Lecture 2

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders?
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

Nominal sets

Definition. A finite subset $A \subseteq \mathbb{A}$ supports an element $s \in S$ of a Perm-set S if

$$
\left(a a^{\prime}\right) \cdot s=s
$$

holds for all $a, a^{\prime} \in \mathbb{A}$ (of same sort) not in A

Nominal sets

- A nominal set is a set equipped with an action of the group Perm, all of whose elements have a finite support.
- A morphism of nominal sets $f: X \rightarrow X^{\prime}$ is an equivariant function, i.e. a function that preserves the Perm-set action:

$$
(\forall \pi \in \operatorname{Perm})(\forall x \in X) f(\pi \cdot x)=\pi \cdot(f x)
$$

The category of nominal sets is equivalent to a well-known boolean topos ($=$ model of classical higher-order logic). We just need to see some of that structure...

Discrete nominal sets

The trivial action of Perm on any set S is given by: $\pi \cdot s=s$
Note that with respect to this action each $s \in S$ is supported by \emptyset.

We call $S+$ trivial action the discrete nominal set on S.

Discrete nominal sets

The trivial action of Perm on any set S is given by: $\pi \cdot s=s$
Note that with respect to this action each $s \in S$ is supported by \emptyset.

We call $S+$ trivial action the discrete nominal set on S.

$$
\text { booleans } \mathbb{B} \triangleq\{\text { true, false }\}
$$

natural numbers $\mathbb{N} \triangleq\{0,1,2, \ldots\}$
will be regarded as nominal sets in this way.

Nominal sets of atoms

We make \mathbb{A} a Perm-set via action $\pi \cdot a=\pi(a)$.
By definition of Perm, this action restricts to atoms of any particular sort, e.g. to \mathbb{V}.

It is not hard to see that the support of each atom a is just $\{a\}$.

Products of nominal sets

If X_{1} and X_{2} are nominal sets, we get a Perm-action on

$$
X_{1} \times X_{2} \triangleq\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in X_{1} \& x_{2} \in X_{2}\right\}
$$

by defining

$$
\pi \cdot\left(x_{1}, x_{2}\right) \triangleq\left(\pi \cdot x_{1}, \pi \cdot x_{2}\right)
$$

and then every pair in $X_{1} \times X_{2}$ is finitely supported. In fact (exercise)

$$
\operatorname{supp}\left(\left(x_{1}, x_{2}\right)\right)=\operatorname{supp}\left(x_{1}\right) \cup \operatorname{supp}\left(x_{2}\right)
$$

Nominal function sets

The exponential of X and X^{\prime} in the category of Perm-sets is the set of all functions $f: X \rightarrow X^{\prime}$, equipped with the Perm-action:

$$
\begin{aligned}
\pi \cdot f: X & \rightarrow X^{\prime} \\
x & \mapsto \pi \cdot\left(f\left(\pi^{-1} \cdot x\right)\right)
\end{aligned}
$$

With this definition, $\pi \cdot(-)$ preserves function application:

$$
\begin{aligned}
(\pi \cdot f)(\pi \cdot x) & =\pi \cdot\left(f\left(\pi^{-1} \cdot(\pi \cdot x)\right)\right) \\
& =\pi \cdot(f(\iota \cdot x)) \\
& =\pi \cdot(f x)
\end{aligned}
$$

Nominal function sets

The exponential of X and X^{\prime} in the category of Perm-sets is the set of all functions $f: X \rightarrow X^{\prime}$, equipped with the Perm-action:

$$
\begin{aligned}
\pi \cdot f: X & \rightarrow X^{\prime} \\
x & \mapsto \pi \cdot\left(f\left(\pi^{-1} \cdot x\right)\right)
\end{aligned}
$$

Even if X and X^{\prime} are nominal, not every function from X to X^{\prime} is necessarily finitely supported w.r.t. this action.

Exercise: any surjection $\mathbb{N} \rightarrow \mathbb{V}$ cannot have finite support.

Nominal function sets

The exponential of X and X^{\prime} in the category of Perm-sets is the set of all functions $f: X \rightarrow X^{\prime}$, equipped with the Perm-action:

$$
\begin{aligned}
\pi \cdot f: X & \rightarrow X^{\prime} \\
x & \mapsto \pi \cdot\left(f\left(\pi^{-1} \cdot x\right)\right)
\end{aligned}
$$

The set $X \rightarrow_{\mathrm{fs}} X^{\prime}$ of finitely supported functions from a nominal set X to a nominal set X^{\prime} is, by construction, a nominal set.

Nominal function sets

The exponential of X and X^{\prime} in the category of Perm-sets is the set of all functions $f: X \rightarrow X^{\prime}$, equipped with the Perm-action:

$$
\begin{aligned}
\pi \cdot f: X & \rightarrow X^{\prime} \\
x & \mapsto \pi \cdot\left(f\left(\pi^{-1} \cdot x\right)\right)
\end{aligned}
$$

The set $X \rightarrow_{\mathrm{fs}} X^{\prime}$ of finitely supported functions from a nominal set X to a nominal set X^{\prime} is, by construction, a nominal set.
Exercise: show that $f \in\left(X \rightarrow_{\mathrm{fs}_{\mathrm{s}}} X^{\prime}\right)$ satisfies $\operatorname{supp}(f)=\emptyset$ iff f is an equivariant function.

Finitely supported subsets of a nominal set

If X is a nominal set, we get a Perm-action on the set of all subsets $S \subseteq X$ by defining:

$$
\pi \cdot S \triangleq\{\pi \cdot x \mid x \in S\}
$$

As for functions, not every $S \subseteq X$ is finitely supported w.r.t. this action.

Finitely supported subsets of a nominal set

If X is a nominal set, we get a Perm-action on the set of all subsets $S \subseteq X$ by defining:

$$
\pi \cdot S \triangleq\{\pi \cdot x \mid x \in S\}
$$

As for functions, not every $S \subseteq X$ is finitely supported w.r.t. this action.
(e.g. take $X=\mathbb{A}$, enumerate it and let S consist of the even-numbered atoms.)

Finitely supported subsets of a nominal set

If X is a nominal set, we get a Perm-action on the set of all subsets $S \subseteq X$ by defining:

$$
\pi \cdot S \triangleq\{\pi \cdot x \mid x \in S\}
$$

As for functions, not every $S \subseteq X$ is finitely supported w.r.t. this action.
We write $P_{\mathrm{fs}}(X)$ for the nominal set of finitely supported subsets of X.

Finitely supported subsets of a nominal set

If X is a nominal set, we get a Perm-action on the set of all subsets $S \subseteq X$ by defining:

$$
\pi \cdot S \triangleq\{\pi \cdot x \mid x \in S\}
$$

As for functions, not every $S \subseteq X$ is finitely supported w.r.t. this action.
We write $P_{\mathrm{fs}}(X)$ for the nominal set of finitely supported subsets of X.
($P_{\mathrm{fs}}(X)$ is isomorphic to $X \rightarrow_{\mathrm{fs}} \mathbb{B}$.)

(Choice functions)

Theorem No function $c h: P_{\mathrm{fs}} \mathbb{V} \rightarrow \mathbb{V}$ satisfying

$$
\left(\forall S \in P_{\mathrm{fs}} \mathbb{V}\right) S \neq \emptyset \Rightarrow \text { ch } S \in S
$$

can have finite support.
Proof Suppose such a ch is supported by a finite subset $A \subseteq \mathbb{V}$ and derive a contradiction.

(Choice functions)

Theorem No function $c h: P_{\mathrm{fs}} \mathbb{V} \rightarrow \mathbb{V}$ satisfying

$$
\left(\forall S \in P_{\mathrm{fs}} \mathbb{V}\right) S \neq \emptyset \Rightarrow \text { ch } S \in S
$$

can have finite support.
Proof Suppose such a ch is supported by a finite subset $A \subseteq \mathbb{V}$. Let $S \triangleq \mathbb{V}-A$.

(Choice functions)

Theorem No function $c h: P_{\mathrm{fs}} \mathbb{V} \rightarrow \mathbb{V}$ satisfying

$$
\left(\forall S \in P_{\mathrm{fs}} \mathbb{V}\right) S \neq \emptyset \Rightarrow \text { ch } S \in S
$$

can have finite support.
Proof Suppose such a ch is supported by a finite subset $A \subseteq \mathbb{V}$. Let $S \triangleq \mathbb{V}-A$.
So $S \in P_{\mathrm{fs}}(\mathbb{V}), \operatorname{supp}(S)=A \& S \neq \emptyset$.
So $a_{0} \triangleq c h S \in S \triangleq \mathbb{V}-A$ \& hence $a_{0} \#(c h, S)$.

(Choice functions)

Theorem No function $c h: P_{\mathrm{fs}} \mathbb{V} \rightarrow \mathbb{V}$ satisfying

$$
\left(\forall S \in P_{\mathrm{fs}} \mathbb{V}\right) S \neq \emptyset \Rightarrow \text { ch } S \in S
$$

can have finite support.
Proof Suppose such a ch is supported by a finite subset $A \subseteq \mathbb{V}$. Let $S \triangleq \mathbb{V}-A$.
So $S \in P_{\mathrm{fs}}(\mathbb{V}), \operatorname{supp}(S)=A \& S \neq \emptyset$.
So $a_{0} \triangleq c h S \in S \triangleq \mathbb{V}-A$ \& hence $a_{0} \#(c h, S)$.
Pick any $a_{1} \#\left(c h, S, a_{0}\right)$.
Then $a_{1}=\left(a_{0} a_{1}\right) \cdot a_{0} \triangleq\left(a_{0} a_{1}\right) \cdot(\operatorname{ch} S)=$ $\left(\left(a_{0} a_{1}\right) \cdot c h\right)\left(\left(a_{0} a_{1}\right) \cdot S\right)=c h S \triangleq a_{0}$, contradicting $a_{0} \neq a_{1}$.

Running example (reminder)

Concrete syntax:

$$
t::=a|t t| \lambda a . t \mid \text { letrec } a a=t \text { in } t
$$

ASTs:

$$
\Lambda \triangleq \mu S .(\mathbb{V}+(S \times S)+(\mathbb{V} \times S)+(\mathbb{V} \times \mathbb{V} \times S \times S))
$$

where \mathbb{V} is some fixed, countably infinite set (of names a of variables).

α-Structural recursion for Λ / α

Given a nominal set X
and functions $\left\{\begin{array}{l}f_{\mathrm{V}}: \mathbb{V} \rightarrow X \\ f_{\mathrm{A}}: X \times X \rightarrow X \\ f_{\mathrm{L}}: \mathbb{V} \times X \rightarrow X \\ f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times X \times X \rightarrow X,\end{array}\right.$
all supported by a finite subset $A \subseteq \mathbb{V}$,
there is a unique function $\hat{f}: \Lambda / \alpha \rightarrow X$ (supported by A as well) such that. . .

α-Structural recursion for Λ / α

$\ldots \exists$! function $\hat{f}: \Lambda / \alpha \rightarrow X$ such that:

$$
\begin{aligned}
\hat{f} a_{1} & =f_{\mathrm{V}} a_{1} \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
a_{1} \notin A \Rightarrow \hat{f}\left(\lambda a_{1} \cdot e_{1}\right) & =f_{\mathrm{L}}\left(a_{1}, \hat{f} e_{1}\right)
\end{aligned}
$$

$a_{1}, a_{2} \notin A \& a_{1} \neq a_{2} \& a_{2} \notin f v\left(e_{2}\right) \Rightarrow$ $\hat{f}\left(\right.$ letrec $a_{1} a_{2}=e_{1}$ in $\left.e_{2}\right)=f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)$
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists a_{1} \notin A\right)(\forall x \in X) a_{1} \# f_{L}\left(a_{1}, x\right)$
for $f_{F}:\left(\exists a_{1}, a_{2} \notin A\right) a_{1} \neq a_{2} \&$

$$
\begin{aligned}
& \left(\forall x_{1}, x_{2} \in X\right) a_{2} \# x_{1} \Rightarrow \\
& \quad a_{1}, a_{2} \# f_{F}\left(a_{1}, a_{2}, x_{1}, x_{2}\right)
\end{aligned}
$$

Example: capture-avoiding substitution

$(a:=e)(-): \Lambda /={ }_{\alpha} \rightarrow \Lambda /={ }_{\alpha}$ is \hat{f} for:

- $f_{V}\left(a_{1}\right) \triangleq$ (if $a_{1}=a$ then e else a_{1})
- $f_{A}\left(e_{1}, e_{2}\right) \triangleq e_{1} e_{2}$
- $f_{L}\left(a_{1}, e_{1}\right) \triangleq \lambda a_{1} . e_{1}$
- $f_{F}\left(a_{1}, a_{2}, e_{1}, e_{2}\right) \triangleq$ letrec $a_{1} a_{2}=e_{1}$ in e_{2}

These functions are all supported by
$A \triangleq\{a\} \cup \operatorname{supp}(e)$
and the (FCB) holds because
$a_{1} \# \lambda a_{1} . e_{1}=f_{L}\left(a_{1}, e_{1}\right)$,
$a_{1}, a_{2} \#$ letrec $a_{1} a_{2}=e_{1}$ in $e_{2}=f_{F}\left(a_{1}, a_{2}, e_{1}, e_{2}\right)$.

Pause

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders?
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

α-Structural recursion for Λ / α

Given a nominal set X
and functions $\left\{\begin{array}{l}f_{\mathrm{V}}: \mathbb{V} \rightarrow X \\ f_{\mathrm{A}}: X \times X \rightarrow X \\ f_{\mathrm{L}}: \mathbb{V} \times X \rightarrow X \\ f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times \boldsymbol{X} \times \boldsymbol{X} \rightarrow \boldsymbol{X},\end{array}\right.$
all supported by a finite subset $A \subseteq \mathbb{V}$,
there is a unique function $\hat{f}: \Lambda / \alpha \rightarrow X$ such that...

α-Structural recursion for Λ / α

$\ldots \exists$! function $\hat{f}: \Lambda / \alpha \rightarrow X$ such that:

$$
\begin{aligned}
\hat{f} a_{1} & =f_{\mathrm{V}} a_{1} \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
a_{1} \notin A \Rightarrow \hat{f}\left(\lambda a_{1} \cdot e_{1}\right) & =f_{\mathrm{L}}\left(a_{1}, \hat{f} e_{1}\right)
\end{aligned}
$$

$$
a_{1}, a_{2} \notin A \& a_{1} \neq a_{2} \& a_{2} \notin f v\left(e_{2}\right) \Rightarrow
$$

$$
\hat{f}\left(\text { letrec } a_{1} a_{2}=e_{1} \text { in } e_{2}\right)=f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)
$$

provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists a_{1} \notin A\right)(\forall x \in X) a_{1} f_{L}\left(a_{1}, x\right)$
for $f_{F}:\left(\exists a_{1}, a_{2} \notin A\right) a_{1} \neq a_{2} \&$

$$
\begin{aligned}
& \left(\forall x_{1}, x_{2} \in X\right) a_{2} \# x_{1} \Rightarrow \\
& \quad a_{1}, a_{2} \# f_{F}\left(a_{1}, a_{2}, x_{1}, x_{2}\right)
\end{aligned}
$$

Proof-overview

α-Structural recursion reduces to ordinary structural recursion for ASTs within higher-order logic: roughly speaking, one makes a definition for all permutations simultaneously, i.e. uses Perm $\rightarrow X$ where you might expect to use a set X.

Proof-overview

α-Structural recursion reduces to ordinary structural recursion for ASTs within higher-order logic: roughly speaking, one makes a definition for all permutations simultaneously, i.e. uses Perm $\rightarrow X$ where you might expect to use a set X.
A key ingredient of the proof is:
Freshness theorem [LN p 19]
Given a nominal set X and $h \in \mathbb{V} \rightarrow{ }_{\mathrm{fs}} X$ satisfying

$$
(\exists a \in \mathbb{V}) a \# h \& a \# h(a)
$$

then \exists ! element fresh $(h) \in X$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow h(a)=\operatorname{fresh}(h)
$$

Proof-overview

α-Structural recursion reduces to ordinary structural recursion for ASTs within higher-order logic: roughly speaking, one makes a definition for all permutations simultaneously, i.e. uses Perm $\rightarrow X$ where you might expect to use a set X.
A key ingredient of the proof is:
Freshness theorem [LN p 19]
which in turn follows from the
"Some/Any" property of fresh atoms [LN p 18$]$

Proof—sketch

Define $\hat{g}: \Lambda \rightarrow($ Perm $\rightarrow X)$ by ordinary structural recursion:
$-\hat{g} a_{1} \triangleq \lambda \pi \in \operatorname{Perm} . f_{V}\left(\pi\left(a_{1}\right)\right)$
$-\hat{g}\left(t_{1} t_{2}\right) \triangleq \lambda \pi \in \operatorname{Perm} . f_{A}\left(\hat{g} t_{1} \pi, \hat{g} t_{2} \pi\right)$
$-\hat{\boldsymbol{g}}\left(\lambda a_{1} \cdot t_{1}\right) \triangleq \operatorname{fresh}\left(\lambda a_{1}^{\prime} \in \mathbb{V}\right.$.

$$
\lambda \pi \in \operatorname{Perm} \cdot f_{L}\left(a_{1}^{\prime}, \hat{g} t_{1}\left(\pi \circ\left(a_{1} a_{1}^{\prime}\right)\right)\right)
$$

The (FCB) for f_{F} ensures that the conditions of the Freshness Theorem are met.

Proof-sketch

Define $\hat{g}: \Lambda \rightarrow($ Perm $\rightarrow X)$ by ordinary structural recursion:

- $\hat{g} a_{1} \triangleq \lambda \pi \in \operatorname{Perm} . f_{V}\left(\pi\left(a_{1}\right)\right)$
$-\hat{g}\left(t_{1} t_{2}\right) \triangleq \lambda \pi \in \operatorname{Perm} . f_{A}\left(\hat{g} t_{1} \pi, \hat{g} t_{2} \pi\right)$
$-\hat{g}\left(\lambda a_{1} \cdot t_{1}\right) \triangleq \operatorname{fresh}\left(\lambda a_{1}^{\prime} \in \mathbb{V}\right.$.

$$
\lambda \pi \in \operatorname{Perm} . f_{L}\left(a_{1}^{\prime}, \hat{g} t_{1}\left(\pi \circ\left(a_{1} a_{1}^{\prime}\right)\right)\right)
$$

$-\hat{g}\left(\right.$ letrec $a_{1} a_{2}=t_{1}$ in $\left.t_{2}\right) \triangleq \ldots$ (exercise) \ldots

Proof—sketch

Define $\hat{g}: \Lambda \rightarrow($ Perm $\rightarrow X)$ by ordinary structural recursion:

- $\hat{g} a_{1} \triangleq \lambda \pi \in \operatorname{Perm} . f_{V}\left(\pi\left(a_{1}\right)\right)$
$-\hat{g}\left(t_{1} t_{2}\right) \triangleq \lambda \pi \in \operatorname{Perm} . f_{A}\left(\hat{g} t_{1} \pi, \hat{g} t_{2} \pi\right)$
$-\hat{g}\left(\lambda a_{1} \cdot t_{1}\right) \triangleq \operatorname{fresh}\left(\lambda a_{1}^{\prime} \in \mathbb{V}\right.$.

$$
\lambda \pi \in \operatorname{Perm} . f_{L}\left(a_{1}^{\prime}, \hat{g} t_{1}\left(\pi \circ\left(a_{1} a_{1}^{\prime}\right)\right)\right)
$$

$-\hat{g}\left(\right.$ letrec $a_{1} a_{2}=t_{1}$ in $\left.t_{2}\right) \triangleq \ldots$ (exercise) \ldots
Can prove (by rule induction for $={ }_{\alpha}$) that $t_{1}={ }_{\alpha} t_{2} \Rightarrow \hat{g} t_{1}=\hat{g} t_{2}$.
Then $\hat{f}[t]_{\alpha} \triangleq \hat{g} t \iota$ well-defines the function $\hat{f}: \Lambda / \alpha \rightarrow X$ we seek.

Proof-sketch

Define $\hat{g}: \Lambda \rightarrow($ Perm $\rightarrow X)$ by ordinary structural recursion:

- $\hat{g} a_{1} \triangleq \lambda \pi \in \operatorname{Perm} . f_{V}\left(\pi\left(a_{1}\right)\right)$
- \hat{g} Eng. if $a_{1} \notin A$, then
- \hat{g}

$$
\begin{aligned}
\hat{f}\left[\lambda a_{1} \cdot t_{1}\right]_{\alpha} & =\hat{g}\left(\lambda a_{1} \cdot t_{1}\right) \iota \\
& =f_{L}\left(a_{1}, \hat{g} t_{1}\left(\iota \circ\left(a_{1} a_{1}\right)\right)\right) \\
& =f_{L}\left(a_{1}, \hat{g} t_{1} \iota\right) \\
& =f_{L}\left(a_{1}, \hat{f}\left[t_{1}\right]_{\alpha}\right)
\end{aligned}
$$

Then $\hat{f}[t]_{\alpha} \triangleq \hat{g} t \iota$ well-defines the function $\hat{f}: \Lambda / \alpha \rightarrow X$ we seek.

Proof-overview

α-Structural recursion reduces to ordinary structural recursion for ASTs within higher-order logic: roughly speaking, one makes a definition for all permutations simultaneously, i.e. uses Perm $\rightarrow X$ where you might expect to use a set X.
A key ingredient of the proof is:
Freshness theorem [LN p 19]
which in turn follows from the
"Some/Any" property of fresh atoms ILN p 18$]$

"Some/any" proof pattern

$$
\frac{t\left\{a^{\prime \prime} / a\right\}={ }_{\alpha} t^{\prime}\left\{a^{\prime \prime} / a^{\prime}\right\} \quad a^{\prime \prime} \#\left(a, t, a^{\prime}, t^{\prime}\right)}{\lambda a \cdot t={ }_{\alpha} \lambda a^{\prime} \cdot t^{\prime}}
$$

top-down proof

$\left(\exists a^{\prime \prime} \in \mathbb{V}\right)$

$\binom{a^{\prime \prime} \#\left(a, t, a^{\prime}, t^{\prime}\right) \&}{t\left\{a^{\prime \prime} / a\right\}={ }_{\alpha} t^{\prime}\left\{a^{\prime \prime} / a^{\prime}\right\}}$
\Downarrow
$\lambda a . t={ }_{\alpha} \lambda a^{\prime} . t^{\prime}$
bottom-up proof
$\left(\forall a^{\prime \prime} \in \mathbb{V}\right)$
$\binom{a^{\prime \prime} \#\left(a, t, a^{\prime}, t^{\prime}\right) \Rightarrow}{t\left\{a^{\prime \prime} / a\right\}={ }_{\alpha} t^{\prime}\left\{a^{\prime \prime} / a^{\prime}\right\}}$
介
$\lambda a . t={ }_{\alpha} \lambda . a^{\prime} t^{\prime}$
"Some/Any" theorem [Ln p 18]
If $S \in P_{\mathrm{fs}}(\mathbb{V})$, then

$$
\begin{aligned}
& (\forall a \in \mathbb{V}) a \# S \Rightarrow a \in S \\
& (\exists a \in \mathbb{V}) a \# S \& a \in S
\end{aligned}
$$

"Some/Any" theorem [LN p ${ }^{18]}$
If $S \in P_{\mathrm{fs}}(\mathbb{V})$ is supported by the finite subset $A \subseteq \mathbb{V}$, then

$$
\begin{aligned}
& (\forall a \in \mathbb{V}) a \notin A \Rightarrow a \in S \\
& \text { of } \\
& (\exists a \in \mathbb{V}) a \notin A \& a \in S
\end{aligned}
$$

"Some/Any" theorem [LN p 18$]$
If $S \in P_{\mathrm{fs}}(\mathbb{V})$,
then

$$
\begin{aligned}
& (\forall a \in \mathbb{V}) a \neq S \Rightarrow a \in S \\
& (\exists a \in \mathbb{V}) a \# S \& a \in S
\end{aligned}
$$

Proof If $a \# S$ and $a \in S$, then for any other a^{\prime} with $a^{\prime} \# S$ we have:

$$
a^{\prime}=\left(a a^{\prime}\right) \cdot a \in\left(a a^{\prime}\right) \cdot S=S
$$

because $a, a^{\prime} \# S$

Freshness theorem [LN p 19]
Given a nominal set X and $h \in \mathbb{V} \rightarrow{ }_{\mathrm{fs}} X$ satisfying

$$
\begin{equation*}
(\exists a \in \mathbb{V}) a \# h \& a \# h(a) \tag{*}
\end{equation*}
$$

then \exists ! element fresh $(h) \in X$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow h(a)=\operatorname{fresh}(h)
$$

Freshness theorem [LN p 19]
Given a nominal set X and $h \in \mathbb{V} \rightarrow{ }_{\mathrm{fs}} X$ satisfying

$$
\begin{equation*}
(\exists a \in \mathbb{V}) a \# h \& a \# h(a) \tag{*}
\end{equation*}
$$

then \exists ! element fresh $(h) \in X$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow h(a)=\operatorname{fresh}(h)
$$

Proof Suffices to show that h is constant on the non-empty set $\mathbb{V}-\operatorname{supp}(h)$.

Freshness theorem [LN p 19]
Given a nominal set X and $h \in \mathbb{V} \rightarrow{ }_{\mathrm{fs}} \boldsymbol{X}$ satisfying

$$
\begin{equation*}
(\exists a \in \mathbb{V}) a \# h \& a \# h(a) \tag{*}
\end{equation*}
$$

then \exists ! element fresh $(h) \in X$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow h(a)=\operatorname{fresh}(h)
$$

Proof Suffices to show that h is constant on the non-empty set $\mathbb{V}-\operatorname{supp}(h)$.
By Some/Any theorem can replace $(*)$ with (\dagger).

Freshness theorem [LN p 19]
Given a nominal set X and $h \in \mathbb{V} \rightarrow_{\mathrm{fs}_{\mathrm{s}}} \boldsymbol{X}$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow a \# h(a)
$$

then \exists ! element fresh $(h) \in X$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow h(a)=\operatorname{fresh}(h)
$$

Proof Suffices to show that h is constant on the non-empty set $\mathbb{V}-\operatorname{supp}(h)$.
By Some/Any theorem can replace $(*)$ with (\dagger).

Freshness theorem [LN p 19]
Given a nominal set X and $h \in \mathbb{V} \rightarrow_{\mathrm{fs}_{\mathrm{s}}} X$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow a \# h(a)
$$

then \exists ! element fresh $(h) \in X$ satisfying

$$
(\forall a \in \mathbb{V}) a \# h \Rightarrow h(a)=\operatorname{fresh}(h)
$$

Proof Suffices to show that h is constant on the non-empty set $\mathbb{V}-\operatorname{supp}(h)$.
So for any $a \neq a^{\prime}$ with $a, a^{\prime} \# h$, we have $a^{\prime} \# h\left(a^{\prime}\right)$ by (\dagger) and $a \# h\left(a^{\prime}\right)$ because $a \#\left(h, a^{\prime}\right)$. Hence

$$
\begin{aligned}
h\left(a^{\prime}\right)=\left(a a^{\prime}\right) \cdot h\left(a^{\prime}\right) & =\left(\left(a a^{\prime}\right) \cdot h\right)\left(\left(a a^{\prime}\right) \cdot a^{\prime}\right) \\
& =h(a)
\end{aligned}
$$

Pause

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders?
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders? Nominal signatures
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

α-Structural recursion for Λ / α

$\ldots \exists$! function $\hat{f}: \Lambda / \alpha \rightarrow S$ such that:

$$
\begin{aligned}
\hat{f} x_{1} & =f_{\mathrm{V}} x_{1} \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
x_{1} \notin A \Rightarrow \hat{f}\left(\lambda x_{1} \cdot e_{1}\right) & =f_{\mathrm{L}}\left(x_{1}, \hat{f} e_{1}\right)
\end{aligned}
$$

$x_{1}, x_{2} \notin A \& x_{1} \neq x_{2} \& x_{2} \notin f v\left(e_{2}\right) \Rightarrow$
$\hat{f}\left(\right.$ letrec $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right)=f_{\mathrm{F}}\left(x_{1}, x_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)$
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists x_{1} \notin A\right)(\forall s \in S) x_{1} \# f_{L}\left(x_{1}, s\right)$ for $f_{F}:\left(\exists x_{1}, x_{2} \notin A\right) x_{1} \neq x_{2} \&$

$$
\begin{aligned}
& \left(\forall s_{1}, s_{2} \in S\right) x_{2} \# s_{1} \Rightarrow \\
& \quad x_{1}, x_{2} \# f_{F}\left(x_{1}, x_{2}, s_{1}, s_{2}\right)
\end{aligned}
$$

α-Structural recursion for Λ / α

$\ldots \exists$ function $\hat{f}: \Lambda$ Using nominal signatures, these conditions can be determined automatically from the pattern of bindings in a constructor's

$x_{1} \notin A \Rightarrow \hat{f}(\lambda$ arity. .

$x_{1}, x_{2} \notin A \& x_{1} \neq x_{2} \& x_{2} \notin f v\left(e_{2}\right) \Rightarrow$
$\hat{f}\left(\right.$ letrec $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right)=f_{\mathrm{F}}\left(x_{1}, x_{2}, \hat{f} \oint_{1}, \hat{f} e_{2}\right)$
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists x_{1} \notin A\right)(\forall s \in S) x_{1} \# f_{L}\left(x_{1}, s\right)$
for $f_{F}:\left(\exists x_{1}, x_{2} \notin A\right) x_{1} \neq x_{2} \&$

$$
\begin{aligned}
& \left(\forall s_{1}, s_{2} \in S\right) x_{2} \# s_{1} \Rightarrow \\
& \quad x_{1}, x_{2} \# f_{F}\left(x_{1}, x_{2}, s_{1}, s_{2}\right)
\end{aligned}
$$

Nominal signatures

Generalisation of many-sorted, algebraic signatures that includes info about how constructors bind names.

Not as general as some schemes for expressing binding patterns (cf. Pottier's Caml), but a good compromise between expressiveness and simplicity.

Nominal signatures

are specified by:

- a set of atom-sorts as and a set of data-sorts ds.
- a set of constructors $K: \sigma \rightarrow$ ds whose arities σ are given by

σ	as	atom-sort
\|	ds	data-sort
\|	1	unit arity
\|		pair arity
		atom-bind

Nominal signatures

are specified by:

- a set of atom-sorts as and a set of data-sorts ids.
- a set of constructors $K: \sigma \rightarrow$ ds
E.g. nominal signature for
$\Lambda=\{t::=x|t t| \lambda x . t \mid$ letrec $x x=t$ in $t\}$ has atom-sort var, data-sort term and constructors:
$V:$ var \rightarrow term
A : term $*$ term \rightarrow term
$L:$ var $»$ term \rightarrow term
$F: 《$ var $»((《$ var $»$ term $) *$ term $) \rightarrow$ term

A nominal signature for the π-calculus [LNp9]

$$
\begin{aligned}
P & ::=P|P| \nu(c) P|!P| S \\
S & :=0|S+S| G \\
G & ::=c c . P|c(c) . P| \tau . P \mid[c=c] G
\end{aligned}
$$

A nominal signature for the π-calculus [LN $p 9]$

atom-sorts	data-sorts	constructors
chan	proc gsum pre	```Gsum: gsum }->\mathrm{ proc Par: proc* proc }->\mathrm{ proc Res: «chan»proc }->\mathrm{ proc Rep: proc }->\mathrm{ proc Zero: 1 }->\mathrm{ gsum Pre: pre }->\mathrm{ gsum Plus: gsum * gsum }->\mathrm{ gsum Out: (chan * chan) * proc }->\mathrm{ pre In: chan * «chan»proc }->\mathrm{ pre Tau: proc }->\mathrm{ pre Match: (chan * chan) * pre }->\mathrm{ pre```

A nominal signature for polymorphic λ-calculus

$$
\begin{aligned}
\tau & ::=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
t & ::=x|t t| \lambda x: \tau . t|\Lambda \alpha . t| t \tau
\end{aligned}
$$

A nominal signature for polymorphic λ-calculus

atom-sorts	data-sorts	constructors
tyvar var	type term	Tyvar: tyvar \rightarrow type Fun: type $*$ type \rightarrow type All: 《tyvar»type \rightarrow type Var: var \rightarrow term App: term $*$ term \rightarrow term Lam: type $*$ «var»term \rightarrow term Gen: «tyvar»term \rightarrow term Spec : term $*$ type \rightarrow term

Nominal terms

Nominal terms (t) and their arities $(t: \sigma)$ over a nominal signature Σ :

- $a:$ as if $a \in \mathbb{A}$ and $\operatorname{sort}(a)=$ as
- $K t:$ ids if $K: \sigma \rightarrow$ as and $t: \sigma$
$-\langle \rangle: \mathbf{1}$
- $\left\langle t_{1}, t_{2}\right\rangle: \sigma_{1} * \sigma_{2}$ if $t_{1}: \sigma_{1} \& t_{2}: \sigma_{2}$
- $\langle a » t: 《 \mathrm{as} » \sigma$ if $a:$ as $\& t: \sigma$

Nominal terms

Perm-action on nominal terms over Σ :

- a : as $\pi \cdot a=\pi(a)$
- $K t: d s \pi \cdot(K t)=K(\pi \cdot t)$
$-\langle \rangle: \mathbf{1} \boldsymbol{\pi} \cdot\langle \rangle=\langle \rangle$
$-\left\langle t_{1}, t_{2}\right\rangle: \sigma_{1} * \sigma_{2} \quad \pi \cdot\left\langle t_{1}, t_{2}\right\rangle=\left\langle\pi \cdot t_{1}, \pi \cdot t_{2}\right\rangle$
- $<a » t: 《 \mathrm{as}\rangle \sigma \cdot \pi a » t=\langle\pi(a)\rangle(\pi \cdot t)$

For this Perm-action we get $\operatorname{supp}(t)=$ finite set of all atoms occurring in t

Nominal terms

Perm-action on nominal terms over Σ :

- a : as $\pi \cdot a=\pi(a)$
- Kt :cs $\pi \cdot(K t)=K(\pi \cdot t)$
$-\langle \rangle: \mathbf{1} \boldsymbol{\pi} \cdot\langle \rangle=\langle \rangle$
- $\left\langle t_{1}, t_{2}\right\rangle: \sigma_{1} * \sigma_{2}$
$\pi \cdot\left\langle t_{1}, t_{2}\right\rangle=\left\langle\pi \cdot t_{1}, \pi \cdot t_{2}\right\rangle$
《a»t:《as» σ
$\pi \cdot « a » t=<\pi(a) »(\pi \cdot t)$
$\mathrm{T}(\Sigma)_{\sigma} \triangleq$ nominal set of terms of arity σ over nominal signature Σ

α－Equivalence of nominal terms

$$
\begin{aligned}
& \frac{a: \text { as }}{a={ }_{\alpha} a: \text { as }} \quad \frac{K: \sigma \rightarrow \text { db } \quad t={ }_{\alpha} t^{\prime}: \sigma}{K t={ }_{\alpha} K t^{\prime}: \mathrm{ds}} \\
& \overline{\left\rangle={ }_{\alpha}\langle \rangle: 1\right.} \quad \frac{t_{1}={ }_{\alpha} t_{1}^{\prime}: \sigma_{1} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}: \sigma_{2}}{\left\langle t_{1}, t_{2}\right\rangle={ }_{\alpha}\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle: \sigma_{1} * \sigma_{2}} \\
& a, a^{\prime}, a^{\prime \prime}: \text { as } \quad a^{\prime \prime} \#\left(a, t, a^{\prime}, t^{\prime}\right) \\
& \left(a a^{\prime \prime}\right) \cdot t={ }_{\alpha}\left(a^{\prime} a^{\prime \prime}\right) \cdot t^{\prime}: \sigma \\
& \left.《 \boldsymbol{a} » \boldsymbol{t}=\alpha<\boldsymbol{a}^{\prime} » \boldsymbol{t}^{\prime}: 《 \mathbf{a s}\right\rangle \boldsymbol{\sigma}
\end{aligned}
$$

α－Equivalence of nominal terms

$$
\begin{aligned}
& \frac{a: \text { as }}{a={ }_{\alpha} a: \text { as }} \quad \frac{K: \sigma \rightarrow \text { dst } \quad t={ }_{\alpha} t^{\prime}: \sigma}{K t={ }_{\alpha} K t^{\prime}: \text { es }} \\
& \overline{\left\rangle={ }_{\alpha}\langle \rangle: 1\right.} \quad \frac{t_{1}={ }_{\alpha} t_{1}^{\prime}: \sigma_{1} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}: \sigma_{2}}{\left\langle t_{1}, t_{2}\right\rangle={ }_{\alpha}\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle: \sigma_{1} * \sigma_{2}} \\
& a, a^{\prime}, a^{\prime \prime}: \text { as } \quad a^{\prime \prime} \#\left(a, t, a^{\prime}, t^{\prime}\right) \\
& \left(a a^{\prime \prime}\right) \cdot t={ }_{\alpha}\left(a^{\prime} a^{\prime \prime}\right) \cdot t^{\prime}: \sigma \\
& 《 \boldsymbol{a} » \boldsymbol{t}={ }_{\alpha}\left\langle\boldsymbol{a}^{\prime} » \boldsymbol{t}^{\prime}: 《 \mathbf{a s} » \boldsymbol{\sigma}\right.
\end{aligned}
$$

Action on α－equivalence classes：$\pi \cdot[t]_{\alpha} \triangleq[\pi \cdot t]_{\alpha}$ For this $\operatorname{supp}\left([t]_{\alpha}\right)$ is finite set of all free atoms of t ．

α－Equivalence of nominal terms

$$
\begin{aligned}
& a \text { : as } \\
& a={ }_{\alpha} a: \text { as } \\
& \frac{K: \sigma \rightarrow \mathrm{ds} \quad t={ }_{\alpha} t^{\prime}: \sigma}{\boldsymbol{K} t={ }_{\alpha} K t^{\prime}: \mathrm{ds}} \\
& \frac{t_{1}={ }_{\alpha} t_{1}^{\prime}: \sigma_{1} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}: \sigma_{2}}{\left\langle t_{1}, t_{2}\right\rangle={ }_{\alpha}\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle: \sigma_{1} * \sigma_{2}} \\
& a, a^{\prime}, a^{\prime \prime}: \text { as } \quad a^{\prime \prime} \#\left(a, t, a^{\prime}, t^{\prime}\right) \\
& \left(a a^{\prime \prime}\right) \cdot t={ }_{\alpha}\left(a^{\prime} a^{\prime \prime}\right) \cdot t^{\prime}: \sigma \\
& 《 a \geqslant t={ }_{\alpha}\left\langle\boldsymbol{a}^{\prime} 》 \boldsymbol{t}^{\prime}: 《 \mathrm{as} \geqslant \sigma\right.
\end{aligned}
$$

$\mathrm{T}_{\alpha}(\Sigma)_{\sigma} \triangleq$ nominal set of α－equivalence classes of terms of arity σ over Σ

α-Structural recursion for a general nominal signature Σ

Two forms given in the paper:

- first, "arity-directed" version [Theorem 17, p 21]
- second, "sort-directed" version [Theorem 22, p 26]
- harder to state \& prove, but more useful
- recursion for running example $\Lambda /={ }_{\alpha}$ is an instance.

Second α-structural recursion theorem

Input:

1. Nominal signature Σ.
2. Family of nominal sets X_{ds} indexed by the data-sorts ds of Σ.
3. Family of functions $f_{K} \in\left(X^{(\sigma)} \rightarrow_{\mathrm{fs}} X_{\mathrm{ds}}\right)$ indexed by the constructors $K: \sigma \rightarrow$ ds of Σ.

Second α-structural recursion theorem

Input:

1. Nominal signature Σ.
2. Family of nominal sets X_{ds} indexed by the data-sorts ds of Σ.
3. Family of functions $f_{K} \in\left(X^{(\sigma)} \rightarrow_{\mathrm{fs}} X_{\mathrm{ds}}\right)$ indexed by the constructors $\boldsymbol{K}: \sigma \rightarrow$ ds of Σ.

$$
\begin{aligned}
\boldsymbol{X}^{(\mathrm{as})} & \triangleq \mathbb{A}_{\mathrm{as}} \\
\boldsymbol{X}^{(\mathrm{ds})} & \triangleq \boldsymbol{X}_{\mathrm{ds}} \\
\boldsymbol{X}^{((\rangle)} & \triangleq \mathbf{1} \\
\boldsymbol{X}^{\left(\sigma_{1} * \sigma_{2}\right)} & \triangleq \boldsymbol{X}^{\left(\sigma_{1}\right)} \times \boldsymbol{X}^{\left(\sigma_{1}\right)} \\
\boldsymbol{X}^{(« \mathrm{as} » \sigma)} & \triangleq \mathbb{A}_{\mathrm{as}} \times \boldsymbol{X}^{(\sigma)}
\end{aligned}
$$

Second α-structural recursion theorem

Input:

1. Nominal signature Σ.
2. Family of nominal sets X_{ds} indexed by the data-sorts ds of Σ.
3. Family of functions $f_{K} \in\left(X^{(\sigma)} \rightarrow_{\mathrm{fs}} X_{\mathrm{ds}}\right)$ indexed by the constructors $K: \sigma \rightarrow$ ds of Σ.
4. A single finite set A of atoms that supports all the functions f_{K}
5. Proof that each f_{K} satisfies a FCB whose statement is determined by the arity σ of $K: \sigma \rightarrow$ ds.

Second α-structural recursion theorem

Input:

E.g. for $\boldsymbol{F}:$ «var» $((«$ var» term $) *$ term $) \rightarrow$ term,
(FCB) for f_{F} is: $\left(\exists a_{1}, a_{2} \notin A\right) a_{1} \neq a_{2} \&$

$$
\begin{aligned}
& \left(\forall x_{1}, x_{2} \in X\right) a_{2} \# x_{1} \Rightarrow \\
& \quad a_{1}, a_{2} \# f_{F}\left(a_{1},\left(\left(a_{2}, x_{1}\right), x_{2}\right)\right)
\end{aligned}
$$

4. A single finite set A of atoms that supports all the functions f_{K}
5. Proof that each f_{K} satisfies a FCB whose statement is determined by the arity σ of $K: \sigma \rightarrow$ ds.

Second α-structural recursion theorem

Output:
family of functions $\hat{f}_{\mathrm{ds}} \in\left(\mathrm{T}_{\alpha}(\Sigma)_{\mathrm{ds}} \rightarrow{ }_{\mathrm{fs}} X_{\mathrm{ds}}\right)$ indexed by the data-sorts ds of Σ

- uniquely determined by mutually recursive, conditional equations

$$
\text { condition } \Rightarrow \hat{f}_{\mathrm{ds}}(\boldsymbol{K} e)=f_{K}\left(\cdots \hat{f}_{(-)} \cdots\right)
$$

one for each constructor $K: \sigma \rightarrow$ ds of Σ

Second α-structural recursion theorem

Output:
family of functions $\hat{f}_{\mathrm{ds}} \in\left(\mathrm{T}_{\alpha}(\Sigma)_{\mathrm{ds}} \rightarrow_{\mathrm{fs}} X_{\mathrm{ds}}\right)$ indexed by the data-sorts ds of Σ

- uniquely determined by mutually recursive, conditional equations
condition $\Rightarrow \hat{f}_{\mathrm{ds}}(K e)=f_{K}\left(\cdots \hat{f}_{(-)} \cdots\right)$
one for each constructor $K: \sigma \rightarrow$ ds of Σ
determined by the arity
σ of $K: \sigma \rightarrow$ ds

Second α-structural recursion theorem

Output:
family of functions $\hat{f}_{\mathrm{ds}} \in\left(\mathrm{T}_{\alpha}(\Sigma)_{\mathrm{ds}} \rightarrow{ }_{\mathrm{fs}} X_{\mathrm{ds}}\right)$ indexed by the data-sorts ds of Σ

- uniquely determined by mutually recursive, conditional equations

$$
\text { condition } \Rightarrow \hat{f}_{\mathrm{ds}}(\boldsymbol{K} e)=f_{K}\left(\cdots \hat{f}_{(-)} \cdots\right)
$$

one for each constructor $K: \sigma \rightarrow$ ds of Σ

- all supported by the given finite set of atoms A

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders?
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

Given an informal recursive definition on ASTs/ α for a nominal signature Σ, to show that it is an instance of (second) α-structural recursion theorem:

1. identify which sets (X_{ds}) and functions (f_{K}) are involved;
2. give each X_{ds} a nominal-set structure and prove the f_{K} are all supported by a single finite set;
3. for each constructor K in Σ, verify the (FCB) for f_{K}.

Given an informal recursive definition on ASTs/ α for a nominal signature Σ, to show that it is an instance of (second) α-structural recursion theorem:

1. identify which sets (X_{ds}) and functions (f_{K}) are involved;
2. give each X_{ds} a nominal-set structure and prove the f_{K} are all supported by a single finite set;
3. for each constructor K in Σ, verify the (FCB) for f_{K}.
For step 2 we can use:
Fact The standard set-theoretic model of HOL (without choice) restricts to finitely supported elements; e.g. if we apply a construction of $\mathrm{HOL}-\varepsilon$ to finitely supported functions we get another such.

Given an informal recursive definition on ASTs/ α for a nominal signature Σ, to show that it is an instance of (second) α-structural recursion theorem:

1. identify which sets (X_{ds}) and functions (f_{K}) are involved;
2. give each X_{ds} a nominal-set structure and prove the f_{K} are all supported by a single finite set;
3. for each constructor K in Σ, verify the (FCB) for f_{K}.
Step 3 is sometimes trivial (e.g. capture-avoiding substitution), sometimes not (see next lecture).

End of lecture 2

