
Overview

• Contextual equivalence of ML expressions in general, and of
functions involving local state in particular.

• A brief tour of structural operational semantics, culminating in a
structural definition of termination via an abstract machine using
‘frame stacks’.

• Applications to reasoning about contextual equivalence.

• Some things we do not know how to do yet.

Main point: A particular style of operational semantics enables a
‘syntax-directed’ inductive definition of termination that is very useful for
reasoning about operational equivalence of programs.

1

p ,

let a = ref 0 in

fun(x : int) -> (a := !a + x ; !a)

m ,

let b = ref 0 in

fun(y : int) -> (b := !b - y ; 0 - !b)

Are these Caml expressions (of type int -> int) contextually
equivalent?

2

Contextual equivalence (in general)

Two phrases of a programming language are contextually equivalent
(=ctx) if any occurrences of the first phrase in a complete program can
be replaced by the second phrase without affecting the
observable results of executing the program.

Not a single notion: different choices can be made for the definitions of
the underlined phrases, leading to possibly different notions of contextual
equivalence.

Also known as operational, or observational equivalence.

3

f ,
let a = ref 0 in

let b = ref 0 in

fun(x : int ref) -> if x == a then b else a

g ,
let c = ref 0 in

let d = ref 0 in

fun(y : int ref) -> if y == d then d else c

Are these Caml expressions (of type int ref -> int ref) contextually
equivalent?

4

Picture for f :

`

public

a

private

b

Picture for g:

`

public

c

private

d

5

Function Extensionality Principle. Two functions (defined on the
same set of arguments) are equal if they give equal results for each
possible argument.

• True of mathematical functions (e.g. in set theory).

• False for ML function expressions in general.

• True for ML function expressions in canonical form (i.e. lambda
abstractions), if we take ‘equal’ to mean contextually equivalent.

• True for pure functional programming languages (see Pitts 1997a);
also true for languages with ‘block-structured’ local state à
l’Algol (see Pitts 1997b).

6

Distinguishing F and G

let f = · · · (as on Slide 4) · · · ;;
val f : int ref -> int ref = <fun>

let g = · · · (ditto) · · · ;;
val g : int ref -> int ref = <fun>

let t = fun(h : int ref -> int ref) ->

let z = ref 0 in h (h z) == h z ;;

val t : (int ref -> int ref) -> bool = <fun>

t f ;;

- : bool = false

t g ;;

- : bool = true

7

ML Evaluation Semantics (simplified, environment-free form)

Evaluation relation

s, e ⇒ v, s′

8

>

>

>

<

>

>

>

:

s = initial state
e = closed expression to be evaluated
v = resulting closed canonical form
s′ = final state

is inductively generated by rules following the structure of e, for example:

s, e1 ⇒ v1, s′ s′, e2[v1/x] ⇒ v2, s′′

s, let x = e1 in e2 ⇒ v2, s′′

Evaluation semantics is also known as big-step (anon), natural (Kahn
1987), or relational (Milner) semantics.

8

ML programs are typed

Programs of type ty : Progty , { e | ∅ ` e : ty }

where
Type assignment relation

Γ ` e : ty

8

>

<

>

:

Γ = typing context
e = expression to be typed
ty = type

is inductively generated by axioms and rules following the structure of e,
for example:

Γ ` e1 : ty1 Γ[x 7→ ty1] ` e2 : ty2 x /∈ dom(Γ)

Γ ` (let x = e1 in e2) : ty2

Theorem (Type Soundness). If e, s ⇒ v, s′ and e ∈ Progty ,
then v ∈ Progty .

9

Contextual preorder / equivalence

Given e1, e2 ∈ Progty , define

e1 =ctx e2 : ty , e1 ≤ctx e2 : ty & e2 ≤ctx e1 : ty

e1 ≤ctx e2 : ty , ∀x , e, ty ′, s . (x : ty ` e : ty ′) &

s, e[e1/x] ⇓ ⊃ s, e[e2/x] ⇓

where s, e ⇓ indicates termination:

s, e ⇓ , ∃s′, v (s, e ⇒ v, s′)

Other natural choices of what to observe apart from termination do not change =ctx.

10

Definition of ⇓ is not syntax-directed

E.g.
s′, e2[v1/x] ⇓

s, let x = e1 in e2 ⇓
if s, e1 ⇒ v1, s′

but e2[v1/x] is not built from subphrases of let x = e1 in e2.

Simple example of the difficulty this causes: consider a divergent integer
expression ⊥ , (fun f = (x : int) -> f x) 0.
It satisfies ⊥ ≤ctx n : int, for any n ∈ Progint
Obvious strategy for proving this is to try to show

s, e ⇓ ⊃ ∀x , e′. e = e′[⊥/x] ⊃ s, e′[n/x] ⇓

by induction on the derivation of s, e ⇓. But the induction steps are hard
to carry out because of the above problem.

11

ML transition relation (s , e) → (s′ , e′)

is inductively generated by rules following the structure of e—e.g.
a simplification step

(s , e1) → (s′ , e′
1
)

(s , let x = e1 in e2) → (s′ , let x = e′
1
in e2)

a basic reduction
v a canonical form

(s , let x = v in e) → (s , e[v/x])

(see Sect. A.5 for the full definition).

Theorem. s, e ⇒ v, s′ iff (s , e) →∗ (s′ , v).

(→∗ is the reflexive-transitive closure of →.)

12

Felleisen-style presentation of →

Lemma. (s , e) → (s′ , e′) holds iff e = E[r] and e′ = E[r′] for
some evaluation context E and basic reduction (s , r) → (s′ , r′).

Evaluation contexts are closed contexts that want to evaluate their hole
(E ::= − | E e | v E | let x = E in e | · · ·).

E[r] denotes the expression resulting from replacing the ‘hole’ [−] in E
by the expression r.

Basic reductions (s , r) → (s′ , r′) are the axioms in the inductive
definition of → à la Plotkin—see Sect. A.5.

13

Fact. Every closed expression not in canonical form is uniquely of the
form E[r] for some evaluation context E and redex r.

Fact. Every evaluation context E is a composition
F1[F2[· · · Fn[−] · · ·]] of basic evaluation contexts, or evaluation
frames.

Hence can reformulate transitions between configurations
(s , e) = (s , F1[F2[· · · Fn[r] · · ·]]) in terms of transitions
between configurations of the form

〈s , Fs , r〉

where Fs is a list of evaluation frames—the frame stack.

14

An ML abstract machine

Transitions

〈s , Fs , e〉 → 〈s′ , Fs ′ , e′〉

8

>

<

>

:

s, s′ = states
Fs, Fs′ = frame stacks
e, e′ = closed expressions

defined by cases (i.e. no induction), according to the structure of e and
(then) Fs , for example:
〈s , Fs , let x = e1 in e2〉 →

〈s , Fs ◦ (let x = [−] in e2) , e1〉

〈s , Fs ◦ (let x = [−] in e) , v〉 → 〈s , Fs , e[v/x]〉

(See Sect. A.6 for the full definition.)

Initial configurations: 〈s , Id , e〉
terminal configurations: 〈s , Id , v〉
(Id the empty frame stack, v a closed canonical form).

15

Theorem. 〈s , Fs , e〉 →∗ 〈s′ , Id , v〉 iff s, Fs[e] ⇒ v, s′.

where

{

Id [e] , e

(Fs ◦ F)[e] , Fs[F [e]].

Hence: s, e ⇓ iff ∃s′, v (〈s , Id , e〉 →∗ 〈s′ , Id , v〉).

So we can express termination of evaluation in terms of termination of
the abstract machine. The gain is the following simple, but key,
observation:

↘ ,
{

〈s , Fs , e〉 | ∃s′, v
(

〈s , Fs , e〉 →∗ 〈s′ , Id , v〉
) }

has a direct, inductive definition following the structure of e and Fs—see
Sect. A.7.

16

The relation
we are

interested in
is a

retract of

a larger one
with better
structural

properties.

⇓ ↘

States
×

Programs

States
×

Frame Stacks
×

Programs

(s , e) 〈s , Id , e〉

(s , Fs[e]) 〈s , Fs , e〉

17

‘Logical’ simulation relation between ML programs,
parameterised by state-relations

For each state-relation r ∈ Rel(w1, w2) we can define relations

e1 ≤r e2 : ty (e1 ∈ Progty(w1), e2 ∈ Progty(w2))

(for each type ty), with the properties stated on Slides 19–21.

Kripke-style worlds: w1, w2, . . . are finite sets of locations.
States in world w: St(w) , Z

w . Programs in world w:

Progty(w) ,
{

e ∈ Progty

∣

∣ loc(e) ⊆ w
}

.

State-relations: r, r′, . . . ∈ Rel(w1, w2) are subsets of
St(w1) × St(w2).

18

The simulation property of ≤r

To prove e1 ≤r e2 : ty , it suffices to show that whenever
{

(s1, s2) ∈ r

s1, e1 ⇒ v1, s′
1

then there exists r′ B r and v2, s′
2

such that
{

s2, e2 ⇒ v2, s′
2

(s′
1
, s′

2
) ∈ r′

and v1 ≤r
′ v2 : ty .

This uses the notion of extension of state-relations:
r′ B r holds iff r′ = r ⊗ r′′ for some r′′—see Definition 5.1.

19

The extensionality properties of ≤r on canonical forms

• For ty ∈ {bool, int, unit}, v1 ≤r v2 : ty iff v1 = v2.

• v1 ≤r v2 : int ref iff !v1 ≤r !v2 : int and for all n ∈ Z,
(v1 := n) ≤r (v2 := n) : unit.

• v1 ≤r v2 : ty1 * ty2 iff fst v1 ≤r fst v2 : ty1 and
snd v1 ≤r snd v2 : ty2.

• v1 ≤r v2 : ty1 -> ty2 iff for all r′ B r and all v′
1
, v′

2

v′
1

≤r
′ v′

2
: ty1 ⊃ v1 v′

1
≤r

′ v2 v′
2
: ty2

The last property is characteristic of (Kripke) logical relations (Plotkin 1973;
O’Hearn and Riecke 1995).

20

The relationship between ≤r and contextual equivalence

For all types ty , finite sets w of locations, and programs
e1, e2 ∈ Progty(w)

e1 ≤ctx e2 : ty iff e1 ≤idw
e2 : ty

where idw ∈ Rel(w, w) is the identity state-relation for w:

idw , { (s, s) | s ∈ St(w) }.

Hence e1 and e2 are contextually equivalent iff both e1 ≤idw
e2 : ty

and e2 ≤idw
e1 : ty .

21

Outline of the proof of p =ctx m : int -> int (cf. Slide 2)

∅, p ⇒ (fun(x : int) -> `1 := !`1 + x ; !`1), {`1 7→ 0}

∅, m ⇒ (fun(y : int) -> `2 := !`2 - x ; 0 - !`2), {`2 7→ 0}

Define
r , { (s1, s2) | s1(`1) = −s2(`2) } ∈ Rel({`1}, {`2}).

Then r B id∅, ({`1 7→ 0}, {`2 7→ 0}) ∈ r, and from Slide 20

(fun(x : int) -> `1 := !`1 + x ; !`1) ≤r

(fun(y : int) -> `2 := !`2 - x ; 0 - !`2) : int -> int.

So by Slide 19, p ≤id∅
m : int -> int.

Hence by Slide 21, p ≤ctx m : int -> int.
Similarly m ≤ctx p : int -> int.

22

An unwinding theorem

Given f : ty1 -> ty2, x : ty1 ` e2 : ty2,
for each 0 ≤ n ≤ ω define fn ∈ Progty

1
->ty

2
by:











f0 , fun f = (x : ty1) -> f x

fn+1 , fun(x : ty1) -> e2[fn/f]

fω , fun f = (x : ty1) -> e2.

Then for all f : ty1 -> ty2 ` e : ty and all states s

s, e[fω/f] ⇓ iff ∃n ≥ 0 . s, e[fn/f] ⇓.

23

Definition of the logical simulation relation

e1 ≤r e2 : ty ,

∀r′ B r, (s′
1
, s′

2
) ∈ r′, (Fs1, Fs2) ∈ Stackty(r

′).

〈s′
1

, Fs1 , e1〉↘ ⊃ 〈s′
2

, Fs2 , e2〉↘

where

(Fs1, Fs2) ∈ Stackty(r
′) ,

∀r′′ B r′, (s′′
1
, s′′

2
) ∈ r′′, (v1, v2) ∈ Valty(r

′′).

〈s′′
1

, Fs1 , v1〉↘ ⊃ 〈s′′
2

, Fs2 , v2〉↘

and where Valty(r
′′) is defined in terms of − ≤r

′′ − : ty by
induction on the structure of ty using the extensionality properties on
Slide 20.

24

Some things we do not know how to do yet

Can the method of proving contextual equivalences outlined here be
extended to larger fragments of ML with:

• structures and signatures (abstract data types)

• functions with local references to values of arbitrary types
(and ditto for exception packets)

• recursively defined, mutable data structures

• objects and classes à la Objective Caml?

The simulation property of the logical relation (Slide 19) is only a
sufficient, but not a necessary condition for e1 ≤ctx e2 : ty to hold.
Are there other forms of logical relation, useful for proving contextual
equivalences?

25

