Ten Exercises on Nominal Sets

for Andrew Pitts' lectures at the International Summer School On Applied Semantics

Frauenchiemsee, Germany, 8-12 September 2005

- 1. Prove that the rules defining $=_{\alpha}$ in Figure 1 [p 11] do indeed define an equivalence relation.
- 2. Show that every atom-permutation is equal to a finite composition of transpositions. [p 12]
- 3. Prove that the atom-permutation action on terms defined in Example 7(ii) [p 13] preserves $=_{\alpha}$. (See Theorem 12 for the general reason why this is so.)
- 4. Prove the claim in Example 7(iii) [p 13] that the smallest support of an α -term is its finite set of free atoms. [Hint: use the method sketched in Example 7(ii), but replacing = with $=_{\alpha}$ and atm(-) with fa(-).]
- 5. Show that in the product $X_1 \times X_2$ of two nominal sets X_1 and X_2 [p 14], support satisfies: $supp((x_1, x_2)) = supp(x_1) \cup supp(x_2)$.
- 6. Let X and X' be nominal sets. We call a function f : X → X' equivariant if it satisfies f(π ⋅ x) = π ⋅ (f x) for all x ∈ X and π ∈ Perm. Show that an element f ∈ (X→_{fs}X') of the nominal set of finitely supported functions [p 14] satisfies supp(f) = Ø iff f is an equivariant function.
- 7. Let $(a_n \mid n \in \mathbb{N})$ be an enumeration of the countably infinite set \mathbb{A} of atoms. Is the function $n \mapsto a_n$ finitely supported? Is the set $\{a_{2n} \mid n \in \mathbb{N}\}$ a finitely supported subset of \mathbb{A} regarded as a nominal set in the usual way (Example 7(i))?
- Show that for every finitely supported subset S of the nominal set A of atoms, either S is finite or A − S is finite.
- 9. Let X be a nominal set. We call a subset $S \subseteq X$ equivariant if it satisfies $\pi \cdot x \in S$ for all $\pi \in Perm$ and all $x \in S$. Show that an element $S \in$

 $P_{\text{fs}}(X)$ of the nominal set of finitely supported subsets of X [p 14] satisfies $supp(S) = \emptyset$ iff S is an equivariant subset.

10. Let X and Y be nominal sets.

Show that the following are equivariant subsets (cf. Exercise 9):

- (i) Truth: $X \in P_{fs}(X)$.
- (ii) Equality: $\{(x, x') \in X \times X \mid x = x'\} \in P_{fs}(X \times X).$
- (iii) Membership: $\{(x, S) \in X \times P_{fs}(X) \mid x \in S\} \in P_{fs}(X \times P_{fs}(X)).$

Show that the following are equivariant functions (Exercise 6):

- (iv) Conjunction: $(-) \cap (-) \in P_{fs}(X) \times P_{fs}(X) \rightarrow_{fs} P_{fs}(X)$.
- (v) Negation: $\neg \in P_{fs}(X) \rightarrow_{fs} P_{fs}(X)$, where $\neg S \triangleq \{x \in X \mid x \notin S\}$.
- (vi) Universal quantification: $\bigcap \in P_{fs}(P_{fs}(X)) \rightarrow_{fs} P_{fs}(X)$, where $\bigcap S \triangleq \{x \in X \mid (\forall S \in S) \ x \in S\}$.
- (vii) Substitution: $f^* \in P_{fs}(Y) \rightarrow_{fs} P_{fs}(X)$, where $f \in X \rightarrow_{fs} Y$ is an equivariant function and $f^*S \triangleq \{x \in X \mid f(x) \in S\}$.
- (viii) Classification: $\chi \in P_{\rm fs}(X \times Y) \rightarrow_{\rm fs}(X \rightarrow_{\rm fs} P_{\rm fs}(Y))$, where $\chi S \triangleq \lambda x \in X.\{y \in Y \mid (x, y) \in S\}.$