Nominal Syntax and Semantics

Andrew Pitts
University of Cambridge
Computer Laboratory

Mathematics of syntax

How best to reconcile
syntactical issues to do with name-binding and α-conversion
with a structural approach to semantics?
Specifically: improved forms of structural recursion and structural induction for syntactical structures.

Mathematics of syntax

How best to reconcile
syntactical issues to do with name-binding and α-conversion
with a structural approach to semantics?
Specifically: improved forms of structural recursion and structural induction for syntactical structures.

Lectures provide a taster of the nominal sets model of names and name-binding. (Simplified version of [Gabbay-Pitts, 2002].)

Lecture 1

- Introduction: from structural to α-structural recursion.
- Nominal sets-first look.

Lecture 2

- Nominal sets, continued.
- α-Structural recursion-proof sketch.
- Nominal signatures.

Lecture 3

- Extended example: NBE.
- Mechanization [extra].

Lecture materials available at:
www.cl.cam.ac.uk/users/amp12/talks/appsem2005

Lecture 1

Structural recursion and induction

Structural recursion and induction

position

Structural recursion and induction

positionality

Structural recursion and induction

Compositionality

Structural recursion and induction

Compositionality

 is crucial in [programming language] semantics-it's preferable to give meaning to program constructions rather than just to whole programs.

Structural recursion and induction

In particular, as far as semantics is concerned, concrete syntax
letrec $f x=$ if $x>100$ then $x-10$
else $f(f(x+11))$ in $f(x+100)$
is unimportant compared to abstract syntax (ASTs):

Structural recursion and induction

ASTs enable two fundamental (and inter-linked) tools in programming language semantics:

- Definition of functions on syntax by recursion on its structure.
- Proof of properties of syntax by induction on its structure.

Running example

Concrete syntax:

$$
t::=a|t t| \lambda a . t \mid \text { letrec } a a=t \text { in } t
$$

ASTs:

$$
\Lambda \triangleq \mu S \cdot(\mathbb{V}+(S \times S)+(\mathbb{V} \times S)+(\mathbb{V} \times \mathbb{V} \times S \times S))
$$

where \mathbb{V} is some fixed, countably infinite set (of names a of variables).

$$
\begin{aligned}
& \text { letrec } f a=\quad \text { if } a>100 \text { then } a-10 \\
& \text { else } f(f(a+11)) \\
& \text { in } f(a+101)
\end{aligned}
$$

Structural recursion for Λ

Given a set S

$$
\left\{\begin{array}{l}
f_{\mathrm{V}}: \mathbb{V} \rightarrow S \\
f_{\mathrm{A}}: S \times S \rightarrow S \\
f_{\mathrm{L}}: \mathbb{V} \times S \rightarrow S \\
f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times S \times S \rightarrow S,
\end{array}\right.
$$

there is a unique function $\hat{f}: \Lambda \rightarrow S$ satisfying

$\hat{f} a_{1}$	$=f_{\mathrm{V}} a_{1}$
$\hat{f}\left(t_{1} t_{2}\right)$	$=f_{\mathrm{A}}\left(\hat{f} t_{1}, \hat{f} t_{2}\right)$
$\hat{f}\left(\lambda a_{1} \cdot t_{1}\right)$	$=f_{\mathrm{L}}\left(a_{1}, \hat{f} t_{1}\right)$
$\hat{f}\left(\right.$ letrec $a_{1} a_{2}=t_{1}$ in $\left.t_{2}\right)$	$=f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} t_{1}, \hat{f} t_{2}\right)$

for all $a_{1}, a_{2} \in \mathbb{V}$ and $t_{1}, t_{2} \in \Lambda$.

Structural recursion for Λ

A more complicated version ("primitive recursion" instead of "iteration") is derivable:

$$
\begin{aligned}
\hat{g} a_{1} & =g_{\mathrm{V}} a_{1} \\
\hat{g}\left(t_{1} t_{2}\right) & =g_{\mathrm{A}}\left(t_{1}, t_{2}, \hat{g} t_{1}, \hat{g} t_{2}\right) \\
\hat{g}\left(\lambda a_{1} \cdot t_{1}\right) & =g_{\mathrm{L}}\left(a_{1}, t_{1}, \hat{g} t_{1}\right) \\
\hat{g}\left(\text { letrec } a_{1} a_{2}=t_{1} \text { in } t_{2}\right) & =g_{\mathrm{F}}\left(a_{1}, a_{2}, t_{1}, t_{2}, \hat{g} t_{1}, \hat{g} t_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{f} a_{1} & =f_{\mathrm{V}} a_{1} \\
\hat{f}\left(t_{1} t_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} t_{1}, \hat{f} t_{2}\right) \\
\hat{f}\left(\lambda a_{1} \cdot t_{1}\right) & =f_{\mathrm{L}}\left(a_{1}, \hat{f} t_{1}\right) \\
\hat{f}\left(\text { letrec } a_{1} a_{2}=t_{1} \text { in } t_{2}\right) & =f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} t_{1}, \hat{f} t_{2}\right)
\end{aligned}
$$

for all $a_{1}, a_{2} \in \mathbb{V}$ and $t_{1}, t_{2} \in \Lambda$.

Finite set of free variables $f v t$ of an AST t :

$$
\begin{aligned}
f v a_{1} & \triangleq\left\{a_{1}\right\} \\
f v\left(t_{1} t_{2}\right) & \triangleq\left(f v t_{1}\right) \cup\left(f v t_{2}\right) \\
f v\left(\lambda a_{1} \cdot t_{1}\right) & \triangleq\left(f v t_{1}\right)-\left\{a_{1}\right\} \\
f v\left(\text { letrec } a_{1} a_{2}=t_{1} \text { in } t_{2}\right) \triangleq & \left(f v t_{1}\right)-\left\{a_{1}, a_{2}\right\} \\
& \cup\left(f v t_{2}\right)-\left\{a_{1}\right\}
\end{aligned}
$$

Finite set of free variables $f v t$ of an AST t :

$$
\begin{aligned}
f v a_{1} & \triangleq\left\{a_{1}\right\} \\
f v\left(t_{1} t_{2}\right) & \triangleq\left(f v t_{1}\right) \cup\left(f v t_{2}\right) \\
f v\left(\lambda a_{1} \cdot t_{1}\right) \triangleq & \triangleq\left(f v t_{1}\right)-\left\{a_{1}\right\} \\
f v\left(\text { letrec } a_{1} a_{2}=t_{1} \text { in } t_{2}\right) \triangleq & \left(f v t_{1}\right)-\left\{a_{1}, a_{2}\right\} \\
& \cup\left(f v t_{2}\right)-\left\{a_{1}\right\}
\end{aligned}
$$

defined by structural recursion using
$-S \triangleq P_{\text {fin }}(\mathbb{V})$ (finite sets of variables),

- $f_{\mathrm{V}} a_{1} \triangleq\left\{a_{1}\right\}$,
$-f_{\mathrm{A}}\left(A_{1}, A_{2}\right) \triangleq A_{1} \cup A_{2}$,
- $f_{\mathrm{L}}\left(a_{1}, A_{1}\right) \triangleq A_{1}-\left\{a_{1}\right\}$,
$-f_{\mathrm{F}}\left(a_{1}, a_{2}, A_{1}, A_{2}\right) \triangleq\left(A_{1}-\left\{a_{1}, a_{2}\right\}\right) \cup\left(A_{2}-\left\{a_{1}\right\}\right)$.

Finite set of all variables vart of an AST t :

$\operatorname{var} a_{1}$	$\triangleq\left\{a_{1}\right\}$
$\operatorname{var}\left(t_{1} t_{2}\right)$	$\triangleq\left(\operatorname{var} t_{1}\right) \cup\left(\operatorname{var} t_{2}\right)$
$\operatorname{var}\left(\lambda a_{1} \cdot t_{1}\right)$	$\triangleq\left(\operatorname{var} t_{1}\right) \cup\left\{a_{1}\right\}$
$\operatorname{var}\left(\right.$ letrec $a_{1} a_{2}=t_{1}$ in $\left.t_{2}\right)$	$\triangleq\left\{a_{1}, a_{2}\right\} \cup\left(\operatorname{var} t_{1}\right)$
	$\cup\left(\operatorname{var} t_{2}\right)$

$t\{b / a\} \triangleq$ replace all occurrences of a with b in an ASS t :

- $a_{1}\{b / a\} \triangleq$ if $a_{1}=a$ then b else a_{1}
- $\left(t_{1} t_{2}\right)\{b / a\} \triangleq\left(t_{1}\{b / a\}\right)\left(t_{2}\{b / a\}\right)$
$=\left(\lambda a_{1} \cdot t_{1}\right)\{b / a\} \triangleq \lambda a_{1}\{b / a\} \cdot t_{1}\{b / a\}$
- (letrec $a_{1} a_{2}=t_{1}$ in $t_{2} \triangleq$ $\operatorname{letrec}\left(a_{1}\{b / a\}\right)\left(a_{2}\{b / a\}\right)=t_{1}\{b / a\}$ in $t_{2}\{b / a\}$

Structural recursion for Λ

Given a set S
and functions $\left\{\begin{array}{l}f_{\mathrm{V}}: \mathbb{V} \rightarrow S \\ f_{\mathrm{A}}: S \times S \rightarrow S \\ f_{\mathrm{L}}: \mathbb{V} \times S \rightarrow S \\ f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times S \times S \rightarrow S,\end{array}\right.$
there is a unique function $\hat{f}: \Lambda \rightarrow S$ satisfying

$$
\begin{aligned}
\hat{f} a_{1} & =f_{\mathrm{V}} a_{1} \\
\hat{f}\left(t_{1} t_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} t_{1}, \hat{f} t_{2}\right) \\
\hat{f}\left(\lambda a_{1} \cdot t_{1}\right) & =f_{\mathrm{L}}\left(a_{1}, \hat{f} t_{1}\right) \\
\hat{f}\left(\text { letrec } a_{1} a_{2}=t_{1} \text { in } t_{2}\right) & =f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} t_{1}, \hat{f} t_{2}\right) \\
\text { for all } a_{1}, a_{2} \in \mathbb{V} \text { and } t_{1}, t_{2} & \in \Lambda .
\end{aligned}
$$

Structural recursion for Λ

Given a set S
and functions $\left\{\begin{array}{l}f_{\mathrm{V}}: \mathbb{V} \rightarrow S \\ f_{\mathrm{A}}: S \times S \rightarrow S \\ f_{\mathrm{L}}: \mathbb{V} \times S \rightarrow S \\ f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \text { in }\end{array}\right.$
there is a unique functi- ding $\rightarrow S$ satisfying

$$
\begin{aligned}
& \text { letrec } f a=\quad \text { if } a>100 \text { then } a-10 \\
& \text { else } f(f(a+11)) \\
& \text { in } f(a+101)
\end{aligned}
$$

$$
\begin{aligned}
& \text { letrec } f a=\text { if } a>100 \text { then } a-10 \\
& \text { else } f(f(a+11)) \\
& \text { in } f(a+101)
\end{aligned}
$$

$$
\begin{aligned}
& \text { letrec } f a=\quad \text { if } a>100 \text { then } a-10 \\
& \text { else } f(f(a+11))
\end{aligned}
$$

free

α-Equivalence

Smallest binary relation $={ }_{\alpha}$ on Λ closed under the rules:

$$
\frac{a \in \mathbb{V}}{a={ }_{\alpha} a}
$$

$$
\frac{t_{1}={ }_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{t_{1} t_{2}={ }_{\alpha} t_{1}^{\prime} t_{2}^{\prime}}
$$

$$
\frac{t_{1}\left\{a_{1}^{\prime \prime} / a_{1}\right\}={ }_{\alpha} t_{1}^{\prime}\left\{a_{1}^{\prime \prime} / a_{1}^{\prime}\right\} \quad a_{1}^{\prime \prime} \notin \operatorname{var}\left(a_{1}, t_{1}, a_{1}^{\prime}, t_{1}^{\prime}\right)}{\lambda a_{1} \cdot t_{1}={ }_{\alpha} \lambda a_{1}^{\prime} \cdot t_{1}^{\prime}}
$$

$$
t_{1}\left\{a_{1}^{\prime \prime}, a_{2}^{\prime \prime} / a_{1}, a_{2}\right\}={ }_{\alpha} t_{1}^{\prime}\left\{a_{1}^{\prime \prime}, a_{2}^{\prime \prime} / a_{1}^{\prime}, a_{2}^{\prime}\right\}
$$

$$
t_{2}\left\{a_{1}^{\prime \prime} / a_{1}\right\}={ }_{\alpha} t_{2}^{\prime}\left\{a_{1}^{\prime \prime} / a_{1}^{\prime}\right\}
$$

$$
\frac{a_{1}^{\prime \prime} \neq a_{2}^{\prime \prime} \quad a_{1}^{\prime \prime}, a_{2}^{\prime \prime} \notin \operatorname{var}\left(a_{1}, a_{2}, t_{1}, t_{2}, a_{1}^{\prime}, a_{2}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}\right)}{\text { letrec } a_{1} a_{2}=t_{1} \text { in } t_{2}={ }_{\alpha} \text { letrec } a_{1}^{\prime} a_{2}^{\prime}=t_{1}^{\prime} \text { in } t_{2}^{\prime}}
$$

Exercise: prove that $={ }_{\alpha}$ is transitive (and reflexive and symmetric).

Smallest binary relation $={ }_{\alpha}$ on Λ closed under the rules:

$$
\frac{a \in \mathbb{V}}{a={ }_{\alpha} a}
$$

$$
\frac{t_{1}={ }_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{t_{1} t_{2}={ }_{\alpha} t_{1}^{\prime} t_{2}^{\prime}}
$$

$$
\frac{t_{1}\left\{a_{1}^{\prime \prime} / a_{1}\right\}={ }_{\alpha} t_{1}^{\prime}\left\{a_{1}^{\prime \prime} / a_{1}^{\prime}\right\} \quad a_{1}^{\prime \prime} \notin \operatorname{var}\left(a_{1}, t_{1}, a_{1}^{\prime}, t_{1}^{\prime}\right)}{\lambda a_{1} \cdot t_{1}={ }_{\alpha} \lambda a_{1}^{\prime} \cdot t_{1}^{\prime}}
$$

$$
t_{1}\left\{a_{1}^{\prime \prime}, a_{2}^{\prime \prime} / a_{1}, a_{2}\right\}={ }_{\alpha} t_{1}^{\prime}\left\{a_{1}^{\prime \prime}, a_{2}^{\prime \prime} / a_{1}^{\prime}, a_{2}^{\prime}\right\}
$$

$$
t_{2}\left\{a_{1}^{\prime \prime} / a_{1}\right\}={ }_{\alpha} t_{2}^{\prime}\left\{a_{1}^{\prime \prime} / a_{1}^{\prime}\right\}
$$

$$
\frac{a_{1}^{\prime \prime} \neq a_{2}^{\prime \prime} \quad a_{1}^{\prime \prime}, a_{2}^{\prime \prime} \notin \operatorname{var}\left(a_{1}, a_{2}, t_{1}, t_{2}, a_{1}^{\prime}, a_{2}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}\right)}{\text { letrec } a_{1} a_{2}=t_{1} \text { in } t_{2}={ }_{\alpha} \text { letrec } a_{1}^{\prime} a_{2}^{\prime}=t_{1}^{\prime} \text { in } t_{2}^{\prime}}
$$

Abstract syntax / α

Dealing with issues to do with binders and α-conversion is

- irritating (want to get on with more interesting aspects of semantics!)
- pervasive (very many languages involve binding operations; cf. POPLMark Challenge [TPHOLs '05])
- difficult to formalise/mechanise without losing sight of common informal practice:

Abstract syntax / α

Dealing with issues to do with binders and α-conversion is

- irritating (want to get on with more interesting aspects of semantics!)
- pervasive (very many languages involve binding operations; cf. POPLMark Challenge [TPHOLs '05])
- difficult to formalise/mechanise without losing sight of common informal practice:
"We identify expressions up to α-equivalence"...

Abstract syntax / α

Dealing with issues to do with binders and α-conversion is

- irritating (want to get on with more interesting aspects of semantics!)
- pervasive (very many languages involve binding operations; cf. POPLMark Challenge [TPHOLs '05])
- difficult to formalise/mechanise without losing sight of common informal practice:
"We identify expressions up to α-equivalence"... ... and then forget about it, referring to α-equivalence classes $e=[t]_{\alpha}$ only via representatives, t.
For example.. .

E.g. - capture-avoiding substitution

$(a:=e) e_{1}=$ substitute $e \in \Lambda /={ }_{\alpha}$ for all free occurrences of a in $e_{1} \in \Lambda /==_{\alpha}$, avoiding capture of free variables in e by binders in e_{1}.

E.g. - capture-avoiding substitution

- $(a:=e) a_{1} \triangleq$ if $a_{1}=a$ then e else a_{1}
- $(a:=e)\left(e_{1} e_{2}\right) \triangleq\left((a:=e) e_{1}\right)\left((a:=e) e_{2}\right)$
- $(a:=e)\left(\lambda a_{1} \cdot e_{1}\right) \triangleq$
if $a_{1} \notin f v(a, e)$ then $\lambda a_{1} \cdot(a:=e) e_{1}$ else don't care!
$-(a:=e)\left(\right.$ letrec $a_{1} a_{2}=e_{1}$ in $\left.e_{2}\right) \triangleq$?

E.g. - capture-avoiding substitution

- $(a:=e) a_{1} \triangleq$ if $a_{1}=a$ then e else a_{1}
- $(a:=e)\left(e_{1} e_{2}\right) \triangleq\left((a:=e) e_{1}\right)\left((a:=e) e_{2}\right)$
- $(a:=e)\left(\lambda a_{1} \cdot e_{1}\right) \triangleq$
if $a_{1} \notin f v(a, e)$ then $\lambda a_{1} \cdot(a:=e) e_{1}$ else don't care!
- $(a:=e)\left(\right.$ letrec $a_{1} a_{2}=e_{1}$ in $\left.e_{2}\right) \triangleq$
if $a_{1}, a_{2} \notin f v(a, e) \& a_{2} \notin f v\left(a_{1}, e_{2}\right)$
then letrec $a_{1} a_{2}=(a:=e) e_{1}$ in $(a:=e) e_{2}$ else don't care!

E.g. - capture-avoiding substitution

- $(a:=e) a_{1} \triangleq$ if $a_{1}=a$ then e else a_{1}
- $(a:=e)\left(e_{1} e_{2}\right) \triangleq\left((a:=e) e_{1}\right)\left((a:=e) e_{2}\right)$
- $(a:=e)\left(\lambda a_{1} \cdot e_{1}\right) \triangleq$
if $a_{1} \notin f v(a, e)$ then $\lambda a_{1} .(a:=e) e_{1}$ else don't care!
- $(a:=e)\left(\right.$ letrec $a_{1} a_{2}=e_{1}$ in $\left.e_{2}\right) \triangleq$ if $a_{1}, a_{2} \notin f v(a, e) \& a_{2} \notin f v\left(a_{1}, e_{2}\right)$ then letrec $a_{1} a_{2}=(a:=e) e_{1}$ in $(a:=e) e_{2}$ else don't care!

Does uniquely specify a well-defined function on α-equivalence classes, $(a:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$, but not via an obvious, structurally recursive definition of a function $\hat{f}: \Lambda \rightarrow \Lambda$ respecting α-equivalence.

E.g. - denotational semantics

of Λ / α in some suitable domain D :

- $\llbracket a_{1} \rrbracket \rho \triangleq \rho\left(a_{1}\right)$
$-\llbracket e_{1} e_{2} \rrbracket \rho \triangleq \operatorname{app}\left(\llbracket e_{1} \rrbracket \rho, \llbracket e_{2} \rrbracket \rho\right)$
$-\llbracket \lambda a_{1} \cdot e_{1} \rrbracket \rho \triangleq \operatorname{fun}\left(\lambda d \in D . \llbracket e_{1} \rrbracket\left(\rho\left[a_{1} \mapsto d \rrbracket\right)\right)\right.$
- \llbracket letrec $a_{1} a_{2}=e_{1}$ in $e_{2} \rrbracket \rho \triangleq \ldots$
where
- ρ ranges over environments mapping variables to elements of D
- D comes equipped with continuous functions app : $D \times D \rightarrow D$ and fun $:(D \rightarrow D) \rightarrow D$.

E.g. - denotational semantics

of Λ / α in some suitable domain D :
$-\llbracket a_{1} \rrbracket \rho \triangleq \rho\left(a_{1}\right)$
$-\llbracket e_{1} e_{2} \rrbracket \rho \triangleq \operatorname{app}\left(\llbracket e_{1} \rrbracket \rho, \llbracket e_{2} \rrbracket \rho\right)$
$-\llbracket \lambda a_{1} \cdot e_{1} \rrbracket \rho \triangleq \operatorname{fun}\left(\lambda d \in D . \llbracket e_{1} \rrbracket\left(\rho\left[a_{1} \mapsto d\right]\right)\right)$

- \llbracket letrec $a_{1} a_{2}=e_{1}$ in $e_{2} \rrbracket \rho \triangleq \ldots$

Why is this (very standard) definition independent of the choice of bound variable a_{1} ?

E.g. - denotational semantics

of Λ / α in some suitable domain D :
$-\llbracket a_{1} \rrbracket \rho \triangleq \rho\left(a_{1}\right)$
$-\llbracket e_{1} e_{2} \rrbracket \rho \triangleq \operatorname{app}\left(\llbracket e_{1} \rrbracket \rho, \llbracket e_{2} \rrbracket \rho\right)$
$-\llbracket \lambda a_{1} \cdot e_{1} \rrbracket \rho \triangleq \operatorname{fun}\left(\lambda d \in D . \llbracket e_{1} \rrbracket\left(\rho\left[a_{1} \mapsto d\right]\right)\right)$

- \llbracket letrec $a_{1} a_{2}=e_{1}$ in $e_{2} \rrbracket \rho \triangleq \ldots$

In this case we can use ordinary structural recursion to first define denotations of ASTs and then prove that they respect α-equivalence.

But is there a quicker way, working directly with ASTs/ α ?

α-Structural recursion

Is there a recursion principle for Λ / α that legitimises these "definitions" of $(a:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

α-Structural recursion

Is there a recursion principle for Λ / α that legitimises these "definitions" of $(a:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - α-structural recursion
(and induction too-see lecture notes).

α-Structural recursion

Is there a recursion principle for Λ / α that legitimises these "definitions" of $(a:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - α-structural recursion (and induction too-see lecture notes).

What about other languages with binders?

α-Structural recursion

Is there a recursion principle for Λ / α that legitimises these "definitions" of $(a:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - α-structural recursion (and induction too-see lecture notes).

What about other languages with binders?
Yes! - available for any nominal signature.

α-Structural recursion

Is there a recursion principle for Λ / α that legitimises these "definitions" of $(a:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - α-structural recursion (and induction too-see lecture notes).

What about other languages with binders?
Yes! - available for any nominal signature.
Great. What's the catch?

α-Structural recursion

Is there a recursion principle for Λ / α that legitimises these "definitions" of $(a:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - α-structural recursion (and induction too-see lecture notes).

What about other languages with binders?
Yes! - available for any nominal signature.
Great. What's the catch?
Need to learn a bit of possibly unfamiliar math, to do with permutations and support.

Pause

Running example (reminder)

Concrete syntax:

$$
t::=a|t t| \lambda a . t \mid \text { letrec } a a=t \text { in } t
$$

ASTs:

$$
\Lambda \triangleq \mu S .(\mathbb{V}+(S \times S)+(\mathbb{V} \times S)+(\mathbb{V} \times \mathbb{V} \times S \times S))
$$

where \mathbb{V} is some fixed, countably infinite set (of names a of variables).

Structural recursion for Λ

Given a set S

$$
\left\{\begin{array}{l}
f_{\mathrm{V}}: \mathbb{V} \rightarrow S \\
f_{\mathrm{A}}: S \times S \rightarrow S \\
f_{\mathrm{L}}: \mathbb{V} \times S \rightarrow S \\
f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times S \times S \rightarrow S,
\end{array}\right.
$$

there is a unique function $\hat{f}: \Lambda \rightarrow S$ satisfying

$\hat{f} a_{1}$	$=f_{\mathrm{V}} a_{1}$
$\hat{f}\left(t_{1} t_{2}\right)$	$=f_{\mathrm{A}}\left(\hat{f} t_{1}, \hat{f} t_{2}\right)$
$\hat{f}\left(\lambda a_{1} \cdot t_{1}\right)$	$=f_{\mathrm{L}}\left(a_{1}, \hat{f} t_{1}\right)$
$\hat{f}\left(\right.$ letrec $a_{1} a_{2}=t_{1}$ in $\left.t_{2}\right)$	$=f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} t_{1}, \hat{f} t_{2}\right)$

for all $a_{1}, a_{2} \in \mathbb{V}$ and $t_{1}, t_{2} \in \Lambda$.

α-Structural recursion for Λ / α

Given a nominal set X
and functions $\left\{\begin{array}{l}f_{\mathrm{V}}: \mathbb{V} \rightarrow X \\ f_{\mathrm{A}}: X \times X \rightarrow X \\ f_{\mathrm{L}}: \mathbb{V} \times X \rightarrow X \\ f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times X \times X \rightarrow X,\end{array}\right.$
all supported by a finite subset $A \subseteq \mathbb{V}$,
there is a unique function $\hat{f}: \Lambda / \alpha \rightarrow X$ such that...

α-Structural recursion for Λ / α

$\ldots \exists$! function $\hat{f}: \Lambda / \alpha \rightarrow X$ such that:

$\hat{f} a_{1}$	$=f_{\mathrm{V}} a_{1}$
$\hat{f}\left(e_{1} e_{2}\right)$	$=f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right)$
$a_{1} \notin A \Rightarrow \hat{f}\left(\lambda a_{1} \cdot e_{1}\right)$	$=f_{\mathrm{L}}\left(a_{1}, \hat{f} e_{1}\right)$
$a_{1}, a_{2} \notin A \& a_{1} \neq a_{2} \& a_{2} \notin f v\left(e_{2}\right) \Rightarrow$	
$\hat{f}\left(\operatorname{letrec} a_{1} a_{2}=e_{1}\right.$ in $\left.e_{2}\right)$	$=f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)$

for all $a_{1}, a_{2} \in \mathbb{V} \& e_{1}, e_{2} \in \Lambda / \alpha$,

α-Structural recursion for Λ / α

$\ldots \exists$! function $\hat{f}: \Lambda / \alpha \rightarrow X$ such that:

$$
\begin{aligned}
\hat{f} a_{1} & =f_{\mathrm{V}} a_{1} \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
a_{1} \notin A \Rightarrow \hat{f}\left(\lambda a_{1} \cdot e_{1}\right) & =f_{\mathrm{L}}\left(a_{1}, \hat{f} e_{1}\right)
\end{aligned}
$$

$a_{1}, a_{2} \notin A \& a_{1} \neq a_{2} \& a_{2} \notin f v\left(e_{2}\right) \Rightarrow$ $\hat{f}\left(\right.$ letrec $a_{1} a_{2}=e_{1}$ in $\left.e_{2}\right)=f_{\mathrm{F}}\left(a_{1}, a_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)$
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists a_{1} \notin A\right)(\forall x \in X) a_{1} \# f_{L}\left(a_{1}, x\right)$
for $f_{F}:\left(\exists a_{1}, a_{2} \notin A\right) a_{1} \neq a_{2} \&$

$$
\begin{aligned}
& \left(\forall x_{1}, x_{2} \in X\right) a_{2} \# x_{1} \Rightarrow \\
& \quad a_{1}, a_{2} \# f_{F}\left(a_{1}, a_{2}, x_{1}, x_{2}\right)
\end{aligned}
$$

α-Structural recursion for Λ / α

The freshness relation $(-) \#(-)$ between names and elements of nominal sets generalises the $(-) \notin f v(-)$ relation between variables and ASTs.
E.g. for the capture-avoiding substitution example, $f_{L}\left(a_{1}, e\right) \triangleq \lambda a_{1} . e$ and (FCB) holds trivially because $a_{1} \notin f v\left(\lambda a_{1} \cdot e\right)$ (and similarly for f_{F}).
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists a_{1} \notin A\right)(\forall x \in X) a_{1} \# f_{L}\left(a_{1}, x\right)$
for $f_{F}:\left(\exists a_{1}, a_{2} \notin A\right) a_{1} \neq a_{2} \&$

$$
\begin{aligned}
& \left(\forall x_{1}, x_{2} \in X\right) a_{2} \# x_{1} \Rightarrow \\
& \quad a_{1}, a_{2} \# f_{F}\left(a_{1}, a_{2}, x_{1}, x_{2}\right)
\end{aligned}
$$

To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$.
- How is α-structural recursion proved?
- How to generalise α-structural recursion from the example language Λ to general languages with binders?
- What's involved with applying α-structural recursion in any particular case?
- Example: normalisation by evaluation.
- Machine-assisted support?

Atoms

From now on assume bindable names in ASTs are drawn from a fixed, countably infinite set \mathbb{A} (elements called atoms)

Need different flavours of names (variables, references, channels, nonces, .. .), so assume
$-\mathbb{A}$ is partitioned into countably infinite number of sorts.
Write $\operatorname{sort(a)}$ for the sort of $a \in \mathbb{A}$.

- There are infinitely many atoms of each sort.

Atoms

From now on assume bindable names in ASTs are drawn from a fixed, countably infinite set \mathbb{A} (elements called atoms)

The mathematical model of bindable names we use is very abstract: in the world of nominal sets, the only attributes of an atom are identity and sort.

Probably interesting \& pragmatically useful to consider more structured atoms (!), e.g. linearly ordered ones, but we don't do that here.

Permutations

Set Perm of atom-permutations consists of all bijections $\pi: \mathbb{A} \leftrightarrow \mathbb{A}$ such that

- $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite
- $\operatorname{sort}(\pi(a))=\operatorname{sort}(a)$ (all $a \in \mathbb{A}$).

Perm is a group:

- multiplication $\pi \pi^{\prime}=$ function composition $\pi \circ \pi^{\prime}$: $\pi \circ \pi^{\prime}(a) \triangleq \pi\left(\pi^{\prime}(a)\right)$
- identity element $\iota=$ identity function on \mathbb{A}
- inverse π^{-1} of $\pi \in \operatorname{Perm}$ is inverse qua function.

Permutations

Set Perm of atom-permutations consists of all bijections $\pi: \mathbb{A} \leftrightarrow \mathbb{A}$ such that

- $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite
- $\operatorname{sort}(\pi(a))=\operatorname{sort}(a)($ all $a \in \mathbb{A})$.

Given $a_{1}, a_{2} \in \mathbb{A}$ with $\operatorname{sort}\left(a_{1}\right)=\operatorname{sort}\left(a_{2}\right)$, transposition $\left(a_{1} a_{2}\right)$ is the $\pi \in \operatorname{Perm}$ given by

$$
\pi(a) \triangleq \begin{cases}a_{2} & \text { if } a=a_{1} \\ a_{1} & \text { if } a=a_{2} \\ a & \text { otherwise }\end{cases}
$$

Permutations

Set Perm of atom-permutations consists of all bijections $\pi: \mathbb{A} \leftrightarrow \mathbb{A}$ such that

- $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite
- $\operatorname{sort}(\pi(a))=\operatorname{sort}(a)$ (all $a \in \mathbb{A}$).

Given $a_{1}, a_{2} \in \mathbb{A}$ with $\operatorname{sort}\left(a_{1}\right)=\operatorname{sort}\left(a_{2}\right)$, transposition $\left(a_{1} a_{2}\right)$ is the $\pi \in$ Perm given by

Exercise: prove that every $\pi \in$ Perm can be expressed as a composition of (finitely many) transpositions.

Actions of permutations

An action of Perm on a set S is a function

$$
\text { Perm } \times S \rightarrow S \quad \text { written } \quad(\pi, s) \mapsto \pi \cdot s
$$

satisfying $\iota \cdot s=s$ and $\pi \cdot\left(\pi^{\prime} \cdot s\right)=\left(\pi \pi^{\prime}\right) \cdot s$
A Perm-set is a set S equipped with an action of Perm on S.

Actions of permutations

An action of Perm on a set S is a function

$$
\text { Perm } \times S \rightarrow S \quad \text { written } \quad(\pi, s) \mapsto \pi \cdot s
$$

satisfying $\iota \cdot s=s$ and $\pi \cdot\left(\pi^{\prime} \cdot s\right)=\left(\pi \pi^{\prime}\right) \cdot s$
Three simple examples of Perm-sets:

- Natural numbers \mathbb{N} with trivial action: $\pi \cdot n=n$.
- \mathbb{A} with action: $\pi \cdot a=\pi(a)$.
- Perm itself with conjugation action: $\pi \cdot \pi^{\prime}=\pi \circ \pi^{\prime} \circ \pi^{-1}$.
More examples in a mo.

Finite support

Definition. A finite subset $A \subseteq \mathbb{A}$ supports an element $s \in S$ of a Perm-set S if

$$
\left(a a^{\prime}\right) \cdot s=s
$$

holds for all $a, a^{\prime} \in \mathbb{A}$ (of same sort) not in A
A nominal set is a Perm-set all of whose elements have a finite support.

> Lemma. If $s \in S$ has a finite support, then it has a smallest one, written $\operatorname{supp}(s)$.

Lemma. If $s \in S$ has a finite support, then it has a smallest one, written $\operatorname{supp}(s)$.

Proof Suffices to show that if the finite sets A_{1} and \boldsymbol{A}_{2} support s, so does $\boldsymbol{A}_{1} \cap \boldsymbol{A}_{2}$.

Lemma. If $s \in S$ has a finite support, then it has a smallest one, written $\operatorname{supp}(s)$.

Proof Suffices to show that if the finite sets A_{1} and A_{2} support s, so does $A_{1} \cap A_{2}$. So given $a, a^{\prime} \in \mathbb{A}-\left(A_{1} \cap A_{2}\right)$, have to show ($\left.a a^{\prime}\right) \cdot s=s$. W.I.o.g. $a \neq a^{\prime}$.

Lemma. If $s \in S$ has a finite support, then it has a smallest one, written $\operatorname{supp}(s)$.

Proof Suffices to show that if the finite sets A_{1} and \boldsymbol{A}_{2} support s, so does $\boldsymbol{A}_{1} \cap \boldsymbol{A}_{2}$.
So given $a, a^{\prime} \in \mathbb{A}-\left(A_{1} \cap A_{2}\right)$, have to show ($\left.a a^{\prime}\right) \cdot s=s$. W.I.o.g. $a \neq a^{\prime}$.

Pick any $a^{\prime \prime}$ (of same sort) in the infinite set $\mathbb{A}-\left(A_{1} \cup A_{2} \cup\left\{a, a^{\prime}\right\}\right)$. Then

$$
\left(a a^{\prime}\right)=\left(a a^{\prime \prime}\right) \circ\left(a^{\prime} a^{\prime \prime}\right) \circ\left(a a^{\prime \prime}\right)
$$

is a composition of transpositions each of which fixes S.

Freshness relation

Given nominal sets X and Y and elements $x \in X$ and $y \in Y$,
write $x \# y$ to mean $\operatorname{supp}(x) \cap \operatorname{supp}(y)=\emptyset$.

Freshness relation

Given nominal sets X and Y and elements $x \in X$ and $y \in Y$,
write $x \# y$ to mean $\operatorname{supp}(x) \cap \operatorname{supp}(y)=\emptyset$.
So if $a \in \mathbb{A}$, then $a \# x$ means $a \notin \operatorname{supp}(x)$.

Freshness relation

Given nominal sets X and Y and elements $x \in X$ and $y \in Y$,
write $x \# y$ to mean $\operatorname{supp}(x) \cap \operatorname{supp}(y)=\emptyset$.
So if $a \in \mathbb{A}$, then $a \# x$ means $a \notin \operatorname{supp}(x)$.
Hence
Key fact for atoms a and a^{\prime} of the same sort:

$$
\left(a, a^{\prime}\right) \# x \Rightarrow\left(a a^{\prime}\right) \cdot x=x
$$

Languages/ $\boldsymbol{\alpha}$ form nominal sets

For example, there's a Perm-action on Λ / α satisfying:

$$
\begin{aligned}
& \pi \cdot a=\pi(a) \\
& \pi \cdot\left(e_{1} e_{2}\right)=\left(\pi \cdot e_{1}\right)\left(\pi \cdot e_{2}\right) \\
& \pi \cdot(\lambda a . e)=\lambda \pi(a) \cdot(\pi \cdot e) \\
& \pi \cdot\left(\text { letrec } a_{1} a_{2}=e_{1} \text { in } e_{2}\right)= \\
& \quad \text { letrec } \pi\left(a_{1}\right) \pi\left(a_{2}\right)=\pi \cdot e_{1} \text { in } \pi \cdot e_{2}
\end{aligned}
$$

Languages/ $\boldsymbol{\alpha}$ form nominal sets

For example, there's a Perm-action on Λ / α satisfying:

$$
\pi \cdot a=\pi(a)
$$

$$
\pi \cdot\left(e_{1} e_{2}\right)=\left(\pi \cdot e_{1}\right)\left(\pi \cdot e_{2}\right)
$$

$$
\pi \cdot(\lambda a . e)=\lambda \pi(a) \cdot(\pi \cdot e)
$$

$\pi \cdot\left(\right.$ letrec $a_{1} a_{2}=e_{1}$ in $\left.e_{2}\right)=$

$$
\operatorname{letrec} \pi\left(a_{1}\right) \pi\left(a_{2}\right)=\pi \cdot e_{1} \text { in } \pi \cdot e_{2}
$$

N.B. binding and non-binding constructs are treated just the same

Languages/ $\boldsymbol{\alpha}$ form nominal sets

For example, there's a Perm-action on Λ / α satisfying:

$$
\begin{aligned}
& \pi \cdot a=\pi(a) \\
& \pi \cdot\left(e_{1} e_{2}\right)=\left(\pi \cdot e_{1}\right)\left(\pi \cdot e_{2}\right) \\
& \pi \cdot(\lambda a \cdot e)=\lambda \pi(a) \cdot(\pi \cdot e) \\
& \pi \cdot\left(\text { letrec } a_{1} a_{2}=e_{1} \text { in } e_{2}\right)=
\end{aligned}
$$

$$
\text { letrec } \pi\left(a_{1}\right) \pi\left(a_{2}\right)=\pi \cdot e_{1} \text { in } \pi \cdot e_{2}
$$

Proof (exercise) First define $\pi \cdot(-): \Lambda \rightarrow \Lambda$ by structural recursion, and then prove that $t={ }_{\alpha} t^{\prime} \Rightarrow(\forall \pi \in \operatorname{Perm}) \pi \cdot t={ }_{\alpha} \pi \cdot t^{\prime}$.

Languages/ α form nominal sets

For example, there's a Perm-action on Λ / α satisfying:

$$
\begin{aligned}
& \pi \cdot a=\pi(a) \\
& \pi \cdot\left(e_{1} e_{2}\right)=\left(\pi \cdot e_{1}\right)\left(\pi \cdot e_{2}\right) \\
& \pi \cdot(\lambda a . e)=\lambda \pi(a) \cdot(\pi \cdot e) \\
& \pi \cdot\left(\text { letrec } a_{1} a_{2}=e_{1} \text { in } e_{2}\right)= \\
& \quad \quad \text { letrec } \pi\left(a_{1}\right) \pi\left(a_{2}\right)=\pi \cdot e_{1} \text { in } \pi \cdot e_{2}
\end{aligned}
$$

For this action, it is not hard to see (exercise) that $e \in \Lambda / \alpha$ is supported by any finite set of variables containing all those occurring free in e and hence

$$
a \# e \text { iff } a \notin f v(e) .
$$

End of lecture 1

