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Abstract

This paper establishes a new� limitative relation
between the polymorphic lambda calculus and
the kind of higher�order type theory which is em�
bodied in the logic of toposes� It is shown that
any embedding in a topos of the cartesian closed
category of �closed� types of a model of the poly�
morphic lambda calculus must place the poly�
morphic types well away from the powertypes
� � � of the topos� in the sense that � � �
is a subtype of a polymorphic type only in the
case that � is empty �and hence � � � is ter�
minal�� As corollaries� we obtain strengthenings
of Reynolds� result on the non�existence of set�
theoretic models of polymorphism�

Introduction

The results reported in this paper have their
origin in Reynolds� discovery that the standard
set�theoretic model of the simply typed lambda
calulus cannot be extended to model the poly�
morphic� or second�order� typed lambda calcu�
lus� In ��	 Reynolds speculated that there might
be a model of polymorphism in which the types
� are interpreted �in an environment� as sets
���		� in such a way that a function type �� ��

is interpreted standardly as the set of all func�
tions from ���		 to ����		� �Second�order product
types 
�� ���	 were to be interpreted in some
non�standard way�the thought being that sim�
ple cardinality considerations preclude the pos�
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sibility of also interpreting 
�� ���	 standardly
via an indexed cartesian product of sets�� In ��	
Reynolds formulated a precise de�nition of what
constitutes such a model and then proved that
no such structure exists�

This result soon became well known� but per�
haps not so well understood �by this author� at
least�� Shortly afterwards Plotkin gave a ver�
sion of the proof which clari�ed Reynolds� orig�
inal proof in two ways� Firstly� Plotkin took
Reynolds� notion of �set�theoretic model of poly�
morphism� and generalized it to a notion of a
K�model � where K is a cartesian closed cate�
gory �ccc� whose objects are used for the denota�
tions of the closed polymorphic types� Secondly�
Plotkin isolated the key step in Reynolds� proof
as a special case of a proposition about functors
T � K �� K which are expressible in a K�model
via expressions in the polymorphic lambda cal�
culus� The proposition is that every such functor
has a weakly initial algebra� see ���	�

Reynolds� notion of model in ��	 corresponds
to the special case of a K�model with the ccc
K equal to Set� the category of sets and func�
tions� So in the terminology of ���	� the result in
��	 is that no Set�model exists� However� one
can interpret Reynolds� original question about
the possibility of giving a set�theoretic model of
polymorphism in a slightly more general way�

Question � �Mitchell� Is there a K�model
with K a full sub�ccc of Set�

Specifying a full sub�ccc of Set amounts to giv�
ing a collection of sets which is closed under tak�
ing �nite cartesian products and under set expo�
nentiation� and then a K�model for such a K does
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indeed provide a semantics for polymorphism in
which types � are interpreted as sets ���		 �the
sets which are objects of K� and function types
���� are interpreted as the sets ���		� ����		 of all
functions from ���		 to ����		� So this would appear
to meet the criteria for a set�theoretic semantics
of polymorphism whose function types are stan�
dard� Unfortunately� as it stands� the proof in
���	 that there is no Set�model does not extend
to resolve the above question� However� it is an
immediate corollary of the main result of this pa�
per �Theorem �� that the only K�models with K
a full sub�ccc of Set are degenerate� in the sense
that all the objects of K are sets with at most one
element�

In order to state the main result� we must
consider another extension of the simply typed
lambda calculus somewhat di�erent from the
polymorphic calculus� namely the Higher�Order
Logic of Toposes� or HOLT for short� In HOLT�
the usual apparatus of the simply typed lambda
calculus �function types� application and lambda
abstraction� is extended by �nite product types
�with associated projection and pairing opera�
tions� and by a ground type � of �truth values�
equipped with an equality test ��� �� �� �
for each type �� As a logic� HOLT can be formu�
lated as a system for deriving equations between
terms of equal type using the usual rules of equa�
tional logic augmented by certain axioms �such
as the � and � axioms for ��abstraction and ex�
tensionality axioms for the equality tests�� The
close correspondence between theories in the sim�
ply typed lambda calculus and cartesian closed
categories extends to a similar correspondence
between theories in HOLT and toposes �which
are those ccc�s which also possess a subobject
classi�er�� We refer the reader to Part II of ��	
for a detailed account of this correspondence and
for other� equivalent formulations of the higher�
order logic of toposes�

One of these equivalent formulations� and
probably the most convenient one� is as a predi�
cate logic� Singling out the terms of type � and
calling them formulas� then all the usual propo�
sitional operations on formulas �conjunction ��
disjunction �� implication�� and so on� are de�
�nable� as are quanti�ed formulas ��x � �� ��

�x � �� ��� A type of the form � � � acts as
a powertype for the type �� because the terms
of type � � � act like the characteristic func�
tions of subtypes of ��given a formula � � �
possibly involving a variable x � �� we can sepa�
rate out the subtype �fx � � j �g� via the lambda
abstraction �x � �� � � ���� From this view�
point� HOLT is a kind of intuitionistic set theory�
Intuitionistic� because although � contains con�
stants t and f for �truth� and �falsity�� in general a
topos does not satisfy the Law of Excluded Mid�
dle� which says that every element of � is either
t or f� ��p � �� �p �� t� � �p �� f�� �� t�

Experience with toposes over the last �� or so
years shows that it is possible to encode a lot of
mathematical constructs within the language of
HOLT� Moreover� because the higher�order logic
of toposes is intuitionistic� many possibilites for
the particular topos Set which are ruled out by
the non�constructive nature of classical set the�
ory� become feasible for a more general topos�
This is precisely the case for models of polymor�
phism� In ��	 it was shown how to fully em�
bed any categorical�style model of second�order
typed lambda calculus in a topos in such a way
that the original model appears in the corre�
sponding internal logic of the topos as a �set
of sets� U � closed under exponentiation and U�
indexed cartesian products�� Such a structure in
a topos models not only the function types of the
polymorphic calculus in a standard way� but also
the second�order product types� As well as the
examples manufactured in ��	� one �naturally oc�
curing� example is the much�studied modest sets
model of polymorphism� for which the envelop�
ing topos is Hyland�s e�ective topos � see ��	 and
��	� But a non�trivial example of this kind of
structure is not possible in the topos Set� simple
cardinality considerations show that any such U
would have to contain only sets with at most one
element�

The categorical�style models� P� of polymor�
phism considered in ��	 �and before that in
���	� are in particular K�models in the sense of
Reynolds and Plotkin where K � P���U� is the
ccc of �denotations of� closed types and terms
in the model P� The construction of ��	 results
in a certain topos E derived from P� containing
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K as a full sub�ccc �and with other properties
besides� one should note that any ccc K can be
embedded as a sub�ccc of a topos� for example
via the Yoneda embedding of K into the cate�
gory of presheaves on K valued in a category of
suitably large sets�� In such a situation� it is
natural to ask how the polymorphic types �i�e�
the objects of K� relate to the larger collection
of HOLT types �i�e� the objects of E�� In partic�
ular� is it possible for K to be the whole of E� In
other words� after Reynolds we cannot hope for
a Set�model� but perhaps it is possible to have
an E�model with E a non�trivial topos � Unfor�
tunately even this is not possible� since we will
prove�

Theorem � Suppose that E is a topos and K is
a full sub�ccc of E for which there is a K�model
�in the sense of ����	 of the polymorphic typed
lambda calculus � If X is an object of E and the
powerobject X�� is a subobject of an object in
K� then X is empty� that is� X is isomorphic to
the initial object �

In particular� if K were the whole of E � then
every object of E would be empty and hence E
would be trivial� in the sense of being equivalent
to the one�object�one�morphism category�

Corollary � There is no K�model of polymor�
phism for which K is a non�trivial topos�

Another special case of the theorem is when
E � Set� Then � � ft� fg is a two element set
and so an object X contains a powerobject as a
subobject just in case X is a set with at least two
di�erent elements� Consequently we obtain the
result which was mentioned above�

Corollary � All K�models of polymorphism
with K a full sub�ccc of Set are degenerate� in
the sense that all the objects of K are sets with
at most one element�

Our proof of Theorem � builds on the argu�
ment given in ���	 for the non�existence of a
Set�model� In section �� we brie�y recall the
Reynolds�Plotkin result on polymorphically ex�
pressible functors� In section � we sketch the

main new argument� which produces from the
hypotheses of the theorem an object I in E
equipped with an isomorphism �I�P ��P �� I�
where P is the powerobject X � �� Finally in
section � we recall the fact that a suitable form
of Cantor�s Theorem is provable in the higher�
order logic of toposes� and then deduce from the
above isomorphism that X is isomorphic to �

Acknowledgement The �rst version I ob�
tained of Theorem � was weaker than the one
presented here� in that it contained the addi�
tional assumption that the ccc K has equalizers
�of parallel pairs of morphisms�� this weaker ver�
sion is still su�cient to deduce Corollary �� since
toposes are in particular ccc�s with equalizers� I
am grateful to John Mitchell for spurring me on
to remove the unecessary assumption of equaliz�
ers and in particular for raising the Question �
which is answered here in the negative�

� Polymorphic Expressibility

We need to consider not just the pure polymor�
phic typed lambda calculus� but that de�ned
over some signature containing type constants ��
type operators F of various arities n 	 � �which
can be applied to an n�tuple of types ��� � � � � �n
to produce another type F���� � � � � �n� � and in�
dividual constants k� of various types �� So the
polymorphic types � are built up from type vari�
ables ��� ��� � � � using the grammar

� ��� � j � j F ��� � � � � �� j ��� j 
�� �

and then the terms t of each type � are built
up from individual variables x�� � x

�
� � � � � using the

following rules �where �t � �� means that t is a
well�formed term of type ���


 if c� is a variable or constant� then c� � ��


 if t � ��	 and s � �� then ts � 	 �


 if t � 	 � then �x�� t � ��	 �


 if t � 
�� �� then t� � ��	
�	
�the type is the result of substituting 	 for
� in ���
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 if t � �� then ��� t � 
�� � provided that � is
not free in any type which is the type of an
individual variable occurring freely in t�

The last clause refers to the freeness of variables�
the type variable � is bound in 
�� � and ��� t
as is the individual variable x� in �x�� t� all other
occurences of variables are free� A type or term
with no free type variables will be called �type�
	closed�

A description of a categorical semantics of
these polymorphic types and terms based upon
Lawvere�s notion of �hyperdoctrine� is given in
���	 �for the higher�order calculus� and in some
detail in ��	� In this semantics � and � conver�
sion hold for both kinds of abstraction �� and
��� In ���	 an environment�style semantics is
given� which is intentionally quite weak �it sat�
is�es � and � conversion for ��abstraction and a
limited form of ��conversion for ��abstraction�
and is tailored to obtaining the results of that
paper and no more� �See also ��	 for a seman�
tics in a similar style� and see ��	 for a de�
tailed comparison between the categorical� and
the environment�style models in the case of the
simply typed lambda calculus��

For both kinds of model� part of the structure
is a cartesian closed category K which is used in
particular to give denotations to the closed types
and terms� Since this part of a model plays the
principle role in ���	� Reynolds and Plotkin call
their models of polymorphismK�models� We will
not recall here the details of the de�nitions of ei�
ther the categorical or the Reynolds�Plotkin no�
tions of model of polymorphism� Instead we note
that the �rst kind can be regarded as a particular
instance of the second� but that all the �naturally
occuring� models �known to the author� satisfy
the more stringent requirements of the categori�
cal semantics�

Now let K be a �xed ccc for which there is
some K�model� We recall the result in ���	 on
polymorphic expressibility of a functor T � K ��
K �see below for an explanation of this notion��

Proposition � �Reynolds�Plotkin�

If T � K �� K is expressible in a K�model�
then there is a weakly initial T �algebra� that is�

an object W of K equipped with a morphism
w � T �W � �� W with the property that for any
similar data f � T �K� �� K there is some �not
necessarily unique	 morphism �f � W �� K sat�
isfying �f � w � f � T � �f��

For our purposes here it is su�cient to use a
slightly stronger notion of polymorphic express�
ibility than that which is given in ���	� So we
will say that T � K �� K is expressible in a K�
model if there is a type with at most one free
type variable� 	 ��	� and a term t � 
��
�� ���
�� � �	 ��	 � 	 ��	� which together �induce the
action of T on K�� This means that if K is an
object of K� evaluating 	 ��	 in the environment
which assigns K to � yields another object of K�
which is to be T �K�� and similarly� evaluating
t��x

��� in a suitable environment determined by
f � K �� K � will yield T �f� � T �K� �� T �K ���

The only example of a polymorphically ex�
pressible functor we need to consider is that given
by double exponentiation by an object� For any
object K of K� let TK � K �� K be the functor

TK��� � �����K��K�

If K is the denotation of some closed type � in a
K�model� then TK is expressible in that model�
for we can take

	 ��	 � �������

t � ������ �y� �u� �z� u�z � y�

where y � �� �� u � ��� ��� �� z � �� � and
z � y � �x�� z�yx�� �See ���	� Proposition ��� By
changing model we can remove the restriction on
K� and obtain�

Corollary � Let K be a ccc for which there is a
K�model and let K be any object of K� Then the
functor TK � K �� K possesses a weakly initial
algebra�

Proof From the remarks above� to apply Propo�
sition � it is su�cient to �nd a K�model for a sig�
nature of type and individual constants for which
K is the denotation of some closed type over the
signature� This may not be the case for the sig�
nature and K�model of it which are given at �rst�
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However� we can expand the signature by adding
a new type constant naming the object K� and it
is then possible to extend the original K�model
to a new K�model of the bigger signature� Then
TK is expressible in this new model and so by
Proposition �� it has a weakly initial algebra�

�End of Proof �

The proof of Corollary � highlights an impor�
tant di�erence between the style of model in ���	
and the categorical notion of model ��	� a K�
model is given relative to a particular signature�
whereas a categorical model is not� Instead� a
categorical model is capable of giving a seman�
tics for any signature once a structure for that
signature has been speci�ed in the model� Thus
the change of model in the above proof would be
unnecessary if we restricted attention just to the
categorical style of model�

� Initial TP �Algebras

In this section we suppose given a cartesian
closed category K for which there is a K�model
of polymorphism� Suppose also that E is a topos
containing K as a full sub�ccc� in other words� we
can regard the objects of K as a subcollection of
the objects of E which is closed under the oper�
ations of taking �nite products and exponentials
in E � Suppose further that X is an object of
E and that the powerobject P � �X � �� is a
subobject of an object in K� so that there is a
monomorphism m � P ��� K with K in K� The
aim in this section is to show how to construct
an object I in E together with an isomorphism
i � �I�P ��P �� I�

By de�nition� an object I together with a mor�
phism i � ��I � P �� P � �� I constitutes an
algebra �I� i� for the functor

TP ��� � �����P ��P � E �� E �

These algebras are the objects of a category
TP �Alg� whose morphisms �I� i� �� �J� j� are
morphisms f � I �� J in E satisfying that
j � TP �f� � f � i� It is well known that if �I� i� is
an initial object in this category� then i is neces�
sarily an isomorphism �see ��	� ���	� ���	�� �Recall

that an object  in a category is initial if for every
object X there is a unique morphism  �� X�
a weakly initial object satis�es the same condi�
tion except for the uniqueness requirement on
the morphism��

So to ful�l our aim of constructing an object I
and isomorphism i � ��I�P ��P � �� I� we must
construct an initial algebra for TP � In fact we
only construct an initial algebra for the restric�
tion of TP to an endofunctor S �� S� where S
is a certain full subcategory of E to be de�ned
below�but this is su�cient� The construction
is in two steps�

Step � It is the case that TP is a natural re�
tract of TK � that is� there are natural transfor�
mations � � TP �� TK and � � TK �� TP with
� � � � id� �This is because P � �X � ��� be�
ing a powerobject in a topos� is injective and
hence the monomorphism m � P ��� K has
a left inverse� i�e� there is  � K �� P with
 � m � id� indeed� one suitable  is de�ned in
the internal higher�order logic of the topos E by
�k � K� fx � X j �S � P�m�S� � k � x � Sg�
So we can take � � ���� � � � m and � �
�����m����

Recall that by hypothesis� the objects of K
are a subcollection of those of E and are closed
under exponentiation in E � Thus TK is an end�
ofunctor of both K and the enveloping topos E �
By Corollary � we have an algebra �W�w� for TK
which is weakly initial for the collection of TK�
algebras �E� e� whose underlying object E is in
K� Then by composing with the component of �
at W � �W � TP �W � �� TK�W �� we can turn the
TK�algebra �W�w� into a TP �algebra �W�w��W ��

Step � Form the TP �algebra �I� i� which inter�
nally to the topos E is the intersection of all the
TP �subalgebras of �W�w � �W �� �In general� such
a construction is possible because TP is an �E�
indexed functor�� but given the speci�c form of
P as X�� and TP as �����P ��P � one can
also give an explicit description of I using the in�
ternal higher�order logic of E � I is the subobject
of W described by

fy �W j �S � �W���� ��u � TP �W ��

�u � TP �S��� w��W �u�� � S�� y � Sg�
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where �u � TP �S�� stands for ��x� x� � X��y �
W��z �W�P� �x � u�z��x� � z�y�� y � S����

De�nition Let S be the full subcategory of E
whose objects are subobjects of objects in K�

Lemma � If E is in S� then so is TP �E��

Proof Since P is a powerobject� TP maps mono�
morphisms to split monomorphisms� �For if
a � E ��� A is a monomorphism� then TP �a� can
be described in the internal higher�order logic
of E as �u � TP �E�� �z � �A � P �� u�z � a��
and then a left inverse r � TP �A� �� TP �E�
for TP �a� is described by �u � TP �A�� �z �
�E � P �� u��a�z��� where �a�z� � �A � P � is
�y � A� fx � X j �v � E� x � z�v� � a�v� � yg�
where we are using the fact that P is X����

Thus given E in S� witnessed by some mono�
morphism a � E ��� A with A in K� then
the composition of the monomorphism TP �a� �
TP �E� ��� TP �A� with the monomorphism
�A � TP �A� ��� TK�A� constructed in Step �
above� witnesses that TP �E� is also in S�

�End of Proof �

Thus TP restricts to an endofunctor of S� We
claim that �I� i� constructed in Step � is an initial
algebra for TP � S �� S� To see this� we use
the following consequence of the weak initiality
property of �W�w��

Lemma � For every TP �algebra �E� e� with E
in S� there is a morphism in TP �Alg from a TP �
subalgebra of �W�w � �W � to �E� e��

Proof Since E is in S� there is a monomorphism
a � E ��� A with A in K� Then as we noted in
the proof of Lemma �� TP �a� is a split monomor�
phism� with left inverse r � TP �A� �� TP �E�
say� Using r and � � TK �� TP from Step ��
we get a TK�algebra �A� a � e � r � �A�� Since A
is in K� the weak initiality property of �W�w�
furnishes a TK�algebra morphism f � �W�w� ��
�A� a � e � r � �A� and hence a TP �algebra mor�
phism f � �W�w��W � �� �A� a�e�r�� But �E� e�
is a TP �subalgebra of �A� a � e � r� via the mono�
morphism a� so forming the pullback in TP �Alg

of this subalgebra along f � we obtain a subalge�
bra of �W�w � �W � equipped with a morphism to
�E� e��

�End of Proof �

The following two properties of �I� i� with re�
gard to �external� TP �subalgebras of �W�w � �W �
are both straightforward consequences of the def�
inition of �I� i��

Lemma � �i	 �I� i� is a subalgebra of any TP �
subalgebra of �W�w � �W �
 and
�ii	 �I� i� contains no proper TP �subalgebra�

Then Lemma � and Lemma ��i� together im�
ply that �I� i� is weakly initial for TP � S �� S�
�Note that since I is a subobject of W � it is in
S�� But then Lemma ��ii� shows that �I� i� is
actually initial� given two TP �algebra morphisms
f� g � �I� i� �� �E� e� with E in S� forming the
equalizer of f and g we get a subalgebra of �I� i��
which by �ii� must be the whole of I�so that the
equalizer of f and g is an isomorphism and thus
f � g�

Thus �I� i� is an initial algebra for TP � S ��
S and as we remarked above� this implies that
i � ��I � P �� P � �� I is an isomorphism� as
required�

� Cantor�s Theorem in a

Topos

Classically� Cantor�s Theorem says that the car�
dinality of a set I is less than that of its pow�
erset PI� Speci�cally� the existence of a surjec�
tive mapping from a subset of I onto PI leads
to a contradiction via the well known diagonal
argument� The hypothesis amounts to asserting
the existence of a relation R  I � PI satisfying
M�R� and E�R� where

M�R� � �u � I��U�U � � PI�

R�u�U� �R�u�U �� � U � U �

E�R� � �U � PI��u � I�R�u�U��

Then forming

D � fu � I j �U � PI�R�u�U� � �u � Ug �
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since E�R� holds we can �nd d � I satisfying
R�d�D� and hence

d � D � �U � PI�R�d� U� � �d � U

�by de�nition of D�

� �U � PI�R�d� U� �R�d�D�

��d � U

�since R�d�D� holds�

� �U � PI� U � D � �d � U

�since M�R� holds�

� �d � U

But �d � D � �d � D� is always false� so we
have a contradiction�

The above expressions and argument translate
directly into the higher order logic of toposes
with I�� for PI� R of type �I � �I�������
etc� �In particular� the Law of Excluded Mid�
dle is not needed for the diagonal argument�� In
other words� for any object I in a topos� the fol�
lowing sentence in the internal language of the
topos is satis�ed�

�R � �I � �I���������M�R� �E�R�� ���

where M�R� and E�R� are as above� Here we
need the following corollary of this fact�

Lemma � Suppose that E is a topos and that
X and I are objects of E for which there is an
isomorphism i � ��I�P ��P � �� I� where P is
the powerobject X��� Then X �� �

Proof To see that X ��  it is su�cient to
show that in the internal higher�order logic of
E the sentence �x � X� f is satis�ed� Argu�
ing informally� given x � X we have �S �
P� �Sx� � P � � which provides a left inverse
for �� � �� fx� � X j �g � � � P � Then �as
in section �� T� becomes a natural retract of
TP and in particular� there is a monomorphism
mx � ��I � ��� �� ��� ��I � P �� P �� But
then de�ning Rx � �I � �I������ by

Rx�u�U� �

u � i
�
mx�

�
U � � I�� j U � � U

�
�
�

one has M�Rx��E�Rx�� which by ��� is equal to
f� So f can be derived from the assumption x �

X� in other words �x � X� f holds� as required�
�End of Proof �

We can now complete the proof of Theorem ��
Suppose E is a topos containing a full sub�ccc K
and that a K�model of polymorphism exists� If
X is an object of E for which the powerobject
P � �X��� is a subobject of some object in K�
we saw in section � that there is an object I in
E together with an isomorphism i � ��I�P ��
P � �� I� Then by the above lemma� we have that
X �� �

Conclusion

The setting we have considered is one in which a
model of the polymorphic lambda calculus is em�
bedded in a model of a certain kind of construc�
tive set theory�the higher�order logic of toposes�
In view of the results of ��	� we can say that such
a situation is the norm rather than the excep�
tion� and for at least one important model of
polymorphism �the modest sets� where the en�
veloping topos is Hyland�s e�ective topos�� it is
the natural setting�

In this setting� we have seen that the proper�
ties which the object of truth values� �� and the
equality tests� ��� ������ possess in a topos�
imply that a powertype ��� can be contained
in a type arising from the model of polymorphism
only in the trivial case that � is empty� This
result puts limitations on the kind of cartesian
closed category K for which there is a K�model of
polymorphism �Corollaries � and ��� In particu�
lar it shows� possibly surprisingly� that Reynolds�
result on the non�existence of Set�models has
nothing to do with the non�constructive nature
of classical set theory and everything to do with
the fact that the category of sets is a topos�
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