
APPSEM 2005, 2 - p. 1

Lecture 2

APPSEM 2005, 2 - p. 2

To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?

APPSEM 2005, 2 - p. 3

Nominal sets
[LN p 12]

Definition. A finite subset A ⊆ A supports an
element s ∈ S of a Perm-set S if

(a a′) · s = s

holds for all a, a′ ∈ A (of same sort) not in A

n A nominal set is a set equipped with an action of
the group Perm , all of whose elements have a
finite support.

n A morphism of nominal sets f : X → X ′ is an
equivariant function, i.e. a function that preserves
the Perm-set action:

(∀π ∈ Perm)(∀x ∈ X) f(π · x) = π · (f x)

The category of nominal sets is equivalent to a
well-known boolean topos (= model of classical
higher-order logic). We just need to see some of
that structure. . .

APPSEM 2005, 2 - p. 3

Nominal sets
[LN p 12]

n A nominal set is a set equipped with an action of
the group Perm , all of whose elements have a
finite support.

n A morphism of nominal sets f : X → X ′ is an
equivariant function, i.e. a function that preserves
the Perm-set action:

(∀π ∈ Perm)(∀x ∈ X) f(π · x) = π · (f x)

The category of nominal sets is equivalent to a
well-known boolean topos (= model of classical
higher-order logic). We just need to see some of
that structure. . .

APPSEM 2005, 2 - p. 4

Discrete nominal sets
The trivial action of Perm on any set S is given by:
π · s = s

Note that with respect to this action each s ∈ S is
supported by ∅.

We call S + trivial action the discrete nominal set on
S.

booleans B , {true, false}

natural numbers N , {0, 1, 2, . . .}

will be regarded as nominal sets in this way.

APPSEM 2005, 2 - p. 4

Discrete nominal sets
The trivial action of Perm on any set S is given by:
π · s = s

Note that with respect to this action each s ∈ S is
supported by ∅.

We call S + trivial action the discrete nominal set on
S.

booleans B , {true, false}

natural numbers N , {0, 1, 2, . . .}

will be regarded as nominal sets in this way.

APPSEM 2005, 2 - p. 5

Nominal sets of atoms
We make A a Perm-set via action π · a = π(a).

By definition of Perm , this action restricts to atoms
of any particular sort, e.g. to V.

It is not hard to see that the support of each atom
a is just {a}.

APPSEM 2005, 2 - p. 6

Products of nominal sets
[LN p 14]

If X1 and X2 are nominal sets, we get a
Perm-action on

X1 × X2 , {(x1, x2) | x1 ∈ X1 & x2 ∈ X2}

by defining

π · (x1, x2) , (π · x1, π · x2)

and then every pair in X1 × X2 is finitely supported.
In fact (exercise)

supp((x1, x2)) = supp(x1) ∪ supp(x2)

APPSEM 2005, 2 - p. 7

Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

With this definition, π · (−) preserves function
application:

(π · f)(π · x) = π · (f(π−1 · (π · x)))

= π · (f(ι · x))

= π · (f x)

APPSEM 2005, 2 - p. 7

Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

Even if X and X ′ are nominal, not every function
from X to X ′ is necessarily finitely supported
w.r.t. this action.

Exercise: any surjection N → V cannot have finite
support.

APPSEM 2005, 2 - p. 7

Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

The set X→fsX
′ of finitely supported functions

from a nominal set X to a nominal set X ′ is, by
construction, a nominal set.

APPSEM 2005, 2 - p. 7

Nominal function sets
[LN p 14]

The exponential of X and X ′ in the category of
Perm-sets is the set of all functions f : X → X ′,
equipped with the Perm-action:

π · f : X → X ′

x 7→ π · (f(π−1 · x))

The set X→fsX
′ of finitely supported functions

from a nominal set X to a nominal set X ′ is, by
construction, a nominal set.
Exercise: show that f ∈ (X→fsX

′) satisfies
supp(f) = ∅ iff f is an equivariant function.

APPSEM 2005, 2 - p. 8

Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.

APPSEM 2005, 2 - p. 8

Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.
(e.g. take X = A, enumerate it and let S consist of the even-numbered atoms.)

APPSEM 2005, 2 - p. 8

Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.

We write Pfs(X) for the nominal set of finitely

supported subsets of X.

APPSEM 2005, 2 - p. 8

Finitely supported subsets
of a nominal set

[LN p 14]

If X is a nominal set, we get a Perm-action on the
set of all subsets S ⊆ X by defining:

π · S , {π · x | x ∈ S}

As for functions, not every S ⊆ X is finitely
supported w.r.t. this action.

We write Pfs(X) for the nominal set of finitely

supported subsets of X.

(Pfs(X) is isomorphic to X→fsB.)

APPSEM 2005, 2 - p. 9

(Choice functions)
[LN p 15]

Theorem No function ch : PfsV → V satisfying

(∀S ∈ PfsV) S 6= ∅ ⇒ ch S ∈ S

can have finite support.

Proof Suppose such a ch is supported by a finite
subset A ⊆ V and derive a contradiction.

So S ∈ Pfs(V), supp(S) = A & S 6= ∅.

So a0 , ch S ∈ S , V − A & hence a0 # (ch, S).
Pick any a1 # (ch , S, a0).

Then a1 = (a0 a1) · a0 , (a0 a1) · (ch S) =

((a0 a1) · ch)((a0 a1) · S) = ch S , a0, contradicting
a0 6= a1.

APPSEM 2005, 2 - p. 9

(Choice functions)
[LN p 15]

Theorem No function ch : PfsV → V satisfying

(∀S ∈ PfsV) S 6= ∅ ⇒ ch S ∈ S

can have finite support.

Proof Suppose such a ch is supported by a finite
subset A ⊆ V. Let S , V − A.

So S ∈ Pfs(V), supp(S) = A & S 6= ∅.

So a0 , ch S ∈ S , V − A & hence a0 # (ch, S).
Pick any a1 # (ch , S, a0).

Then a1 = (a0 a1) · a0 , (a0 a1) · (ch S) =

((a0 a1) · ch)((a0 a1) · S) = ch S , a0, contradicting
a0 6= a1.

APPSEM 2005, 2 - p. 9

(Choice functions)
[LN p 15]

Theorem No function ch : PfsV → V satisfying

(∀S ∈ PfsV) S 6= ∅ ⇒ ch S ∈ S

can have finite support.

Proof Suppose such a ch is supported by a finite
subset A ⊆ V. Let S , V − A.
So S ∈ Pfs(V), supp(S) = A & S 6= ∅.

So a0 , ch S ∈ S , V − A & hence a0 # (ch, S).

Pick any a1 # (ch , S, a0).

Then a1 = (a0 a1) · a0 , (a0 a1) · (ch S) =

((a0 a1) · ch)((a0 a1) · S) = ch S , a0, contradicting
a0 6= a1.

APPSEM 2005, 2 - p. 9

(Choice functions)
[LN p 15]

Theorem No function ch : PfsV → V satisfying

(∀S ∈ PfsV) S 6= ∅ ⇒ ch S ∈ S

can have finite support.

Proof Suppose such a ch is supported by a finite
subset A ⊆ V. Let S , V − A.
So S ∈ Pfs(V), supp(S) = A & S 6= ∅.

So a0 , ch S ∈ S , V − A & hence a0 # (ch, S).
Pick any a1 # (ch , S, a0).

Then a1 = (a0 a1) · a0 , (a0 a1) · (ch S) =

((a0 a1) · ch)((a0 a1) · S) = ch S , a0, contradicting
a0 6= a1.

APPSEM 2005, 2 - p. 10

Running example (reminder)
Concrete syntax:

t ::= a | t t | λa.t | letreca a = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names a of variables).

APPSEM 2005, 2 - p. 11

α-Structural recursion for Λ/α
[LN p 31]

Given a nominal set X

and functions



















fV : V → X

fA : X × X → X

fL : V × X → X

fF : V × V × X × X → X,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → X
(supported by A as well) such that. . .

. . . ∃! function
f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

APPSEM 2005, 2 - p. 11

α-Structural recursion for Λ/α
[LN p 31]

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃a1 /∈ A)(∀x ∈ X) a1 # fL(a1, x)

for fF : (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, a2, x1, x2)

APPSEM 2005, 2 - p. 12

Example: capture-avoiding substitution
(a := e)(−) : Λ/=α → Λ/=α is f̂ for:

n fV (a1) , (if a1 = a then e else a1)

n fA(e1, e2) , e1 e2

n fL(a1, e1) , λa1. e1

n fF(a1, a2, e1, e2) , letrec a1 a2 = e1 in e2

These functions are all supported by
A , {a} ∪ supp(e)
and the (FCB) holds because
a1 # λa1. e1 = fL(a1, e1),
a1, a2 # letrec a1 a2 = e1 in e2 = fF(a1, a2, e1, e2).

APPSEM 2005, 2 - p. 13

Pause

APPSEM 2005, 2 - p. 14

To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?

APPSEM 2005, 2 - p. 15

α-Structural recursion for Λ/α

Given a nominal set X

and functions



















fV : V → X

fA : X × X → X

fL : V × X → X

fF : V × V × X × X → X,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → X

such that. . .

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

APPSEM 2005, 2 - p. 15

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃a1 /∈ A)(∀x ∈ X) a1 fL(a1, x)

for fF : (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, a2, x1, x2)

APPSEM 2005, 2 - p. 16

Proof—overview
α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses Perm → X where you might
expect to use a set X.

A key ingredient of the proof is:
Freshness theorem [LN p 19]

which in turn follows from the

“Some/Any” property of fresh atoms [LN p 18]

APPSEM 2005, 2 - p. 16

Proof—overview
α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses Perm → X where you might
expect to use a set X.
A key ingredient of the proof is:
Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∃a ∈ V) a # h & a # h(a)

then ∃! element fresh(h) ∈ X satisfying

(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

which in turn follows from the

“Some/Any” property of fresh atoms [LN p 18]

APPSEM 2005, 2 - p. 16

Proof—overview
α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses Perm → X where you might
expect to use a set X.
A key ingredient of the proof is:
Freshness theorem [LN p 19]

which in turn follows from the

“Some/Any” property of fresh atoms [LN p 18]

APPSEM 2005, 2 - p. 17

Proof—sketch
[LN p 22]

Define ĝ : Λ → (Perm → X) by ordinary structural
recursion:
n ĝ a1 , λπ ∈ Perm . fV (π(a1))

n ĝ(t1 t2) , λπ ∈ Perm . fA(ĝ t1 π, ĝ t2 π)

n ĝ(λa1. t1) , fresh(λa′
1 ∈ V.

λπ ∈ Perm . fL(a
′
1, ĝ t1(π ◦ (a1 a′

1)))

The (FCB) for fF ensures that
the conditions of the Freshness
Theorem are met.

APPSEM 2005, 2 - p. 17

Proof—sketch
[LN p 22]

Define ĝ : Λ → (Perm → X) by ordinary structural
recursion:
n ĝ a1 , λπ ∈ Perm . fV (π(a1))

n ĝ(t1 t2) , λπ ∈ Perm . fA(ĝ t1 π, ĝ t2 π)

n ĝ(λa1. t1) , fresh(λa′
1 ∈ V.

λπ ∈ Perm . fL(a
′
1, ĝ t1(π ◦ (a1 a′

1)))

n ĝ(letreca1 a2 = t1 in t2) , · · · (exercise) · · ·

APPSEM 2005, 2 - p. 17

Proof—sketch
[LN p 22]

Define ĝ : Λ → (Perm → X) by ordinary structural
recursion:
n ĝ a1 , λπ ∈ Perm . fV (π(a1))

n ĝ(t1 t2) , λπ ∈ Perm . fA(ĝ t1 π, ĝ t2 π)

n ĝ(λa1. t1) , fresh(λa′
1 ∈ V.

λπ ∈ Perm . fL(a
′
1, ĝ t1(π ◦ (a1 a′

1)))

n ĝ(letreca1 a2 = t1 in t2) , · · · (exercise) · · ·

Can prove (by rule induction for =α) that
t1 =α t2 ⇒ ĝ t1 = ĝ t2.

Then f̂ [t]α , ĝ t ι well-defines the function
f̂ : Λ/α → X we seek.

APPSEM 2005, 2 - p. 17

Proof—sketch
[LN p 22]

Define ĝ : Λ → (Perm → X) by ordinary structural
recursion:
n ĝ a1 , λπ ∈ Perm . fV (π(a1))

n ĝ(t1 t2) , λπ ∈ Perm . fA(ĝ t1 π, ĝ t2 π)

n ĝ(λa1. t1) , fresh(λa′
1 ∈ V.

λπ ∈ Perm . fL(a
′
1, ĝ t1(π ◦ (a1 a′

1)))

n ĝ(letreca1 a2 = t1 in t2) , · · · (exercise) · · ·

Can prove (by rule induction for =α) that
t1 =α t2 ⇒ ĝ t1 = ĝ t2.

Then f̂ [t]α , ĝ t ι well-defines the function
f̂ : Λ/α → X we seek.

E.g. if a1 /∈ A, then

f̂ [λa1. t1]α = ĝ(λa1. t1) ι

= fL(a1, ĝ t1(ι ◦ (a1 a1)))

= fL(a1, ĝ t1 ι)

= fL(a1, f̂ [t1]α)

APPSEM 2005, 2 - p. 18

Proof—overview
α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses Perm → X where you might
expect to use a set X.
A key ingredient of the proof is:
Freshness theorem [LN p 19]

which in turn follows from the

“Some/Any” property of fresh atoms [LN p 18]

APPSEM 2005, 2 - p. 19

“Some/any” proof pattern
t{a′′/a} =α t′{a′′/a′} a′′ # (a, t, a′, t′)

λa. t =α λa′. t′

top-down proof bottom-up proof
(∃a′′ ∈ V) (∀a′′ ∈ V)

(

a′′ # (a, t, a′, t′) &

t{a′′/a} =α t′{a′′/a′}

) (

a′′ # (a, t, a′, t′) ⇒

t{a′′/a} =α t′{a′′/a′}

)

⇓ ⇑

λa. t =α λa′. t′ λa. t =α λ.a′ t′

APPSEM 2005, 2 - p. 20

“Some/Any” theorem [LN p 18]

If S ∈ Pfs(V),
then

(∀a ∈ V) a # S ⇒ a ∈ S
iff

(∃a ∈ V) a # S & a ∈ S

Proof If a # S and a ∈ S, then for any other a′

with a′ # S we have:

a′ = (a a′) · a ∈ (a a′) · S =

because a, a′ # S

S

APPSEM 2005, 2 - p. 20

“Some/Any” theorem [LN p 18]

If S ∈ Pfs(V) is supported by the finite subset A ⊆ V,
then

(∀a ∈ V) a /∈ A ⇒ a ∈ S
iff

(∃a ∈ V) a /∈ A & a ∈ S

Proof If a # S and a ∈ S, then for any other a′

with a′ # S we have:

a′ = (a a′) · a ∈ (a a′) · S =

because a, a′ # S

S

APPSEM 2005, 2 - p. 20

“Some/Any” theorem [LN p 18]

If S ∈ Pfs(V),
then

(∀a ∈ V) a # S ⇒ a ∈ S
iff

(∃a ∈ V) a # S & a ∈ S

Proof If a # S and a ∈ S, then for any other a′

with a′ # S we have:

a′ = (a a′) · a ∈ (a a′) · S =

because a, a′ # S

S

APPSEM 2005, 2 - p. 21

Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∃a ∈ V) a # h & a # h(a) (∗)

then ∃! element fresh(h) ∈ X satisfying
(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

Proof Suffices to show that h is constant on the
non-empty set V − supp(h).

APPSEM 2005, 2 - p. 21

Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∃a ∈ V) a # h & a # h(a) (∗)

then ∃! element fresh(h) ∈ X satisfying
(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

Proof Suffices to show that h is constant on the
non-empty set V − supp(h).

APPSEM 2005, 2 - p. 21

Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∃a ∈ V) a # h & a # h(a) (∗)

then ∃! element fresh(h) ∈ X satisfying
(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

Proof Suffices to show that h is constant on the
non-empty set V − supp(h).
By Some/Any theorem can replace (∗) with (†).

APPSEM 2005, 2 - p. 21

Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∀a ∈ V) a # h ⇒ a # h(a) (†)

then ∃! element fresh(h) ∈ X satisfying
(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

Proof Suffices to show that h is constant on the
non-empty set V − supp(h).
By Some/Any theorem can replace (∗) with (†).

APPSEM 2005, 2 - p. 21

Freshness theorem [LN p 19]

Given a nominal set X and h ∈ V→fsX satisfying

(∀a ∈ V) a # h ⇒ a # h(a) (†)

then ∃! element fresh(h) ∈ X satisfying
(∀a ∈ V) a # h ⇒ h(a) = fresh(h)

Proof Suffices to show that h is constant on the
non-empty set V − supp(h).
So for any a 6= a′ with a, a′ # h, we have
a′ # h(a′) by (†) and a # h(a′) because a # (h, a′).
Hence
h(a′) = (a a′) · h(a′) = ((a a′) · h)((a a′) · a′)

= h(a).

APPSEM 2005, 2 - p. 22

Pause

APPSEM 2005, 2 - p. 23

To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

Nominal signatures

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?

APPSEM 2005, 2 - p. 23

To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders? Nominal signatures

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?

APPSEM 2005, 2 - p. 24

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letrecx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

APPSEM 2005, 2 - p. 24

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letrecx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

Using nominal signatures, these
conditions can be determined
automatically from the pattern
of bindings in a constructor’s
arity. . .

APPSEM 2005, 2 - p. 25

Nominal signatures
[LN p 8]

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Cαml), but a good
compromise between expressiveness and
simplicity.

are specified by:
n a set of atom-sorts as and a set of data-sorts ds.
n a set of constructors K : σ → ds

APPSEM 2005, 2 - p. 25

Nominal signatures
[LN p 8]

are specified by:
n a set of atom-sorts as and a set of data-sorts ds.
n a set of constructors K : σ → ds
whose arities σ are given by

σ ::= as atom-sort
| ds data-sort
| 1 unit arity
| σ ∗ σ pair arity
| «as»σ atom-binding arity

APPSEM 2005, 2 - p. 25

Nominal signatures
[LN p 8]

are specified by:
n a set of atom-sorts as and a set of data-sorts ds.
n a set of constructors K : σ → ds

E.g. nominal signature for
Λ = {t ::= x | t t | λx.t | letrecx x = t in t} has
atom-sort var, data-sort term and constructors:
V : var → term

A : term ∗ term → term

L : «var»term → term

F : «var»((«var»term) ∗ term) → term

APPSEM 2005, 2 - p. 26

A nominal signature for the π-calculus [LN p 9]

P ::= P |P | ν(c)P | !P | S

S ::= 0 | S + S | G

G ::= c c. P | c(c). P | τ. P | [c = c]G

APPSEM 2005, 2 - p. 26

A nominal signature for the π-calculus [LN p 9]

atom-sorts data-sorts constructors
chan proc Gsum : gsum → proc

gsum Par : proc ∗ proc → proc

pre Res : «chan»proc → proc

Rep : proc → proc

Zero : 1 → gsum

Pre : pre → gsum

Plus : gsum ∗ gsum → gsum

Out : (chan ∗ chan) ∗ proc → pre

In : chan ∗ «chan»proc → pre

Tau : proc → pre

Match : (chan ∗ chan) ∗ pre → pre

APPSEM 2005, 2 - p. 27

A nominal signature for polymorphic λ-calculus

τ ::= α | τ → τ | ∀α. τ

t ::= x | t t | λx : τ. t | Λα. t | t τ

APPSEM 2005, 2 - p. 27

A nominal signature for polymorphic λ-calculus

atom-sorts data-sorts constructors
tyvar type Tyvar : tyvar → type

var term Fun : type ∗ type → type

All : «tyvar»type → type

Var : var → term

App : term ∗ term → term

Lam : type ∗ «var»term → term

Gen : «tyvar»term → term

Spec : term ∗ type → term

APPSEM 2005, 2 - p. 28

Nominal terms
[LN p 8]

Nominal terms (t) and their arities (t : σ) over a
nominal signature Σ:

n a : as if a ∈ A and sort(a) = as

n K t : ds if K : σ → ds and t : σ

n 〈〉 : 1

n 〈t1, t2〉 : σ1 ∗ σ2 if t1 : σ1 & t2 : σ2

n «a»t : «as»σ if a : as & t : σ

APPSEM 2005, 2 - p. 28

Nominal terms
[LN p 8]

Nominal terms (t) and their arities (t : σ) over a
nominal signature Σ:

n a : as π · a = π(a)

n K t : ds π · (K t) = K(π · t)

n 〈〉 : 1 π · 〈〉 = 〈〉

n 〈t1, t2〉 : σ1 ∗ σ2 π · 〈t1, t2〉 = 〈π · t1, π · t2〉

n «a»t : «as»σ π · «a»t = «π(a)»(π · t)

Perm-action on nominal terms over Σ:

For this Perm-action we get
supp(t) = finite set of all atoms occurring in t

APPSEM 2005, 2 - p. 28

Nominal terms
[LN p 8]

Nominal terms (t) and their arities (t : σ) over a
nominal signature Σ:

n a : as π · a = π(a)

n K t : ds π · (K t) = K(π · t)

n 〈〉 : 1 π · 〈〉 = 〈〉

n 〈t1, t2〉 : σ1 ∗ σ2 π · 〈t1, t2〉 = 〈π · t1, π · t2〉

n «a»t : «as»σ π · «a»t = «π(a)»(π · t)

Perm-action on nominal terms over Σ:

T(Σ)σ , nominal set of terms of arity σ
over nominal signature Σ

APPSEM 2005, 2 - p. 29

α-Equivalence of nominal terms
[LN p 11]

a : as

a =α a : as

K : σ → ds t =α t′ : σ

K t =α K t′ : ds

〈〉 =α 〈〉 : 1

t1 =α t′
1 : σ1 t2 =α t′

2 : σ2

〈t1, t2〉 =α 〈t′
1, t′

2〉 : σ1 ∗ σ2

a, a′, a′′ : as a′′ # (a, t, a′, t′)
(a a′′) · t =α (a′ a′′) · t′ : σ

«a»t =α «a′
»t′ : «as»σ

APPSEM 2005, 2 - p. 29

α-Equivalence of nominal terms
[LN p 11]

a : as

a =α a : as

K : σ → ds t =α t′ : σ

K t =α K t′ : ds

〈〉 =α 〈〉 : 1

t1 =α t′
1 : σ1 t2 =α t′

2 : σ2

〈t1, t2〉 =α 〈t′
1, t′

2〉 : σ1 ∗ σ2

a, a′, a′′ : as a′′ # (a, t, a′, t′)
(a a′′) · t =α (a′ a′′) · t′ : σ

«a»t =α «a′
»t′ : «as»σ

Action on α-equivalence classes: π · [t]α , [π · t]α

For this supp([t]α) is finite set of all free atoms of t.

APPSEM 2005, 2 - p. 29

α-Equivalence of nominal terms
[LN p 11]

a : as

a =α a : as

K : σ → ds t =α t′ : σ

K t =α K t′ : ds

〈〉 =α 〈〉 : 1

t1 =α t′
1 : σ1 t2 =α t′

2 : σ2

〈t1, t2〉 =α 〈t′
1, t′

2〉 : σ1 ∗ σ2

a, a′, a′′ : as a′′ # (a, t, a′, t′)
(a a′′) · t =α (a′ a′′) · t′ : σ

«a»t =α «a′
»t′ : «as»σ

Tα(Σ)σ , nominal set of α-equivalence classes
of terms of arity σ over Σ

APPSEM 2005, 2 - p. 30

α-Structural recursion
for a general nominal signature Σ

Two forms given in the paper:
n first, “arity-directed” version [Theorem 17, p 21]
n second, “sort-directed” version [Theorem 22, p 26]

u harder to state & prove, but more useful
u recursion for running example Λ/=α is an
instance.

APPSEM 2005, 2 - p. 31

Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.

APPSEM 2005, 2 - p. 31

Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.

X(as) , Aas

X(ds) , Xds

X(〈〉) , 1

X(σ1∗σ2) , X(σ1) × X(σ1)

X(«as»σ) , Aas × X(σ)

APPSEM 2005, 2 - p. 31

Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.

4. A single finite set A of atoms that supports all the
functions fK

5. Proof that each fK satisfies a FCB whose
statement is determined by the arity σ of
K : σ → ds.

APPSEM 2005, 2 - p. 31

Second α-structural recursion theorem
Input:
1. Nominal signature Σ.
2. Family of nominal sets Xds indexed by the
data-sorts ds of Σ.

3. Family of functions fK ∈ (X(σ)→fsXds)
indexed by the constructors K : σ → ds of Σ.

4. A single finite set A of atoms that supports all the
functions fK

5. Proof that each fK satisfies a FCB whose
statement is determined by the arity σ of
K : σ → ds.

E.g. for F : «var»((«var»term) ∗ term) → term,
(FCB) for fF is: (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, ((a2, x1), x2))

APPSEM 2005, 2 - p. 32

Second α-structural recursion theorem
Output:
family of functions f̂ds ∈ (Tα(Σ)ds→fsXds) indexed by
the data-sorts ds of Σ

n uniquely determined by mutually recursive,
conditional equations

condition ⇒ f̂ds(K e) = fK(· · · f̂(−) · · ·)

one for each constructor K : σ → ds of Σ

APPSEM 2005, 2 - p. 32

Second α-structural recursion theorem
Output:
family of functions f̂ds ∈ (Tα(Σ)ds→fsXds) indexed by
the data-sorts ds of Σ

n uniquely determined by mutually recursive,
conditional equations

condition ⇒ f̂ds(K e) = fK(· · · f̂(−) · · ·)

one for each constructor K : σ → ds of Σ

determined by the arity
σ of K : σ → ds

APPSEM 2005, 2 - p. 32

Second α-structural recursion theorem
Output:
family of functions f̂ds ∈ (Tα(Σ)ds→fsXds) indexed by
the data-sorts ds of Σ

n uniquely determined by mutually recursive,
conditional equations

condition ⇒ f̂ds(K e) = fK(· · · f̂(−) · · ·)

one for each constructor K : σ → ds of Σ

n all supported by the given finite set of atoms A

APPSEM 2005, 2 - p. 33

To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?

APPSEM 2005, 2 - p. 34

Given an informal recursive definition on ASTs/α for
a nominal signature Σ, to show that it is an instance
of (second) α-structural recursion theorem:
1. identify which sets (Xds) and functions (fK) are
involved;

2. give each Xds a nominal-set structure and prove
the fK are all supported by a single finite set;

3. for each constructor K in Σ, verify the (FCB) for
fK .

APPSEM 2005, 2 - p. 34

Given an informal recursive definition on ASTs/α for
a nominal signature Σ, to show that it is an instance
of (second) α-structural recursion theorem:
1. identify which sets (Xds) and functions (fK) are
involved;

2. give each Xds a nominal-set structure and prove
the fK are all supported by a single finite set;

3. for each constructor K in Σ, verify the (FCB) for
fK .

For step 2 we can use:
Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-ε
to finitely supported functions we get another such.

APPSEM 2005, 2 - p. 34

Given an informal recursive definition on ASTs/α for
a nominal signature Σ, to show that it is an instance
of (second) α-structural recursion theorem:
1. identify which sets (Xds) and functions (fK) are
involved;

2. give each Xds a nominal-set structure and prove
the fK are all supported by a single finite set;

3. for each constructor K in Σ, verify the (FCB) for
fK .

Step 3 is sometimes trivial (e.g. capture-avoiding
substitution), sometimes not (see next lecture).

APPSEM 2005, 2 - p. 35

End of lecture 2

	Lecture 2
	Route map (I)
	Nominal sets
	Nominal sets

	Discrete nominal sets
	Discrete nominal sets

	Nominal sets of atoms
	Products of nominal sets
	Nominal function sets
	Nominal function sets
	Nominal function sets
	Nominal function sets

	Finitely supported subsets
	Finitely supported subsets
	Finitely supported subsets
	Finitely supported subsets

	(Choice functions)
	(Choice functions)
	(Choice functions)
	(Choice functions)

	Running example (reminder)
	Alpha-structural recursion for Lambda/alpha
	Alpha-structural recursion for Lambda/alpha

	Example: capture-avoiding substitution
	Pause
	Route map (II)
	Alpha-structural recursion for Lambda/alpha
	Alpha-structural recursion for Lambda/alpha

	Proof - overview
	Proof - overview
	Proof - overview

	Proof - sketch
	Proof - sketch
	Proof - sketch
	Proof - sketch

	Proof - overview
	``Some/any'' proof pattern
	Some/Any theorem
	Some/Any theorem
	Some/Any theorem

	Freshness Theorem
	Freshness Theorem
	Freshness Theorem
	Freshness Theorem
	Freshness Theorem

	Pause
	Route map (III)
	Route map (III)

	Alpha-structural recursion
	Alpha-structural recursion

	Nominal signatures
	Nominal signatures
	Nominal signatures

	Pi-calculus signature
	Pi-calculus signature

	System F
	System F

	Nominal terms
	Nominal terms
	Nominal terms

	Alpha-equivalence of nominal terms
	Alpha-equivalence of nominal terms
	Alpha-equivalence of nominal terms

	Alpha-structural recursion for a nominal signature
	Second alpha-structural recursion theorem (input)
	Second alpha-structural recursion theorem (input)
	Second alpha-structural recursion theorem (input)
	Second alpha-structural recursion theorem (input)

	Second alpha-structural recursion theorem (output)
	Second alpha-structural recursion theorem (output)
	Second alpha-structural recursion theorem (output)

	Route map (IV)
	Applying alpha-structural recursion
	Applying alpha-structural recursion
	Applying alpha-structural recursion

	End of lecture 2

