
Overview

• Contextual equivalence of ML expressions in general, and of
functions involving local state in particular.

• A brief tour of structural operational semantics, culminating in a
structural definition of termination via an abstract machine using
‘frame stacks’.

• Applications to reasoning about contextual equivalence.

• Some things we do not know how to do yet.

Main point: A particular style of operational semantics enables a
‘syntax-directed’ inductive definition of termination that is very useful for
reasoning about operational equivalence of programs.
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p ,

let a = ref 0 in

fun(x : int) -> (a := !a + x ; !a )

m ,

let b = ref 0 in

fun(y : int) -> (b := !b - y ; 0 - !b )

Are these Caml expressions (of type int -> int) contextually
equivalent?
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Contextual equivalence (in general)

Two phrases of a programming language are contextually equivalent
(=ctx) if any occurrences of the first phrase in a complete program can
be replaced by the second phrase without affecting the
observable results of executing the program.

Not a single notion: different choices can be made for the definitions of
the underlined phrases, leading to possibly different notions of contextual
equivalence.

Also known as operational, or observational equivalence.
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f ,
let a = ref 0 in

let b = ref 0 in

fun(x : int ref) -> if x == a then b else a

g ,
let c = ref 0 in

let d = ref 0 in

fun(y : int ref) -> if y == d then d else c

Are these Caml expressions (of type int ref -> int ref) contextually
equivalent?
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Function Extensionality Principle. Two functions (defined on the
same set of arguments) are equal if they give equal results for each
possible argument.

• True of mathematical functions (e.g. in set theory).

• False for ML function expressions in general.

• True for ML function expressions in canonical form (i.e. lambda
abstractions), if we take ‘equal’ to mean contextually equivalent.

• True for pure functional programming languages (see Pitts 1997a);
also true for languages with ‘block-structured’ local state à
l’Algol (see Pitts 1997b).
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Distinguishing F and G

# let f = · · · (as on Slide 4) · · · ;;
val f : int ref -> int ref = <fun>

# let g = · · · (ditto) · · · ;;
val g : int ref -> int ref = <fun>

# let t = fun(h : int ref -> int ref) ->

let z = ref 0 in h (h z ) == h z ;;

val t : (int ref -> int ref) -> bool = <fun>

# t f ;;

- : bool = false

# t g ;;

- : bool = true
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ML Evaluation Semantics (simplified, environment-free form)

Evaluation relation

s, e ⇒ v, s′
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:

s = initial state
e = closed expression to be evaluated
v = resulting closed canonical form
s′ = final state

is inductively generated by rules following the structure of e, for example:

s, e1 ⇒ v1, s′ s′, e2[v1/x ] ⇒ v2, s′′

s, let x = e1 in e2 ⇒ v2, s′′

Evaluation semantics is also known as big-step (anon), natural (Kahn
1987), or relational (Milner) semantics.

8



ML programs are typed

Programs of type ty : Progty , { e | ∅ ` e : ty }

where
Type assignment relation

Γ ` e : ty

8

>

<

>

:

Γ = typing context
e = expression to be typed
ty = type

is inductively generated by axioms and rules following the structure of e,
for example:

Γ ` e1 : ty1 Γ[x 7→ ty1] ` e2 : ty2 x /∈ dom(Γ)

Γ ` (let x = e1 in e2) : ty2

Theorem (Type Soundness). If e, s ⇒ v, s′ and e ∈ Progty ,
then v ∈ Progty .
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Contextual preorder / equivalence

Given e1, e2 ∈ Progty , define

e1 =ctx e2 : ty , e1 ≤ctx e2 : ty & e2 ≤ctx e1 : ty

e1 ≤ctx e2 : ty , ∀x , e, ty ′, s . (x : ty ` e : ty ′) &

s, e[e1/x ] ⇓ ⊃ s, e[e2/x ] ⇓

where s, e ⇓ indicates termination:

s, e ⇓ , ∃s′, v (s, e ⇒ v, s′)

Other natural choices of what to observe apart from termination do not change =ctx.
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Definition of ⇓ is not syntax-directed

E.g.
s′, e2[v1/x ] ⇓

s, let x = e1 in e2 ⇓
if s, e1 ⇒ v1, s′

but e2[v1/x ] is not built from subphrases of let x = e1 in e2.

Simple example of the difficulty this causes: consider a divergent integer
expression ⊥ , (fun f = (x : int) -> f x ) 0.
It satisfies ⊥ ≤ctx n : int, for any n ∈ Progint
Obvious strategy for proving this is to try to show

s, e ⇓ ⊃ ∀x , e′. e = e′[⊥/x ] ⊃ s, e′[n/x ] ⇓

by induction on the derivation of s, e ⇓. But the induction steps are hard
to carry out because of the above problem.
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ML transition relation (s , e) → (s′ , e′)

is inductively generated by rules following the structure of e—e.g.
a simplification step

(s , e1) → (s′ , e′
1
)

(s , let x = e1 in e2) → (s′ , let x = e′
1
in e2)

a basic reduction
v a canonical form

(s , let x = v in e) → (s , e[v/x ])

(see Sect. A.5 for the full definition).

Theorem. s, e ⇒ v, s′ iff (s , e) →∗ (s′ , v).

(→∗ is the reflexive-transitive closure of →.)
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Felleisen-style presentation of →

Lemma. (s , e) → (s′ , e′) holds iff e = E[r] and e′ = E[r′] for
some evaluation context E and basic reduction (s , r) → (s′ , r′).

Evaluation contexts are closed contexts that want to evaluate their hole
(E ::= − | E e | v E | let x = E in e | · · · ).

E[r] denotes the expression resulting from replacing the ‘hole’ [−] in E
by the expression r.

Basic reductions (s , r) → (s′ , r′) are the axioms in the inductive
definition of → à la Plotkin—see Sect. A.5.
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Fact. Every closed expression not in canonical form is uniquely of the
form E[r] for some evaluation context E and redex r.

Fact. Every evaluation context E is a composition
F1[F2[· · · Fn[−] · · · ]] of basic evaluation contexts, or evaluation
frames.

Hence can reformulate transitions between configurations
(s , e) = (s , F1[F2[· · · Fn[r] · · · ]]) in terms of transitions
between configurations of the form

〈s , Fs , r〉

where Fs is a list of evaluation frames—the frame stack.
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An ML abstract machine

Transitions

〈s , Fs , e〉 → 〈s′ , Fs ′ , e′〉

8

>

<

>

:

s, s′ = states
Fs, Fs′ = frame stacks
e, e′ = closed expressions

defined by cases (i.e. no induction), according to the structure of e and
(then) Fs , for example:
〈s , Fs , let x = e1 in e2〉 →

〈s , Fs ◦ (let x = [−] in e2) , e1〉

〈s , Fs ◦ (let x = [−] in e) , v〉 → 〈s , Fs , e[v/x ]〉

(See Sect. A.6 for the full definition.)

Initial configurations: 〈s , Id , e〉
terminal configurations: 〈s , Id , v〉
(Id the empty frame stack, v a closed canonical form).
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Theorem. 〈s , Fs , e〉 →∗ 〈s′ , Id , v〉 iff s, Fs[e] ⇒ v, s′.

where

{

Id [e] , e

(Fs ◦ F)[e] , Fs[F [e]].

Hence: s, e ⇓ iff ∃s′, v (〈s , Id , e〉 →∗ 〈s′ , Id , v〉).

So we can express termination of evaluation in terms of termination of
the abstract machine. The gain is the following simple, but key,
observation:

↘ ,
{

〈s , Fs , e〉 | ∃s′, v
(

〈s , Fs , e〉 →∗ 〈s′ , Id , v〉
) }

has a direct, inductive definition following the structure of e and Fs—see
Sect. A.7.
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The relation
we are

interested in
is a

retract of

a larger one
with better
structural

properties.

⇓ ↘

States
×

Programs

States
×

Frame Stacks
×

Programs

(s , e) 〈s , Id , e〉

(s , Fs[e]) 〈s , Fs , e〉
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‘Logical’ simulation relation between ML programs,
parameterised by state-relations

For each state-relation r ∈ Rel(w1, w2) we can define relations

e1 ≤r e2 : ty (e1 ∈ Progty(w1), e2 ∈ Progty(w2))

(for each type ty ), with the properties stated on Slides 19–21.

Kripke-style worlds: w1, w2, . . . are finite sets of locations.
States in world w: St(w) , Z

w . Programs in world w:

Progty(w) ,
{

e ∈ Progty

∣

∣ loc(e) ⊆ w
}

.

State-relations: r, r′, . . . ∈ Rel(w1, w2) are subsets of
St(w1) × St(w2).
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The simulation property of ≤r

To prove e1 ≤r e2 : ty , it suffices to show that whenever
{

(s1, s2) ∈ r

s1, e1 ⇒ v1, s′
1

then there exists r′ B r and v2, s′
2

such that
{

s2, e2 ⇒ v2, s′
2

(s′
1
, s′

2
) ∈ r′

and v1 ≤r
′ v2 : ty .

This uses the notion of extension of state-relations:
r′ B r holds iff r′ = r ⊗ r′′ for some r′′—see Definition 5.1.
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The extensionality properties of ≤r on canonical forms

• For ty ∈ {bool, int, unit}, v1 ≤r v2 : ty iff v1 = v2.

• v1 ≤r v2 : int ref iff !v1 ≤r !v2 : int and for all n ∈ Z,
(v1 := n) ≤r (v2 := n) : unit.

• v1 ≤r v2 : ty1 * ty2 iff fst v1 ≤r fst v2 : ty1 and
snd v1 ≤r snd v2 : ty2.

• v1 ≤r v2 : ty1 -> ty2 iff for all r′ B r and all v′
1
, v′

2

v′
1

≤r
′ v′

2
: ty1 ⊃ v1 v′

1
≤r

′ v2 v′
2
: ty2

The last property is characteristic of (Kripke) logical relations (Plotkin 1973;
O’Hearn and Riecke 1995).
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The relationship between ≤r and contextual equivalence

For all types ty , finite sets w of locations, and programs
e1, e2 ∈ Progty(w)

e1 ≤ctx e2 : ty iff e1 ≤idw
e2 : ty

where idw ∈ Rel(w, w) is the identity state-relation for w:

idw , { (s, s) | s ∈ St(w) }.

Hence e1 and e2 are contextually equivalent iff both e1 ≤idw
e2 : ty

and e2 ≤idw
e1 : ty .

21



Outline of the proof of p =ctx m : int -> int (cf. Slide 2)

∅, p ⇒ (fun(x : int) -> `1 := !`1 + x ; !`1), {`1 7→ 0}

∅, m ⇒ (fun(y : int) -> `2 := !`2 - x ; 0 - !`2), {`2 7→ 0}

Define
r , { (s1, s2) | s1(`1) = −s2(`2) } ∈ Rel({`1}, {`2}).

Then r B id∅, ({`1 7→ 0}, {`2 7→ 0}) ∈ r, and from Slide 20

(fun(x : int) -> `1 := !`1 + x ; !`1) ≤r

(fun(y : int) -> `2 := !`2 - x ; 0 - !`2) : int -> int.

So by Slide 19, p ≤id∅
m : int -> int.

Hence by Slide 21, p ≤ctx m : int -> int.
Similarly m ≤ctx p : int -> int.
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An unwinding theorem

Given f : ty1 -> ty2, x : ty1 ` e2 : ty2,
for each 0 ≤ n ≤ ω define fn ∈ Progty

1
->ty

2
by:











f0 , fun f = (x : ty1) -> f x

fn+1 , fun(x : ty1) -> e2[fn/f ]

fω , fun f = (x : ty1) -> e2.

Then for all f : ty1 -> ty2 ` e : ty and all states s

s, e[fω/f ] ⇓ iff ∃n ≥ 0 . s, e[fn/f ] ⇓.
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Definition of the logical simulation relation

e1 ≤r e2 : ty ,

∀r′ B r, (s′
1
, s′

2
) ∈ r′, (Fs1, Fs2) ∈ Stackty(r

′).

〈s′
1

, Fs1 , e1〉↘ ⊃ 〈s′
2

, Fs2 , e2〉↘

where

(Fs1, Fs2) ∈ Stackty(r
′) ,

∀r′′ B r′, (s′′
1
, s′′

2
) ∈ r′′, (v1, v2) ∈ Valty(r

′′).

〈s′′
1

, Fs1 , v1〉↘ ⊃ 〈s′′
2

, Fs2 , v2〉↘

and where Valty(r
′′) is defined in terms of − ≤r

′′ − : ty by
induction on the structure of ty using the extensionality properties on
Slide 20.
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Some things we do not know how to do yet

Can the method of proving contextual equivalences outlined here be
extended to larger fragments of ML with:

• structures and signatures (abstract data types)

• functions with local references to values of arbitrary types
(and ditto for exception packets)

• recursively defined, mutable data structures

• objects and classes à la Objective Caml?

The simulation property of the logical relation (Slide 19) is only a
sufficient, but not a necessary condition for e1 ≤ctx e2 : ty to hold.
Are there other forms of logical relation, useful for proving contextual
equivalences?
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