduction
(5.5.2.7) to get 6 � � � for " in & 1 � � & ' � � � � � , we then have, by EQ-REFL and EQ-APP,

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � for " in & 1 � � & ' � � � � 	 � �
On the other hand, by ARROW-E, 6 � � & � � " � � � � � 	 � , i.e., 6 � � & � � " � � � � � 	 � . By FOR,
6 � for " in & 1 � � & ' � � � � 	 � . So by EQ-FOR/APP,

6 � for " in & 1 � � & ' � � � for " in & 1 � � & ' � � � � for " in & 1 � � & ' � � � � � 	 � �
By EQ-TRANS,

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � � � 	 � �
By EQ-INTER,

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � � � � �
and by EQ-SUB,

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � � � �
2. By minimal typing (4.3.2.7), there is some � such that 6 �! for " in & 1 � � & ' � � � $ � % � � and

6 � � � . By the syntax-directedness of type synthesis (4.3.2.3),

6 �! for " in & 1 � � & ' � � � � 1

� � 5 $ � � � � � 	 � * ! � # � � � 	 � � � allbasis� � 1 � and 6 � � � � � %
6 �! � & � � " � � � � 1

� for each �
� 1 � 5 $ � 11 � � � 1' % �

Choose 	 +� � � , i.e., 	 +� � � 	 � � � 	 � for some � � such that ! � # � � � 	 � � � allbasis� � 1 � and
6 � � � � � . Then by the definition of allbasis (4.3.1.1), there is some � 1

� � � 1 such that
! � # � � � 	 � � allbasis� � 1

� � . By Lemma 4.3.1.3 and SUB, 6 � � & � � " � � � ! � # � � � 	 � . By
ALL-E, 6 � � & � � " � � � $ � % � � � � � � 	 � , i.e. 6 � � & � � " � � $ � % � � � � � � � 	 � . By FOR, 6 �
for " in & 1 � � & ' � � $ � % � � � � � � 	 � . By EQ-FOR/TAPP,

6 � for " in & 1 � � & ' � � $ � % � for " in & 1 � � & ' � � � $ � % � � � � � � 	 � �
By EQ-INTER and EQ-SUB,

6 � for " in & 1 � � & ' � � $ � % � for " in & 1 � � & ' � � � $ � % � �
3. Straightforward.

5.5. EQUATIONAL THEORY 99

4. Straightforward. �
5.5.2.9. Remark: The equational theory of � # studied by Cardelli, Martini, Mitchell, and Sce-
drov includes a more general version of the EQ-TAPP rule, intended to capture the notion of
parametricity [119] in the model:

6 � � � � + � ! " # & � 6 � � � & 6 � � + � &
6 � � � � " � � 	 6 � � � + � " � � 	

6 � � $ � % � � + $ � + % � 	 (EQ-TAPP’)

By analogy, it might be interesting to consider an extended EQ-FOR rule:

6 � � & � " � � � � & + � " � � + �
6 � for " in & 1 � � & � � & � � � � for " in & +1 � � & + � � & +' � � + � (EQ-FOR’)

For our present purposes, however, it is enough to study the simpler system with the EQ-TAPP

and EQ-FOR rules presented above.

We may verify that the equational theory of F� is “well typed” in the sense that equality at a
type implies membership in .

5.5.2.10. Lemma: If 6 � � � � + � , then 6 � � � and 6 � � + � .

Proof: By induction on the given derivation. In each case, the first conclusion, 6 � � � , follows
either immediately or by straightforward application of the induction hypothesis. The second
conclusion is established as follows:

Case EQ-BETA: � � � � :& � � � � � + � � � � � � � 6 � � �
By minimal typing (4.3.2.7), there is some type � such that 6 �! � � � and 6 � � � . By the
syntax-directedness of type synthesis,

6 � � :& �! � � � 1

6 �! � � :& � � � &
 � 1

6 �! � � � 2

� � 5 $ 	 � * � �
 	 � � � arrowbasis� &
 � 1 � and 6 � � 2 � � � %
�

�
5 $ � 1 % if 6 � � 2 � &
� if 6 � � 2 � & �

If 6 � � 2 � & , then 6 � � � & by rule SUB, and, by Lemma 4.1.10, SUB-INTER-LB, and SUB,
6 � � + � � . If 6 � � 2 � & , then � � � and 6 � � + � � directly by SUB. In either case, 6 � � + � by
SUB.

Case EQ-BETA2: � � � " # & � � � $ � % � + � � � � " � � 6 � � �
Similar, using Lemma 4.1.11 instead of 4.1.10.

Case EQ-ETA: � � � � :& � � � � �� FV � � � + � � 6 � � � 6 � � + �
pImmediate.

Case EQ-ETA2: � � � " # & � � $ " % " �� FTV � � � + � � 6 � � � 6 � � + �
Immediate.

5.5. EQUATIONAL THEORY 100

Case EQ-FOR/VAR: � � for " in & 1 � � & ' � � � + � � 6 � � �
By minimal typing 4.3.2.7, there is some � such that 6 �! � � � and 6 � � � . By the
syntax-directedness of type synthesis (4.3.2.3),

6 �! � & � � " � � � � � for each �
� � 5 $ � 1 � � � ' % �

If � � 0, then � � � and 6 � � + � � by SUB. Otherwise, by VAR, each � � � 6 � � , so 6 � 6 � � � �
by SUB-INTER-LB and SUB-TRANS, and 6 � � + � � by VAR and SUB. In either case, 6 � � + � by
one more application of SUB.

Case EQ-FOR/ABS: � � for " in & 1 � � & ' � � � :& � � 6 � � � " �� FTV & �
� + � � � :& � for " in & 1 � � & ' � �

By minimal typing (4.3.2.7), there is some � such that 6 �! � � � and 6 � � � . By the
syntax-directedness of type synthesis (4.3.2.3),

6 �! � & � � " � � � :& � � � � � �
� � 5 $ � 1 � � � ' %
6 � � :& �! � & � � " � � � � � 2
� � � &
 � � 2 �

By FOR, for each � ,
6 � � :& � for " in & 1 � � & ' � � � � � 2 �

By ARROW-I,

6 � � � :& � for " in & 1 � � & ' � � � &
 � � 2 �
i.e., 6 � � + � � � . By INTER-I, 6 � � + � � . By SUB, 6 � � + � .

Cases EQ-FOR/APP, . . . , EQ-FOR/FOR:

Similar.

Cases EQ-INTER, EQ-REFL, . . . , EQ-FOR:

Straightforward. �

5.5.3 Soundness for the Untyped Semantics

It is a simple matter to show that the equational theory is validated by the untyped semantics of
F� in Section 5.1.

5.5.3.1. Theorem: If

(1 *� 6
(2 *� 6
! " � dom 6 � � (1 " � � (2 " � � (" �
! � � dom 6 � � (1 � � � [[]]) � (2 � �
6 � � 1 � � 2 � �

then

[[� 1]])
1

� [[]]) � [[� 2]])
2

�
Proof: By induction on a derivation of 6 � � 1 � � 2 � .

5.5. EQUATIONAL THEORY 101

Case EQ-BETA: � 1 � � � :& � � � � � 2 � � � � � � � 6 � � 1 �
[[� 1]])

1
� [[]]) � [[� 1]])

2
by Lemma 5.1.3.8

� [[� � :& � � � �]])
2

� [[� , � � *erase � � * *erase � � *]])
2

� [[� , � � *erase � � *]])
2

� [[*erase � � *]])
2

� [[*erase � � *]])
2

1 � 3 [[� � � � � � � � � �]]0
2
4 by Lemma 5.1.1.9

� [[� *erase � � * � � � *erase � � * �]])
2

by Lemma 5.1.3.9(4)
� [[*erase � � � � � � � *]])

2
by Lemma 5.1.3.9(5)

� [[� � � � � �]])
2

�
Case EQ-BETA2: � 1 � � " # & � � � $ � % � 2 � � � � " � � 6 � � 1 �

[[� 1]])
1

� [[]]) � [[� 1]])
2

by Lemma 5.1.3.8
� [[�]])

2
by definition

� [[� 2]])
2

by Lemma 5.1.3.9(2) �
Case EQ-ETA: � 1 � � � :& � � � � 2 � � 6 � � 1 � 6 � � 2 �

[[� 1]])
1

� [[]]) � [[� 1]])
2

by Lemma 5.1.3.8
� [[� , � � *erase � � * *erase � � *]])

2

� [[
� *erase � � * � , � � � �]])

2
since � �� FV � � � FV *erase � � * �

� � � [[*erase � � *]])
2

� [[� , � � �]])
2

� [[*erase � � *]])
2

� [[�]])
2

�
Case EQ-ETA2: � 1 � � " # & � � $ " % � 2 � � 6 � � 1 � 6 � � 2 �

As for EQ-BETA2.

Case EQ-INTER: for all � � 6 � � 1 � � 2 � � � 5 $ 1 � � ' %
By the induction hypothesis, [[� 1]])

1
� [[�]]) � [[� 2]])

2
for each � ; hence, by the definition of � ,

[[� 1]])
1

� � 1# � # ' [[�]]) � [[� 2]])
2
, i.e., [[� 1]])

1
� [[5 $ 1 � � ' %]]) � [[� 2]])

2
.

Cases EQ-FOR/VAR � � EQ-FOR/FOR:

Immediate from the definition of erase and Lemma 5.1.3.10.

Case EQ-REFL: 6 � � 1 �
By Lemma 5.1.3.10.

Cases EQ-SYMM, EQ-TRANS:

By the induction hypothesis and the syummetry and transitivity of PERs.

Case EQ-ABS: � 1 � � � :& � � +1 � 2 � � � :& � � +2 6 � � :& � � +1 � � +2 � & +
Choose 	 and � such that 	 � [[&]]) � � . By the induction hypothesis,

[[� +1]])
1

1 � 3 � 4 � [[& +]]) � [[� +2]])
2

1 � 3 ' 4 �
By Lemmas 5.1.3.4 and 5.1.1.10

[[� � :& � � +1]])
1

� 	 � [[& +]]) � [[� � :& � � +2]])
2

� � �
hence, by the definition of
 ,

[[� � :& � � +1]])
1

� [[&
 & +]]) � [[� � :& � � +2]])
2

�

5.5. EQUATIONAL THEORY 102

Case EQ-APP: � 1 � � 1 � 1 � 2 � � 2 � 2 6 � � 1 � � 2 � &
 6 � � 1 � � 2 � &
By the induction hypothesis,

[[� 1]])
1

� [[&
]]) � [[� 2]])
2

�
i.e.,

[[� 1]])
1

� [[&]])
 [[]]) � [[� 2]])
2

�
and

[[� 1]])
1

� [[&]]) � [[� 2]])
2

�
so by the definition of
 ,

[[� 1]])
1

� [[� 1]])
1

� [[]]) � [[� 2]])
2

� [[� 2]])
2

�
i.e.,

[[� 1 � 1]])
1

� [[]]) � [[� 2 � 2]])
2

�
Case EQ-TABS: � 1 � � " # & � � +1 � 2 � � " # & � � +2 6 � " # & � � +1 � � +2 � & + � ! " # & � & +

Choose some � � [[&]]) . By the induction hypothesis,

[[� +1]])
1

1 2 3 - 4 � [[& +]]) 1 2 3 - 4 � [[� +2]])
2

1 2 3 - 4 �
By Lemma 5.1.1.9,

[[� +1]])
1

� [[& +]]) 1 2 3 - 4 � [[� +2]])
2

�
By the definition of � ,

[[� +1]])
1

� � - . [[]] 0 [[& +]]) 1 2 3 - 4 � [[� +2]])
2

�
i.e.

[[� +1]])
1

� [[! " # & � & +]]) � [[� +2]])
2

�
Case EQ-TAPP: � 1 � � +1 $ � % � 2 � � +2 $ � %

6 � � +1 � � +2 � ! " # & � & + 6 � � � & � � � � " � & +
By the induction hypothesis,

[[� +1]])
1

� [[! " # & � & +]]) � [[� +2]])
2

�
i.e.,

[[� +1]])
1

� � - . [[]] 0 [[& +]]) 1 2 3 - 4 � [[� +2]])
2

�
By Lemma 5.1.3.8 and the fact that � � � � � � � � � � for each � ,

[[� +1]])
1

� [[& +]]) 1 2 3 [[�]]0 4 � [[� +2]])
2

�
hence (by Lemma 5.1.3.9(3)),

[[� +1]])
1

� [[� � � " � & +]]) � [[� +2]])
2

�
i.e.,

[[� 1]])
1

� [[� � � " � & +]]) � [[� 2]])
2

�
Case EQ-FOR: � 1 � for " in & 1 � � & ' � � +1 � 2 � for " in & 1 � � & ' � � +2

6 � � & � � " � � +1 � � & � � " � � +2 � � � �
By the induction hypothesis,

[[� & � � " � � +1]])
1

� [[�]]) � [[� & � � " � � +2]])
2

�
i.e. (by Lemma 5.1.3.9(3)),

[[� +1]])
1

� [[�]]) � [[� +2]])
2

�
i.e. (by the definition of erase),

[[� 1]])
1

� [[�]]) � [[� 2]])
2

� �

5.5. EQUATIONAL THEORY 103

5.5.4 Soundness for the Translation Semantics

5.5.4.1. Remark: The soundness of our equational theory for the translation-style semantics given
in Section 5.3 depends in many places on the coherence of the translation. Although we lack a
proof of this property, it is instructive to write out the proof of soundness modulo coherence.

5.5.4.2. Lemma:

1. If 6 �
� � � � and 6 � � :� �

� � � 	 , then

[[6 �
� � � � � � � �]] � � [[6 �

� � � �]]� � � [[6 � � :� �
� � �]] �

2. If 6 � " # & � � � 	 and 6 � � � & , then

[[6 � � � � " � � � � � � " �]] � � [[6 � � � &]] � � 2 � � [[�]]� " � [[6 � " # & � � �]] �
Proof:

1. By induction on the structure of a derivation of 6 � � :� �
� � � 	 .

2. Similar. �
5.5.4.3. Theorem: If 6 �

� � � � + � , then [[6]] �
�

[[6 �
� � �]] � [[6 �

� � + �]] � [[]].

Proof: By induction on the given derivation.

Case EQ-BETA: � � � � :& � � � � � + � � � � � � � 6 �
� � �

By minimal typing (4.3.2.7), there is a type � such that 6 �! � � � and 6 � � � . By the
syntax-directedness of type synthesis (4.3.2.3),

6 �! � � :& � � � &
 � 2

6 � � :& �! � � � 2

6 � � � � 1

� � 5 $ 	 � * � �
 	 � � � arrowbasis� &
 � 2 � and 6 � � 1 � � � % �
Subcase: 6 � � 1 � &

Then � � 5 $ � 2 % and

[[6 �! � � �]] � � [[6 � &
 � 2 � &
 � 2]] � [[6 �! � � :& � � � � &
 � 2]] �
� [[6 � � 1 � &]] � [[6 � � � � 1]] � � �

By SUB-REFL, T-SUB-REFL, and FEQ-BETA,

[[6]] �
�

[[6 �! � � �]]
� � [[6 �! � � :& � � � � &
 � 2]] � � [[6 � � 1 � &]] � [[6 � � � � 1]] � �
� [[5 $ � 2 %]] �

i.e. (by T-SUB and TA-ARROW-I),

[[6]] �
�

[[6 �! � � �]]
� � � � :[[&]] � [[6 � � :& �! � � � 2]] � � [[6 � � � &]] � �
� [[5 $ � 2 %]] �

By FEQ-BETA, Lemma 5.5.4.2, and FEQ-TUPLE,

[[6]] �
� � � � :[[&]] � [[6 � � :& � � � � 2]] � � [[6 � � � &]] �

� � � [[6 � � � &]]� � � [[6 � � :& �
� � � � 2]] �

� [[5 $ � 2 %]] �
By FEQ-REFL and FEQ-APP,

[[6]] �
�

[[6 � 5 $ � 2 % �]] � � � � :[[&]] � [[6 � � :& � � � � 2]] � � [[6 � � � &]] �
� [[6 � 5 $ � 2 % �]] � � � [[6 � � � &]] � � � [[6 � � :& �

� � � � 2]] �
� [[]] �

i.e.,

[[6]] �
�

[[6 � � �]] � [[6 � � + �]] � [[]] �

5.5. EQUATIONAL THEORY 104

Subcase: 6 � � 1 � &
Then � � � and [[6 � � � �]] � � � . By INTER-I, 6 � � � � � � � � � . By T-INTER-I, [[6 � � � � � � � �
�]] � � � . By FEQ-TUPLE and FEQ-TRANS,

[[6]] �
�

[[6 � � � �]] � [[6 � � + � �]] � [[�]] �
By FEQ-REFL and FEQ-APP,

[[6]] �
�

[[6 � � �]] � [[6 � � � �]] � [[6 � � �]] � [[6 � � + � �]] � [[]] �
Case EQ-BETA2: � � � " # & � � � $ � % � + � � � � " � � 6 � � �

Similar.

Case EQ-ETA: � � � � :& � � � 6 � � � � �� FV � � � + � �
By minimal typing (4.3.2.7), there is some � such that 6 �! � � � and 6 � � � . By the
syntax-directedness of type synthesis,

6 � � :& � � � � � 2

� � &
 � 2 �
and again,

6 � � :& �! � � �
6 � � :& �! � � &
� 2 � 5 $ 	 � * � �
 	 � � � arrowbasis � � � � :	 � � � and 6 � � :& � & � � � % �

By Lemma 4.3.1.3, D-ALL-SOME, SUB-ARROW, and SUB-DIST-IA,

6 � � � 5 $arrowbasis � � � � :	 � � � %
� 5 $ � �
 	 � * � �
 	 � � � arrowbasis � � � � :	 � � � and 6 � � :& � & � � � %
� 5 $ � �
 	 � * � �
 	 � � � arrowbasis � � � � :	 � � � %
� 5 $ &
 	 � * � �
 	 � � � arrowbasis � � � � :	 � � � and 6 � � :& � & � � � %
� &
 � 2 �

By SUB, 6 � � :& � � � &
 � 2. By strengthening (4.1.9), 6 � � � &
 � 2. By FEQ-ETA,

[[6]] �
� � � :& � [[6 � � :& � � � &
 � 2]] � � [[6 � � � &
 � 2]] � [[&]]
 [[� 2]] �

i.e.,

[[6]] �
� � � :& � [[6 � � :& � � � &
 � 2]] � [[6 � � :& � � � &]]

� [[6 � � � &
 � 2]]
� [[&]]
 [[� 2]] �

i.e.,

[[6]] �
�

[[6 � � � :& � � � � &
 � 2]] � [[6 � � � &
 � 2]] � [[&
 � 2]] �
By FEQ-REFL and FEQ-APP,

[[6]] �
�

[[6 � &
 � 2 �]] � [[6 � � � :& � � � � &
 � 2]]
� [[6 � &
 � 2 �]] � [[6 � � � &
 � 2]]
� [[]] �

which, by T-SUB, is the desired result.

Case EQ-ETA2: � � � " # & � � $ " % 6 � � � " �� FTV � � � + � �
Similar.

Case EQ-FOR/VAR: � � for " in & 1 � � & ' � � � + � �
6 � for " in & 1 � � & ' � � �

By minimal typing (4.3.2.7), there is some � such that 6 �! � � � and 6 � � � . Since
� & � � " � � � � , we have � � 5 $ 6 � � � � 6 � � % by the syntax-directedness of type synthesis
(4.3.2.3).

5.5. EQUATIONAL THEORY 105

Subcase: � � 0
Then � � � . By FEQ-TUPLE,

[[6]] �
�

[[6 �! for " in & 1 � � & ' � � � �]]
� [[6 � � � �]]
� [[�]] �

By FEQ-APP,

[[6]] �
�

[[6 � � �]] � [[6 �! for " in & 1 � � & ' � � � �]]
� [[6 � � �]] � [[6 � � � �]]
� [[]] �

which, by T-SUB, is the desired result.

Subcase: � � 0
By TA-FOR and TA-VAR,

[[6 � for " in & 1 � � & ' � � � 5 $ 6 � � � � 6 � � %]]
� � [[6 � � & 1 � " � � � 6 � �]] � � [[6 � � & ' � " � � � 6 � �]] �
� � [[6 � � � 6 � �]] � � [[6 � � � 6 � �]] �
� � � � � � � �

By FEQ-REFL and coherence,

[[6]] �
�

[[6 � � �]] � � � � � � �
� proj1 ; [[6 � 6 � � �]] � � � � � � � �
� [[]] �

By FEQ-PI,

[[6]] �
� proj1 ; [[6 � 6 � � �]] � � � � � � � �

� [[6 � 6 � � �]] � �
� [[]] �

from which the desired result follows by transitivity.

Case EQ-FOR/ABS: � � for " in & 1 � � & ' � � � :& � � � + � � � :& � for " in & 1 � � & ' � �
" �� FTV & � 6 � � �

By minimal typing (4.3.2.7), there is some � such that 6 �! � � � and 6 � � � . By the
syntax-directedness of type synthesis (4.3.2.3),

6 �! � � 5 $ &
 1 � � &
 ' % �
where, for each � ,

6 � � :� & � � " � & � � & � � " � � � � �
i.e.,

6 � � :& � � & � � " � � � � �
By A-ARROW-I and A-FOR,

6 �! � + � &
 5 $ 1 � � ' % �
Let

� def� � � � :[[&]] � [[6 � � :& � � & 1 � " � � � 1]] � � � � :[[&]] � [[6 � � :& � � & ' � " � � � ']] �
� + def� � � :[[&]] � � [[6 � � :& � � & 1 � " � � � 1]] � � [[6 � � :& � � & ' � " � � � ']] � �

Then by TA-FOR and TA-ARROW-I,

� � [[6 �! � � 5 $ &
 1 � � &
 ' %]]
� + � [[6 �! � + � &
 5 $ 1 � � ' %]] �

5.5. EQUATIONAL THEORY 106

By FEQ-BETA and FEQ-PI (� times),

[[6]] �
�

dist� 1 	 � / 1 � � 	 � / � 4 � �
� � � :[[&]] � � proj1 � � � � � proj' � � � �
� � +
� [[&
 5 $ 1 � � ' %]] �

By FEQ-APP and FEQ-REFL,

[[6]] �
�

[[6 � &
 5 $ 1 � � ' % �]] � dist� 1 	 � / 1 � � 	 � / � 4 � �
� [[6 � &
 5 $ 1 � � ' % �]] � � +
� [[]] �

By T-SUB,

[[6]] �
�

[[6 � 5 $ &
 1 � � &
 ' % �]] � �
� [[6 � &
 5 $ 1 � � ' % �]] � � +
� [[]] �

as required.

Case EQ-FOR/APP: � � for " in & 1 � � & ' � � 1 � 2

� + � for " in & 1 � � & ' � � 1 � for " in & 1 � � & ' � � 2 �
6 � � �

By minimal typing (4.3.2.7), there is some � such that 6 �! � � � and 6 � � � . For each � , we
have (by the syntax-directedness of type synthesis (4.3.2.3)

6 �! � & � � " � � 1 � � � 1
6 �! � & � � " � � 2 � � � 2
6 �! � & � � " � � 1 � � & � � " � � 2 �

� 5 $ 	 � � * � � �
 	 � � � � arrowbasis� � � 1 � and 6 � � � 2 � 	 � � % �
Let

� � def� 5 $ 	 � � * � � �
 	 � � � � arrowbasis� � � 1 � and 6 � � � 2 � 	 � � % �
Then � � 5 $ � 1 � � � ' % . By T-FOR (twice), FEQ-APP, and T-FOR

[[6]] �
�

[[6 � � + � � �]]
� [[6 � � & � � " � � 1 � � & � � " � � 2 � � � �]]
� [[6 � � � � �]]
� [[� �]] �

By FEQ-TUPLE,

[[6]] �
� � [[6 � � + � � 1]] � � [[6 � � + � � ']] �

� � [[6 � � � � 1]] � � [[6 � � � � ']] �
� � $[[� 1]] � � [[� ']]% �

i.e.,

[[6]] �
�

[[6 � � + � �]] � [[6 � � � �]] � [[�]] �
By FEQ-APP and T-SUB,

[[6]] �
�

[[6 � � + �]] � [[6 � � �]] � [[]] �
Cases EQ-FOR/TABS, EQ-FOR/TAPP, EQ-FOR/FOR:

Similar.

5.5. EQUATIONAL THEORY 107

Case EQ-INTER: � 5 $ 1 � � ' % for all � � 6 � � � � + � �
By the induction hypothesis,

[[6]] �
�

[[6 � � � �]] � [[6 � � + � �]] � [[�]]
for each � . By coherence,

[[6]] �
�

proj� � [[6 � � � 5 $ 1 � � ' %]] � proj� � [[6 � � + � 5 $ 1 � � ' %]] � [[�]]
By FEQ-TUPLE,

[[6]] �
� � proj1 � [[6 � � � 5 $ 1 � � ' %]] � � proj' � [[6 � � � 5 $ 1 � � ' %]] �

� � proj1 � [[6 � � � 5 $ 1 � � ' %]] � � proj' � [[6 � � � 5 $ 1 � � ' %]] � � � $[[1]] � � [[']]% �
By FEQ-SURJ (twice) and FEQ-TRANS,

[[6]] �
�

[[6 � � � 5 $ 1 � � ' %]] � [[6 � � � 5 $ 1 � � ' %]] � [[5 $ 1 � � ' %]] �
Cases EQ-REFL, EQ-SYMM, EQ-TRANS, EQ-ABS, EQ-APP:

By straightforward application of the induction hypothesis.

Case EQ-TABS: � � � " # � � � � � � " # � � � � ! " # � � 	
6 � " # � �

�
� � � + � 	

By the induction hypothesis,

[[6 � " # �]] �
�

[[6 � " # � � � �]] � [[6 � " # � � � + �]] � [[]] �
i.e.,

[[6]] � " � � 2 : "
 [[�]] � �
�

[[6 � " # � � � �]] � [[6 � " # � � � + �]] � [[]] �
By FEQ-ABS and FEQ-TABS,

[[6]] �
�

� " � � � 2 : "
 [[�]] � � [[6 � " # � � � �]]
� � " � � � 2 : "
 [[�]] � � [[6 � " # � � � �]]
� ! " � "
 [[�]] �
 	 �

i.e.,

[[6]] �
�

[[6 � � " # � � � � ! " # � �]] � [[6 � � " # � � � � ! " # � �]] � [[! " # � �]] �
Case EQ-TAPP: � � � $ � % � + � � + $ � % � � � � " � 	

6 �
�

� � � + � ! " # � � 	 6 � � � �
By the induction hypothesis,

[[6]] �
�

[[6 � � � ! " # � �]]
� [[6 � � + � ! " # � �]]
� [[! " # � �]] �

i.e.,

[[6]] �
�

[[6 � � � ! " # � �]]
� [[6 � � + � ! " # � �]]
� ! " � "
 [[�]] �
 [[]] �

By Lemma 5.3.2.6, [[6]] �
�

[[6 � � � �]] � [[�]]
 [[�]]. So by FEQ-TAPP, Lemma 5.3.2.2, and
FEQ-APP,

[[6]] �
�

[[6 � � � ! " # � �]] � $[[�]]% � [[6 � � � �]]
� [[6 � � + � ! " # � �]] � $[[�]]% � [[6 � � � �]]
� [[� � � " �]] �

i.e.,

[[6]] �
�

[[6 � � $ � % � � 	 � " �]]
� [[6 � � + $ � % � � 	 � " �]]
� [[� � � " �]] �

5.5. EQUATIONAL THEORY 108

Case EQ-FOR: � � for " in & 1 � � & ' � � � + � for " in & 1 � � & ' � � + � �
6 � � & � � " � � � � & � � " � � + � �

By the induction hypothesis and T-FOR. �

Chapter 6

Undecidability of Subtyping

In this chapter, we show that the typing relation of � � (and, as an easy corollary, that of F�) is
undecidable. The crux of the difficulty lies in the subtype relation, specifically in the subtyping
rule for quantified types:

� � �
1 � � 1

� � 	 � �
1

� � 2 � �
2� �
 	 � � 1 � � 2 �
 	 � �

1 � �
2

(SUB-ALL)

Though semantically appealing, this rule creates serious problems for reasoning about the subtype
relation. In a quantified type

 	 � � 1 � � 2, instances of
	

in � 2 are naturally thought of as being
bounded by their lexically declared bound � 1. But this connection is destroyed by the second
premise: when

 	 � � 1 � � 2 is compared to

 	 � �

1 � �
2, instances of

	
in both � 2 and

�
2 are bounded

by
�

1 in the premise
� � 	 � �

1
� � 2 � �

2.
Cardelli and Wegner’s original definition of Fun [33] used a weaker quantifier rule in which
 	 � � 1 � � 2 is a subtype of

 	 � �
1 � �

2 only if � 1 and
�

1 are identical; this variant can easily be shown
to be decidable. Later authors, including Cardelli, have chosen to work with the more powerful
formulation considered in this thesis.

Curien and Ghelli used a proof-normalization argument to show that � � typechecking is co-
herent (that is, that all derivations of a statement

� � � �
have the same meaning under certain

assumptions about the semantics). One corollary of their proof is the soundness and completeness
of a natural syntax-directed procedure for computing minimal typings of � � terms, with a sub-
routine for checking the subtype relation (algorithm � �� of Section 2.6); the same procedure had
been developed by the group at Penn and by Cardelli for use in his Quest typechecker [Gunter,
personal communication, 1990]. The termination of Curien and Ghelli’s typechecking procedure
is equivalent to the termination of the subtyping algorithm. Ghelli, in his Ph.D. thesis [63], gave
a proof of termination; unfortunately, this proof was later found to contain a subtle mistake. In
fact, Ghelli soon realized that there are inputs for which the subtyping algorithm does not termi-
nate [personal communication, 1991]. Worse yet, these cases are not amenable to any simple form
of cycle detection: when presented with one of them, the algorithm generates an infinite sequence
of recursive calls with larger and larger contexts. This discovery reopened the question of the
decidability of � � .

The undecidability result presented here began as an attempt to formulate a more refined
algorithm capable of detecting the kinds of divergence that could be induced in the simpler one.
A series of partial results about decidable subsystems eventually led to the discovery of a class
of input problems for which increasing the size the input by a constant factor would increase the
search depth of a succeeding execution of the algorithm by an exponential factor. Besides dispelling

109

6.1. A FLAWED DECIDABILITY ARGUMENT FOR F� 110

previous intuitions about why the problem ought to be decidable, this construction suggested a
trick for encoding natural numbers, from which it was a short step to an encoding of two-counter
Turing machines.

After reviewing the flaw in Ghelli’s earlier proof of termination for the subtyping algorithm
� �� (Section 6.1) and presenting an example where the algorithm fails to terminate (Section 6.2), we
identify a fragment of � � that forms a convenient target for the reductions to follow (Sections 6.3
and 6.4). The main result is then presented in two steps.

1. We first define an intermediate abstraction, called rowing machines (Section 6.5); these bridge
the gap between � � subtyping problems and two-counter machines by retaining the notions
of bound variables and substitution from � � while introducing a computational abstraction
with a finite collection of registers and an evaluation regime based on state transformation.

An encoding of rowing machines as � � subtyping statements is given and proven correct,
in the sense that a rowing machine

�
halts iff its translation � � � �

is a derivable statement
in � � (Section 6.6).

2. We then review the definition of two-counter machines (Section 6.7) and show how a two-
counter machine � may be encoded as a rowing machine � � � �

such that � halts iff � � � �
does (Section 6.8).

Section 6.9 shows that the undecidability of subtyping implies the undecidability of typechecking
for � � ; Sections 6.10 and 6.11 extend the result to F� and some related systems. Section 6.12
discusses its pragmatic import.

6.1 A Flawed Decidability Argument for F�
Ghelli’s Ph.D. thesis [63, pp. 80–83] argues that the algorithm � �� always terminates and is therefore
a decision procedure for � � typechecking. This section briefly sketches Ghelli’s argument and
shows where it goes wrong. The problem is quite subtle: the incorrect proof was read by a number
of people (including the present author) before the flaw was detected, independently, by Curien
and Reynolds.

The idea, as usual, is to define a well-founded complexity metric and show that if � 	 is a
subproblem of � , then complexity� � 	 � is strictly less than complexity� � �

.

6.1.1. Definition: The function index
 � 	 �
gives the index in

�
(counting from right to left) of the

binding of
	

.

6.1.2. Definition: The left depth of a type variable
	

in a type
�

and a context
�

is the number of
bound type variables in both

�
and

�
at

	
’s point of definition. To formalize this concept, it is

convenient to assume that all binding occurrences of type variables in
�

and
�

have been renamed
so as to be distinct from each other (or better yet, that deBruijn indices are used instead of variable
names). Now define:

ld � 	 � � � � � �
1 �

len � � � � ld � 	 � � �

if
	

is bound in
�

index
 � 	 �
otherwise

ld � 	 � � � �
the number of instances of

in whose scope the binding occurrence

of
	

(in
�

) falls.

(As Ghelli observes, “The definition is simpler in terms of DeBruijn indices, as the left-depth of any
variable is simply the difference among the indexes of that variable and the ’outermost variable’,

6.2. NONTERMINATION OF THE F� SUBTYPING ALGORITHM 111

taken in any environment [i.e. context] where they are both defined, plus one; the “outermost
variable” is the first variable bound in the environment, or the first one bound in the term if the
environment is empty.”)
Define the left depth of a type � in a context

�
to be the maximum left depth of any type variable

in � :

ld � � � � � �
max � � 0 � � � ld � 	 � � � � � � 	

TV � � � � � �
Define the complexity of a subtyping statement � � � � � � �

to be the following pair:

complexity� � � � � � � � � ld � � � � � � ld� � � � � �
size � � � � size� � � � �

Order the range of complexity� � � � � � �
lexicographically. Note that this ordering is well founded

(contains no infinite descending chains).

This ordering operates as desired for all the rules of � �� with the exception of NVAR. For an
example of its misbehavior in this case, let� � 	 � �
 � � Top � Top

� � 	 	 � Top �
Then

ld � 	 � � � �
ld� 	 � 	 � � ��
1 � index
 � 	 ��
2

�
whereas

ld � �
 � � Top � Top
� � � � �

ld � � � �
 � � Top � Top
� � � ��

1 � len � � � � ld � � � �
 � � Top � Top
� ��

3 � ld � � � �
 � � Top � Top
� ��

3 �
So the instance� �
 � � Top � Top � Top� � 	 � Top

of NVAR has a premise of greater complexity than its conclusion.

6.2 Nontermination of the F� Subtyping Algorithm

Ghelli recently dispelled the widely held belief that the algorithm � �� terminates on all inputs, by
discovering the following example.

6.2.1. Definition: In this example (and below), an additional abbreviation is used:

� � def�
 	 � � � 	
The salient property of this notation is that it allows the right- and left-hand sides of subtyping
statements to be swapped:

6.2.2. Fact:
� � � � � � �

is derivable iff
� � � � � is.

6.3. A DETERMINISTIC FRAGMENT OF F� 112

6.2.3. Example: Let � �
 	 � � �
 � � 	 � � � �
. Then executing the algorithm � �� on the input problem	

0
� � � 	

0 � �
 	
1

� 	
0 � � 	

1
�

leads to the following infinite sequence of recursive calls:	
0

� � � 	
0 �
 	

1
� 	

0 � � 	
1	

0
� � �
 	

1 � � �
 	
2

� 	
1 � � 	

2
� �
 	

1
� 	

0 � � 	
1	

0
� � � 	

1
� 	

0
� � �
 	

2
� 	

1 � � 	
2
� � � 	

1	
0

� � � 	
1

� 	
0

� 	
1 �
 	

2
� 	

1 � � 	
2	

0
� � � 	

1
� 	

0
� 	

0 �
 	
2

� 	
1 � � 	

2	
0

� � � 	
1

� 	
0

�
 	
2 � � �
 	

3
� 	

2 � � 	
3
� �
 	

2
� 	

1 � � 	
2	

0
� � � 	

1
� 	

0
� 	

2
� 	

1
� � �
 	

3
� 	

2 � � 	
3
� � � 	

2	
0

� � � 	
1

� 	
0

� 	
2

� 	
1

� 	
2 �
 	

3
� 	

2 � � 	
3	

0
� � � 	

1
� 	

0
� 	

2
� 	

1
� 	

1 �
 	
3

� 	
2 � � 	

3	
0

� � � 	
1

� 	
0

� 	
2

� 	
1

� 	
0 �
 	

3
� 	

2 � � 	
3

etc.

(The
	

-conversion steps necessary to maintain the well-formedness of the context when new
variables are added are performed tacitly here, choosing new names so as to clarify the pattern of
regress.)

6.2.4. Remark: This example is apparently the smallest subtyping statement that causes the � ��
algorithm to diverge [Ghelli, personal communication, 1991].

6.3 A Deterministic Fragment of F�
The pattern of recursion in Ghelli’s example is an instance of a more general scheme — one
so general, in fact, that it can be used to encode termination problems for two-counter Turing
machines. We now turn to demonstrating this fact.

6.3.1. Definition: The positive and negative occurrences in a statement
� � � � �

are defined as
follows:

� The type � and the bounds in
�

are negative occurrences;
�

is a positive occurrence.
� If

�
1�

�
2 is a positive (respectively, negative) occurrence, then

�
1 is a negative (positive)

occurrence and
�

2 is a positive (negative) occurrence.
� If

 	 � �
1 � �

2 is a positive (negative) occurrence, then
�

1 is a negative (positive) occurrence
and

�
2 is a positive (negative) occurrence.

6.3.2. Fact: The rules defining � �� (2.6.10) preserve the signs of occurrences: wherever a metavari-
able

�
appears in a premise of one of the rules, it has the same sign as the corresponding occurrence

of
�

in the conclusion.

In what follows, it will be convenient to work with a fragment of � �� with somewhat simpler
behavior:

� we drop the � type constructor and its subtyping rule;
� we introduce a negation operator explicitly into the syntax and include a rule for comparing

negated expressions;
� we drop the left-hand premise from the rule for comparing quantifiers, requiring instead

that when two quantified types are compared, the bound of the one on the left must be Top;
� we consider only statements where no variable occurs positively, allowing us to drop the

NREFL rule; and

6.3. A DETERMINISTIC FRAGMENT OF F� 113

� we disallow Top in negative positions.

Since the � �� rules preserve positive and negative occurrences, we may redefine the set of
types so that positive and negative types are separate syntactic categories. At the same time, we
simplify each category appropriately.

6.3.3. Definition: The sets of positive types
� �

and negative types
� �

are defined by the following
abstract grammar:

� �
::= Top

� � � � �
 	 � � � � � �
� �

::=
	 � � � � �
 	 � � �

A negative context
� �

is one whose bounds are all negative types.

6.3.4. Definition: � �� (
�

for polarized) is the least relation closed under the following rules:

� � � � � � Top (PTOP)

� � � � � � 	 � � � �
� � � 	 � � � (PVAR)

� � � 	 � � � � � � � � �
� � �
 	 � � � �
 	 � � � � � � (PALL)

� � � � � � � �
� � � � � � � � � � (PNEG)

� �� is almost the system we need, but it still lacks one important property: � � is not a
conservative extension of � �� . For example, the non-derivable � �� statement� � Top �
 	 � 	
corresponds, under the abbreviations for � and

 	 � 	
, to the derivable � � statement�
 	 � Top � 	 �
 	 � Top � 	 �

To achieve conservativity, we restrict the form of � �� statements even further so that negated types
can never be compared with quantified types.

6.3.5. Definition: Let � be a fixed nonnegative number. The sets of � -positive and � -negative types
are defined by the following abstract grammar:� �

::= Top
�
 	

0
� � �

0 � � 	 � � � �� � � � �
� �

::=
	 �
 	

0 � � 	 � � � � �

We stipulate, moreover, that an � -positive type

 	

0
� � �

0 � � 	 � � � �� � � � �
is closed only if no

	 �
appears free in any

� �
.

An � -negative context
� ��

is one whose bounds are all � -negative types.

6.3.6. Definition: An � �� statement has the form
� �� � � �� � � ��

, where
� ��

is an � -negative context,

� ��
is an � -negative type, and

� ��
is an � -positive type.

6.3.7. Convention: To reduce clutter, we drop the superscripts � and 	 and usually leave �
implicit in what follows.

6.3.8. Definition: � �� (D for deterministic) is the least relation closed under the following rules:

� � � � Top (DTOP)

6.4. EAGER SUBSTITUTION 114

� � � � 	 � �
 	
0

� �
0 � � 	 � � � � � � �

� � 	 �
 	
0

� �
0 � � 	 � � � � � � � (DVAR)

� � 	
0

� �
0 � � 	 � � � � � � � �� �
 	

0 � � 	 � � � � �
 	
0

� �
0 � � 	 � � � � � � � (DALLNEG)

Using the earlier abbreviations for negation, multiple quantification, and unbounded quan-
tification, we may read every � �� statement as an � �� statement. Under this interpretation, the
two subtype relations coincide for statements in their common domain:

6.3.9. Lemma: � �� is a conservative extension of � �� : if � is an � �� statement, then � is derivable
in � �� iff it is derivable in � �� .

Proof: The implication � �� � � �� is straightforward. The other direction, � �� � � �� proceeds by
induction on � �� derivations, using the form of � �� statements to constrain the possible forms of
� �� derivations whose conclusions are de-abbreviated � �� statements. �

These simplifications justify a useful change of perspective. Since the only rule in � �� with
two premises has been replaced by a rule with one premise, derivations in this fragment are
linear (each node has at most one subderivation). Moreover, every metavariable in the premise
of each rule also appears in the conclusion, which makes the step from conclusion to premise
deterministic. The syntax-directed construction of such a derivation may be thus be viewed as
a deterministic state transformation process, where the subtyping statement being verified is the
current state and the single premise that must be recursively verified, if any, is the next state. In
other words, a subtyping statement is thought of as an instantaneous description of a kind of
automaton.

From now on we use terminology that makes the intuition of “subtyping as state transforma-
tion” more explicit. Analogous terminology and notation will be used to describe the other calculi
introduced below.

6.3.10. Definition: The one-step elaboration function � for � �� -statements is the partial mapping
defined by:

� � � � � ���
��

� 	 if � is the conclusion of an instance of DVAR or DALLNEG and� 	 is the corresponding premise
undefined if � is an instance of DTOP.

6.3.11. Definition: � 	 is an immediate subproblem of � in � �� , written � 	 � � � 	 , if � 	 � � � � �
.

6.3.12. Definition: � 	 is a subproblem of � in � �� , written � �	 � � � 	 , if either � � � 	 or � 	 � � � 1

and � 1 �	 � � � 	 .
6.3.13. Definition: The elaboration of a statement � is the sequence of subproblems encountered
by the subtyping algorithm given � as input.

6.4 Eager Substitution

To make a smooth transition between the subtyping statements of � � and the rowing machine
abstraction to be introduced in Section 6.5, we need one more variation in the definition of
subtyping, where, instead of maintaining a context with the bounds of free variables, the quantifier
rule immediately substitutes the bounds into the body of the statement.

6.4.1. Definition: The simultaneous, capture-avoiding substitution of �
0 through � �

, respectively,
for

	
0 through

	 �
in

�
, is written � �

0 	 	
0 � � � � 	 	 � � �

.

6.4. EAGER SUBSTITUTION 115

6.4.2. Definition: An � �� statment is an � �� statement with empty context.

6.4.3. Definition: � �� (� for flattened) is the least relation closed under the following rules:
� � � Top (FTOP)

� � �
0 	 	

0 � � � � 	 	 � � � � � �
0 	 	

0 � � � � 	 	 � � ��
 	
0 � � 	 � � � � �
 	

0
� �

0 � � 	 � � � � � � � (FALLNEG)

6.4.4. Remark: Of course, an analogous reformulation of full � � would not be correct. For
example, in the non-derivable statement� �
 	 � Top � Top

� � �
 	 � Top � 	 �
substituting Top for

	
in the bodies of the quantifiers yields the derivable statement

�
Top � Top.

But having restricted our attention to statements where variables appear only negatively, we are
guaranteed that the only position where the elaboration of a statement can cause a variable to
appear by itself in the body of a subproblem is on the left-hand side, where it will immediately be
replaced by its bound. We are therefore safe in making the substitution eagerly.

In the remainder of this section, we show that � �� is a conservative extension of � �� .

6.4.5. Lemma: Let �
0 � � � �

be � -negative types and assume that the � �� statement
	

0
� �

0 � �	 � � � � � � � � � � is closed. Then if � �
0 	 	

0 � � � � 	 	 � � � � � �
0 	 	

0 � � � � 	 	 � � � � � �
0 	 	

0 � � � � 	 	 � � �
is derivable in � �� , so is

	
0

� �
0 � � 	 � � � � � � � � � � �

Proof: By induction on the size of the given derivation. (Observe that by the stipulation in 6.3.5
that no

	 �
appears in any � �

, the � �
must all be closed.)

Case DTOP: � �
0 	 	

0 � � � � 	 	 � � � �
Top

Since variables can only occur negatively, � cannot be a variable, so � �
Top and the result is

immediate.

Case DVAR: � �
0 	 	

0 � � � � 	 	 � � � � �
We may assume that

� �� 	 �
for any of the distinguished

	 �
’s, since otherwise we would have

� � � �
and the statement

	
0

� �
0 � � 	 � � � � � � � � � � would not be closed. So

�
must itself be�

. By assumption, we have a subderivation

� �
0 	 	

0 � � � � 	 	 � � � � � � �
0 	 	

0 � � � � 	 	 � � � � � � � � � �
0 	 	

0 � � � � 	 	 � � � �
that is,

� �
0 	 	

0 � � � � 	 	 � � � � � �
0 	 	

0 � � � � 	 	 � � � � � � � � � � �
0 	 	

0 � � � � 	 	 � � � �
By the induction hypothesis,	

0
� �

0 � � 	 � � � � � � � � � � � � � �
By DVAR,	

0
� �

0 � � 	 � � � � � � � � � � �
Case DALLNEG: � �

0 	 	
0 � � � � 	 	 � � � �
 �

0 � � � � � � � 	2� �
0 	 	

0 � � � � 	 	 � � � �
 �
0

� � 	0 � � � � � � 	� � � � 	2
Since � cannot be a variable (else

	
0

� �
0 � � 	 � � � � � � � � � � would not be an � �� statement),

we have
� �
 �

0
� �

0 � � � � � � � � � � 2
� 	� � � �

0 	 	
0 � � � � 	 	 � � � �

� 	2 � � �
0 	 	

0 � � � � 	 	 � � � 2 �
For

�
, there are two cases to consider:

6.4. EAGER SUBSTITUTION 116

Subcase:
� � 	 �

Then
� � �
 �

0 � � � � � � � 	2 �
By assumption, there is a subderivation

� �
0 	 	

0 � � � � 	 	 � � � � �
0

� � �
0 	 	

0 � � � � 	 	 � � �
0 � � � � � � �

0 	 	
0 � � � � 	 	 � � � � � � 	2 � � 	2 �

i.e. (since we stipulated
	 � �

FTV � � � �
, so

	 � �
FTV � � 	� �

for any �),

� �
0 	 	

0 � � � � 	 	 � � � � �
0

� � �
0 	 	

0 � � � � 	 	 � � �
0 � � � � � � �

0 	 	
0 � � � � 	 	 � � � �

� � �
0 	 	

0 � � � � 	 	 � � � 2 � � �
0 	 	

0 � � � � 	 	 � � � 	2 �
By the induction hypothesis,	

0
� �

0 � � 	 � � � � � � � �
0

� �
0 � � � � � � � � � 2 � � 	2 �

By DALLNEG,	
0

� �
0 � � 	 � � � � � � �
 �

0 � � � � � � � 	2 �
 �
0

� �
0 � � � � � � � � � � 2 �

By DVAR,	
0

� �
0 � � 	 � � � � � � � 	 � �
 �

0
� �

0 � � � � � � � � � � 2

Subcase:
� �� 	 �

Then � �
 �
0 � � � � � � �

2� 	2 � � �
0 	 	

0 � � � � 	 	 � � �
2 �

By assumption, we again have a subderivation

� �
0 	 	

0 � � � � 	 	 � � � � �
0

� � �
0 	 	

0 � � � � 	 	 � � �
0 � � � � � � �

0 	 	
0 � � � � 	 	 � � � � � � 	2 � � 	2 �

that is,

� �
0 	 	

0 � � � � 	 	 � � � � �
0

� � �
0 	 	

0 � � � � 	 	 � � �
0 � � � � � � �

0 	 	
0 � � � � 	 	 � � � �

� � �
0 	 	

0 � � � � 	 	 � � � 2 � � �
0 	 	

0 � � � � 	 	 � � �
2 �

By the induction hypothesis,	
0

� �
0 � � 	 � � � � � � � �

0
� �

0 � � � � � � � � � 2 � �
2 �

By DALLNEG,	
0

� �
0 � � 	 � � � � � � �
 �

0 � � � � � � �
2 �
 �

0 � � � � � � � 2 � �
6.4.6. Lemma: If

� � � �
is derivable in � �� , then it is derivable in � �� .

Proof: By induction on the original derivation, using Lemma 6.4.5 for the FALLNEG case. �
6.4.7. Lemma: If

	 � � � � � � � �
is derivable in � �� , then � � 	 	 � � � � � 	 	 � � � � � 	 	 � �

has an
� �� -derivation of equal or lesser size.

Proof: By induction on the given derivation. �
6.4.8. Lemma: If

� � � �
is an � �� -statement and is derivable in � �� , then it is derivable in � �� .

Proof: By induction on the size of the original derivation, using Lemma 6.4.7 for the DALLNEG

case. �
6.4.9. Lemma: � �� is a conservative extension of � �� .

Proof: By Lemmas 6.4.6 and 6.4.8. �

6.5. ROWING MACHINES 117

6.5 Rowing Machines

The reduction from two-counter Turing machines to � � subtyping statements is easiest to under-
stand in terms of an intermediate abstraction called a rowing machine, which makes more stylized
use of bound variables.

A rowing machine is a tuple of registers�� �
1 � � � � �� �

where the contents of each register is a row. By convention, the first register is the machine’s
program counter (PC). To move to the next state, the PC is used as a template to construct the new
contents of each of the registers from the current contents of all of the registers (including the PC).

6.5.1. Definition: The set of rows (of width �) is defined by the following abstract grammar:�
::=

	 �
1 � � � �� � 	

1 � � 	 � � � �
1 � � � � �

�
HALT

The variables
	

1 � � 	 �
on the left of

� 	
1 � � 	 � � � �

1 � � � � �
are binding occurrences whose scope is the

rows
�

1 through
� �

. We regard rows that differ only in the names of bound variables as identical.

6.5.2. Definition: A rowing machine (of width �) is a tuple
�� �

1 � � � � ��
, where each

� �
is a row of width

� with no free variables.

6.5.3. Definition: The one-step elaboration function � for rowing machines of width � is the partial
mapping

� � �� �
1 � � � � �� � � �� � �

1 	 	
1 � � � � 	 	 � � �

11 � � � �
1 	 	

1 � � � � 	 	 � � �
1
� ��

if
�

1
� � 	

1 � � 	 � � � �
11 � � � 1

� �
undefined if

�
1

�
HALT.

(Since rowing machines consist only of closed rows, we need not define the evaluation function
for the case where the PC is a variable. Also, since all the

� �
are closed, the substitution is trivially

capture-avoiding.)

6.5.4. Notational conventions:

1. When the symbol “—” appears as the � th component of a compound row
� 	

1 � � 	 � � � �
1 � � � � �

, it
stands for the variable

	 �
.

2. To avoid a proliferation of variable names in the examples and definitions below, we some-
times use numerical indices (like deBruijn indices [56]) rather than names for variables: the
“variable” # � refers to the � th bound variable of the row in which it appears; ## � refers to
the � th bound variable of the row enclosing the one in which it appears; and so on.

3. When these abbreviations are used, the binding lists
� 	

1 � � 	 � �
are omitted.

For example, the nested row
� 	

1 � � 	 3
� � 	

1
� � �

1 � � � 3
� � 	

1
� �

1
� �

3
� � 	

1
�

would be abbreviated as�
—

� �
##1

�
#1

�
—

� �
#1

�
.

4. It is convenient to introduce names for closed rows and use these to build up descriptions
of other rows. For example, the compound row� � �

#1
�
#1

�
#1

� �
#3

�
#2

� � �
—

�
—

�
—

� � �
#1

�
#1

�
#1

� �
might be written as�

Z
�
Y

�
X

� �

6.5. ROWING MACHINES 118

where

X
� �

#1
�
#1

�
#1

�
Y

� �
—

�
—

�
—

�
Z

� �
X

�
#3

�
#2

� �
6.5.5. Definition: A rowing machine

�
halts if there is a machine

� 	 such that
� �	 � �

� 	 and the
PC of

� 	 is the instruction HALT.

6.5.6. Example: The simplest rowing machine,
��
HALT

��
, halts immediately. The next simplest,�� �

HALT
� ��

, takes one step and then halts. Another simple one,
�� �

—
� ��

, leads to an infinite elaboration
with every state identical to the first.

6.5.7. Example: The machine��
LOOP

�
A

�
B

�� �
where

LOOP
� �

—
�
#3

�
#2

�
A

�
an arbitrary row

B
�

an arbitrary row

executes an infinite loop where the contents of the second and third register are exchanged at
successive steps:��

LOOP
�

A
�

B
��

	 � �
��
LOOP

�
B

�
A

��
	 � �

��
LOOP

�
A

�
B

��
	 � � . . .

6.5.8. Example: The row

BRI
� �

#2
�
—

�
encodes an indirect branch to the contents of register 2 at the moment when BRI is executed. The
machine��

BRI
� �

BRI
� �

BRI
�

HALT
� � ��

elaborates as follows:��
BRI

� �
BRI

� �
BRI

�
HALT

� � ��

	 � �
�� �

BRI
� �

BRI
�

HALT
� � � �

BRI
� �

BRI
�

HALT
� � ��

	 � �
��
BRI

� �
BRI

�
HALT

� ��
	 � �

�� �
BRI

�
HALT

� � �
BRI

�
HALT

� ��
	 � �

��
BRI

�
HALT

��
	 � �

��
HALT

�
HALT

�� �

6.6. ENCODING ROWING MACHINES AS SUBTYPING PROBLEMS 119

6.6 Encoding Rowing Machines as Subtyping Problems

We now show how a rowing machine
�

can be encoded as a subtyping problem � � � �
such that�

halts iff � � � �
is derivable in � �� .

The idea of the translation is that a rowing machine
� � �� �

1 � � � � ��
becomes a subtyping

statement � � � �
of the form�

. . . � � . . . � � �
1
�
. . .

� �
(where we use � to denote the translation of both rowing machines and rows), constructed so

that
� if

�
1

�
HALT, then the elaboration of � � � �

halts (by reaching a subproblem where Top
appears on the right-hand side);

� if
�

1
� � 	

1 � � 	 � � � �
11 � � � 1

� �
, then the elaboration of � � � �

reaches a subproblem that encodes
the rowing machine � � �� �

1 � � � � �� � � �� � �
1 	 	

1 � � � � 	 	 � � �
11 � � � �

1 	 	
1 � � � � 	 	 � � �

1
� �� �

In more detail, if
� � �� � 	

1 � � 	 � � � �
11 � � � 1

� � � � � � ��
, then � � � �

is essentially the following:
�
 �

1 � � � � � � �
 � 	1 � �
1 � � � 	� � � � � � . . .

�
�
 �

1
� � � �

1
� � � � � � � � � � � � � �
 	

1 � � 	 � � � �
 	 	1 � � � �
11

� � � 	 	� � � � �
1
� � � � � � �

11
� � � �

The elaboration of this statement proceeds as follows:

1. The current contents of the registers
�

1 � � � �
are temporarily saved by matching the quantifiers

on the right with the ones on the left; this has the effect of substituting the bounds � � �
1
� � �� � � � �

for free occurrences of the variables
�

1 � � � �
on the left-hand side.

The right- and left-hand sides are also swapped (by the � constructor on both sides), so that
what now appears on the left is a sequence of variable bindings for the free variables

	
1 � � 	 �

of
�

1: �
 	
1 � � 	 � � � �
 	 	1 � � � �

11
� � � 	 	� � � � �

1
� � � � � � �

11
� �

�
 � 	1 � � � �
1
� � � � 	� � � � � � � � � . . .

2. The saved contents of the original registers now appear on the right-hand side. When these
are matched with the quantifiers on the left, the result is that the old values of the registers
are substituted for the variables

	
1 � � 	 �

in the body
� �
 	 	1 � � � �

11
� � � 	 	� � � � �

1
� � � � � � �

11
� �

of the left-hand side.

Swapping right- and left-hand sides again yields a statement of the same form as the
original, where the appropriate instances of � � �

11
� � � � � �

1
� �

appear as the bounds of the
outer quantifiers on the right:�

. . . � �
 	 	1 � � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

� � �	 	� � � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � �
1
� � �� � � � �

1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

�
i.e., �

. . . � �
 �
1

� � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

� � �� � � � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � �
1
� � �� � � � �

1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

� �
To be able to get back to a statement of the same form as the original, one piece of additional
mechanism is required: besides the � variables used to store the old state of the registers, a variable�

0 is used to hold the original value of the entire left-hand side of � � � �
. This variable is used at

6.6. ENCODING ROWING MACHINES AS SUBTYPING PROBLEMS 120

the end of a cycle to set up the left hand side of the statement encoding the next state of the rowing
machine.

The formal definition of the translation is as follows.

6.6.1. Definition: Let
�

be a row of width � . The � �� -translation of
�

, written � � � �
, is the � -negative

type

� � � � � ���
��

	 �
if

� � 	 �

 �

0
� 	

1 � � 	 � � � �
 � 	0 � �
0

� 	 	1 � � � �
1
� � � 	 	� � � � � � � � � � � �

1
� �

if
� � � 	

1 � � 	 � � � �
1 � � � � �

 �
0

� 	
1 � � 	 � � � Top if

� �
HALT,

where
�

0,
� 	0, and

	 	1 through
	 	� are fresh variables.

The proofs below rely on two simple observations:

6.6.2. Fact:

1. The free variables of
�

coindide with the free type variables of � � � �
.

2. � � � �
1 	 	

1 � � � � 	 	 � � � � � � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � � �
.

6.6.3. Definition: Let
� � �� �

1 � � � � ��
be a rowing machine. The � �� -translation of

�
, written � � � �

,
is the � �� statement� � �
 �

0
� � � �

1
� � � �

1
� � � � � � � � � � � � � � � �

1
� �

where � �
 �
0

� �
1 � � � � � � �
 � 	0 � �

0
� � 	1 � �

1 � � � 	� � � � � � �
0
�

and
�

0,
�

1, . . . ,
� �

are fresh type variables.
(Note that � occurs on both sides.)

6.6.4. Fact: This definition is proper — i.e., � � � �
is a well-formed � �� -statement for every rowing

machine
�

.

6.6.5. Lemma: If
� 	 � �

� 	 , then � � � � �	 � � � � � 	 � .
Proof: By the definition of the elaboration function for rowing machines,

� � �� �
1 � � � � ��

, where�
1

� � 	
1 � � 	 � � � �

11 � � � 1
� �

, and
� 	 � �� � �

1 	 	
1 � � � � 	 	 � � �

11 � � � �
1 	 	

1 � � � � 	 	 � � �
1
� ��

. Let

� �
 �
0

� �
1 � � � � � � �
 � 	0 � �

0
� � 	1 � �

1 � � � 	� � � � � � �
0
� �

Now calculate as follows:

� � � �
� � �

�
 �
0

� � � �
1

� � � �
1
� � � � � � � � � � � � � � � �

1
�

� �
 �
0

� �
1 � � � � � � �
 � 	0 � �

0
� � 	1 � �

1 � � � 	� � � � � � �
0
�

�
 �
0

� � � �
1

� � � �
1
� � � � � � � � � � � � � � � �

1
�

	 � � � � � 	 �
0

� � � �
1
� 	 �

1 � � � � � � � 	 � � � � � �
1
�

� � � 	 �
0

� � � �
1
� 	 �

1 � � � � � � � 	 � � � �
 � 	0 � �
0

� � 	1 � �
1 � � � 	� � � � � � �

0
�

� � � � �
1
�

�
 � 	0 � � � � 	1 � � � �
1
� � � � 	� � � � � � � � � �� �
 �

0
� 	

1 � � 	 � � � �
 � 	0 � �
0

� 	 	1 � � � �
11

� � � 	 	� � � � �
1
� � � � � � �

11
� �

�
 � 	0 � � � � 	1 � � � �
1
� � � � 	� � � � � � � � � �� �
 �

0
� 	

1 � � 	 � � � �
 � 	0 � �
0

� 	 	1 � � � �
11

� � � 	 	� � � � �
1
� � � � � � �

11
� �

�
 �
0

� � � 	
1

� � � �
1
� � � 	 � � � � � � � � � �

6.6. ENCODING ROWING MACHINES AS SUBTYPING PROBLEMS 121

	 � � � � � 	 �
0

� � � �
1
� 	 	

1 � � � � � � � 	 	 � � �
� � � 	 �

0
� � � �

1
� 	 	

1 � � � � � � � 	 	 � ��
 � 	0 � �
0

� 	 	1 � � � �
11

� � � 	 	� � � � �
1
� � � � � � �

11
� �

� � �
�
 � 	0 � � �

	 	1 � � � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

� � � �	 	� � � � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � �
1
� � � �� � � � � �

1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

� �
� � �

�
 �
0 � � �

�
1 � � � � � �

1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

� � � �� � � � � � � �
1
� 	 	

1 � � � � � � � 	 	 � � � � �
1
� � � �� � � � � �

1
� 	 	

1 � � � � � � � 	 	 � � � � �
11

� �
� � � � 	 � � �

6.6.6. Lemma: If
� � ��

HALT
� �

2 � � � � ��
, then � � � �

is derivable in � �� .

Proof: Let

� �
 �
0

� �
1 � � � � � � �
 � 	0 � �

0
� � 	1 � �

1 � � � 	� � � � � � �
0
� �

Then

� � � �
� � �

�
 �
0

� � � �
1

� � � HALT
� � � � � � � � � � � � � � � HALT

�
� �
 �

0
� �

1 � � � � � � �
 � 	0 � �
0

� � 	1 � �
1 � � � 	� � � � � � �

0
�

�
 �
0

� � � �
1

� � � HALT
� � � � � � � � � � � � � � � HALT

�
	 � � � � � 	 �

0
� � � HALT

� 	 �
1 � � � � � � � 	 � � � � � HALT

�
� � � 	 �

0
� � � HALT

� 	 �
1 � � � � � � � 	 � � � �
 � 	0 � �

0
� � 	1 � �

1 � � � 	� � � � � � �
0
�

� � � � HALT
�

�
 � 	0 � � � � 	1 � � � HALT
� � � � 	� � � � � � � � � �� �
 �

0
� 	

1 � � 	 � � � Top

�
 � 	0 � � � � 	1 � � � HALT
� � � � 	� � � � � � � � � �

	 � � � �
� Top

�
which is an instance of FTOP. �
6.6.7. Corollary: The rowing machine

�
halts iff � � � �

is derivable in � �� .

6.6.8. Remark: It is natural to ask whether Ghelli’s nonterminating example (6.2.3) is the image
of some rowing machine under this translation. The answer is “almost.” Although the style
of divergence in Ghelli’s example is suggestive of the stepping behavior of translated rowing
machines, every rowing machine translation involves a type � of appropriate width, which is not
present in Ghelli’s example.

6.7. TWO-COUNTER MACHINES 122

6.7 Two-counter Machines

This section reviews the definition of two-counter Turing machines; see, e.g., Hopcroft and Ull-
man [78] for more details.

6.7.1. Definition: A two-counter machine is a tuple
��
PC

� � � � � �
1 � � � � ��

, where
�

and
�

are nonneg-
ative numbers and PC and

�
1 through

� �
are instructions of the following forms:

INCA� �
INCB� �
TSTA� � 	 �
TSTB� � 	 �
HALT �

with � and � in the range 1 to � .

6.7.2. Definition: The elaboration function � for two-counter machines is the partial function
mapping � � ��

PC
� � � � � �

1 � � � � ��
to

� � � � �

������������
�����������

�� � � � � � 1
� � � �

1 � � � � ��
if PC

�
INCA� ��� � � � � � � � 1

� �
1 � � � � ��

if PC
�

INCB� ��� � � � � � � � �
1 � � � � ��

if PC
�

TSTA� � 	 � and
� �

0�� � � � � 	 1
� � � �

1 � � � � ��
if PC

�
TSTA� � 	 � and

� �
0�� � � � � � � � �

1 � � � � ��
if PC

�
TSTB� � 	 � and

� �
0�� � � � � � � 	 1

� �
1 � � � � ��

if PC
�

TSTB� � 	 � and
� �

0
undefined if PC

�
HALT.

6.7.3. Convention: For the following examples, it is convenient to assign alphabetic labels to the
instructions of a program. By convention, the instruction with label START is used as the initial
PC, and the initial value in both registers is 0.

6.7.4. Example: This program loads register
�

with the value 5, then tests the parity of register
�

,
halting if it is even and looping forever if it is odd:

START INCA� I1

I1 INCA� I2
I2 INCA� I3
I3 INCA� I4
I4 INCA� E

E TSTA� OK	 O

O TSTA� LOOP	 E

LOOP INCA� LOOP

OK HALT �
6.7.5. Example: This program loads 5 into register

�
and 3 into register

�
, then compares

�
and�

for equality by repeatedly decrementing them until one or both become zero; if both do so on

6.8. ENCODING TWO-COUNTER MACHINES AS ROWING MACHINES 123

the same iteration, the program halts; otherwise it goes into an infinite loop.

START INCA� I1

I1 INCA� I2
I2 INCA� I3
I3 INCA� I4
I4 INCA� J0

J0 INCB� J1
J1 INCB� J2
J2 INCB� LL

LL TSTA� AZ 	 AS

AZ TSTB� AZBZ 	 AZBS

AS TSTB� ASBZ 	 LL

AZBZ HALT

AZBS INCA� AZBS

ASBZ INCA� ASBZ �
6.7.6. Definition: A two-counter machine � halts if � �	 � � � 	 for some machine � 	 �
��
HALT

� � 	 � � 	 � �
1 � � � � ��

.

6.7.7. Fact: The halting problem for two-counter machines is undecidable.

Proof sketch: Hopcroft and Ullman [78, pp. 171–173] show that a similar formulation of two-
counter machines is Turing-equivalent. (Their two-counter machines have test instructions that
do not change the contents of the register being tested and separate decrement instructions. It is
easy to check that this formulation and the one used here are inter-encodable.) �

6.8 Encoding Two-counter Machines as Rowing Machines

We can now finish the proof of the undecidability of � � subtyping by showing that any two-
counter machine � can be encoded as a rowing machine � � � �

such that � halts iff � � � �
does.

The main trick of the encoding lies in the representation of natural numbers as rows. Each
number � is encoded as a program (i.e., a row) that, when executed, branches indirectly through
one of two registers whose contents have been set beforehand to appropriate destinations for the
zero and nonzero cases of a test; in other words, � itself encapsulates the behavior of the test
instruction on a register containing � . The increment operation simply builds a new program of
this sort from an existing one. The new program saves a pointer to the present contents of the
register in a local variable so that it can restore the old value (i.e., one less than its own value)
before executing the branch.

The encoding � � � �
of a two-counter machine � � ��

PC
� � � � � �

1 � � � � ��
comprises the following

registers:

6.8. ENCODING TWO-COUNTER MACHINES AS ROWING MACHINES 124

#1 � � � PC
�

#2 � �
� � � �

#3 � �
� � � �

#4 address register for zero branches
#5 address register for nonzero branches
#6 � � � � 1

�
. . .
#6� � 	 1 � � � � � � �

We use four translation functions for the various components:

1. � � � �
is the encoding of a the two-counter machine � as a rowing machine of width � � 5;

2. � � � � �
is the encoding of a two-counter instruction

�
as a row of width � � 5;

3. � �
� � � �

is the encoding of the natural number � , when it appears as the contents of register�
, as a row of width � � 5;

4. � �
� � � �

is the encoding of the natural number � , when it appears as the contents of register�
, as a row of width � � 5.

6.8.1. Definition: The row-encoding (for � instructions) of a natural number � in register
�

, written� �
� � � �

, is defined as follows:

� �
� � 0 � � �

#4
�
—

�
—

�
HALT

�
HALT

�
— � � —� � � ��

times

�

� �
� � � � 1

� � �
#5

� � �
� � � � �

—
�

HALT
�

HALT
�

— � � —� � � ��
times

� �
The row-encoding (for � instructions) of a natural number � in register

�
, written � �

� � � �
, is

defined as follows:� �
� � 0 � � �

#4
�
—

�
—

�
HALT

�
HALT

�
— � � —� � � ��

times

�

� �
� � � � 1

� � �
#5

�
—

� � �
� � � � �

HALT
�

HALT
�

— � � —� � � ��
times

� �
6.8.2. Definition: The row-encoding (for � instructions) of an instruction

�
, written � � � � �

, is
defined as follows:� � � INCA� � � � �

� � 5
� �

#5
�
##2

�
—

�
HALT

�
HALT

�
— � � —

� �
—

�
HALT

�
HALT

�
— � � —

�
� � � INCB� � � � �

� � 5
�
—

� �
#5

�
—

�
##3

�
HALT

�
HALT

�
— � � —

� �
HALT

�
HALT

�
— � � —

�
� � � TSTA� � 	 � � � �

#2
�
—

�
—

�
� � 5

�
� � 5

�
— � � —

�
� � � TSTB� � 	 � � � �

#3
�
—

�
—

�
� � 5

�
� � 5

�
— � � —

�
� � � HALT

� � �
HALT

�
—

�
—

�
HALT

�
HALT

�
— � � —

� �
6.8.3. Definition: Let � � ��

PC
� � � � � �

1 � � � � ��
be a two-counter machine. The row-encoding of � ,

written � � � �
, is the rowing machine of width � � 5 defined as follows:

� � � � � �� � � � PC
� � � �

� � � � � � �
� � � � �

HALT
�

HALT
� � � � � 1

� � � � � � � � � �� �
6.8.4. Lemma: If � 	 � � � 	 , then � � � � �	 � � � � � 	 � .
Proof: Let � � ��

PC
� � � � � �

1 � � � � ��
. Proceed by cases on the form of PC.

6.8. ENCODING TWO-COUNTER MACHINES AS ROWING MACHINES 125

Case: PC
�

INCA� �
Then � 	 � �� � � � � � 1

� � � �
1 � � � � ��

. Calculate as follows:

� � � �
� �� �

� � 5
� �

#5
�
##2

�
—

�
HALT

�
HALT

�
— � � —

� �
—

�
HALT

�
HALT

�
— � � —

� �
� �

� � � � � � �
� � � � �

HALT
�

HALT
�

� � � � 1
� � � � � � � � � ��

	 � �
�� � � � � � � �

�
#5

� � �
� � � � �

—
�

HALT
�

HALT
�
— � � —

� � � �
� � � � �

HALT
�

HALT
�

� � � � 1
� � � � � � � � � ��

� � � � 	 � �
Case: PC

�
INCB� �

Similar.

Case: PC
�

TSTA� � 	 �
Calculate as follows:

� � � �
� �� �

#2
�
—

�
—

�
� � 5

�
� � 5

�
— � � —

� �
� �

� � � � � � �
� � � � �

HALT
�

HALT
�

� � � � 1
� � � � � � � � � ��

	 � �
�� � �

� � � � �
� �

� � � � � � �
� � � � �

� � � � � � � � � � � � � �
� � � � 1

� � � � � � � � � ��

There are two subcases to consider:

Subcase:
� �

0

Then

� �
� � � � � �

#4
�
—

�
—

�
HALT

�
HALT

�
— � � —

�
� 	 � �� � � � � � � � �

1 � � � � �� �
Continue calculating as follows:

�� �
#4

�
—

�
—

�
HALT

�
HALT

�
— � � —

� �
� �

� � � � � � �
� � � � �

� � � � � � � � � � � � � �
� � � � 1

� � � � � � � � � ��

	 � �
�� � � � � � � �
� �

� � � � � � �
� � � � �

HALT
�

HALT
�

� � � � 1
� � � � � � � � � ��

6.9. UNDECIDABILITY OF F� TYPECHECKING 126

� � � � 	 � �
Subcase:

� �
0

Then

� �
� � � � � �

#5
� � �

� � � 	 1
� �

—
�

HALT
�

HALT
�
— � � —

�
� 	 � �� � � � � 	 1

� � � �
1 � � � � �� �

Continue calculating as follows:

�� �
#5

� � �
� � � 	 1

� �
—

�
HALT

�
HALT

�
— � � —

� �
� �

� � � � � � �
� � � � �

� � � � � � � � � � � � � �
� � � � 1

� � � � � � � � � ��

	 � �
�� � � � � � � �
� �

� � � 	 1
� � � �

� � � � �
HALT

�
HALT

�
� � � � 1

� � � � � � � � � ��
� � � � 	 � �

Case: PC
�

TSTB� � 	 �
Similar.

Case: PC
�

HALT

Can’t happen. �
6.8.5. Lemma: If � � ��

HALT
� � � � � �

1 � � � � ��
, then � � � �

halts.

Proof: Immediate. �
6.8.6. Corollary: � halts iff � � � �

does.

6.8.7. Theorem: The � � subtyping relation is undecidable.

Proof: Assume, for a contradiction, that we had a total-recursive procedure for testing the
derivability of subtyping statements in � � . Then to decide whether a two-counter machine �
halts, we could use this procedure to test whether � � � � � � �

is derivable, since� halts
iff � � � �

halts by Corollary 6.8.6
iff � � � � � � �

is derivable in � �� by Corollary 6.6.7
iff � � � � � � �

is derivable in � �� by Lemma 6.4.9

iff � � � � � � �
is derivable in � �� by Lemma 6.3.9

iff � � � � � � �
is derivable in � � by Lemma 2.6.11. �

6.9 Undecidability of F� Typechecking

From the undecidability of � � subtyping, the undecidability of typechecking follows immediately:
we need only show how to write down a term that is well typed iff a given subtyping statement� � � �

is derivable. One such term is:
� �

:
�

� Top � � �
:� � � �

.

6.10. UNDECIDABILITY OF F� 127

6.10 Undecidability of F�

6.10.1. Definition: Let
�

be an � �� type. Then
� �

is the F� type formed by replacing instances of
Top in

�
by � . This translation is extended to � �� terms, contexts, and statements in the obvious

way.

6.10.2. Lemma: � — � �
is an embedding of � �� into F� : if � � � � � � �

is an � �� subtyping
statement, then � �

is derivable in F� iff � is derivable in � �� .

Proof: (� �
) Straightforward.

(
� �) By Theorem 4.2.8.12,

� � �! � � � � �
— that is,

� � �! � � � � � � , where
� � � � � � and

either � � � � �
1 � � � � �

or � � 	
. Proceed by induction on this derivation.

Case ASUBR-INTER: � � � � �
1 � � � � �

By the form of � �� statements (6.3.6),
�

must have either the form

 	

0
� �

0 � � 	 � � � � � � � 	 or the
form Top. The first case does not apply, since then

� �
could not have the form

� � � � �
1 � � � � �

.
In the second case, the result is immediate by rule DTOP.

Case ASUBL-INTER: � � 	 � � � � � �
1 � � � � �

Can’t happen: there is no � -negative type � such that � � � � � �
1 � � � � �

.

Case ASUBL-ARROW: � � 	 � � � �
1� �

2

Can’t happen: there is no � -negative type � such that � � � �
1 � �

2.

Case ASUBL-ALL: � � 	 � � �
 	
0

� �
0 � � �

By the form of � �
,

� �
 	
0 � � 	 � � � � 	 �

so

� � �
 	
0

� � � � 	 � � � �
 	 	 � � 	 � 	 	 �
Now by the form of algorithmic derivations (4.2.8.4), a derivation of� � �!
 	

0
� � � � 	 � � � �
 	 	 � � 	 � 	 	 � � � 	

must end with a chain of � instances of ASUBL-ALL with trivial instances of ASUBR-INTER

as their left-hand subderivations, preceded by an instance of ASUBL-ALL whose left-hand
subderivation has the conclusion� � � 	

0
� �

0 � � 	 � � � � �! � 	 � � � � � 	� �
where� �
 	

0
� �

0 � � 	 � � � � � � � 	� � � � � �
� 	� � � 	 �

By the induction hypothesis,� � 	
0

� �
0 � � 	 � � � � � � 	 � � 	 �

By DALLNEG,� �
 	
0 � � 	 � � � � 	 �
 	

0
� �

0 � � 	 � � � � � � � 	 �
Case ASUBL-REFL: � � 	 � � � 	 � � � �

Can’t happen: there is no � -positive type
�

such that
� � � 	

.

6.11. RELATED SYSTEMS 128

Case ASUBL-TVAR: � � 	 � � � � � � �! � � � � � � � �

By the induction hypothesis,
� � � � � � � �

. By DVAR,
� � � � �

. �
6.10.3. Corollary: The F� subtyping relation is undecidable.

6.10.4. Theorem: The F� typing relation is undecidable.

Proof: The F� term � 	 � � �
:
�

�
	 � � �

:� � � �
has type

 	 � � �
�

	 �
� � �

	
iff

� �� � � �
. �

6.11 Related Systems

The proof of undecidability presented here extends straightforwardly to the notion of � -bounded
quantification proposed by Canning, Cook, Hill, Olthoff, and Mitchell [18].

It appears likely that a similar argument can be used to show that Pavel Curtis’s more general
system of constrained quantification [53] is undecidable.

6.12 Discussion

The undecidability of � � will perhaps surprise many of those who have studied, extended,
and applied it since its introduction in 1985. But it may turn out that language designs and
implementations based on � � will not be greatly affected by this discovery. Here are some
reasons for optimism:

1. The algorithm has been used for several years now without any sign of misbehavior in
any situation arising in practice. Indeed, constructing even the simplest nonterminating
example requires a contortion that is difficult to imagine anyone performing by accident.

2. A number of useful fragments of � � are easily shown to be decidable. For example:
� The prenex fragment, where all quantifiers appear at the outside and quantifiers are

instantiated only at monotypes (types containing no quantifiers).

� A predicative fragment where types are stratified into universes and the bound of a
quantified type lives in a lower universe than the quantified type itself.

� Cardelli and Wegner’s original formulation where the bounds of two quantified types
must be identical in order for one to be a subtype of the other.

Though semantically unappealing, this formulation of � � appears strong enough to
include essentially all useful programming examples. The only known examples that
require the more general quantifier subtyping rule are those involving bounded exis-
tential types, which correspond to “partially abstract types” (c.f. [33]) under Mitchell
and Plotkin’s correspondence between abstract types and existential types [97]. Par-
tially abstract types are a generalization of abstract types where some of the structure
of the representation type is known but its exact identity remains hidden. Interest-
ing subtype relations between partially abstract types can only arise from the full � �
quantifier subtyping rule.

3. The best known subtyping algorithms for these fragments are essentially identical to the
algorithm � �� .

4. On well-typed expressions, a type synthesis algorithm based on � �� is guaranteed to ter-
minate, since it will only ask questions to which the answer is “yes.” (Note that this is not

6.12. DISCUSSION 129

true of the type synthesis algorithm for F� , however: the algorithm given in Section 4.3.2
may need to ask both “yes” and “no” subtyping questions to synthesize a minimal type for
a given term.)

Chapter 7

Examples

This chapter develops a broad collection of examples illustrating the expressiveness and exploring
the potential practicality of type systems based on F� . We first describe the notational conventions
used by the prototype implementation (Section 7.1), then proceed to the first set of examples
(Section 7.2). These are largely based on sample programs given in Reynolds’ report on the
Forsythe language [121] — Forsythe being the closest extant relative of F� — and serve both
to give the feel of programming in a Forsythe-like language and to show some specific points
where Forsythe itself could be simplified and generalized using mechanisms studied in this
thesis. Section 7.3 makes a short digression to show how intersection types can be used to define
procedures with optional arguments; Section 7.4 generalizes this idea to suggest a mechanism for
user-defined coherent overloading. The next examples (Sections 7.5 and 7.6) illustrate a novel
style of programming using intersection types, where basic datatypes can be refined into small
abstract lattices (distinguishing, for example, the type of empty lists from that of nonempty lists)
and functions over them given correspondingly refined types, encoding the kind of information
that might be obtained by conventional abstract interpretation or strictness analysis. In Section 7.7,
we verify that the ability to perform these refined static analyses during typechecking is inherent
in the core calculus itself (rather than arising from some special choice of primitive types and
constants) by showing how to express some of the earlier examples in pure F� using extensions of
the well-known encodings of inductive datatypes in the polymorphic

�
-calculus. In Section 7.8,

we discuss the process of programming in F� and illustrate some useful debugging techniques.
Section 7.9 applies the “encoding” of bounded quantification as unbounded quantification and
intersections (c.f. Section 3.5) to some of the earlier examples.

7.1 Conventions

The examples in the remainder of the chapter rely on a prototype typechecker for F� , implemented
in about 5000 lines of Standard ML [93]. Sample sessions with the typechecker have been typeset
directly from the output of the running system: text files containing both the input portions of the
examples and raw TEX sources for the running commentary are passed through the typechecker,
which inserts its responses at the appropriate points.

The system maintains a notion of the “current pervasive context,” to which new definitions
are cumulatively added. For example, a new type variable Real may be introduced by specifying
its bound:

> Real < T;

130

7.1. CONVENTIONS 131

Later definitions and expressions are understood relative to a pervasive context in which Real

is defined:

> idReal = \x:Real. x;
idReal : Real -> Real

> Int < Real;

> check Real->Int < Int->Real;
Yes

> check Int->Int < Real->Real;
No

> polyIdInt = \\A<Int. \a:A. a;
polyIdInt : All A<Int. A -> A

Similarly, new term variables, corresponding to primitive constants, may be added to the
pervasive context:

> zero : Int,
> plus : Int -> Int -> Int;

Definitions are terminated by either a semicolon or a comma. The system keeps reading
comma-separated definitions until it reaches a terminating semicolon, at which time the whole
collection is processed and any responses printed:

> one : Int,
> two = plus one one,
> four = plus two two,
> double = \x:Int. plus x x;
two : Int
four : Int
double : Int -> Int

If a term is entered without a name, it is named “it” by default:

> double (plus four two);
it : Int

> plus it it;
it : Int

The typechecker provides a simple facility for transparent type abbreviation. An identifier
may be associated with a type expression introduced by the “==” symbol:

> BinFun == Int->Int->Int;

The abbreviation BinFun is completely equivalent to the longer expression. Instances of
BinFun are expanded to Int->Int->Int, as necessary, during typechecking:

> \f:BinFun. \x:Int. f x x;
it : BinFun -> Int -> Int

Conversely, when types are printed, instances of Int->Int->Int are collapsed to BinFun:

> \x:Int. \y:Int. plus x y;
it : BinFun

7.2. EXAMPLES FROM THE FORSYTHE REPORT 132

7.2 Examples from the Forsythe Report

The Forsythe language [121] is in many respects the closest relative of the F� calculus. Briefly,
Forsythe is a normal-order language combining functional and imperative features, whose exe-
cution model is based on Algol 60 [98] and whose core type system is the first-order calculus of
intersection types described in Section 2.3.

Since we have not proposed a specific set of basic datatypes for a language based on F� , we are
not in a position to make a detailed comparison of the two systems as programming languages.
Instead, the examples in this section illustrate some of the possible properties of a Forsythe-like
programming language based on F� , and underscore some points where the additional expressive
power of second-order polymorphism might be used to generalize constructs already present in
Forsythe.

It is also worth noting that we make only minimal use of bounded quantification (as opposed to
ordinary unbounded quantification) here. Practical examples motivating bounded quantification
tend to involve language features (e.g., records) that we have not considered.

The primitive datatypes of Forsythe include the numeric types of integers and reals, the type of
booleans, and the type of characters, plus a primitive type Value that forms a common supertype
of all of the rest. These are modeled in F� by the following declarations:

> Value < T,
> Real < Value,
> Int < Real,
> Bool < Value,
> Char < Value;

Forsythe includes a variety of primitive operators on these types. Here we give only a few
that will be needed later in this section:

> 0 : Int,
> 1 : Int,
> plus: Int->Int->Int /\ Real->Real->Real,
> minus: Int->Int->Int /\ Real->Real->Real,
> times: Int->Int->Int /\ Real->Real->Real;

> true : Bool,
> false : Bool,
> if : All A. Bool -> A -> A -> A,
> not : Bool -> Bool;

> eq : Int->Int->Bool /\ Real->Real->Bool /\ Bool->Bool->Bool
> /\ Char->Char->Bool,
> neq : Int->Int->Bool /\ Real->Real->Bool /\ Bool->Bool->Bool
> /\ Char->Char->Bool,
> leq : Int->Int->Bool /\ Real->Real->Bool;

We depart from Forsythe in the typing of the if primitive. Forsythe includes a “generalized if”
construct as a built-in syntactic form. The if used here drops the convenience of Forsythe’s if in
favor of the broader generality of a polymorphic constant.

The primitive type Comm is the type of commands — simple imperative programs whose exe-
cution may affect the store:

> Comm < T;

7.2. EXAMPLES FROM THE FORSYTHE REPORT 133

The related type Compl is used for “completions”: imperative programs that are guaranteed
never to return (e.g., because they escape to a previously captured continuation). By neglecting
the fact that a Compl will never return, we can regard it as a simple Comm; this observation is
formalized as a primitive coercion from Compl to Comm:

> Compl < Comm;

The primitive constructor for commands is the sequencing operator before (we also allow
before to apply to a command and a completion, producing a completion in this case):

> before : Comm->Comm->Comm /\ Comm->Compl->Compl;

To make programs involving commands easier to read, we introduce some special syntax
reminiscent of the single-semicolon syntax for sequencing in many familiar languages: the
expression begin e1 ;; e2 ;; ... ;; en end is translated by the parser into (before e1

(before e2 (... (before en-1 en)))).

> repeat5 = \c:Comm. begin c ;; c ;; c ;; c ;; c end;
repeat5 : Comm -> Comm

The while operator provides basic iteration:

> while : Bool -> Comm -> Comm;

The skip command provides a convenient way of doing nothing:

> skip : Comm;

The primitive means of creating completions is the escape operator. The argument to escape

is a function that accepts a completion and computes a command. Operationally, the completion
passed to this function aborts execution of the function and continues immediately from the point
where escape was called:

> escape : (Compl->Comm) -> Comm;

Forsythe includes a built-in syntactic form rec for defining recursive values. In F� , we may
avoid dealing with recursive definition in the core language by introducing it as a polymorphic
constant fix. This is slightly more verbose that Forsythe’s rec, but avoids the problem (still open
for Forsythe) of synthesizing minimal types for programs involving rec.

> fix : All A. (A->A) -> A;

The while operator may also be defined in terms of fix:

> while =
> \b:Bool. \c:Comm.
> fix [Comm] \next:Comm.
> if [Comm] b
> begin c ;; next end
> skip;
while : Bool -> Comm -> Comm

Notice that the correct behavior of whiledepends crucially on the normal-order reduction strategy
of Forsythe and our hypothetical language based on F� , since it requires that the guard b be
executed repeatedly.

One of the principal innovations of Forsythe was the separation of the normally atomic con-
cept of “variable” into two yet smaller units: expressions and acceptors, or sources and sinks.
Intuitively, a variable should be thought of not as a cell capable of either receiving or producing
a value, but as two separate (but normally connected) entities, one capable of producing values

7.2. EXAMPLES FROM THE FORSYTHE REPORT 134

when evaluated and one capable of accepting values. We retain the names Int, Real, Bool, and
Char for the primitive expression types and introduce the abbreviation XAcc = X -> Comm for
the four acceptor types. Then an XVar is just the intersection (thought of as a product, since the
relevant coherence condition is vacuous) of an X and an XAcc:

> IntAcc == Int -> Comm,
> RealAcc == Real -> Comm,
> BoolAcc == Bool -> Comm,
> CharAcc == Char -> Comm,
> IntVar == Int /\ IntAcc,
> RealVar == Real /\ RealAcc,
> BoolVar == Bool /\ BoolAcc,
> CharVar == Char /\ CharAcc;

Again, the readability of programs is enhanced by a pinch of syntactic sugar; we let v := e

abbreviate v e, so that assignment statements may be written in the familiar way:

> \v:IntVar. begin v := plus v 1 ;; v := plus v v end;
it : IntVar -> Comm

Variables are created by a primitive constructor newcell. Here we follow the style of Forsythe
by letting the body of a newcell expression be a function that expects to be passed the newly
created variable as its argument.

> newcell : All A<Value. All R. A -> ((A/\A->Comm)->R) -> R;

The first argument to newcell is the type of the cell to be created. The second argument is the final
result type of the body that uses the new variable. The third argument is an expression whose
result will be the initial value of the new variable, and the fourth is the body itself. (N.b.: we
generalize Forsythe’s variable declarators by allowing the newly created cell to contain a value of
any subtype of Value, rather than explicitly mentioning the primitive types Int, Real, Bool, and
Char. We also allow the body of the newcell construct to have any type, where Forsythe restricts
it to one of six possibilities: Comm, Compl, Int, Real, Bool, and Char.)

The variable constructors of Forsythe may now be defined using newcell:

> newIntCell = newcell [Int],
> newRealCell = newcell [Real],
> newBoolCell = newcell [Bool],
> newCharCell = newcell [Char];
newIntCell : All R. Int -> (IntVar->R) -> R
newRealCell : All R. Real -> (RealVar->R) -> R
newBoolCell : All R. Bool -> (BoolVar->R) -> R
newCharCell : All R. Char -> (CharVar->R) -> R

> newIntVar = newIntCell [Int,Real,Bool,Char,Comm,Compl],
> newRealVar = newRealCell [Int,Real,Bool,Char,Comm,Compl],
> newBoolVar = newBoolCell [Int,Real,Bool,Char,Comm,Compl],
> newCharVar = newCharCell [Int,Real,Bool,Char,Comm,Compl];
newIntVar : Int->(IntVar->Int)->Int

/\ Int->(IntVar->Real)->Real
/\ Int->(IntVar->Bool)->Bool
/\ Int->(IntVar->Char)->Char
/\ Int->(IntVar->Comm)->Comm
/\ Int->(IntVar->Compl)->Compl

newRealVar : Real->(RealVar->Int)->Int
/\ Real->(RealVar->Real)->Real

7.2. EXAMPLES FROM THE FORSYTHE REPORT 135

/\ Real->(RealVar->Bool)->Bool
/\ Real->(RealVar->Char)->Char
/\ Real->(RealVar->Comm)->Comm
/\ Real->(RealVar->Compl)->Compl

newBoolVar : Bool->(BoolVar->Int)->Int
/\ Bool->(BoolVar->Real)->Real
/\ Bool->(BoolVar->Bool)->Bool
/\ Bool->(BoolVar->Char)->Char
/\ Bool->(BoolVar->Comm)->Comm
/\ Bool->(BoolVar->Compl)->Compl

newCharVar : Char->(CharVar->Int)->Int
/\ Char->(CharVar->Real)->Real
/\ Char->(CharVar->Bool)->Bool
/\ Char->(CharVar->Char)->Char
/\ Char->(CharVar->Comm)->Comm
/\ Char->(CharVar->Compl)->Compl

The Forsythe report develops a number of programs using these primitives. For example, here
is a simple iterative definition of the factorial function (c.f. [121, p. 29]):

> fact = \n:Int. \f:IntVar.
> newIntVar 0 \k:IntVar.
> begin
> f := 1 ;;
> while (neq k n)
> begin
> k := plus k 1 ;;
> f := times k f
> end
> end;
fact : Int -> IntVar -> Comm

Using an extra newIntVar, this version of factorial may be improved so that it evaluates its
initial argument only once. This is a common idiom in Forsythe, since it amounts to a call-by-value
parameter passing regime:

> fact2 = \n:Int. \f:IntVar.
> newIntVar n \n:IntVar.
> newIntVar 0 \k:IntVar.
> begin
> f := 1 ;;
> while (neq k n)
> begin k := plus k 1 ;; f := times k f end
> end;
fact2 : Int -> IntVar -> Comm

Similarly, we can use newIntVar to build a version that makes only one assignment of the
final result to the second parameter; this is essentially a call-by-result parameter:

> fact3 = \n:Int. \f:IntAcc.
> newIntVar n \n:IntVar. newIntVar 1 \localf:IntVar.
> begin
> (newIntVar 0 \k:IntVar.
> while (neq k n)
> begin k := plus k 1 ;; localf := times k localf end) ;;
> f := localf

7.3. PROCEDURES WITH OPTIONAL ARGUMENTS 136

> end;
fact3 : Int -> IntAcc -> Comm

We may also, of course, give a traditional recursive formulation of factorial:

> fact = fix [Int->Int] \fact:Int->Int.
> \n:Int. newIntVar n \n:IntVar.
> if [Int] (eq n 0) 1 (times n (fact (minus n 1)));
fact : Int -> Int

The default call-by-name procedure call semantics allows a variety of syntactic extensions to
be defined as user-level operations. Here is another kind of iteration construct:

> forup = \from:Int. \to:Int. \b:IntAcc.
> newIntVar (minus from 1) \k:IntVar.
> newIntVar to \to:IntVar.
> while (leq k to) begin k := plus k 1 ;; b k end;
forup : Int -> Int -> IntAcc -> Comm

The forup iterator provides a good opportunity for an illustration of the escape procedure.
The following function accepts an integer function of one argument and a range of integers in
which to search (linearly) for a particular value y of the function. If this value is found within the
specified range, the function immediately returns with no further search, using escape to jump
out of the body of the forup:

> linsearch = \X:Int->Int. \from:Int. \to:Int. \y:Int.
> \present:BoolAcc. \j:IntAcc.
> escape \out:Compl.
> begin
> forup from to \k:Int.
> if [Comm] (eq (X k) y)
> begin present := true ;; j := k ;; out end
> skip ;;
> present := false
> end;
linsearch : (Int->Int) -> Int -> Int -> Int -> BoolAcc -> IntAcc -> Comm

7.3 Procedures With Optional Arguments

A completely different example of the practical utility of intersection types (in this case, even
first-order intersection types) comes from their ability to express procedures with default param-
eters. For example, we can give the type String->Int->(String/\Char->String) to a built-in
function that takes a string s and an integer i and returns both the string s padded with enough
blanks to make its length i and a function that, given a character c, returns s padded with enough
c’s to make its length i. The result of applying pad to s and i can either be used directly as a
string (by applying a print function to it, for example) or further applied to a character c.

To implement this scheme, we assume the following primitives:

> pad : String -> Int -> (String/\Char->String);
> print : String -> Unit;
> blank : Char;
> dot : Char;
> mesg : String;

Now we can use pad and print as described above:

7.4. USER-DEFINED COHERENT OVERLOADING 137

> print (pad mesg 10);
it : Unit
> print (pad mesg 10 dot);
it : Unit

In fact, this notion could be supported as a general language extension by introducing a built-in
polymorphic constant that is used to build functions with default parameters:

> default : All A. All B. (A -> B) -> A -> (B/\A->B);

> myprimpad : String -> Int -> Char -> String;
> mypad = \s:String. \l:Int. default [Char] [String] (myprimpad s l) blank;
mypad : String->Int->String /\ String->Int->Char->String

A particularly interesting case occurs when B
�

A->C for some C. Then the value built by
default cannot “tell,” from the context in which it is used (an application to something of type
A), whether its B component or its A->B component is desired. In must essentially produce both
components, so that the application results in a new overloaded value of type C/\B, i.e., C/\A->C,
to which the same considerations apply.

7.4 User-defined Coherent Overloading

A further language extension along the lines of the previous section is to provide a primitive glue
that allows user-defined coherent overloading. Given two values a and b, of types A and B, the
expression glue a b yields a value that, in a context where a value of type A is expected, behaves
like a, and, in a context expecting a B, behaves like b.

> glue : All A. All B. A -> B -> (A/\B);

Then, for example, we can define our usual plus function operating on both Int and Real

from two more specialized versions:

> plusInt : Int->Int->Int;
> plusReal : Real->Real->Real;

> plus = glue [Int->Int->Int] [Real->Real->Real] plusInt plusReal;
plus : Int->Int->Int /\ Real->Real->Real

Of course, if glue a b is used in a context where either an A or a B is appropriate, the compiler
is free to choose either a or b as its value. If these do not behave coherently, then any coherence
guarantees provided by the language designer for the built-in types and type constructors are
nullified. Such constructs blur the distinction between the language designer and the expert
systems programmer, a facility that can be invaluable in rare circumstances but that should be
used sparingly. It may be advisable to explicitly mark sections of code where glue may be used
as “unsafe,” in the terminology of Modula-3 [28, 99].

7.5. MODELING ABSTRACT INTERPRETATION 138

7.5 Modeling Abstract Interpretation

Perhaps the most useful property of programming languages with intersection types is that they
allow extremely refined types to be given for expressions — much more refined than is possible
in conventional polymorphic languages. Rather than a single description, each expression may
be assigned any finite collection of descriptions, each capturing some aspect of its behavior. This
means that, in the limit, the behavior of a program can be exactly described by the types assignable
to it. In more practical contexts, it offers both language designer and programmer a great deal
of flexibility in choosing behavioral primitives that capture salient properties of programs and
obtaining good descriptions of programs in terms of these primitives. Since we are working with
explicitly typed calculi, this requires effort in the form of type assumptions or annotations; in
general, as more effort is expended, better typings are obtained.

This section and the next illustrate these general observations by showing how various forms
of program analysis can be mimicked in the type system of languages with intersection types.
We concentrate first on performing some simple kinds of abstract interpretation, using the type-
checker, under explicit programmer control, to derive types encoding the same sorts of information
as might be obtained by a static analyzer during the code generation phase of a modern compiler.

Some of the following examples were suggested by conversations with Tim Freeman and
Frank Pfenning, whose independent work on refinement types for languages in the ML class [60]
shares many motivations and technical intuitions with what appears here. Hayashi has described
related work using refinement types in extracting programs from proofs [72].

It is important to note that we are switching semantic intuitions at this point. Previous sections
relied on the intuition that values of intersection types were represented at run time as tuples of
different (though coherent) values, as described in Sections 2.4.2 and 5.3. Here, and for the
remainder of the chapter, it makes more sense to think of expressions as denoting single run time
values, which an intersection type simply describes in several different ways. This point of view
corresponds to the untyped semantic models presented in Sections 2.4.1 and 5.1.

7.5.1 Booleans

The examples in previous sections used a primitive type Boolwith two elements, true and false.
This picture can be refined by introducing two subtypes of Bool, called True and False,

� � � � � � � � �

� 	 	 �

� ���

and giving more exact types for the constants true and false in terms of these refinements:

> Bool < T,
> True < Bool,
> False < Bool;

> true : True,
> false : False;

The primitive if can also be given a more refined type: if we know whether the value of the
test lies in the type True or the type False, we can tell in advance which of the branches will be
chosen:

7.5. MODELING ABSTRACT INTERPRETATION 139

> if : All A. (True -> A -> T -> A)
> /\ (False -> T -> A -> A)
> /\ (Bool -> A -> A -> A);

(The third typing is needed here because F� ’s types cannot express the idea that every element
of Bool is an element of either True or False. This shortcoming, while not serious in practice,
motivates the investigation of a dual notion of union types, which we discuss briefly in Section 8.3.3.)

The refinement in the types of true, false, and if can now be inherited by new functions
defined from these:

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> for R in True,False,Bool.
> if [R] x true y;
or : True->Bool->True

/\ False->False->False
/\ Bool->True->True
/\ Bool->Bool->Bool

This example illustrates several novel aspects of the style of programming being explored
here. For one thing, note the typechecker does not automatically discover the more refined type for
or: it must explicitly be instructed to consider all the necessary sets of assumptions. Annotating
the two abstractions with only the type Bool results in a strictly less refined typing:

> or = \x:Bool. \y:Bool. if [Bool] x true y;
or : Bool -> Bool -> Bool

A stranger element of the example is the type variable R. The for expression introducing R

provides a kind of “guessing” behavior that is often necessary to achieve the desired type for
functions like or. Without R, we would get stuck trying to decide what type to provide as the
argument to if. None of Bool, True, or False will do the trick, since providing any one of these
would amount to asserting that this will be the result type of the if in every case:

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [Bool] x true y;
or : Bool -> Bool -> Bool

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [True] x true y;
or : True->Bool->True /\ Bool->True->True

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [False] x true y;
or : False -> False -> False

The actual type that should be provided as the first argument to if depends on the current set
of assumptions for the variables x and y: if both have type True, then the argument to if should
be True, if both False, then False, etc. But this sort of calculation clearly cannot be expressed
in the type system of F� . What turns out to work is simply guessing all three possibilities in turn.
Two out of three times, the result will be too large — it will come out as Bool when True or False
would have been achievable, or it will simply be

�
— but one of the three will produce the desired

type. This type is guaranteed to be a subtype of the two “wrong” results, and so the intersection

7.5. MODELING ABSTRACT INTERPRETATION 140

of the three is equivalent to the desired one. Here we show the internal form of the type actually
derived by the type synthesis algorithm, before it is simplified for printing:

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> for R in True,False,Bool.
> if [R] x true y;
or : True

->(True->((True/\True)/\T/\(Bool/\Bool))
/\False->(/\[True]/\T/\(Bool/\Bool))
/\Bool->(/\[True]/\T/\(Bool/\Bool)))

/\ False
->(True->((True/\True)/\T/\(Bool/\Bool))
/\False->(T/\/\[False]/\(Bool/\Bool))
/\Bool->(T/\T/\(Bool/\Bool)))

/\ Bool
->(True->(/\[True]/\T/\/\[Bool])
/\False->(T/\T/\/\[Bool])
/\Bool->(T/\T/\/\[Bool]))

i.e. True->Bool->True
/\ False->False->False
/\ Bool->True->True
/\ Bool->Bool->Bool

This idiom — a for whose body is a type application where the only use of the type variable
introduced by the for is as the argument to the application — is so common that we introduce a
new abbreviatory form for it:

� � �
1 � � � � � def� for � in �

1 � � � � � � � � � (where � is fresh) �
Then,

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [True,False,Bool] x true y;
or : True->Bool->True

/\ False->False->False
/\ Bool->True->True
/\ Bool->Bool->Bool

7.5.2 Lists

More interesting kinds of abstract interpretation can be performed on programs involving struc-
tured data like lists and trees.

For this example, we assume that the property of lists we are concerned with is whether they
are of even or odd length. As we did with the booleans, we assume a type List of finite lists of
natural numbers

> List < T;

with two immediate subtypes, Even and Odd, and one further refinement of Even, a special type
containing only Nil:

> Even < List,
> Odd < List,
> Nil < Even;

7.5. MODELING ABSTRACT INTERPRETATION 141

> nil : Nil;

We then state types for the primitive list operations in terms of this partial order:

> car : List->Nat;
> cdr : Even->Odd /\ Odd->Even /\ List->List,
> cons : Nat->Even->Odd /\ Nat->Odd->Even /\ Nat->List->List,
> null : Odd->False /\ Nil->True /\ List->Bool;

(Of course, even more refined types might be given for these. For example, we could
distinguish another type EvenCons of even-length, nonempty lists and give car the type
EvenCons->Nat/\Odd->Nat. However, this typing for car would prevent us from obtaining
the desired type for append below. This is a reminder that we are still in the business of type-
checking; the full power of arbitrary abstract interpretation methods should not be expected.)

As usual, we may define higher-level functions so that they inherit similar typings from the
primitives:

> cddr = \l:Even,Odd,Nil,List. cdr (cdr l);
cddr : Even->Even /\ Odd->Odd /\ List->List

Finally, we can give a type to the append function showing that it maps, for example, pairs of
even-length inputs into even-length results.

Since append is defined using the explicitly typed fixpoint operator, we must begin by stating
the type we hope to obtain:

> AppType == Even->Even->Even
> /\ Even->Odd ->Odd
> /\ Odd ->Even->Odd
> /\ Odd ->Odd ->Even
> /\ List->List->List;

Now append is expressed as follows:

> append =
> fix [AppType] \app:AppType.
> \l1:Even,Odd,Nil,List. \l2:Even,Odd,Nil,List.
> if [Even,Odd,Nil,List] (null l1)
> l2
> (cons (car l1) (app (cdr l1) l2));
append : AppType

By providing more refined type information to the fixed point operator, we can obtain an even
more refined typing for append:

> AppType2 == Even->Even->Even
> /\ Even->Odd ->Odd
> /\ Odd ->Even->Odd
> /\ Odd ->Odd ->Even
> /\ Nil ->Nil ->Nil
> /\ List->List->List;

> append2 =
> fix [AppType2] \app:AppType2.
> \l1:Even,Odd,Nil,List. \l2:Even,Odd,Nil,List.
> if [Even,Odd,Nil,List] (null l1)
> l2
> (cons (car l1) (app (cdr l1) l2));
append2 : AppType2

7.5. MODELING ABSTRACT INTERPRETATION 142

7.5.3 Natural Numbers

Similar tricks also apply to programs involving natural numbers (which, after all, can be viewed
as lists of marks). Here we distinguish zero from the rest of the natural numbers:

> Nat < T,
> Zero < Nat,
> Pos < Nat;

> succ : Nat -> Pos,
> pred : Nat -> Nat,
> iszero : Zero->True /\ Pos->False /\ Nat -> Bool;

Like append, the plus function can be defined via an explicit fixed point. We state the type
that we hope to obtain,

> PlusType == Zero->Zero-> Zero
> /\ Nat ->Pos -> Pos
> /\ Pos ->Nat -> Pos
> /\ Nat ->Nat -> Nat;

and provide sufficient guidance for the typechecker to infer this type for the body of the plus:

> plus =
> fix [PlusType] \plus:PlusType.
> \m:Zero,Pos,Nat. \n:Zero,Pos,Nat.
> if [Zero,Pos,Nat] (iszero m) n (succ (plus (pred m) n));
plus : PlusType

Our treatment of both append and plus suffers from the necessity of deciding, beforehand,
what type we want to obtain for them. If we program using a more restricted set of primitives —
for which, naturally, more exact types can be given — we can make the typechecker do more of
the work of discovering types for functions like plus.

The plus function may be defined in terms of a primitive iteration construct that takes a
number, together with a single-argument function on some result type N and a starting value of
type N, and computes the result of applying the function an appropriate number of times to the
given starting value:

> oiternat : Nat -> All N. (N->N) -> N -> N;

> oplus =
> \m:Nat. \n:Nat.
> oiternat m [Nat] succ n;
oplus : Nat -> Nat -> Nat

A more refined typing for the natural number iterator can be expressed in terms of Zero and
Pos:

> iternat :
> (Zero-> All N, P<=N, Z<=N. (N->P) -> Z -> Z)
> /\ (Pos -> All N, P<=N, Z<=N. (N->P) -> Z -> P)
> /\ (Nat -> All N, P<=N, Z<=N. (N->P) -> Z -> N);

Using this iterator, the same type as above may be obtained for plus without declaring it in
advance:

7.6. MODELLING STRICTNESS ANALYSIS 143

> plus =
> for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> iternat m [Nat,Pos] [Pos] [N] succ n;
plus : Zero->Zero->Zero /\ Pos->Nat->Pos /\ Nat->Pos->Pos /\ Nat->Nat->Nat

We allow the types of both m and n to be any of Nat, Zero, or Pos, checking the body separately
in each case. We need to apply m alternatively to both the types Nat and Pos, to be sure of having
a name for the type of n; when m has type Pos, the result type of the iteration is always Pos.
(Note that applying m to Zero does not make sense, since this would amount to asserting that the
iteration of m over succ and n can return a zero result even when m is positive.)

7.6 Modelling Strictness Analysis

Strictness analysis [16] discovers situations in which the argument to a function will always be
evaluated in the course of evaluating the function’s body. This sort of information is useful,
for example, in the optimization phases of compilers for lazy functional languages. When a
given function is known to be strict in its argument, then whenever this function is applied, its
argument may immediately be evaluated (rather than being encapsulated in a closure) without
fear of introducing spurious nontermination in the transformed program. Since closures are
generally expensive to build, good strictness analysis can greatly enhance the quality of code
generated by compilers that use it. Like abstract interpretation, a simple form of strictness analysis
may be encoded in F� as a typechecking task. (For related treatments of strictness analysis as a
typechecking problem, see [84, 86].)

The technical approach here is slightly different than in the previous section: rather than
introducing subtypes encoding strictness information for every type used in a program, we deal
with strictness separately from ordinary typing, carrying along the partial results of strictness
analysis “beside” the normal typing information derived for expressions.

We begin with a new type constant Btm, representing divergent computations:

> Btm < T;

The types Btm and T together form a two-point abstract lattice of strictness assertions: Btm encodes
the information that a particular expression (typically an argument to a function) necessarily
diverges; T encodes the absence of such information.

We now add to the types of our primitive functions appropriate annotations in terms of Btm
and T, indicating which arguments each primitive can be counted upon to evaluate. For example,
the constant true always terminates

> true: Bool;

and the if operation maps a Bool and a pair of A’s into an A (for any type A) and, furthermore,
that it always evaluates its first argument and also always evaluates either its second or its third
argument.

> if : All A. (Bool -> A -> A -> A)
> /\ (Btm -> T -> T -> Btm)
> /\ (T -> Btm -> Btm -> Btm);

This type can be read as asserting that this information can now be inherited by functions built
up from if:

> or = \a:Bool,Btm. \b:Bool,Btm. if [Bool] a true b;
or : Bool->Bool->Bool /\ Btm->Bool->Btm /\ Btm->Btm->Btm

7.6. MODELLING STRICTNESS ANALYSIS 144

Some other useful primitives can be given similar typings:

> nil : List,
> cons : Nat -> List -> List
> /\ Btm -> T -> Btm
> /\ T -> Btm -> Btm,
> car : List -> Nat
> /\ Btm -> Btm,
> cdr : List -> List
> /\ Btm -> Btm,
> null : List -> Bool
> /\ Btm -> Btm;

7.6.1. Remark: Like the examples involving type refinement and abstract interpretation, this
application of intersection types strongly suggests an untyped semantic model. We do not think
of the typing information associated with strictness analysis as giving rise to any behavior at
run time. For example, the second and third elements of the type of cons are not thought of as
actual functions, but as predicates describing the behavior of a single function whose “real type”
is Nat->List->List. Of course, there is no harm in keeping the typed perspective and requiring
that some kind of functions with types Btm->T->Btm and T->Btm->Btm be present at run time,
but it is less natural to do so.

Using this information, we build higher-level functions, as before, for which the typechecker
can infer appropriate strictness information:

> AppType == List->List->List
> /\ Btm->T->Btm /\ T->Btm->Btm;

> append =
> fix [AppType] (\app:AppType.
> \l1:List,Btm,T.
> \l2:List,Btm,T.
> (if [List] (null l1) l2 (cons (car l1) (app (cdr l1) l2))));
append : AppType

Finally, we can make use of the strictness information obtained by this method to introduce
a behavior-preserving “strictifier” that can only be applied to functions guaranteed to be strict
in their first argument. (This version of strictify works on functions of between one and four
arguments that are strict:)

> strictify : All A.
> (A /\ Btm->Btm) -> A
> /\ (A /\ Btm->T->Btm) -> A
> /\ (A /\ Btm->T->T->Btm) -> A
> /\ (A /\ Btm->T->T->T->Btm) -> A;

Using strictify, we may define a version of append that evaluates its left argument before
its own body:

> leftstrictappend = strictify [AppType] append;
leftstrictappend : AppType

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 145

7.7 Refining Pure Encodings of Inductive Types

One of the main advantages of working with impredicative polymorphism in foundational inves-
tigations of static type systems is that a great variety of datatypes that ordinarily have to be given
as explicit extensions can be encoded directly in the pure calculus. These encodings allow a broad
range of issues to be investigated using very economical formal means. Later, when the time
arrives to design a full-scale language based on the results of these preliminary investigations, the
behavior of the encodings provides a strong guide for the proper behavior of the corresponding
primitive datatypes.

In this section, we use variants of the familiar encodings of algebraic datatypes such as natural
numbers and booleans to verify that the “abstract interpretation” behavior investigated in the
previous section arises naturally in the system and is not “rigged” by our assumptions about
primitive values like cdr and succ.

7.7.1 Church Arithmetic

We begin by reviewing the well-known encoding of the Church numerals in the polymorphic�
-calculus. (Readers unfamiliar with this encoding may find the more expository presentations

in [108, 120] helpful. Also see [38, 15, 103, 63, 29, 27].) We then show how to enrich this encoding
to model the “abstract lattice” used in Section 7.5.3, where zero is distinguished from the rest of
the numbers. Analogous extensions of the usual encodings of the arithmetic operators may now
be given types identical to those we assumed for them in Section 7.5.3.

Recall that Church’s numerals [38] are encoded in the ordinary polymorphic
�

-calculus as
elements of the following type:

> OrigNat == All N. (N->N) -> N -> N;

Operationally, the type argument N to an element e of type OrigNat specifies the type of the result
of the � -fold iteration of the argument s over the argument z, where � is the number coded by e.
In other words, a number is its own iterator:

> origIterNat =
> \m:OrigNat.
> \\N. \s:N->N. \z:N.
> m [N] s z;
origIterNat : OrigNat -> OrigNat

The first few natural numbers are encoded as follows:

> origzero = \\N. \s:N->N. \z:N. z,
> origone = \\N. \s:N->N. \z:N. s z,
> origtwo = \\N. \s:N->N. \z:N. s (s z);
origzero : OrigNat
origone : OrigNat
origtwo : OrigNat

Since we intend to distinguish zero from all other natural numbers, our refined encoding will
take three type arguments — one for the result of the � -fold iteration of s over z where � may
be either zero or positive, one for the result type of a 0-fold iteration (that is, the type of z itself)
and one for the result type of an � -fold iteration for some � � 1. Also, the function s must map
arbitrary elements of N to elements of P, and the starting point for the iteration, z, must have
type Z:

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 146

> Nat == All N. All P<N. All Z<N. (N->P) -> Z -> N,
> Zero == All N. All P<N. All Z<N. (N->P) -> Z -> Z,
> Pos == All N. All P<N. All Z<N. (N->P) -> Z -> P;

> check Zero < Nat;
Yes
> check Pos < Nat;
Yes

Aside from their types, elements of Nat are precisely the same as the corresponding elements
of OrigNat:

> zero = \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z. z,
> one = \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z. s z,
> two = \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z. s (s z);
zero : Zero
one : Pos
two : Pos

The successor function for ordinary church numerals takes a numeral n as argument and
returns a new numeral that iterates s over z n times and then once more.

> origsucc = \n:OrigNat. \\N. \s:N->N. \z:N. s (n [N] s z);
origsucc : OrigNat -> OrigNat

Successor for our new encoding is exactly the same, except that we explicitly allow for the
argument n to be of type Zero or Pos, in addition to Nat, and check the body separately for each
case.

> succ = \n:Zero,Pos,Nat.
> \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z.
> s (n [N] [P] [Z] s z);
succ : Nat -> Pos

The sum of original-style Church numerals m and n is obtained by iterating the successor
function m times over n:

> origplus = \m:OrigNat. \n:OrigNat. m [OrigNat] origsucc n;
origplus : OrigNat -> OrigNat -> OrigNat

Again, addition of our numerals is exactly the same, except that we need to be more careful
about the types.

> plus = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Pos] [Pos] [N] succ n;
plus : Zero->Zero->Zero /\ Pos->Nat->Pos /\ Nat->Pos->Pos /\ Nat->Nat->Nat

> two = plus one one;
two : Pos

Multiplication and exponentiation of our numerals can be defined in the same way.

> times = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Zero] [N] [Zero] (plus n) zero;
times : Zero->Nat->Zero /\ Pos->Pos->Pos /\ Nat->Zero->Zero /\ Nat->Nat->Nat

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 147

> exp = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> n [Nat,Pos] [M] [Pos] (times m) one;
exp : Zero->Pos->Zero /\ Pos->Nat->Pos /\ Nat->Zero->Pos /\ Nat->Nat->Nat

Defining the predecessor function on Church’s original encoding was a significant feat in the
early days of

�
-calculus. To mimic it here, we first need pairing functions for numerals:

> ZeroZeroPr == All R. (Zero->Zero->R)->R,
> ZeroPosPr == All R. (Zero->Pos->R)->R,
> ZeroNatPr == All R. (Zero->Nat->R)->R,
> PosZeroPr == All R. (Pos->Zero->R)->R,
> PosPosPr == All R. (Pos->Pos->R)->R,
> PosNatPr == All R. (Pos->Nat->R)->R,
> NatZeroPr == All R. (Nat->Zero->R)->R,
> NatPosPr == All R. (Nat->Pos->R)->R,
> NatNatPr == All R. (Nat->Nat->R)->R;

> pair = for P1 in Zero,Pos,Nat.
> for P2 in Zero,Pos,Nat.
> \p1:P1. \p2:P2.
> \\R. \f:P1->P2->R.
> f p1 p2;
pair : Zero->Zero->ZeroZeroPr

/\ Zero->Pos->ZeroPosPr
/\ Zero->Nat->ZeroNatPr
/\ Pos->Zero->PosZeroPr
/\ Pos->Pos->PosPosPr
/\ Pos->Nat->PosNatPr
/\ Nat->Zero->NatZeroPr
/\ Nat->Pos->NatPosPr
/\ Nat->Nat->NatNatPr

> fst = for P1 in Zero,Pos,Nat.
> \p: (All R. (P1->T->R)->R).
> p [P1] (\p1:P1. \p2:T. p1),
> snd = for P2 in Zero,Pos,Nat.
> \p: (All R. (T->P2->R)->R).
> p [P2] (\p1:T. \p2:P2. p2);
fst : (All R. (Zero->T->R)->R)->Zero

/\ (All R. (Pos->T->R)->R)->Pos
/\ (All R. (Nat->T->R)->R)->Nat

snd : (All R. (T->Zero->R)->R)->Zero
/\ (All R. (T->Pos->R)->R)->Pos
/\ (All R. (T->Nat->R)->R)->Nat

> pred = \n:Pos.
> snd (n [NatNatPr] [PosNatPr] [ZeroZeroPr]
> (\p:NatNatPr.
> pair (succ (fst p)) (fst p))
> (pair zero zero));
pred : Pos -> Nat

(For the sake of the example, this version of pred only takes positive numbers as arguments. Of
course, by giving more possible types for the parameter n, we could allow pred to accept arbitrary
natural numbers.)

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 148

There is another way — somewhat less well known — of encoding the basic arithmetic
functions on Church numerals (see [120]):

> altorigplus =
> \m:OrigNat. \n:OrigNat.
> \\N. \s:N->N. \z:N.
> m [N] s (n [N] s z);
altorigplus : OrigNat -> OrigNat -> OrigNat

> altorigmult =
> \m:OrigNat. \n:OrigNat.
> \\N. \s:N->N.
> m [N] (n [N] s);
altorigmult : OrigNat -> OrigNat -> OrigNat

> altorigexp =
> \m:OrigNat. \n:OrigNat.
> \\N.
> n [N->N] (m [N]);
altorigexp : OrigNat -> OrigNat -> OrigNat

This version of the arithmetic functions is interesting to try to emulate on our new encoding;
the solution involves some fairly tricky use of the for construct. Also, the exponential function in
this encoding requires iteration at higher types, which provides another good test of the limits of
this encoding. (It may provide an even better test of the limits of the encoder. It took several hours
to find a set of type annotations that would produce the desired typing for this version of the
exponential function and it seems likely that this set of annotations is not the simplest available.)

> altplus =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> m [N,P] [P] [N,P,Z] s (n [N] [P] [Z] s z);
altplus : Nat->Nat->Nat

/\ Nat->Pos->Pos
/\ Zero->Zero->Zero
/\ Pos->Nat->Pos

The cases for multiplication and exponentiation are similar, but slightly more complicated.

> altmult =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> \s: N->P.
> m [N,Z] [N,P,Z] [Z]
> (n [N,Z] [N,P,Z] [N,P,Z] s);
altmult : Nat->Nat->Nat

/\ Nat->Zero->Zero
/\ Zero->Nat->Zero
/\ Pos->Pos->Pos

> altexp =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> n [N->N,N->P,N->N/\Z->Z/\P->P]
> [N->N,N->P,N->N/\Z->Z/\P->P]

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 149

> [N->P,N->N/\Z->Z/\P->P]
> (m [N,P,Z] [N,P,Z] [N,P,Z]);
altexp : Nat->Nat->(All N. All P<N. All Z<N. (N->P)->N->N)

/\ Nat->Nat->(All N. All P<N. All Z<N. (N->N/\Z->Z/\P->P)->N->N)
/\ Nat->Nat->(All N. All P<N. All Z<N. (N->N/\Z->Z/\P->P)->Z->Z)
/\ Nat->Nat->(All N. All P<N. All Z<N. (N->N/\Z->Z/\P->P)->P->P)
/\ Nat->Zero->(All N. All P<N. All Z<N. (N->P)->N->P)
/\ Zero->Pos->Zero
/\ Zero->Pos->(All N. All P<N. All Z<N. (N->P)->P->P)
/\ Pos->Nat->(All N. All P<N. All Z<N. (N->P)->N->P)

The type for this version of altexp looks strange because it is actually smaller than we wanted.
By � -expanding its body, we can force it to have only the familiar typing:

> altexp =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> \s:N->P. \z:Z.
> n [N->N,N->P,N->N/\Z->Z/\P->P]
> [N->N,N->P,N->N/\Z->Z/\P->P]
> [N->P,N->N/\Z->Z/\P->P]
> (m [N,P,Z] [N,P,Z] [N,P,Z])
> s z;
altexp : Nat->Nat->Nat /\ Nat->Zero->Pos /\ Zero->Pos->Zero /\ Pos->Nat->Pos

The diagonalization of this exponential function is particularly interesting, since it involves a
polymorphic self-application.

> diag = \n:Nat,Zero,Pos. altexp n n;
diag : Nat->Nat /\ Zero->Pos /\ Pos->Pos

7.7.2 Booleans

Similarly, the usual Church-encoding of the booleans can be refined to distinguish between true

and false, obtaining typings similar to those of Section 7.5.

> True == All B. All TT<B. All FF<B. TT -> T -> TT,
> False == All B. All TT<B. All FF<B. T -> FF -> FF,
> Bool == All B. All TT<B. All FF<B. TT -> FF -> B;

> true = \\B. \\TT<B. \\FF<B. \x:TT. \y:T. x,
> false = \\B. \\TT<B. \\FF<B. \x:T. \y:FF. y;
true : True
false : False

> not = \m:True,False,Bool.
> m [Bool] [False] [True] false true;
not : True->False /\ False->True /\ Bool->Bool

> or = for M in True,False,Bool.
> for N in True,False,Bool.
> \m:M. \n:N.
> m [Bool] [True] [N] true n;
or : True->Bool->True

/\ False->True->True
/\ False->False->False
/\ Bool->Bool->Bool

7.8. OBSERVATIONS ON PROGRAMMING WITH F� 150

7.8 Observations on Programming with F�

There are two novel aspects of the style of programming explored in this chapter that, together,
require new ways of thinking about the task of programming:

� The typechecker never fails outright. Since every parseable term can validly be given the
type

�
, the notion of a term being ill-typed does not make sense in this framework. Instead,

we are forced to think in terms of a term having a minimal type that is larger than the one
we expect or prefer.

� We often specify multiple typing assumptions for several bound variables or type applica-
tions. We do not usually expect that every combination of assumptions is going to lead to
an interesting (non-

�
) typing for the term, so it would be irritating to have the typechecker

generate a warning when the best type for some subphrase is
�

. (This would, however,
be a good idea in the case where the subphrase is in the scope of only one set of possible
assumptions.)

Consider the following, slightly incorrect, version of the altplus operator from Section 7.7.1:

> altplus =
> for MM in Nat,Zero,Pos. for NN in Nat,Zero,Pos.
> \m:MM. \n:NN.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> m [N,P] [P] [N,Z] s (n [N] [P] [Z] s z);
altplus : Nat->Nat->Nat /\ Zero->Zero->Zero /\ Pos->Nat->Pos

This expression has some of the types we expect, but it is missing Nat->Pos->Pos. To understand
what is wrong, we need some way of gaining insight into what is happening under the specific
set of assumptions where MM = Nat and NN = Pos.

One helpful tool that the present prototype implementation provides for this purpose is a query
operator that has no effect on the typing or execution of terms, but that has the side effect during
typechecking of printing out the minimal type that has been synthesized for its body under the
current prevailing assumptions. We write query expressions as ?i:e, where e is the body and
i is an identifying tag used to distinguish output from this query from that generated by other
queries. For example, here is the broken version of altplus with three queries added at salient
points in its body:

> altplus =
> for MM in Nat,Zero,Pos. for NN in Nat,Zero,Pos.
> \m:MM. \n:NN.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> ?body:
> (?m: (m [N,P] [P] [N,Z]))
> s
> (?n: (n [N] [P] [Z] s z));

MM=Nat, NN=Nat => m: (N->P)->N->N
MM=Nat, NN=Nat => n: N
MM=Nat, NN=Nat => body: N
MM=Nat, NN=Zero => m: (N->P)->N->N
MM=Nat, NN=Zero => n: Z
MM=Nat, NN=Zero => body: N
MM=Nat, NN=Pos => m: (N->P)->N->N
MM=Nat, NN=Pos => n: P

7.8. OBSERVATIONS ON PROGRAMMING WITH F� 151

MM=Nat, NN=Pos => body: N
MM=Zero, NN=Nat => m: (N->P)->N->N/\(N->P)->Z->Z
MM=Zero, NN=Nat => n: N
MM=Zero, NN=Nat => body: N
MM=Zero, NN=Zero => m: (N->P)->N->N/\(N->P)->Z->Z
MM=Zero, NN=Zero => n: Z
MM=Zero, NN=Zero => body: Z
MM=Zero, NN=Pos => m: (N->P)->N->N/\(N->P)->Z->Z
MM=Zero, NN=Pos => n: P
MM=Zero, NN=Pos => body: N
MM=Pos, NN=Nat => m: (N->P)->N->P
MM=Pos, NN=Nat => n: N
MM=Pos, NN=Nat => body: P
MM=Pos, NN=Zero => m: (N->P)->N->P
MM=Pos, NN=Zero => n: Z
MM=Pos, NN=Zero => body: P
MM=Pos, NN=Pos => m: (N->P)->N->P
MM=Pos, NN=Pos => n: P
MM=Pos, NN=Pos => body: P

altplus : Nat->Nat->Nat /\ Zero->Zero->Zero /\ Pos->Nat->Pos

From this trace, it is clear what the problem is: when MM is Nat and NN is Pos, the type of m’s
application to the three following types yields a function mapping a successor function and an
element of P (the type of n’s application to its type arguments) to N, not to P as we expected. Since
the relation between the type of the phrase marked m and the type of its final argument depends
on the third type application, we are led to try adding an annotation that will cause the case where
this argument is P to be considered separately. As we saw in Section 7.7.1, this is enough to get
the desired typing for altplus:

> altplus =
> for MM in Nat,Zero,Pos. for NN in Nat,Zero,Pos.
> \m:MM. \n:NN.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> ?body:
> (?m: (m [N,P] [P] [N,Z,P]))
> s
> (?n: (n [N] [P] [Z] s z));

MM=Nat, NN=Nat => m: (N->P)->N->N/\(P->P)->P->P
MM=Nat, NN=Nat => n: N
MM=Nat, NN=Nat => body: N
MM=Nat, NN=Zero => m: (N->P)->N->N/\(P->P)->P->P
MM=Nat, NN=Zero => n: Z
MM=Nat, NN=Zero => body: N
MM=Nat, NN=Pos => m: (N->P)->N->N/\(P->P)->P->P
MM=Nat, NN=Pos => n: P
MM=Nat, NN=Pos => body: P
MM=Zero, NN=Nat => m: (N->P)->N->N/\(N->P)->Z->Z/\(P->P)->P->P
MM=Zero, NN=Nat => n: N
MM=Zero, NN=Nat => body: N
MM=Zero, NN=Zero => m: (N->P)->N->N/\(N->P)->Z->Z/\(P->P)->P->P
MM=Zero, NN=Zero => n: Z
MM=Zero, NN=Zero => body: Z
MM=Zero, NN=Pos => m: (N->P)->N->N/\(N->P)->Z->Z/\(P->P)->P->P

7.9. AN EXPERIMENT WITH A SIMPLER FORMULATION OF F� 152

MM=Zero, NN=Pos => n: P
MM=Zero, NN=Pos => body: P
MM=Pos, NN=Nat => m: (N->P)->N->P/\(P->P)->P->P
MM=Pos, NN=Nat => n: N
MM=Pos, NN=Nat => body: P
MM=Pos, NN=Zero => m: (N->P)->N->P/\(P->P)->P->P
MM=Pos, NN=Zero => n: Z
MM=Pos, NN=Zero => body: P
MM=Pos, NN=Pos => m: (N->P)->N->P/\(P->P)->P->P
MM=Pos, NN=Pos => n: P
MM=Pos, NN=Pos => body: P

altplus : Nat->Nat->Nat
/\ Nat->Pos->Pos
/\ Zero->Zero->Zero
/\ Pos->Nat->Pos

7.9 An Experiment with a Simpler Formulation of F�

In Section 3.5 we mentioned a trick for “encoding” bounded quantification in a system with
intersections and pure (unbounded) second-order polymorphism:

� � � � � � def� � � �
� � � � � � � �

This is not an encoding in the true sense; for example, it does not validate the SUB-ALL rule.
Still, since it mimics something like bounded quantification in a significantly simpler system, it is
worth exploring the limits of this technique. Here are some of the more complex examples from
Section 7.7.1, with the translation applied by hand:

> Nat == All N. All P. All Z. (N->(P/\N)) -> (Z/\N) -> N,
> Zero == All N. All P. All Z. (N->(P/\N)) -> (Z/\N) -> (Z/\N),
> Pos == All N. All P. All Z. (N->(P/\N)) -> (Z/\N) -> (P/\N);

> check Zero < Nat;
Yes
> check Pos < Nat;
Yes

> zero = \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N). z,
> one = \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N). s z,
> two = \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N). s (s z);
zero : All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z /\ Nat
one : All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P /\ Nat
two : All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P /\ Nat

Note that these types are equivalent to zero : Zero, one : Pos, etc:

> check (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z) /\ Nat < Zero;
Yes
> check Zero < (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z) /\ Nat;
Yes
> check (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P) /\ Nat < Pos;
Yes
> check Pos < (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P) /\ Nat;
Yes

7.9. AN EXPERIMENT WITH A SIMPLER FORMULATION OF F� 153

> succ = \n:Zero,Pos,Nat.
> \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N).
> s (n [N] [(P/\N)] [(Z/\N)] s z);
succ : Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P) /\ Nat->Nat

> plus = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Pos] [Pos] [N] succ n;
plus : Zero->Zero->Zero /\ Pos->Nat->Pos /\ Nat->Pos->Pos /\ Nat->Nat->Nat

> times = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Zero] [N] [Zero] (plus n) zero;
times : Zero->Nat->Zero /\ Pos->Pos->Pos /\ Nat->Zero->Zero /\ Nat->Nat->Nat

> exp = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> n [Nat,Pos] [M] [Pos] (times m) one;
exp : Zero->Pos->Zero /\ Pos->Nat->Pos /\ Nat->Zero->Pos /\ Nat->Nat->Nat

> altplus =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P. \\Z.
> \s: N->(P/\N). \z:(Z/\N).
> m [N,(P/\N)] [(P/\N)] [N,(P/\N),(Z/\N)]
> s (n [N] [(P/\N)] [(Z/\N)] s z);
altplus : Nat->Nat->Nat

/\ Nat->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
/\ Zero->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z)
/\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

Again, note that this type is equivalent to the expected type for altplus:

> check
> Nat->Nat->Nat
> /\ Nat->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
> /\ Zero->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z)
> /\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
> < Nat->Nat->Nat
> /\ Nat->Pos->Pos
> /\ Pos->Nat->Pos
> /\ Zero->Zero->Zero;
Yes
> check
> Nat->Nat->Nat
> /\ Nat->Pos->Pos
> /\ Pos->Nat->Pos
> /\ Zero->Zero->Zero
> < Nat->Nat->Nat
> /\ Nat->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
> /\ Zero->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z)
> /\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P);
Yes

> altmult =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.

7.9. AN EXPERIMENT WITH A SIMPLER FORMULATION OF F� 154

> \\N. \\P. \\Z.
> \s: N->(P/\N).
> m [N,(Z/\N)] [N,(P/\N),(Z/\N)] [(Z/\N)]
> (n [N,(Z/\N)] [N,(P/\N),(Z/\N)] [N,(P/\N),(Z/\N)] s);
altmult : Nat->Nat->Nat

/\ Nat->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z)
/\ Zero->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z)
/\ Pos->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

> altexp =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P. \\Z.
> \s:N->(P/\N). \z:(Z/\N).
> n [N->N,N->(P/\N),N->N/\(Z/\N)->(Z/\N)/\(P/\N)->(P/\N)]
> [N->N,N->(P/\N),N->N/\(Z/\N)->(Z/\N)/\(P/\N)->(P/\N)]
> [N->(P/\N),N->N/\(Z/\N)->(Z/\N)/\(P/\N)->(P/\N)]
> (m [N,(P/\N),(Z/\N)] [N,(P/\N),(Z/\N)] [N,(P/\N),(Z/\N)])
> s z;
altexp : Nat->Nat->Nat

/\ Nat->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
/\ Zero->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z)
/\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

> diag = \n:Nat,Zero,Pos. altexp n n;
diag : Nat->Nat

/\ Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
/\ Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

Our preliminary conclusion from these examples is that the encoding trick works better than
might be expected. Its main apparent defect is that it disrupts our notion of typed semantics,
since it replaces the type

� � � � � � , which, roughly speaking, describes a function expecting a
type and a coercion from this type into � , by the type

� � �
� � � � � � � � , which describes a function

expecting any type whatsoever, but requiring additional proof that whatever elements of this type
are actually used can also be coerced to type � .

Chapter 8

Evaluation and Future Work

Having presented our results in detail, we conclude by evaluating them in terms of the goals
articulated in the introductory chapter and suggesting some likely paths for future research.

The naturalness and formal power of the F� calculus seem well established. Is is based on
three elegant and appealing notions of typing — subtyping, finitary polymorphism, and bounded
parametric polymorphism — and combines them nearly orthogonally so that the programming
idioms of all the components are fully supported. When the two styles of polymorphism are used
together, a fascinating new class of encodings of algebraic datatypes arises (Section 7.7).

The thesis presents both positive and negative results about the system’s tractability. On the
positive side, we have proofs of the partial correctness and of simple algorithms for checking
the subtype relation and for computing minimal types for programs (Chapter 4). We also have
a simple untyped semantic model (Section 5.1), a natural framework for typed models based
on a translation into system F (Section 5.3), and a preliminary equational theory (Section 5.5).
On the negative side is the discovery that the subtype relation of F� lacks least upper bounds
(Section 5.2), which blocks some of the known methods of semantic analysis and entails significant
complication for future efforts along these lines. The observation that the subtype relation is, in
fact, undecidable (Chapter 6), though not overly worrysome in practical terms, is further evidence
for the underlying complexity that F� inherits from � � .

The difficulty of analyzing F� , together with the possibility that some of the programming
idioms arising from pure bounded quantification may have useful analogues in languages with
intersection types and only unbounded quantification (Section 7.9), suggests, in fact, that F� may
be too powerful, and that future investigations might profitably focus on simpler fragments instead
of treating the whole calculus.

The suitability of F� as a basis for language designs is partially, but incompletely, demonstrated
by the work described here.

The prototype implementation used to typeset the examples throughout the thesis establishes
the viability of the naive algorithms described in Chapter 4 for small examples and suggests
numerous convenient syntactic sugarings, programming techniques, and debugging tools (Sec-
tion 7.8). Sections 7.2, 7.3, and 7.4 present some experiments with language features using
combinations of finitary and parametric polymorphism. Sections 7.5 and 7.7 explore a novel style
of programming where intersections are used to obtain typings similar to the results of conven-
tional abstract interpretation, and Section 7.6 hints at a similar treatment of strictness analysis.
Among these examples, however, only those in the section discussing extensions of Forsythe (7.2)
could be called “practical.” To fully justify F� as a core type system for programming languages,
a much larger suite of examples illustrating its application to real programming problems would

155

8.1. ALTERNATIVE FORMULATIONS 156

be required. In particular, the set of examples given here lacks convincing evidence that bounded
polymorphism is more useful than ordinary unbounded polymorphism. (This is not surprising,
since the standard examples using bounded polymorphism rely on the presence of recursive types
or updateable record types, or both.)

Another concern raised by the prototype implementation is the practical efficiency of type-
checking for larger examples. Naive implementations of the simple algorithms in Chapter 4
exhibit exponential behavior — in practice — in both type synthesis (because of the for construct)
and subtyping (because of rules ASUBR-INTER and ASUBL-INTER in Definition 4.2.8.4). Fortu-
nately, this behavior normally occurs as a result of explicit programmer directives — requests, in
effect, for an exponential amount of analysis of the program during typechecking. Still, a serious
typechecker implementation would need to find ways to save some of this cost by caching the
partial results of previous analysis. The exact form of the typing derivations constructed by the
type analyzer can also have significant effects on the code generation phase of an implementation
based on something like the translation semantics given in Section 5.3.3, giving rise to a whole
collection of practical issues not considered here.

A third practical consideration for any language based on second-order polymorphism is
the problem of verbosity. Without some means of abbreviation (partial type reconstruction), even
modest programs quickly become overburdened with type abstractions and applications and long
type annotations on

�
-abstractions. We have chosen to ignore this set of issues here, since it is

not yet well understood even for pure polymorphic
�

-calculi without subtyping, but an eventual
full-scale language design based on F� would need to face it somehow.

With these remarks in mind, we now discuss some areas where future research might fruitfully
extend or complement the work described in this thesis.

8.1 Alternative Formulations

As we mentioned in the Introduction and in Section 3.5, the F� calculus is just one representative
of a whole space of calculi combining some form of polymorphism with some presentation of
intersection types.

Intersection types allow for relatively few degrees of freedom. Besides the version given here,
which slightly generalizes the core type system of Forsythe, there are three variants that may be
worth considering in more detail:

� The calculus identical to
�

� but without the type
�

— i.e., where � is required to be at least 1
in every rule involving an intersection — seems less elegant than

�
� itself. However, it has

the possible practical advantage that it retains a conventional notion of typechecking failure,
since it provides no type that can be assigned to every phrase. Combined with ordinary � �
(with � � ’s rules for the Top type), this version of intersection types might provide much of
the expressiveness that we have demonstrated here, without requiring such a radical change
in the notion of well-typedness.

� The distributivity laws of
�

� could perhaps also be dropped without greatly affecting ex-
pressiveness. Our guess, however, is that this restriction would make types much more
clumsy to manipulate. For example, many of the simplifications performed by the proto-
type implementation before printing the type inferred for an expression would be blocked
by this restriction.

8.2. FOUNDATIONS 157

� A much more severe restriction on the use of intersection types would be to prevent them
from appearing on the left-hand sides of arrows. This would greatly reduce their expres-
sive power, perhaps bringing them within the reach of conventional type reconstruction
techniques.

Polymorphism has been studied in many different forms. The one used in this thesis is
among the most powerful, combining full second-order quantification over types with a notion of
quantification over a collection of types determined by the subtype ordering. Many of the others,
though, are possible candidates for integration with intersection types.

� Generalizing our results about F� to systems based on F-bounded polymorphism [18, 39] or� -order polymorphism [66, 102, 62, 108] would seem to be a straightforward process.
� Versions of � � with stronger subtyping rules (c.f. 3.5) can also be combined with intersec-

tion types. These combinations are of dubious value as bases for practical programming
languages, since they have typechecking problems that seem to be of similar difficulty to the
full type reconstruction problem for the polymorphic

�
-calculus, but they may be suitable

foundations for more theoretical investigations. (See [89], for example.)
� Replacing F� ’s quantifier subtyping rule with the weaker “equal-bounds” rule of Cardelli

and Wegner’s original Fun [33]

� � � � � � � � �
� � � � � � � � � � � � � � � (SUB-ALL-EQ)

yields a decidable system. This rule is hard to justify semantically, however.
� Languages with prenex (ML-style) polymorphism [92, 55] have been investigated quite

thoroughly, but we are not aware of a formulation of prenex bounded quantification and, in
general, the work of adding subtyping to the ML type system in such a way as to retain its
crucial properties — especially decidable inference of principal types — is less developed
than the study of second-order type systems with subtyping.

� The ordinary polymorphic
�

-calculus (system �) can also be extended with a subtype
relation. When this calculus is combined with intersection types, some of the behavior of
the bounded quantifier can be recovered using intersections (c.f. Section 7.9). Although
more investigation is needed to determine the limitations of this trick, the proof theory and
semantics of this combination are likely to be so much simpler than those of F� that it seems
an excellent avenue to pursue.

8.2 Foundations

The most significant unfinished aspect of our theoretical study of F� is the investigation of its typed
semantics. We gave, in Chapter 5, two partial approaches to this question: a translation from F�

typing derivations into the pure polymorphic
�

-calculus, and an equational characterization of
equalities between F� terms. However, we were unable to show that the translation semantics
was coherent. Here we sketch some other approaches to the semantics of the calculus and some
possible methods by which the coherence of the translation semantics might be established.

8.2. FOUNDATIONS 158

8.2.1 Semantics

The partial equivalence relation model of F� given in Section 5.1 is a simple extension of Bruce
and Longo’s PER model of � � [12]. Our presentation, however, was much more elementary than
theirs, which began by giving a general definition of an environment model of � � (extending Bruce,
Meyer, and Mitchell’s familiar notion of a second-order environment model [13] for the polymorphic�

-calculus) and then showed how an instance of this framework could be constructed in the
category of � -sets (c.f. [3]). This general construction could presumably also be extended to an
environment model for F� . PER models for F� may also arise from Bruce and Mitchell’s work on
models of � � extended with recursive types [14].

A more general categorical semantics for F� along the lines of Seely’s semantics for system
� [129] would have to rest on a categorical semantics for � � — currently an open problem.

A different view of F� ’s semantics might come from a complete equational theory — an
extension of the rules in Section 5.5 with the additional property that they characterize all the
valid equivalences between terms with respect to some class of models.

8.2.2 Coherence

In Section 5.4 we stated the following conjecture for the translation semantics of F� :

(5.4.2). Conjecture: [Coherence of typing] If � ::
� �� � � � and

�
::

� �� � � � , then [[
�

]] �� [[�]] �
[[

�
]] � [[�]].

Two general methods are known for establishing conjectures of this sort. One, formalized most
cleanly by Curien and Ghelli [50] (also see [63, 10]), has been applied successfully to second-order
bounded quantification. The other, due to Reynolds [123], works for first-order intersection types.
The extension of either to F� is problematic.

Before applying either method, the translation semantics should be slightly refined. Rather
than interpreting subtyping derivations directly as terms of � � , they should be interpreted as
combinations of a set of coercion combinators, which capture the notion of a semantic subcategory
of coercions. (See [10].) This refinement of F� is straightforward.

Curien and Ghelli’s method is based on a derivation normalization argument for typing
derivations similar to the one given for canonical subtyping in Section 4.2. In outline, the argument
proceeds as follows:

� A set of rules is given for rewriting derivations into a standard normal form.
� A terminating rewriting strategy for these rules is exhibited.
� The set of normal forms is shown to be sufficiently restricted that there is at most one

normal-form derivation with any given conclusion.
� Each of the rewriting rules is shown to be “locally coherent” with respect to the given

semantic interpretation of derivations: if � � � 1
�

then [[�]] � [[
�
]].

� Given two derivations with the same conclusion, the termination of the rewrite rules and the
unicity of normal forms guarantee that both can be rewritten to the same normal form. The
local confluence of the rewriting rules then establishes the equality of the interpretations of
the original derivations.

The main difficulty with extending this approach to F� is that it is not clear how to write normal-
ization rules for typing derivations that rewrite any derivation into a unique normal form. For
example, if � � 	 Int� Char
 � 	 Bool� Char
 and � � Int� Bool, then the term

	 for � in Int
�
Bool �

� �
:� � � �
 �

8.2. FOUNDATIONS 159

can be given the type Char in at least two different ways — one using the substitution
�
Int � � � and

another using
�
Bool � � � . The first derivation contains no subderivation for the term

� �
:Bool � � �

,
and the second contains no subderivation for

� �
:Int � � �

. So in order to rewrite both of them
into a common derivation, a whole new subderivation would need to be created “on the fly” by
the rewriting rules. This does not seem impossible, but it is certainly more difficult than the task
accomplished by Curien and Ghelli’s rules, which can simply rearrange the existing structure of
derivations.

Reynolds’ method for proving coherence is based on a category-theoretic presentation of the
semantics of

�
� in which intersections are interpreted as limits. The interpretation of a derivation� � � � � is a morphism [[

� � � � �]] � [[
�

]]� [[�]], where [[
�

1:� 1
�

. . .
� � :� �]] � [[�

1]] � � � � � [[� �]].
Proving coherence in this presentation amounts to establishing the commutativity of all diagrams
of the following form:

[[
�

]] [[�]]
�[[� 1 ::

� � � � �]] �
[[� 2 ::

� � � � �]]

The proof actually requires a stronger induction hypothesis, the commutativity of every diagram
of the following form,

[[
�

]]

[[
�

1]]

[[
�

2]]

[[�
1]]

[[�
2]]

[[�]]

�[[� 1 ::
�

1 � � � �
1]]

�
[[� 2 ::

�
2 � � � �

2]]

�
�

�� �
[[

� � �
1]]

�
�

�� �[[
� � �

2]]

�
�

�� �[[�
1 � �]]

�
�

�� �
[[�

2 � �]]

which can be established by simultaneous induction on � 1 and � 2.
When the final steps of both derivations are applications of syntax-directed rules such as

ARROW-I, the induction hypothesis is used together with properties of the the model (such as
cartesian closure) to obtain the desired result.

For the non-syntax-directed rules SUB and INTER-I, the proof depends on two crucial properties.
When the last rule of one of the derivations is SUB, the result follows from the coherence of
subtyping (which in category-theoretic terms, can be stated more simply as “the function [[—]] from
types to objects of the semantic category and from subtyping derivations to coercion morphisms
is a functor”). A proof of this property for F� using an extension of Curien and Ghelli’s method
appears to be messy but fairly straightforward. The crux of the proof is an analog of the subtyping-
derivation-normalization argument in Section 4.2, where types are left in their ordinary form
instead of being flattened to canonical types.

The second property needed for Reynolds’ proof, unfortunately, is the existence of least upper
bounds in the subtype relation, which we showed fails for F� . This is used in the case where one
of the two typing derivations ends with rule INTER-I, to “glue together” the diagrams obtained by
applying the induction hypothesis to the subderivations.

It is conceivable that this proof technique could be extended to F� by strengthening the induc-
tion hypothesis again to consider all of the supertypes of �

1 and �
2 simultaneously, rather than just

a single given � .

8.3. EXTENSIONS 160

8.3 Extensions

In addition to more tractable fragments of F� , there are several important extensions that should
be considered.

8.3.1 Records

To model more of the features of full-scale object-oriented programming languages — an even to
allow useful programming in more conventional idioms — it is critical that we consider extending
F� with a flexible facility for record manipulation.

In Forsythe, Reynolds introduced the following elegant treatment of records. Let
� �� �

1 � �
2 � . . . � be a set of labels. For each

� � �
, introduce a type constructor “

�
:” describing the

set of single-field records with label
�
. Next, introduce a field selection operator “

� �
” for each 	 . If
 � � � �

: then

 � � � � � . Multi-field records can now be built from these primitives: instead of� �

1: 1 � �
2 � 2 � , we write � �

1: 1 � � � �
2: 2 � . Lastly, we need a way of building new records. Forsythe

uses the construct “
�

with
� � �

” to denote a value with all the same fields as
�
, but with

�
’s

�
field, if any, replaced with

� � �
. The type of with can be stated in terms of an operator “ � �

,” which
removes any existing

�
fields from a given type:

 � � �
 � � � � �

 � �

with
� � � � � � � � � � � � � � �

where� � � � �
� � � 1

� � � � � � � � � � � 1 � � � � � � � � � � �� 1� 2 � � � � 1 � 2� � �
: � � � � � �

: when
� �� � �

� �
: � � � � � �

The principal difficulty with adding this treatment of records to F� is that there is no way to
define the behavior of the operation � �

applied to a type variable � : we cannot tell from the shape
of � itself whether it will later be instantiated with a type containing an

�
field, and even if we

could, the current language of types gives us no way of “remembering” to remove the
�

field when
this instantiation actually occurs. The � �

operation must be introduced as a new constructor in the
language of types:

 ::= �� 1 � 2� � ! 1
� 2� � � 1

� � � �� �
:� � �

New rules must be given for the behavior of � �
and its interaction with the other constructors,

and a new typechecking algorithm must be given and proved correct.
Luckily, the � �

constructor has been extensively studied in recent years — albeit for languages
without intersection types [112, 135, 82, 83, 113, 114, 32, 31, 71, 70, 115]. We hope that existing
intuitions and techniques can be extended to F� straightforwardly.

8.4. IMPLEMENTATION 161

8.3.2 Recursive Types

Another extension of particular importance for F� ’s role in modeling object-oriented languages is
recursive types. Again, a great deal has been learned recently about calculi with recursive types
and subtyping [2]. But previous work has focused on systems with substantially simpler subtype
relations; there is little reason to believe that extending existing techniques will be straightforward.

8.3.3 Union Types

Having studied the properties of a type system whose subtype relation is closed under finite
meets, it is natural to consider introducing finite joins as well. In practical terms, the main effect of
this extension is that we gain the ability to express, say, that the type Bool is completely partitioned
by True and False (as opposed to knowing only that True and False are both contained in Bool).

Calculi incorporating various formulations of this notion have been proposed by the present
author [107] and a number of other researchers [4, 60, 122, 36, 59, 73, 72], but their practicality and
tractability remain unclear.

A related extension of F� arises from “dualizing” the upper bound of the bounded quantifier
so that each variable is introduced with both an upper and a lower bound:

 �
1 ! � ! �

2
� . A

fragment of this calculus with double-bounded variables but no quantification (the bounds on
variables are given in advance and no mechanism is provided for extending the context) is shown
to be decidable in [104].

8.3.4 Type Reconstruction

In order for languages based on second-order polymorphism to be usable on a large scale, some
form of partial type reconstruction is a critical requirement. Though satisfactory algorithms exist
for the pure system

�
and its higher-order variants [102, 9, 109], there has been little progress to

date on extending these ideas to calculi with subtyping (see, however, [27]).
Less critical in practical terms, but intriguing, is the possibility of integrating polymorphic

type reconstruction with a known semi-algorithm for intersection type inference [125].

8.4 Implementation

Our prototype implementation of F� uses some slight extensions of the algorithms we analyzed in
Chapter 4. We perform the type substitutions introduced by the FOR rule lazily by storing them in
the context rather than inserting them in the term. This mechanism also provides for transparent
type abbreviations that are somewhat more efficient than their most naive implementation (simple
replacement by the parser) would suggest. Our data structure for types, which is based on
DeBruijn indexing [56], is also implemented lazily; instead of renumbering the indices of the
free variables in a type when it is extracted from a context, the extracted type is reindexed,
incrementally, as needed. (Related schemes for lazy implementations of the data structures used
in typechecking have been studied by Abadi, Cardelli, Curien, and Lévy [1].)

These refinements substantially improve the speed of the implementation, compared to a
naive transcription of the typechecking algorithms. But some much more serious efficiency
issues remain to be addressed. These have to do primarily with the exponential behavior of the
typechecker in situations where the programmer has requested that some part of a program be
checked under many different sets of assumptions. To some degree, this exponential behavior is

8.4. IMPLEMENTATION 162

justified, since the programmer has asked for it and since it can be shown [Reynolds, personal
communication, 1990] that there are F� programs for which an exponential amount of work must
be expended to discover their minimal types. Still, the compiler implementor must try to make
common cases as inexpensive as possible.

The most promising technique for accomplishing this is some form of memoization or caching
of previous partial results of subtyping and typechecking. For example, if � does not appear free
in

�
1, then the type of

�
1 should only be analyzed once during the analysis of for � in

�
1

� � � � � �
1

�
2.

Of course, determining that � is not free in
�

1 may itself require some work; if we are not careful,
we will spend more time discovering that we’ve already computed and cached a type for

�
1 than

we would spend computing it over again from scratch. Both careful tuning of the data structures
used for caching and careful performance measurements will be crucial to the success of this sort
of improvement.

Another class of issues that we have dealt with only superficially concerns the structure of
efficient code generators based on our typed semantics of F� . (Compilation based on the untyped
semantics is less problematic.) One of the largest of these is the sensitivity of the generated code to
the specific shapes of typing derivations. It will be important to consider alternative formulations
of the typing and (especially) the subtyping rules that give rise to efficient translations. Some
compile-time proof normalization to eliminate useless coercions also seems necessary.

It may also become important, in practical terms, to try to distinguish the “real” overloading of
values like � from the “typechecking only” overloading associated with our examples of abstract
interpretation, strictness analysis, and so on. This would amount to taking a hybrid view of
semantics, allowing some intersections to be interpreted as intersections in the semantics while
others were interpreted as coherent tuples. It might be interesting to try to reflect this distinction
in the syntax of the language by introducing two different kinds of intersection types (with a
coercion from the untyped to the typed variety).

Appendix A

Summary of Major Definitions

A.1 F�
A.1.1 Subtyping
 � � (SUB-REFL)
 � 1 � 2

 � 2 � 3
 � 1 � 3
(SUB-TRANS)

 � � �
 � � � (SUB-TVAR)
 � 1 � �
1

 � �
2 � 2
 � �

1 � �
2 � 1� 2

(SUB-ARROW)

 � 1 � �
1

 � � ! 1
� �

2 � 2
 � � ! �
1

� �
2 � � ! 1

� 2
(SUB-ALL)

for all 	 �
 � � � �
 � � � � � 1
� � � � (SUB-INTER-G)

 � � � 1
� � � � � � (SUB-INTER-LB)
 � � � � � 1

� � � � � � � � � � � 1
� � � � (SUB-DIST-IA)
 � � � � ! � � 1

� � � ! � � � � � � ! � � � � 1
� � � � (SUB-DIST-IQ)

A.1.2 Typing
 � � �
 � � � (VAR)
 � �
: 1

� � � 2
 � � �
: 1

� � � 1 � 2
(ARROW-I)

 � �
1

� 1 � 2

 � �

2
� 1
 � �

1
�

2
� 2

(ARROW-E)

 � � ! 1
� � � 2
 � � � ! 1

� � � � ! 1
� 2

(ALL-I)

 � � � � ! 1
� 2

 � � 1
 � � � � � � � � � 2
(ALL-E)

163

A.1. F� 164

 � � � � � � � � � �
 �
for � in

�
1

� � � � � � � � (FOR)

for all 	 �
 � � � �
 � � � � � 1
� � � � (INTER-I)

 � � � 1

 � 1 � 2
 � � � 2

(SUB)

A.1.3 Syntax-Directed Subtyping

for all 	 �
 � � � � � �
 � � � � � � � 1
� � � � (ASUBR-INTER)

for some 	 �
 � � � � � � �
 � � � � 1
� � � � � � � � � (ASUBL-INTER)

 � 1 � � � � �
1

 � �
2 � � 2 � �
 � �

1� �
2 � � 1 � � 2 � � � (ASUBL-ARROW)

 � 1 � � � � �
1

 � � ! 1
� �

2 � � 2 � �
 �
� ! �

1
� �

2 � � � ! 1 � � 2 � � � (ASUBL-ALL)

 � � � � � � � (ASUBL-REFL)
 �
 � � � � � � �
 � � � � � � (ASUBL-TVAR)

A.1.4 Type Synthesis
 � � �
 � � � (A-VAR)
 � �
: 1

� � � 2
 � � �
: 1

� � � 1 � 2
(A-ARROW-I)

 � �
1

� �
1

 � �
2

� �
2
 � �

1
�

2
� � � � � � � � � � � � � �

arrowbasis� � �
1 � and

 � �
2 � � � � (A-ARROW-E)

 � � ! 1
� � � 2
 � � � ! 1

� � � � ! 1
� 2

(A-ALL-I)

 � � � �
1
 � � � � � � � � � � � � � � � � ! � � � � � � �
allbasis� � � 1 � and

 � � � � � (A-ALL-E)

for all 	 �
 � � � � � � � � � �
 �
for � in

�
1

� � � � � � � � � 1
� � � � (A-FOR)

A.2. F� 165

A.2 F�

A.2.1 Subtyping
 � � � Top (SUB-TOP)
 � � (SUB-REFL)
 � 1 � 2

 � 2 � 3
 � 1 � 3

(SUB-TRANS)

 � � �
 � � � (SUB-TVAR)
 � 1 � �
1

 � �
2 � 2
 � �

1 � �
2 � 1� 2

(SUB-ARROW)

 � 1 � �
1

 � � ! 1
� �

2 � 2
 � � ! �
1

� �
2 � � ! 1

� 2
(SUB-ALL)

A.2.2 Typing
 � � �
 � � � (VAR)
 � �
: 1

� � � 2
 � � �
: 1

� � � 1 � 2
(ARROW-I)

 � �
1

� 1 � 2

 � �

2
� 1
 � �

1
�

2
� 2

(ARROW-E)

 � � ! 1
� � � 2
 � � � ! 1

� � � � ! 1
� 2

(ALL-I)

 � � � � ! 1
� 2

 � � 1
 � � � � � � � � � 2
(ALL-E)

 � � � 1

 � 1 � 2
 � � � 2

(SUB)

A.3
� �

A.3.1 Subtyping
 � �
1 � � �

2
 � �
1 � �

2
(SUB-PRIM)

 � � (SUB-REFL)
 � 1 � 2

 � 2 � 3
 � 1 � 3

(SUB-TRANS)

 � 1 � �
1

 � �
2 � 2
 � �

1 � �
2 � 1� 2

(SUB-ARROW)

for all 	 �
 � � � �
 � � � � � 1
� � � � (SUB-INTER-G)

 � � � 1
� � � � � � (SUB-INTER-LB)
 � � � � � 1

� � � � � � � � � � � 1
� � � � (SUB-DIST-IA)

A.3.
� � 166

A.3.2 Typing
 � � �
 � � � (VAR)
 � �
:
� � � � � �
 � � �

:
�

1
� � � � � � � � � � � (ARROW-I’)

 � �
1

� 1 � 2

 � �

2
� 1
 � �

1
�

2
� 2

(ARROW-E)

for all 	 �
 � � � �
 � � � � � 1
� � � � (INTER-I)

 � � � 1

 � 1 � 2
 � � � 2

(SUB)

Appendix B

Glossary of Notation

� � � � � type variables p. 14
� � � � � � � � � � types p. 14� � � � � � � � � � � finite sequences of types p. 14� � 	 term variables p. 14� �
 � � � � terms p. 14

contexts p. 14�
subtyping and typing statements p. 15 � � subtyping derivations p. 15� � � typing derivations p. 15� primitive types p. 16
 �
the pervasive context p. 18� � �
composite canonical types p. 50� � �
individual canonical types p. 50� � 	 all canonical types p. 50��
canonical derivations p. 51� � � canonical subtyping derivations p. 51� � � individual canonical subtyping derivations p. 51 � � both canonical and individual canonical subtyping derivations p. 51

167

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In Proceedings of
the Seventeenth ACM Symposium on Principles of Programming Languages, pages 31–46, San
Francisco, CA, January 1990.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In Proceedings of the
Eighteenth ACM Symposium on Principles of Programming Languages, pages 104–118, Orlando,
FL, January 1991.

[3] Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures: An Introduction to
Category Theory for the Working Computer Scientist. The MIT Press, 1991.

[4] Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and union types. In Ito
and Meyer [80], pages 651–674.

[5] H. P. Barendregt. The Lambda Calculus. North Holland, revised edition, 1984.

[6] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the
completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[7] Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice Hall, 1990.

[8] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard. Simula
Begin. Studentlitteratur (Lund, Sweden), Bratt Institute Fuer Neues Lerned (Goch, FRG),
Chartwell-Bratt Ltd (Kent, England), 1979.

[9] Hans-J. Boehm. Type inference in the presence of type abstraction. In Proceedings of the
SIGPLAN ’89 Conference on Programming Language Design and Implementation, pages 192–206,
Portland, OR, June 1989.

[10] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93:172–221, 1991.

[11] Kim B. Bruce. The equivalence of two semantic definitions for inheritance in object-oriented
languages. In Proceedings of Mathematical Foundations of Programming Semantics, Pittsburgh,
PA, March 1991. To appear.

[12] Kim B. Bruce and Giuseppe Longo. A modest model of records, inheritance, and bounded
quantification. Information and Computation, 87:196–240, 1990. An earlier version appeared
in the proceedings of the IEEE Symposium on Logic in Computer Science, 1988.

[13] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The semantics of second-order lambda
calculus. In Huet [79], pages 213–272. Also appeared in Information and Computation 84,
1 (January 1990).

[14] Kim Bruce and John Mitchell. PER models of subtyping, recursive types and higher-order
polymorphism. In Proceedings of the Nineteenth ACM Symposium on Principles of Programming
Languages, Albequerque, NM, January 1992. To appear.

168

BIBLIOGRAPHY 169

[15] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed
�

-programs on
term algebras. Theoretical Computer Science, 39:135–154, 1985.

[16] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory and practice of strictness analysis.
Science of Programming, 7:249–278, 1986.

[17] Peter Canning, William Cook, Walt Hill, and Walter Olthoff. Interfaces for strongly-typed
object-oriented programming. In Object Oriented Programing: Systems, Languages, and Appli-
cations (Conference Proceedings), pages 457–467, 1989.

[18] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John Mitchell. F-bounded
quantification for object-oriented programming. In Fourth International Conference on Func-
tional Programming Languages and Computer Architecture, pages 273–280, September 1989.

[19] Peter Canning, Walt Hill, and Walter Olthoff. A kernel language for object-oriented pro-
gramming. Technical Report STL-88-21, Hewlett-Packard Labs, 1988.

[20] Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and G. Plotkin,
editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages 51–67.
Springer-Verlag, 1984.

[21] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors,
Combinators and Functional Programming Languages. Springer-Verlag, 1986. Lecture Notes in
Computer Science No. 242.

[22] Luca Cardelli. Typechecking dependent types and subtypes. In Proc. of the Workshop on
Foundations of Logic and Functional Programming, Trento, Italy, December 1987.

[23] Luca Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138–164,
1988.

[24] Luca Cardelli. Structural subtyping and the notion of power type. In Proceedings of the
15th ACM Symposium on Principles of Programming Languages, pages 70–79, San Diego, CA,
January 1988.

[25] Luca Cardelli. Typeful programming. Research Report 45, Digital Equipment Corporation,
Systems Research Center, Palo Alto, California, February 1989.

[26] Luca Cardelli. Extensible records in a pure calculus of subtyping. To appear, 1991.

[27] Luca Cardelli. F-sub, the system. Unpublished manuscript, July 1991.

[28] Luca Cardelli, James Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson. The Modula-3
type system. In Proceedings of the Sixteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 202–212, January 1989.

[29] Luca Cardelli and Giuseppe Longo. A semantic basis for Quest: (Extended abstract). In
ACM Conference on Lisp and Functional Programming, pages 30–43, Nice, France, June 1990.
Extended version available as DEC SRC Research Report 55, Feb. 1990.

[30] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of system
F with subtyping. In Ito and Meyer [80], pages 750–770.

[31] Luca Cardelli and John C. Mitchell. Operations on records. Research Report 48, Digital
Equipment Corporation, Systems Research Center, August 1989.

[32] Luca Cardelli and John Mitchell. Operations on records (summary). In M. Main, A. Melton,
M. Mislove, and D. Schmidt, editors, Proceedings of Fifth International Conference on Mathemat-
ical Foundations of Programming Language Semantics, volume 442 of Lecture Notes in Computer

BIBLIOGRAPHY 170

Science, pages 22–52, Tulane University, New Orleans, March 1989. Springer Verlag. To
appear in Mathematical Structures in Computer Science; also available as DEC Systems
Research Center Research Report #48, August, 1989.

[33] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4), December 1985.

[34] Felice Cardone. Relational semantics for recursive types and bounded quantification. In
Proceedings of the Sixteenth International Colloquium on Automata, Languages, and Programming,
volume 372 of Lecture Notes in Computer Science, pages 164–178, Stresa, Italy, July 1989.
Springer-Verlag.

[35] Felice Cardone and Mario Coppo. Two extensions of Curry’s type inference system. In
Odifreddi [100], pages 19–76.

[36] Robert Cartwright and Mike Fagan. Soft typing. Submitted to PLDI ’91, November 1990.

[37] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

[38] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.

[39] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages 125–135,
San Francisco, CA, January 1990.

[40] M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for
�

-terms. Archiv. Math.
Logik, 19:139–156, 1978.

[41] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the�
-calculus. Notre-Dame Journal of Formal Logic, 21(4):685–693, October 1980.

[42] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended type structures and
filter lambda models. In G. Lolli, G. Longo, and A. Marja, editors, Logic Colloquium 82, pages
241–262, Amsterdam, 1983. North-Holland.

[43] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and lambda
calculus semantics. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 535–560, New York, 1980. Academic Press.

[44] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[45] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type theories, normal forms and D� -
lambda-models. Information and Computation, 72:85–116, 1987.

[46] M. Coppo, M. Dezani, and P. Sallé. Functional characterization of some semantic equali-
ties inside

�
-calculus. Number 81 in Lecture Notes in Computer Science, pages 133–146.

Springer-Verlag, 1979.

[47] Thierry Coquand. Une Théorie des Constructions. PhD thesis, University Paris VII, January
1985.

[48] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information and Compu-
tation, 76(2/3):95–120, February/March 1988.

[49] Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction for the
�

-calculus with
surjective pairing and terminal object. In ICALP ’91, 1991.

BIBLIOGRAPHY 171

[50] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption. Mathematical Structures
in Computer Science, 1991. To appear.

[51] Pierre-Louis Curien and Giorgio Ghelli. Subtyping + extensionality: Confluence of � � -
reductions in

� ! . In Ito and Meyer [80], pages 731–749.

[52] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.

[53] Pavel Curtis. Constrained quantification in polymorphic type analysis. Technical Report
CSL-90-1, Xerox Palo Alto Research Center, February 1990.

[54] O. J. Dahl and K. Nygaard. SIMULA–An ALGOL-based simulation language. Communica-
tions of the ACM, 9(9):671–678, September 1966.

[55] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Pro-
ceedings of the 9th ACM Symposium on Principles of Programming Languages, pages 207–212,
1982.

[56] Nicolas G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for auto-
matic formula manipulation with application to the Church-Rosser theorem. Indag. Math.,
34(5):381–392, 1972.

[57] M. Dezani-Ciancaglini and I. Margaria. F-semantics for intersection type discipline. In
G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science, pages 279–300. Springer-Verlag, 1984.

[58] Mariangiola Dezani-Ciancaglini and Ines Margaria. A characterisation of
�

-complete type
assignments. Theoretical Computer Science, 45:121–157, 1986.

[59] Mike Fagan. Soft Typing: An Approach to Type Checking for Dynamically Typed Languages. PhD
thesis, Rice University, December 1990.

[60] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the SIGPLAN
’91 Symposium on Language Design and Implementation, Toronto, Ontario. ACM Press, June
1991.

[61] P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. In Fifth Annual Symposium
on Logic in Computer Science (Philadelphia, PA), pages 346–354. IEEE Computer Society Press,
June 1990.

[62] Jean H. Gallier. On Girard’s “candidats de reductibilité”. In Odifreddi [100], pages 123–203.

[63] Giorgio Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating Inclusion and
Parametric Polymorphism. PhD thesis, Università di Pisa, March 1990. Technical report
TD–6/90, Dipartimento di Informatica, Università di Pisa.

[64] Giorgio Ghelli. A static type system for message passing. In Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 129–143, Phoenix, Arizona, October
1991. Distributed as Sigplan Notices, Volume 26, Number 11, November 1991.

[65] Paola Giannini and Simona Ronchi Della Rocca. Characterization of typings in polymorphic
type discipline. In IEEE Symposium on Logic in Computer Science, pages 61–70, 1988.

[66] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

[67] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

BIBLIOGRAPHY 172

[68] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF. Springer-
Verlag LNCS 78, 1979.

[69] Robert Harper and John Mitchell. On the type structure of Standard ML. ACM Transactions
on Programming Languages and Systems, 1992. To appear. An earlier version titled “The
Essence of ML” (Mitchell and Harper), appeared in the Proceedings of the Fifteenth ACM
Symposium on Principles of Programming Languages, San Diego, CA, January 1988.

[70] Robert W. Harper and Benjamin C. Pierce. Extensible records without subsumption. Tech-
nical Report CMU-CS-90-102, School of Computer Science, Carnegie Mellon University,
Feburary 1990.

[71] Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In
Proceedings of the Eighteenth Annual ACM Symposium on Principles of Programming Languages,
Orlando FL, pages 131–142. ACM, January 1991. Extended version available as Carnegie
Mellon Technical Report CMU-CS-90-157.

[72] Susumu Hayashi. Singleton, union and intersection types for program extraction. In Ito
and Meyer [80], pages 701–730.

[73] Susumu Hayashi and Yukihide Takayama. Extended projection method with Kreisel-
Troelstra realizability. Submitted to Information and Computation, 1990.

[74] Fritz Henglein and Harry G. Mairson. The complexity of type inference for higher-order
typed lambda-calculi. In Proceedings of the Eighteenth ACM Symposium on Principles of Pro-
gramming Languages, pages 119–130, Orlando, FL, January 1991.

[75] J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In Dezani-Ciancaglini
and Montanari, editors, Proceedings of the International Symposium on Programming, pages
212–226. Springer-Verlag, 1982. Lecture Notes in Computer Science No. 137.

[76] J. Roger Hindley. Coppo-Dezani-Sallé types in lambda-calculus, an introduction. Draft
manuscript, February 1989.

[77] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
�

-Calculus, volume 1
of London Mathematical Society Student Texts. Cambridge University Press, 1986.

[78] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[79] Gérard Huet, editor. Logical Foundations of Functional Programming. University of Texas at
Austin Year of Programming Series. Addison-Wesley, 1990.

[80] T. Ito and A. R. Meyer, editors. Theoretical Aspects of Computer Software (Sendai, Japan), number
526 in Lecture Notes in Computer Science. Springer-Verlag, September 1991.

[81] Bart Jacobs, Ines Margaria, and Maddalena Zacchi. Expansion and conversion models in
the lambda calculus from filters with polymorphic types. Manuscript, March 1989.

[82] Lalita A. Jategaonkar. ML with extended pattern matching and subtypes. Master’s thesis,
MIT, August 1989.

[83] Lalita A. Jategaonkar and John C. Mitchell. ML with extended pattern matching and
subtypes (preliminary version). In Proceedings of the ACM Conference on Lisp and Functional
Programming, pages 198–211, Snowbird, Utah, July 1988.

[84] Thomas P. Jensen. Strictness analysis in logical form. Unpublished manuscript, 1991.

BIBLIOGRAPHY 173

[85] A.J. Kfoury and J. Tiuryn. Type reconstruction in finite-rank fragments of the polymor-
phic

�
-calculus. In Fifth Annual IEEE Symposium on Logic in Computer Science, pages 2–11,

Philadelphia, PA, June 1990.

[86] Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new perspective based on type
inference. In Proceedings of the fourth International Conference on Functional Programming and
Computer Architecture, pages 260–272, September 1989.

[87] Daniel Leivant. Typing and computational properties of lambda expressions. Theoretical
Computer Science, 44:51–68, 1986.

[88] Daniel Leivant. Discrete polymorphism (summary). In Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, pages 288–297, 1990.

[89] QingMing Ma. Parametricity as subtyping. In Proceedings of the Nineteenth ACM Symposium
on Principles of Programming Languages, Albequerque, NM, January 1992. To appear.

[90] Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[91] Simone Martini. Bounded quantifiers have interval models. In Proceedings of the ACM
Conference on Lisp and Functional Programming, pages 174–183, Snowbird, Utah, July 1988.
ACM.

[92] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, August 1978.

[93] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT Press,
1990.

[94] John C. Mitchell. Polymorphic type inference and containment. Information and Computation,
76:211–249, 1988.

[95] John C. Mitchell. A type-inference approach to reduction properties and semantics of
polymorphic expressions. In Huet [79], pages 195–212.

[96] John Mitchell, Sigurd Meldal, and Neel Madhav. An extension of Standard ML modules
with subtyping and inheritance. In Proceedings of the Eighteenth ACM Symposium on Principles
of Programming Languages, pages 270–278, Orlando, FL, January 1991.

[97] John Mitchell and Gordon Plotkin. Abstract types have existential type. ACM Transactions
on Programming Languages and Systems, 10(3), July 1988.

[98] P. Naur et al. Revised report on the algorithmic language algol 60. Communications of the
ACM, 6:1–17, January 1963.

[99] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[100] Piergiorgio Odifreddi, editor. Logic and Computer Science. Number 31 in APIC Studies in
Data Processing. Academic Press, 1990.

[101] Atsushi Ohori and Peter Buneman. Static type inference for parametric classes. In OOPSLA
’89: Object-Oriented Programming Systems, Languages, and Applications, Conference Proceedings,
pages 445–456, October 1989.

[102] Frank Pfenning. Partial polymorphic type inference and higher-order unification. In Pro-
ceedings of the 1988 ACM Conference on Lisp and Functional Programming, Snowbird, Utah, pages
153–163. ACM Press, July 1988. Also available as Ergo Report 88–048, School of Computer
Science, Carnegie Mellon University, Pittsburgh.

BIBLIOGRAPHY 174

[103] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the Calculus
of Constructions. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings
of the Fifth Conference on the Mathematical Foundations of Programming Semantics, Tulane Uni-
versity, New Orleans, Louisiana, pages 209–228. Springer-Verlag LNCS 442, March 1989. Also
available as Ergo Report 88–069, School of Computer Science, Carnegie Mellon University.

[104] Benjamin Pierce. A decision procedure for the subtype relation on intersection types
with bounded variables. Technical Report CMU-CS-89-169, School of Computer Science,
Carnegie Mellon University, September 1989.

[105] Benjamin C. Pierce. Preliminary investigation of a calculus with intersection and union
types. Unpublished manuscript, June 1990.

[106] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press, 1991.

[107] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

[108] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-order typed
lambda-calculi. Technical Report CMU-CS-89-111, Carnegie Mellon University, March 1989.

[109] Randy Pollack. Implicit syntax. In G. Huet and G. Plotkin, editors, Proceedings of the First
Workshop on Logical Frameworks, Antibes, pages 421–434. Preliminary Version, May 1990.

[110] Garrell Pottinger. A type assignment for the strongly normalizable
�

-terms. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages 561–577. Academic Press,
New York, 1980.

[111] Uday S. Reddy. Objects as closures: Abstract semantics of object oriented languages. In
Proceedings of the 1988 ACM Symposium on Lisp and Functional Programming, pages 289–297,
Snowbird, Utah, July 1988.

[112] Didier Rémy. Typechecking records and variants in a natural extension of ML. In Proceedings
of the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, pages
242–249. ACM, January 1989.

[113] Didier Rémy. Algèbres Touffues. Application au Typage Polymorphe des Objets Enregistrements
dans les Langages Fonctionnels. PhD thesis, Université Paris VII, 1990.

[114] Didier Rémy. Typechecking records in a natural extension of ML. Submitted to TOPLAS,
June 1990.

[115] Didier Rèmy. Typing record concatenation for free. In Proceedings of the Nineteenth ACM
Symposium on Principles of Programming Languages, Albequerque, NM, January 1992. To
appear.

[116] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation,
pages 408–425, New York, 1974. Springer-Verlag LNCS 19.

[117] John Reynolds. Using category theory to design implicit conversions and generic operators.
In N. D. Jones, editor, Proceedings of the Aarhus Workshop on Semantics-Directed Compiler
Generation, number 94 in Lecture Notes in Computer Science. Springer-Verlag, January
1980.

[118] J. C. Reynolds. The essence of algol. In J. W. de Bakker and J. C. van Vliet, editors, Algorithmic
Languages, pages 345–372, Amsterdam, 1981. North-Holland.

BIBLIOGRAPHY 175

[119] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor,
Information Processing 83, pages 513–523, Amsterdam, 1983. Elsevier Science Publishers B.
V. (North-Holland).

[120] John Reynolds. Three approaches to type structure. In Mathematical Foundations of Software
Development. Springer-Verlag, 1985. Lecture Notes in Computer Science No. 185.

[121] John C. Reynolds. Preliminary design of the programming language Forsythe. Technical
Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[122] John C. Reynolds. Preliminary design of the programming language Forsythe. Technical
Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[123] John C. Reynolds. The coherence of languages with intersection types. In Ito and Meyer
[80], pages 675–700.

[124] Edmund Robinson and Robert Tennent. Bounded quantification and record-update prob-
lems. Message to Types electronic mail list, October 1988.

[125] Simona Ronchi della Rocca. Principal type scheme and unification for intersection type
discipline. Theoretical Computer Science, 59:181–209, 1988.

[126] S. Ronchi della Rocca and B. Venneri. Principal type schemes for an extended type theory.
Theoretical Computer Science, 28:151–169, 1984.

[127] P. Sallé. Une extension de la theorie des types en
�

-calcul. pages 398–410. Springer-Verlag,
1982. Lecture Notes in Computer Science No. 62.

[128] Dana Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522–587, 1976.

[129] R. A. G. Seely. Categorical semantics for higher order polymorphic lambda calculus. Journal
of Symbolic Logic, 52(4):969–988, December 1987.

[130] Ryan Stansifer. Type inference with subtypes. In Proceedings of the Fifteenth ACM Symposium
on Principles of Programming Languages, pages 88–97, San Diego, CA, January 1988.

[131] Steffen van Bakel. Principal type schemes for the strict type assignment system. Technical
report 91-6, University of Nijmegen, 1991.

[132] Steffen van Bakel. Complete restrictions of the intersection type discipline. Theoretical
Computer Science, 99, 1992. To appear.

[133] Mitchell Wand. Complete type inference for simple objects. In Proceedings of the IEEE
Symposium on Logic in Computer Science, Ithaca, NY, June 1987.

[134] Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Proceedings of
the IEEE Symposium on Logic in Computer Science, 1988.

[135] Mitchell Wand. Type inference for record concatenation and multiple inheritance. In Fourth
Annual IEEE Symposium on Logic in Computer Science, pages 92–97, Pacific Grove, CA, June
1989.

[136] Hirofumi Yokouchi. Relationship between polymorphic types and intersection types (ex-
tended abstract). Unpublished manuscript, December 1990.

