Lecture 3

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders?
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

Example: normalisation by evaluation

U. Berger and H. Schwichtenberg, "An inverse of the evaluation functional for typed λ-calculus" (Proc. LICS 1991)
[and subsequent works by several authors].

Example: normalisation by evaluation

Produces $\beta \eta$-long normal forms of simply-typed λ-terms (fast!) by:

- taking denotation of terms in standard extensional functions model over a ground type of ASTs
- and then reifying elements of the model as ASTs in normal form.

Example: normalisation by evaluation

Produces $\beta \eta$-long normal forms of simply-typed λ-terms (fast!) by:

- taking denotation of terms in standard extensional functions model over a ground type of ASTs
- and then reifying elements of the model as ASTs in normal form.

Use the Freshness Theorem [LN p 19] for nominal sets to make sense of the naive definition of reifying an extensional function into a λ-abstraction (need to choose a fresh λ-bound variable)

Example: normalisation by evaluation

Produces $\beta \eta$-long normal forms of simply-typed λ-terms (fast!) by:

- t "The problem is the " v fresh" condition; what exactly does it mean?

Unlike such conditions as " x does not occur free in E ", it is not even locally checkable whether a variable is fresh; freshness is a global property, defined with respect to a term that may not even be fully constructed yet."
[8, p 157]
Use the Freshness Theorem [LN p 19] for nominal sets to make sense of the naive definition of reifying an extensional function into a λ-abstraction (need to choose a fresh λ-bound variable)

Simply-typed λ-calculus

types $\tau \in T y::=\iota \mid \tau \dot{\rightarrow} \tau$
terms $t \in \Lambda \quad::=a \quad(a \in \mathbb{V})$

$$
\left\lvert\, \begin{array}{ll}
t \quad t \\
\lambda a . t
\end{array} \quad(a \in \mathbb{V})\right.
$$

Simply-typed λ-calculus

types $\tau \in T y::=\iota \mid \tau \dot{\rightarrow} \tau$
terms $\quad t \in \Lambda \quad::=(a)^{\tau} \quad\left(a \in \mathbb{V}_{\tau}\right)$
$\mid \quad\left(\boldsymbol{t}^{\tau \dot{\rightarrow} \tau^{\prime}} \boldsymbol{t}^{\tau}\right)^{\tau^{\prime}}$
$\mid \quad\left(\lambda a . t^{\tau^{\prime}}\right)^{\tau \dot{\rightarrow} \tau^{\prime}} \quad\left(a \in \mathbb{V}_{\tau}\right)$

Simply-typed λ-calculus

types $\tau \in T y::=\iota \mid \tau \dot{\rightarrow} \tau$
terms $\quad t \in \Lambda::=(a)^{\tau}$
$\left(a \in \mathbb{V}_{\tau}\right)$
$\mid \quad\left(\boldsymbol{t}^{\boldsymbol{\lambda} \dot{\rightarrow}} \boldsymbol{\tau}^{\prime} \boldsymbol{t}^{\tau}\right)^{\tau^{\prime}}$
$\mid \quad\left(\lambda a . t^{\tau^{\prime}}\right)^{\tau \dot{\rightarrow} \tau^{\prime}} \quad\left(a \in \mathbb{V}_{\tau}\right)$
$\int \beta \eta$-long NFs $n \in N::=\left(\lambda a . n^{\tau^{\prime}}\right)^{\tau \dot{\rightarrow} \tau^{\prime}} \quad\left(a \in \mathbb{V}_{\tau}\right)$

$$
\begin{array}{ll}
& \mid \boldsymbol{u})^{\iota} \\
\text { neutrals } u \in U \\
& \mid=(\boldsymbol{a})^{\tau} \\
\mid & \left(u^{\tau \dot{\prime} \tau^{\prime}} \boldsymbol{n}^{\tau}\right)^{\tau^{\prime}}
\end{array} \quad\left(a \in \mathbb{V}_{\tau}\right)
$$

N.B. can (and will) regard N and U as subsets of Λ.

(By gad! they're GADTs)

Mutually inductively defined (nominal) sets Λ_{τ} of simply typed ASTs of type $\tau \in T y$:

$$
\Lambda_{\tau}=\mathbb{V}_{\tau}+\sum_{\left(\tau_{1}, \tau_{2}\right) \mid \tau_{1}=\left(\tau_{2} \rightarrow \tau\right)}\left(\Lambda_{\tau_{1}} \times \Lambda_{\tau_{2}}\right)+\sum_{\left(\tau_{1}, \tau_{2}\right) \mid \tau=\left(\tau_{1} \dot{\rightarrow} \tau_{2}\right)}\left(\mathbb{V}_{\tau_{1}} \times \Lambda_{\tau_{2}}\right)
$$

Mutually inductively defined (nominal) sets $N_{\tau} \& U_{\tau}$, of $\beta \eta$-long NFs and neutrals of type $\tau \in T y$:

$$
\begin{aligned}
& \boldsymbol{N}_{\tau}=\sum_{\substack{\left(\tau_{1}, \tau_{2}\right) \mid \tau=\left(\tau_{1} \dot{\rightarrow} \tau_{2}\right)}}\left(\mathbb{V}_{\tau_{1}} \times N_{\tau_{2}}\right)+U_{\iota} \\
& \boldsymbol{U}_{\tau}=\mathbb{V}_{\tau}+\sum_{\left(\tau_{1}, \tau_{2}\right) \mid \tau_{1}=\left(\tau_{2} \rightarrow \tau\right)}\left(\boldsymbol{U}_{\tau_{1}} \times \boldsymbol{N}_{\tau_{2}}\right)
\end{aligned}
$$

The nominal signatures

$\Sigma^{\text {STL }}$		
atom-sorts	data-sorts	constructors
$(\tau \in T y::=\iota \mid \tau$		$\begin{aligned} \boldsymbol{V r _ { \tau }}: & \mathbf{v}_{\tau} \rightarrow \mathbf{t}_{\tau} \\ \boldsymbol{A} \boldsymbol{p}_{\tau, \tau^{\prime}}: & \mathbf{t}_{\tau \dot{ }} \boldsymbol{\tau}^{\prime} * \mathbf{t}_{\tau} \rightarrow \mathbf{t}_{\tau^{\prime}} \\ \boldsymbol{L m _ { \tau , \tau ^ { \prime } }}: & \left\langle\mathbf{v}_{\boldsymbol{\tau}}>\mathbf{t}_{\tau^{\prime}} \rightarrow \mathbf{t}_{\tau \dot{ }} \dot{\tau}^{\prime}\right. \end{aligned}$
$\Sigma^{\text {LNF }}$		
atom-sorts	data-sorts	constructors
$(\tau \in T y::=\iota \mid \tau$	$\begin{array}{ll} & \begin{array}{l} \mathbf{n}_{\tau} \\ \\ \\ \\ \mathbf{u}_{\tau} \end{array} \\ & \\ \rightarrow \tau) & \end{array}$	$\begin{aligned} & V_{\tau}: \\ & \mathbf{v}_{\tau} \rightarrow \mathbf{u}_{\tau} \\ & A_{\tau, \tau^{\prime}} \mathbf{u}_{\tau \dot{\rightarrow} \boldsymbol{\tau}^{\prime}} * \mathbf{n}_{\tau} \rightarrow \mathbf{u}_{\tau^{\prime}} \\ & L_{\tau, \tau^{\prime}}<\mathbf{v}_{\tau}>\mathbf{n}_{\tau^{\prime}} \rightarrow \mathbf{n}_{\tau \dot{\rightarrow} \tau^{\prime}} \\ & I: \mathbf{u}_{\iota} \rightarrow \mathbf{n}_{\iota} \end{aligned}$

Terms / $\beta \eta$-long NFs / neutrals are identified up to α-equivalence $={ }_{\alpha}$ (definition as for any nominal signature).

$$
\begin{array}{rll}
\Lambda(\tau) & \triangleq \Lambda_{\tau} /=_{\alpha} & \text { (typical element } e) \\
N(\tau) & \triangleq N_{\tau} /=_{\alpha} & \text { (typical element } n) \\
U(\tau) & \triangleq U_{\tau} /={ }_{\alpha} & \text { (typical element } u)
\end{array}
$$

There are injections

$$
\begin{aligned}
& i_{\tau}: \quad N(\tau) \rightarrow \Lambda(\tau) \\
& j_{\tau}: U(\tau) \rightarrow \Lambda(\tau)
\end{aligned}
$$

induced by the inclusions $N_{\tau} \subseteq \Lambda_{\tau}, U_{\tau} \subseteq \Lambda_{\tau}$.

Normalisation

Wish to show the existence of normalisation functions norm $_{\tau}: \Lambda(\tau) \rightarrow N(\tau)$
satisfying:
$e_{1}=\beta \eta e_{2} \Rightarrow \operatorname{norm}_{\tau} e_{1}=\operatorname{norm}_{\tau} e_{2}$
$-\operatorname{norm}_{\tau}\left(\boldsymbol{i}_{\tau} \boldsymbol{n}\right)=\boldsymbol{n}$
$\square i_{\tau}\left(\operatorname{norm}_{\tau} e\right)={ }_{\beta \eta} e$

Normalisation

Wish to show the existence of normalisation functions norm $_{\tau}: \Lambda(\tau) \rightarrow N(\tau)$
satisfying:
$e_{1}=\beta \eta e_{2} \Rightarrow \operatorname{norm}_{\tau} e_{1}=\operatorname{norm}_{\tau} e_{2}$
$-\operatorname{norm}_{\tau}\left(\boldsymbol{i}_{\boldsymbol{\tau}} \boldsymbol{n}\right)=\boldsymbol{n}$
$\square i_{\tau}\left(\operatorname{norm}_{\tau} e\right)=\beta_{\eta} e$
$\beta \eta$-conversion
$=$ least congruence satisfying:
$\left(\lambda a . e_{1}\right) e_{2}={ }_{\beta \eta}\left(a:=e_{2}\right) e_{1}$
$a \# e \Rightarrow e={ }_{\beta \eta} \lambda a . e a$

Example: normalisation by evaluation

Produces $\beta \eta$-long normal forms of simply-typed λ-terms (fast!) by:

- taking denotation of terms in standard extensional functions model over a ground type of ASTs
- and then reifying elements of the model as ASTs in normal form.

Denotation

- Denotation of types as nominal sets:

$$
\begin{aligned}
D(\iota) & \triangleq N(\iota) \\
D\left(\tau \xrightarrow{\rightarrow} \tau^{\prime}\right) & \triangleq D(\tau) \rightarrow_{\mathrm{fs}_{\mathrm{s}}} D\left(\tau^{\prime}\right)
\end{aligned}
$$

Denotation

- Denotation of types as nominal sets:

$$
\begin{aligned}
D(\iota) & \triangleq N(\iota) \\
D\left(\tau \stackrel{\dot{\rightarrow}}{ } \tau^{\prime}\right) & \triangleq D(\tau) \rightarrow_{\mathrm{fs}_{\mathrm{s}}} D\left(\tau^{\prime}\right)
\end{aligned}
$$

- Terms $e \in \Lambda(\tau)$ in a given environment $\rho \in E n v$ denote finitely supported elements $\llbracket e \rrbracket \rho \in D(\tau)$, satisfying:

$$
\begin{aligned}
\llbracket a \rrbracket \rho & =\rho a \\
\llbracket e_{1} e_{2} \rrbracket \rho & =\llbracket e_{1} \rrbracket \rho\left(\llbracket e_{2} \rrbracket \rho\right) \\
\llbracket \lambda a^{\tau} . e \rrbracket \rho & =\lambda d \in D(\tau) . \llbracket e \rrbracket\left(\rho\left\{a_{\mapsto} \mapsto d\right\}\right)
\end{aligned}
$$

- Denotation of types as nomil

$$
D(\iota) \triangleq N
$$

- Terms $e \in \Lambda(\tau)$ in a given environment $\rho \in E n v$ denote finitely supported elements $\llbracket e \rrbracket \rho \in D(\tau)$, satisfying:

$$
\begin{aligned}
\llbracket a \rrbracket \rho & =\rho a \\
\llbracket e_{1} e_{2} \rrbracket \rho & =\llbracket e_{1} \rrbracket \rho\left(\llbracket e_{2} \rrbracket \rho\right) \\
\llbracket \lambda a^{\tau} \cdot e \rrbracket \rho & =\lambda d \in D(\tau) \cdot \llbracket e \rrbracket\left(\rho\left\{a_{\mapsto} \mapsto d\right\}\right)
\end{aligned}
$$

Denotation

- Denotation of types as nominal sets:

$$
\begin{aligned}
D(\iota) & \triangleq N(\iota) \\
D\left(\tau \stackrel{\dot{\rightarrow}}{ } \tau^{\prime}\right) & \triangleq D(\tau) \rightarrow_{\mathrm{f}_{\mathrm{s}}} D\left(\tau^{\prime}\right)
\end{aligned}
$$

- Terms $e \in \Lambda(\tau)$ in a given environment $\rho \in E n v$ denote finitely supported elements $\llbracket e \rrbracket \rho \in D(\tau)$, satisfying:

$$
\begin{aligned}
\llbracket a \rrbracket \rho & =\rho a \\
\llbracket e_{1} e_{2} \rrbracket \rho & =\llbracket e_{1} \rrbracket \rho\left(\llbracket e_{2} \rrbracket \rho\right) \\
\llbracket \lambda a^{\tau} \cdot e \rrbracket \rho & =\lambda d \in D(\tau) \cdot \llbracket e \rrbracket(\rho\{a \mapsto d\}) \\
& \text { updated environment }
\end{aligned}
$$

Denotation

- Denotation of types as nominal sets:

$$
\begin{aligned}
D(\iota) & \triangleq N(\iota) \\
D\left(\tau \stackrel{\dot{\rightarrow}}{ } \tau^{\prime}\right) & \triangleq D(\tau) \rightarrow_{\mathrm{f}_{\mathrm{s}}} D\left(\tau^{\prime}\right)
\end{aligned}
$$

- Terms $e \in \Lambda(\tau)$ in a given environment $\rho \in E n v$ denote finitely supported elements $\llbracket e \rrbracket \rho \in D(\tau)$, satisfying:

$$
\begin{aligned}
\llbracket a \rrbracket \rho & =\rho a \\
\llbracket e_{1} e_{2} \rrbracket \rho & =\llbracket e_{1} \rrbracket \rho\left(\llbracket e_{2} \rrbracket \rho\right) \\
\llbracket \lambda a^{\tau} . e \rrbracket \rho & =\lambda d \in D(\tau) . \llbracket e \rrbracket\left(\rho\left\{a_{\mapsto} \mapsto d\right\}\right)
\end{aligned}
$$

Why is $\llbracket-\rrbracket$ well-defined?

Denotation

- Denotation of types as nominal sets:

$$
\begin{aligned}
D(\iota) & \triangleq N(\iota) \\
D\left(\tau \xrightarrow{\rightarrow} \tau^{\prime}\right) & \triangleq D(\tau) \rightarrow_{\mathrm{f}_{\mathrm{s}}} D\left(\tau^{\prime}\right)
\end{aligned}
$$

- Terms $e \in \Lambda(\tau)$ in a given environment $\rho \in E n v$ denote finitely supported elements $\llbracket e \rrbracket \rho \in D(\tau)$, satisfying:

$$
\begin{aligned}
\llbracket a \rrbracket \rho & =\rho a \\
\llbracket e_{1} e_{2} \rrbracket \rho & =\llbracket e_{1} \rrbracket \rho\left(\llbracket e_{2} \rrbracket \rho\right) \\
\llbracket \lambda a^{\tau} . e \rrbracket \rho & \left.=\lambda d \in D(\tau) . \llbracket e \rrbracket\left(\rho\left\{a_{\mapsto}\right) d\right\}\right)
\end{aligned}
$$

Use α-structural recursion for $\Sigma^{\text {STL }}$ to define $\llbracket-\rrbracket \ldots$

First attempt

$$
\begin{aligned}
& X_{\mathbf{t}_{\tau}} \triangleq E n v \rightarrow_{\mathrm{fs}} D(\tau) \\
& f_{V r_{\tau}} \triangleq \lambda a \in \mathbb{A}_{\mathbf{v}_{\tau}} . \\
& \lambda \rho \in E n v . \rho a \\
& f_{A p_{\tau, \tau^{\prime}}} \triangleq \lambda\left(\xi_{1}, \xi_{2}\right) \in X_{\mathbf{t}_{\tau \dot{-} \tau^{\prime}}} \times X_{\mathbf{t}_{\tau}} . \\
& \lambda \rho \in E n v . \xi_{1} \rho\left(\xi_{2} \rho\right) \\
& f_{L m_{\tau, \tau^{\prime}}} \triangleq \lambda(a, \xi) \in \mathbb{A}_{\mathbf{v}_{\tau}} \times X_{\mathbf{t}_{\tau^{\prime}}} . \\
& \lambda \rho \in E n v . \lambda d \in D(\tau) . \xi(\rho\{a \mapsto d\}) \\
& A \triangleq \emptyset
\end{aligned}
$$

First attempt

FCB for this function is

$$
a \# \lambda \rho \in E n v \cdot \lambda d \in D(\tau) . \xi\left(\rho\left\{a_{\mapsto} \mapsto d\right\}\right)
$$

and is not true of every $\xi \in\left(E n v \rightarrow_{\mathrm{fs}} \boldsymbol{D}\left(\tau^{\prime}\right)\right.$!

$$
\begin{aligned}
& \lambda \rho \in \operatorname{Env}^{\lambda} \cdot \xi_{1} \rho\left(\xi_{2} \rho\right) \\
& f_{L m_{\tau, \tau^{\prime}}} \triangleq \lambda(a, \xi) \in \mathbb{A}_{\mathbf{v}_{\tau}} \times X_{\mathbf{t}_{\tau^{\prime}} \cdot} \\
& \lambda \triangleq(\tau) \cdot \xi(\rho\{a \mapsto d\}) \\
& A \triangleq \boldsymbol{E n v} \cdot \lambda d \in D(\tau)
\end{aligned}
$$

First attempt

FCB for this function is

$$
a \# \lambda \rho \in E n v . \lambda d \in D(\tau) . \xi\left(\rho\left\{a_{\mapsto} \mapsto d\right\}\right)
$$

and is not true of every $\xi \in\left(E n v \rightarrow{ }_{\mathrm{fs}} \boldsymbol{D}\left(\tau^{\prime}\right)\right.$!
Have to strengthen the "recursion hypothesis" by suitably restricting the class of functions ξ used for the α-structural recursion.

$$
\begin{aligned}
& \lambda \rho \in \operatorname{Env} \cdot \xi_{1} \rho\left(\xi_{2} \rho\right) \\
& f_{L m_{\tau, \tau^{\prime}}} \triangleq \lambda(a, \xi) \in \mathbb{A}_{\mathbf{v}_{\tau}} \times X_{\mathbf{t}_{\tau^{\prime}} \cdot} \\
& \lambda \triangleq(\tau \rho \in \operatorname{Env} \cdot \lambda d \in D(\tau) \cdot \xi(\rho\{a \mapsto d\}) \\
& A \triangleq \emptyset
\end{aligned}
$$

Strengthen the "recursion hypothesis" by restricting $\xi \in\left(E n v \rightarrow_{\mathrm{fs}_{s}} D(\tau)\right)$ to functions having the following two expected properties of $\llbracket-\rrbracket$.

1. $\llbracket e \rrbracket \rho$ only depends on the value of ρ at the free variables of e.
2. $\llbracket \pi \cdot e \rrbracket \rho=\llbracket e \rrbracket(\rho \circ \pi)$
(special case of substitution property of denotations).

Second attempt

$$
\begin{aligned}
& X_{\mathrm{t}_{\tau}} \triangleq\left\{\xi \in E n v \rightarrow_{\mathrm{f}_{s}} D(\tau) \mid \Phi_{1}(\xi) \& \Phi_{2}(\xi)\right\} \\
& f_{V_{r_{T}}} \triangleq \lambda a \in \mathbb{A}_{\mathbf{v}_{\tau}} . \\
& \lambda \rho \in E n v . \rho a \\
& f_{A p_{\tau, \tau^{\prime}}} \triangleq \lambda\left(\xi_{1}, \xi_{2}\right) \in X_{\mathbf{t}_{\tau \rightarrow \tau^{\prime}}} \times X_{\mathbf{t}_{\tau}} . \\
& \lambda \rho \in E n v . \xi_{1} \rho\left(\xi_{2} \rho\right) \\
& f_{L m_{\tau, \tau^{\prime}}} \triangleq \lambda(a, \xi) \in \mathbb{A}_{\mathbf{v}_{\tau}} \times X_{\mathbf{t}_{\tau}} . \\
& \lambda \rho \in E n v \cdot \lambda d \in D(\tau) \cdot \xi(\rho\{a \mapsto d\}) \\
& A \triangleq \emptyset
\end{aligned}
$$

Second attempt

$$
X_{\mathrm{t}_{\tau}} \triangleq\left\{\xi \in E n v \rightarrow_{\mathrm{fs}_{s}} D(\tau) \mid \Phi_{1}(\xi) \& \Phi_{2}(\xi)\right\}
$$

$$
\begin{aligned}
& \Phi_{1}(\xi) \triangleq\left(\exists A \in P_{\text {fin }}(\mathbb{A})\right) \\
&\left(\forall \tau \in T y, a \in \mathbb{A}_{v_{\tau}}, d \in D(\tau), \rho \in E n v\right) \\
& a \notin A \Rightarrow \xi(\rho\{a \mapsto d\})=\xi \rho \\
& \Phi_{2}(\xi) \triangleq(\forall \pi \in P e r m, \rho \in E n v) \\
&(\pi \cdot \xi) \rho=\xi(\rho \circ \pi)
\end{aligned}
$$

Second attempt

$$
\begin{aligned}
& X_{\mathrm{t}_{\tau}} \triangleq\left\{\xi \in E n v \rightarrow_{\mathrm{f}_{\mathrm{s}}} D(\tau) \mid \Phi_{1}(\xi) \& \Phi_{2}(\xi)\right\} \\
& f_{V_{r_{\tau}}} \triangleq \lambda a \in \mathbb{A}_{\mathbf{v}_{\tau}} . \\
& \lambda \rho \in E n v . \rho a \\
& f_{A p_{\tau, r^{\prime}}} \triangleq \lambda\left(\xi_{1}, \xi_{2}\right) \in X_{\mathbf{t}_{\tau \rightarrow \tau^{\prime}}} \times X_{\mathbf{t}_{\tau}} . \\
& \lambda \rho \in E n v . \xi_{1} \rho\left(\xi_{2} \rho\right) \\
& f_{L m_{r, \tau^{\prime}}} \triangleq \lambda(a, \xi) \in \mathbb{A}_{\mathbf{v}_{\tau}} \times X_{\mathbf{t}_{\tau}} . \\
& \lambda \rho \in E n v \cdot \lambda d \in D(\tau) . \xi(\rho\{a \mapsto d\})
\end{aligned}
$$

Have to prove the $f_{(-)}$map into $X_{\mathbf{t}_{\tau}}$ and prove FCB for $f_{L m_{\tau, \tau^{\prime}}}:\left(\forall a \in \mathbb{A}_{\mathbf{v}_{\tau}}, \xi \in X_{\mathbf{t}_{\tau^{\prime}}}\right) a \# f_{L m_{\tau, \tau^{\prime}}}(a, \xi)$.

Given $a \& \xi$, choosing any sufficiently fresh a^{\prime}, then
$a=$
$\left(a a^{\prime}\right) \cdot a^{\prime}$
\#
$\left(a a^{\prime}\right) \cdot \lambda \rho \in E n v . \lambda d \in D(\tau) . \xi(\rho\{a \mapsto d\})$
$\lambda \rho \in E n v . \lambda d \in D(\tau) \cdot\left(\left(a a^{\prime}\right) \cdot \xi\right)\left(\rho\left\{a^{\prime} \mapsto d\right\}\right)$
$=\left\{\right.$ since $\left.\Phi_{2}(\xi)\right\}$
$\lambda \rho \in E n v . \lambda d \in D(\tau) . \xi\left(\rho\left\{a^{\prime} \mapsto d\right\} \circ\left(a a^{\prime}\right)\right)$
$=\left\{\right.$ since $\left.a^{\prime} \neq a\right\}$
$\lambda \rho \in E n v . \lambda d \in D(\tau) . \xi\left(\rho\{a \mapsto d\}\left\{a^{\prime} \mapsto \rho a\right\}\right)$
$=\left\{\right.$ since $\left.\Phi_{1}(\xi)\right\}$
$\lambda \rho \in E n v . \lambda d \in D(\tau) . \xi(\rho\{a \mapsto d\})$
$\triangleq f_{L m_{\tau, \tau^{\prime}}}(a, \xi)$

Example: normalisation by evaluation

Produces $\beta \eta$-long normal forms of simply-typed λ-terms (fast!) by:

- taking denotation of terms in standard extensional functions model over a ground type of ASTs
- and then reifying elements of the model as ASTs in normal form.

Reification $\left(\downarrow_{\tau}\right)$ \& reflection $\left(\uparrow_{\tau}\right)$

$\tau \in T y, d \in D(\tau) \mapsto \downarrow_{\tau} d \in N(\tau):$

$$
\begin{aligned}
\downarrow_{\iota} n & \triangleq n \\
\downarrow_{\tau \dot{\tau} \tau^{\prime}} f & \triangleq \operatorname{fresh}\left(\lambda a \in \mathbb{A}_{\mathbf{v}_{\tau}} \cdot \lambda a^{\tau} \cdot \downarrow_{\tau^{\prime}}\left(f\left(\uparrow_{\tau} a\right)\right)\right)
\end{aligned}
$$

$\tau \in T y, u \in U(\tau) \mapsto \uparrow_{\tau} u \in D(\tau):$

$$
\begin{aligned}
\uparrow_{\iota} u & \triangleq u \\
\uparrow_{\tau \dot{\rightarrow} \tau^{\prime}} u & \triangleq \lambda d \in D(\tau) \cdot \uparrow_{\tau^{\prime}}\left(u\left(\downarrow_{\tau} d\right)\right)
\end{aligned}
$$

Reification $\left(\downarrow_{\tau}\right) \&$ reflection $\left(\uparrow_{\tau}\right)$

$\tau \in T y, d \in D(\tau) \mapsto \downarrow_{\tau} d \in N(\tau):$

$$
\downarrow_{\iota} n \triangleq n
$$

$$
\downarrow_{\tau \rightarrow \tau^{\prime}} f \triangleq \operatorname{fresh}\left(\lambda a \in \mathbb{A}_{\mathbb{v}_{\tau}} \cdot \lambda a^{\tau} \cdot \downarrow_{\tau^{\prime}}\left(f\left(\uparrow_{\tau} a\right)\right)\right)
$$

Reification $\left(\downarrow_{\tau}\right)$ \& reflection $\left(\uparrow_{\tau}\right)$

$\tau \in T y, d \in D(\tau) \mapsto \downarrow_{\tau} d \in N(\tau):$

$$
\begin{aligned}
\downarrow_{\iota} n & \triangleq n \\
\downarrow_{\tau \rightarrow \tau^{\prime}} f & \triangleq \operatorname{fresh}\left(\lambda a \in \mathbb{A}_{\mathbf{v}^{*}} \cdot \lambda a^{\tau} \cdot \downarrow_{\tau^{\prime}}\left(f\left(\uparrow_{\tau} a\right)\right)\right)
\end{aligned}
$$

Uses an easily proved application of the Freshness theorem [LN p 19]
Given $h \in\left(\mathbb{A}_{\mathbf{v}_{\tau}} \rightarrow_{\mathrm{fs}_{s}} N\left(\tau^{\prime}\right)\right)$ satisfying

$$
\left(\exists a \in \mathbb{A}_{\mathbf{v}_{\tau}}\right) a \# h \& a \# h(a)
$$

then \exists ! element fresh $(h) \in N\left(\tau^{\prime}\right)$ satisfying

$$
\left(\forall a \in \mathbb{A}_{\mathbf{v}_{\tau}}\right) a \# h \Rightarrow h(a)=\operatorname{fresh}(h)
$$

Normalisation

$\operatorname{norm}_{\tau}: \Lambda(\tau) \rightarrow N(\tau)$ is given by

$$
\operatorname{norm}_{\tau}(e) \triangleq \downarrow_{\tau}\left(\llbracket e \rrbracket \rho_{0}\right)
$$

where $\rho_{0} \in E n v$ is the environment mapping $a \in \mathbb{A}_{\mathbf{v}_{\tau}} \mapsto a \in U(\tau) \mapsto \uparrow_{\tau} a \in D(\tau)$ (for all $\tau \in T y$).

Normalisation

norm $_{\tau}: \Lambda(\tau) \rightarrow N(\tau)$ is given by

$$
\operatorname{norm}_{\tau}(e) \triangleq \downarrow_{\tau}\left(\llbracket e \rrbracket \rho_{0}\right)
$$

where $\rho_{0} \in E n v$ is the environment mapping $a \in \mathbb{A}_{\mathbf{v}_{\tau}} \mapsto a \in U(\tau) \mapsto \uparrow_{\tau} a \in D(\tau)$ (for all $\tau \in T y$).

Of the three required properties of norm
(1) $e_{1}={ }_{\beta \eta} e_{2} \Rightarrow$ norm $_{\tau} e_{1}=$ norm $_{\tau} e_{2}$
(2) $\operatorname{norm}_{\tau}\left(i_{\tau} n\right)=n$
(3) $i_{\tau}\left(\right.$ norm $\left._{\tau} e\right)={ }_{\beta \eta} e$
(1) \& (2) are proved using α-structural induction; (3) is trickier, but can be proved using a logical relations argument [LN pp 44,45].

Pause

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders?
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

Machine-assisted support

- Norrish's HOL4 development. [TPHOLs '04]
- Urban \& Tasson's Isabelle/HOL theory of nominal sets ("p-sets") and α-structural induction for λ-calculus. [CADE-20, 2005].
Isabelle's axiomatic type classes are helpful.
Wanted: full implementation of α-structural recursion/induction theorems parameterised by a user-declared nominal signature
(in either HOL4, or Isabelle/HOL, or both).

Machine-assisted support

- Gabbay's FM-HOL [35yrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic to support reasoning about ordinary sets and nominal sets simultaneously.

- Should incorporate a reflection principle to exploit Fact The standard set-theoretic model of HOL (without choice) restricts to finitely supported elements; e.g. if we apply a construction of HOL- ε to finitely supported functions we get another such.
- Also needs some (lightweight!) treatment of partial functions.

Nominal functional programming

- Shinwell's Fresh O'Caml patch of Objective Caml [ML Workshop 2005]
- latest manifestation of AMP-Gabbay-Shinwell FreshML design
[ICFP 2003] [TCS 342(2005) 28-55]
- extends O'Caml datatypes with atoms, atom-binding and atom-unbinding via pattern-matching-with-freshening

Nominal signature:

atom-sorts	data-sorts	constructors
\mathbf{v}	\mathbf{t}	$V: \mathbf{v} \rightarrow \mathbf{t}$
		$A: \mathbf{t} * \mathbf{t} \rightarrow \mathbf{t}$
		$L:\langle\mathbf{v}\rangle \mathbf{t} \rightarrow \mathbf{t}$
		$F:\langle\mathbf{v}\rangle((《 \mathbf{v}\rangle \mathbf{t}) * \mathbf{t}) \rightarrow \mathbf{t}$

Fresh O'Caml declarations:

$$
\begin{aligned}
& \text { bindable_type v } \\
& \text { type } t=V \text { of } V \\
& \text { | A of } t * t \\
& \text { | L of <<v>>t } \\
& \text { | } \mathrm{F} \text { of }\langle\langle\mathrm{V}\rangle\rangle((\langle\langle\mathrm{V}\rangle\rangle \mathrm{t}) * \mathrm{t})
\end{aligned}
$$

Capture-avoiding substitution

- $(a:=e) a_{1} \triangleq$ if $a_{1}=a$ then e else a_{1}
- $(a:=e)\left(e_{1} e_{2}\right) \triangleq\left((a:=e) e_{1}\right)\left((a:=e) e_{2}\right)$
- $(a:=e)\left(\lambda a_{1} \cdot e_{1}\right) \triangleq$
if $a_{1} \notin f v(a, e)$ then $\lambda a_{1} \cdot(a:=e) e_{1}$ else don't care!
- $(a:=e)\left(\operatorname{letrec} a_{1} a_{2}=e_{1}\right.$ in $\left.e_{2}\right) \triangleq$
if $a_{1}, a_{2} \#(a, e) \& a_{2} \#\left(a_{1}, e_{2}\right)$
then letrec $a_{1} a_{2}=(a:=e) e_{1}$ in $(a:=e) e_{2}$ else don't care!

Declaration of capture-avoiding substitution function in Fresh O'Caml:
let $\operatorname{sub}(a: v)(e: t): t \rightarrow t=$ let rec $s\left(e^{\prime}: t\right): t=$
match e^{\prime} with

$$
\begin{gathered}
\mathrm{V} \text { a1 } \rightarrow \text { if a1 }=\mathrm{a} \text { then e else } \mathrm{e}^{\prime} \\
\mid \mathrm{A}(\mathrm{e} 1, \mathrm{e} 2) \rightarrow \mathrm{A}(\mathrm{se} 1, \mathrm{se} 2) \\
\mathrm{L}(\ll \mathrm{a} 1 \gg \mathrm{e} 1) \rightarrow \mathrm{L}(\ll \mathrm{a} 1 \gg(\mathrm{se}))) \\
\mathrm{F}(\ll \mathrm{a} 1 \gg(\ll \mathrm{a} 2 \gg \mathrm{e} 1, \mathrm{e} 2)) \rightarrow \\
\mathrm{F}(\ll \mathrm{a} 1 \gg(\ll \mathrm{a} 2 \gg(\mathrm{se} 1), \mathrm{se} 2))
\end{gathered}
$$

in s

Declaration of capture-avoiding substitution function in Fresh O'Caml:

$$
\begin{aligned}
& \text { let } \operatorname{sub}(a: v)(e: t): t \rightarrow t= \\
& \text { let rec } s\left(e^{\prime}: t\right): t= \\
& \text { match } e^{\prime} \text { with } \\
& \begin{array}{c}
\mathrm{V} \text { a1 } \rightarrow \text { if a1 }=\mathrm{a} \text { then e else } \mathrm{e}^{\prime} \\
\mid \mathrm{A}(\mathrm{e} 1, \mathrm{e} 2) \rightarrow \mathrm{A}(\mathrm{se} 1, \mathrm{se} 2) \\
\mid \mathrm{L}(\ll \mathrm{a} 1 \gg \mathrm{e} 1) \rightarrow \mathrm{L}(\ll \mathrm{a} 1 \gg(\mathrm{se} 1)) \\
\mid \mathrm{F}(\ll \mathrm{a} 1 \gg(\ll \mathrm{a} 2 \gg \mathrm{e} 1, \mathrm{e} 2)) \rightarrow \\
\mathrm{F}(\ll \mathrm{a} 1 \gg(\ll \mathrm{a} 2 \gg(\mathrm{se} 1), \mathrm{se} 2))
\end{array} \\
& \text { in } s
\end{aligned}
$$

- dynamics of unbinding guarantees freshness preconditions
- RHS of match clauses not checked for FCB. . .

Declaration of capture-avoiding substitution function in Fresh O'Caml:

$$
\text { let } \operatorname{sub}(a: v)(e: t): t \rightarrow t=
$$

Matching a value $\ll a \gg v$ against a pattern $\ll x \gg p$ causes:

1. value-environment to be updated to associate x with a globally fresh atom a^{\prime}
2. p to be matched against the value obtained from v by [lazily?] renaming all occurrences of a in v to be a^{\prime}

- dynamics of unbinding-guarantees freshness preconditions
- RHS of match clauses not checked for FCB...

A mis-guided attempt to calculate the list of bound variables of an α-equivalence class of an AST:

$$
\begin{aligned}
& \text { let rec bv(e:t) :vlist } \\
& \text { match e with } \\
& \mathrm{V}_{-} \rightarrow \text { [] } \\
& \text { | A(e1,e2) } \rightarrow \text { (bve1)@(bve2) } \\
& \text { | L(<<a1>e1) } \rightarrow \text { a1::(bve1) } \\
& \text { | F(<<a1>(<<a2>>e1, e2)) } \rightarrow \\
& \text { a1::a2::(bve1)@(bve2) }
\end{aligned}
$$

This results in a Fresh O'Caml function

$$
\text { bv : } \mathrm{t} \rightarrow \mathrm{v} \text { list }
$$

that, when applied to a value e:t, returns a list of fresh atoms.

Nominal functional programming

- Shinwell's Fresh O'Caml patch of Objective Caml [ML Workshop 2005]
- Cheney's FreshLib library for Haskell/ghc 6.4 [ICFP 2005]
- exploits generic programming features of latest ghc ("SYB")
- Pottier's Caml code generation tool for O'Caml [ML Workshop 2005]
- supports patterns of binding more general than those of nominal signatures
Neither FreshLib nor Caml support unbinding via (nested) patterns \because

Nominal logic programming

- Theoretical basis: Urban-AMP-Gabbay nominal unification
[TCS 323(2004) 473-497.]
- best-known algorithm quadratic in size of nominal terms
- unification variables only for data-sorts, not atom-sorts
- Experimental language: Cheney-Urban AlphaProlog [ICLP 2004]

Nominal logic programming

- Theoretical basis: Urban-AMP-Gabbay nominal unification
[TCS 323(2004) 473-497.]
- best-known algorithm quadratic in size of nominal terms
- unification variables only for data-sorts, not atom-sorts
- Experimental language: Cheney-Urban AlphaProlog [ICLP 2004]

Is there a "nominal logical framework"?
(Cf. Schöpp \& Stark [CSL 2004]—category of nominal sets supports a rich model of dependent types.)

Assessment

- α-Structural recursion \& induction principles apply directly to standard notions of AST \& α-equivalence within ordinary HOL
-like Gordon \& Melham's "5 Axioms" work [TPHOLs '96], except closer to informal practice regarding freshness of bound names (more applicable).
- Crucial finite support property is automatically preserved by constructions in HOL
(if we avoid choice principles).
- Mathematical treatment of "fresh names" afforded by nominal sets is proving useful in other contexts (e.g. Abramsky et al [LICS '04], Winskel \& Turner [200?]).

Conclusion

Claim: dealing with issues of bound names and α-equivalence on ASTs is made easier through use of permutations (rather than traditional use of non-bijective renamings).

Is the use of name-permutations \& support simple enough to become part of standard practice? (It's now part of mine!)

