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To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?
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Nominal sets
[LN p 12]

Definition. A finite subset A ⊆ A supports an
element s ∈ S of a Perm-set S if

(a a′) · s = s

holds for all a, a′ ∈ A (of same sort) not in A

n A nominal set is a set equipped with an action of
the group Perm , all of whose elements have a
finite support.

n A morphism of nominal sets f : X → X ′ is an
equivariant function, i.e. a function that preserves
the Perm-set action:

(∀π ∈ Perm)(∀x ∈ X) f(π · x) = π · (f x)

The category of nominal sets is equivalent to a
well-known boolean topos (= model of classical
higher-order logic). We just need to see some of
that structure. . .
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Discrete nominal sets
The trivial action of Perm on any set S is given by:
π · s = s

Note that with respect to this action each s ∈ S is
supported by ∅.

We call S + trivial action the discrete nominal set on
S.

booleans B , {true, false}

natural numbers N , {0, 1, 2, . . .}

will be regarded as nominal sets in this way.
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Nominal sets of atoms
We make A a Perm-set via action π · a = π(a).

By definition of Perm , this action restricts to atoms
of any particular sort, e.g. to V.

It is not hard to see that the support of each atom
a is just {a}.
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Products of nominal sets
[LN p 14]

If X1 and X2 are nominal sets, we get a
Perm-action on

X1 × X2 , {(x1, x2) | x1 ∈ X1 & x2 ∈ X2}

by defining

π · (x1, x2) , (π · x1, π · x2)

and then every pair in X1 × X2 is finitely supported.
In fact (exercise)

supp((x1, x2)) = supp(x1) ∪ supp(x2)
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Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

With this definition, π · (−) preserves function
application:

(π · f)(π · x) = π · (f(π−1 · (π · x)))

= π · (f(ι · x))

= π · (f x)
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Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

Even if X and X ′ are nominal, not every function
from X to X ′ is necessarily finitely supported
w.r.t. this action.

Exercise: any surjection N → V cannot have finite
support.
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Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

The set X→fsX
′ of finitely supported functions

from a nominal set X to a nominal set X ′ is, by
construction, a nominal set.
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Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

The set X→fsX
′ of finitely supported functions

from a nominal set X to a nominal set X ′ is, by
construction, a nominal set.
Exercise: show that f ∈ (X→fsX

′) satisfies
supp(f) = ∅ iff f is an equivariant function.
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Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.
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Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.
(e.g. take X = A, enumerate it and let S consist of the even-numbered atoms.)
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Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.

We write Pfs(X) for the nominal set of finitely

supported subsets of X.
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Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.

We write Pfs(X) for the nominal set of finitely

supported subsets of X.

(Pfs(X) is isomorphic to X→fsB.)
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(Choice functions)
[LN p 15]

Theorem No function ch : PfsV → V satisfying

(∀S ∈ PfsV) S 6= ∅ ⇒ ch S ∈ S

can have finite support.

Proof Suppose such a ch is supported by a finite
subset A ⊆ V and derive a contradiction.

So S ∈ Pfs(V), supp(S) = A & S 6= ∅.

So a0 , ch S ∈ S , V − A & hence a0 # (ch, S).
Pick any a1 # (ch , S, a0).

Then a1 = (a0 a1) · a0 , (a0 a1) · (ch S) =

((a0 a1) · ch)((a0 a1) · S) = ch S , a0, contradicting
a0 6= a1.
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Running example (reminder)
Concrete syntax:

t ::= a | t t | λa.t | letreca a = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names a of variables).
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α-Structural recursion for Λ/α
[LN p 31]

Given a nominal set X

and functions



















fV : V → X

fA : X × X → X

fL : V × X → X

fF : V × V × X × X → X,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → X
(supported by A as well) such that. . .

. . . ∃! function
f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)
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α-Structural recursion for Λ/α
[LN p 31]

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃a1 /∈ A)(∀x ∈ X) a1 # fL(a1, x)

for fF : (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, a2, x1, x2)
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Example: capture-avoiding substitution
(a := e)(−) : Λ/=α → Λ/=α is f̂ for:

n fV (a1) , (if a1 = a then e else a1)

n fA(e1, e2) , e1 e2

n fL(a1, e1) , λa1. e1

n fF(a1, a2, e1, e2) , letrec a1 a2 = e1 in e2

These functions are all supported by
A , {a} ∪ supp(e)
and the (FCB) holds because
a1 # λa1. e1 = fL(a1, e1),
a1, a2 # letrec a1 a2 = e1 in e2 = fF(a1, a2, e1, e2).
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Pause
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To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?
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Proof—overview
α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses Perm → X where you might
expect to use a set X.

A key ingredient of the proof is:
Freshness theorem [LN p 19]

which in turn follows from the

“Some/Any” property of fresh atoms [LN p 18]
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(∃a ∈ V) a # h & a # h(a)
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Proof—sketch
[LN p 22]

Define ĝ : Λ → (Perm → X) by ordinary structural
recursion:
n ĝ a1 , λπ ∈ Perm . fV (π(a1))

n ĝ(t1 t2) , λπ ∈ Perm . fA(ĝ t1 π, ĝ t2 π)

n ĝ(λa1. t1) , fresh(λa′
1 ∈ V.

λπ ∈ Perm . fL(a
′
1, ĝ t1(π ◦ (a1 a′

1)))

The (FCB) for fF ensures that
the conditions of the Freshness
Theorem are met.



APPSEM 2005, 2 - p. 17

Proof—sketch
[LN p 22]
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n ĝ(λa1. t1) , fresh(λa′
1 ∈ V.

λπ ∈ Perm . fL(a
′
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Can prove (by rule induction for =α) that
t1 =α t2 ⇒ ĝ t1 = ĝ t2.

Then f̂ [t]α , ĝ t ι well-defines the function
f̂ : Λ/α → X we seek.
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n ĝ(letreca1 a2 = t1 in t2) , · · · (exercise) · · ·

Can prove (by rule induction for =α) that
t1 =α t2 ⇒ ĝ t1 = ĝ t2.

Then f̂ [t]α , ĝ t ι well-defines the function
f̂ : Λ/α → X we seek.

E.g. if a1 /∈ A, then

f̂ [λa1. t1]α = ĝ(λa1. t1) ι

= fL(a1, ĝ t1(ι ◦ (a1 a1)))

= fL(a1, ĝ t1 ι)

= fL(a1, f̂ [t1]α)
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Proof—overview
α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses Perm → X where you might
expect to use a set X.
A key ingredient of the proof is:
Freshness theorem [LN p 19]

which in turn follows from the

“Some/Any” property of fresh atoms [LN p 18]
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“Some/any” proof pattern
t{a′′/a} =α t′{a′′/a′} a′′ # (a, t, a′, t′)

λa. t =α λa′. t′

top-down proof bottom-up proof
(∃a′′ ∈ V) (∀a′′ ∈ V)

(

a′′ # (a, t, a′, t′) &

t{a′′/a} =α t′{a′′/a′}

) (

a′′ # (a, t, a′, t′) ⇒

t{a′′/a} =α t′{a′′/a′}

)

⇓ ⇑

λa. t =α λa′. t′ λa. t =α λ.a′ t′



APPSEM 2005, 2 - p. 20

“Some/Any” theorem [LN p 18]

If S ∈ Pfs(V),
then

(∀a ∈ V) a # S ⇒ a ∈ S
iff

(∃a ∈ V) a # S & a ∈ S

Proof If a # S and a ∈ S, then for any other a′

with a′ # S we have:

a′ = (a a′) · a ∈ (a a′) · S =

because a, a′ # S

S
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“Some/Any” theorem [LN p 18]

If S ∈ Pfs(V) is supported by the finite subset A ⊆ V,
then

(∀a ∈ V) a /∈ A ⇒ a ∈ S
iff

(∃a ∈ V) a /∈ A & a ∈ S
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Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∃a ∈ V) a # h & a # h(a) (∗)

then ∃! element fresh(h) ∈ X satisfying
(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

Proof Suffices to show that h is constant on the
non-empty set V − supp(h).
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Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∀a ∈ V) a # h ⇒ a # h(a) (†)

then ∃! element fresh(h) ∈ X satisfying
(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

Proof Suffices to show that h is constant on the
non-empty set V − supp(h).
So for any a 6= a′ with a, a′ # h, we have
a′ # h(a′) by (†) and a # h(a′) because a # (h, a′).
Hence
h(a′) = (a a′) · h(a′) = ((a a′) · h)((a a′) · a′)

= h(a).
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Pause
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To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

Nominal signatures

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letrecx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letrecx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

Using nominal signatures, these
conditions can be determined
automatically from the pattern
of bindings in a constructor’s
arity. . .
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Nominal signatures
[LN p 8]

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Cαml), but a good
compromise between expressiveness and
simplicity.

are specified by:
n a set of atom-sorts as and a set of data-sorts ds.
n a set of constructors K : σ → ds
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Nominal signatures
[LN p 8]

are specified by:
n a set of atom-sorts as and a set of data-sorts ds.
n a set of constructors K : σ → ds
whose arities σ are given by

σ ::= as atom-sort
| ds data-sort
| 1 unit arity
| σ ∗ σ pair arity
| «as»σ atom-binding arity
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Nominal signatures
[LN p 8]

are specified by:
n a set of atom-sorts as and a set of data-sorts ds.
n a set of constructors K : σ → ds

E.g. nominal signature for
Λ = {t ::= x | t t | λx.t | letrecx x = t in t} has
atom-sort var, data-sort term and constructors:
V : var → term

A : term ∗ term → term

L : «var»term → term

F : «var»((«var»term) ∗ term) → term
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A nominal signature for the π-calculus [LN p 9]

P ::= P |P | ν(c)P | !P | S

S ::= 0 | S + S | G

G ::= c c. P | c(c). P | τ. P | [c = c]G
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A nominal signature for the π-calculus [LN p 9]

atom-sorts data-sorts constructors
chan proc Gsum : gsum → proc

gsum Par : proc ∗ proc → proc

pre Res : «chan»proc → proc

Rep : proc → proc

Zero : 1 → gsum

Pre : pre → gsum

Plus : gsum ∗ gsum → gsum

Out : (chan ∗ chan) ∗ proc → pre

In : chan ∗ «chan»proc → pre

Tau : proc → pre

Match : (chan ∗ chan) ∗ pre → pre
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A nominal signature for polymorphic λ-calculus

τ ::= α | τ → τ | ∀α. τ

t ::= x | t t | λx : τ. t | Λα. t | t τ
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A nominal signature for polymorphic λ-calculus

atom-sorts data-sorts constructors
tyvar type Tyvar : tyvar → type

var term Fun : type ∗ type → type

All : «tyvar»type → type

Var : var → term

App : term ∗ term → term

Lam : type ∗ «var»term → term

Gen : «tyvar»term → term

Spec : term ∗ type → term
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Nominal terms
[LN p 8]

Nominal terms (t) and their arities (t : σ) over a
nominal signature Σ:

n a : as if a ∈ A and sort(a) = as

n K t : ds if K : σ → ds and t : σ

n 〈〉 : 1

n 〈t1, t2〉 : σ1 ∗ σ2 if t1 : σ1 & t2 : σ2

n «a»t : «as»σ if a : as & t : σ
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Nominal terms
[LN p 8]

Nominal terms (t) and their arities (t : σ) over a
nominal signature Σ:

n a : as π · a = π(a)

n K t : ds π · (K t) = K(π · t)

n 〈〉 : 1 π · 〈〉 = 〈〉

n 〈t1, t2〉 : σ1 ∗ σ2 π · 〈t1, t2〉 = 〈π · t1, π · t2〉

n «a»t : «as»σ π · «a»t = «π(a)»(π · t)

Perm-action on nominal terms over Σ:

For this Perm-action we get
supp(t) = finite set of all atoms occurring in t
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Nominal terms
[LN p 8]

Nominal terms (t) and their arities (t : σ) over a
nominal signature Σ:

n a : as π · a = π(a)

n K t : ds π · (K t) = K(π · t)

n 〈〉 : 1 π · 〈〉 = 〈〉

n 〈t1, t2〉 : σ1 ∗ σ2 π · 〈t1, t2〉 = 〈π · t1, π · t2〉

n «a»t : «as»σ π · «a»t = «π(a)»(π · t)

Perm-action on nominal terms over Σ:

T(Σ)σ , nominal set of terms of arity σ
over nominal signature Σ
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α-Equivalence of nominal terms
[LN p 11]

a : as

a =α a : as

K : σ → ds t =α t′ : σ

K t =α K t′ : ds

〈〉 =α 〈〉 : 1

t1 =α t′
1 : σ1 t2 =α t′

2 : σ2

〈t1, t2〉 =α 〈t′
1, t′

2〉 : σ1 ∗ σ2

a, a′, a′′ : as a′′ # (a, t, a′, t′)
(a a′′) · t =α (a′ a′′) · t′ : σ

«a»t =α «a′
»t′ : «as»σ
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α-Equivalence of nominal terms
[LN p 11]

a : as

a =α a : as

K : σ → ds t =α t′ : σ

K t =α K t′ : ds

〈〉 =α 〈〉 : 1

t1 =α t′
1 : σ1 t2 =α t′

2 : σ2

〈t1, t2〉 =α 〈t′
1, t′

2〉 : σ1 ∗ σ2

a, a′, a′′ : as a′′ # (a, t, a′, t′)
(a a′′) · t =α (a′ a′′) · t′ : σ

«a»t =α «a′
»t′ : «as»σ

Action on α-equivalence classes: π · [t]α , [π · t]α

For this supp([t]α) is finite set of all free atoms of t.
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α-Equivalence of nominal terms
[LN p 11]

a : as

a =α a : as

K : σ → ds t =α t′ : σ

K t =α K t′ : ds

〈〉 =α 〈〉 : 1

t1 =α t′
1 : σ1 t2 =α t′

2 : σ2

〈t1, t2〉 =α 〈t′
1, t′

2〉 : σ1 ∗ σ2

a, a′, a′′ : as a′′ # (a, t, a′, t′)
(a a′′) · t =α (a′ a′′) · t′ : σ

«a»t =α «a′
»t′ : «as»σ

Tα(Σ)σ , nominal set of α-equivalence classes
of terms of arity σ over Σ
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α-Structural recursion
for a general nominal signature Σ

Two forms given in the paper:
n first, “arity-directed” version [Theorem 17, p 21]
n second, “sort-directed” version [Theorem 22, p 26]

u harder to state & prove, but more useful
u recursion for running example Λ/=α is an
instance.
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Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.
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Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.

X(as) , Aas

X(ds) , Xds

X(〈〉) , 1

X(σ1∗σ2) , X(σ1) × X(σ1)

X(«as»σ) , Aas × X(σ)
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Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.

4. A single finite set A of atoms that supports all the
functions fK

5. Proof that each fK satisfies a FCB whose
statement is determined by the arity σ of
K : σ → ds.
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Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.

4. A single finite set A of atoms that supports all the
functions fK

5. Proof that each fK satisfies a FCB whose
statement is determined by the arity σ of
K : σ → ds.

E.g. for F : «var»((«var»term) ∗ term) → term,
(FCB) for fF is: (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, ((a2, x1), x2))
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Second α-structural recursion theorem
Output:
family of functions f̂ds ∈ (Tα(Σ)ds→fsXds) indexed by
the data-sorts ds of Σ

n uniquely determined by mutually recursive,
conditional equations

condition ⇒ f̂ds(K e) = fK(· · · f̂(−) · · · )

one for each constructor K : σ → ds of Σ
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Second α-structural recursion theorem
Output:
family of functions f̂ds ∈ (Tα(Σ)ds→fsXds) indexed by
the data-sorts ds of Σ

n uniquely determined by mutually recursive,
conditional equations

condition ⇒ f̂ds(K e) = fK(· · · f̂(−) · · · )

one for each constructor K : σ → ds of Σ

determined by the arity
σ of K : σ → ds
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Second α-structural recursion theorem
Output:
family of functions f̂ds ∈ (Tα(Σ)ds→fsXds) indexed by
the data-sorts ds of Σ

n uniquely determined by mutually recursive,
conditional equations

condition ⇒ f̂ds(K e) = fK(· · · f̂(−) · · · )

one for each constructor K : σ → ds of Σ

n all supported by the given finite set of atoms A
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To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?
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Given an informal recursive definition on ASTs/α for
a nominal signature Σ, to show that it is an instance
of (second) α-structural recursion theorem:
1. identify which sets (Xds) and functions (fK) are
involved;

2. give each Xds a nominal-set structure and prove
the fK are all supported by a single finite set;

3. for each constructor K in Σ, verify the (FCB) for
fK .



APPSEM 2005, 2 - p. 34

Given an informal recursive definition on ASTs/α for
a nominal signature Σ, to show that it is an instance
of (second) α-structural recursion theorem:
1. identify which sets (Xds) and functions (fK) are
involved;

2. give each Xds a nominal-set structure and prove
the fK are all supported by a single finite set;

3. for each constructor K in Σ, verify the (FCB) for
fK .

For step 2 we can use:
Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-ε
to finitely supported functions we get another such.
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Given an informal recursive definition on ASTs/α for
a nominal signature Σ, to show that it is an instance
of (second) α-structural recursion theorem:
1. identify which sets (Xds) and functions (fK) are
involved;

2. give each Xds a nominal-set structure and prove
the fK are all supported by a single finite set;

3. for each constructor K in Σ, verify the (FCB) for
fK .

Step 3 is sometimes trivial (e.g. capture-avoiding
substitution), sometimes not (see next lecture).
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End of lecture 2
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