Ten Exercises on Nominal Sets

for Andrew Pitts' lectures
at the International Summer School On Applied Semantics

Frauenchiemsee, Germany, 8-12 September 2005

1. Prove that the rules defining $={ }_{\alpha}$ in Figure 1 [p 11] do indeed define an equivalence relation.
2. Show that every atom-permutation is equal to a finite composition of transpositions. [p 12]
3. Prove that the atom-permutation action on terms defined in Example 7(ii) [p 13] preserves $={ }_{\alpha}$. (See Theorem 12 for the general reason why this is so.)
4. Prove the claim in Example 7(iii) [p 13] that the smallest support of an α term is its finite set of free atoms. [Hint: use the method sketched in Example 7(ii), but replacing $=$ with $=\alpha$ and $\operatorname{atm}(-)$ with $f a(-)$.]
5. Show that in the product $X_{1} \times X_{2}$ of two nominal sets X_{1} and X_{2} [p 14], support satisfies: $\operatorname{supp}\left(\left(x_{1}, x_{2}\right)\right)=\operatorname{supp}\left(x_{1}\right) \cup \operatorname{supp}\left(x_{2}\right)$.
6. Let X and X^{\prime} be nominal sets. We call a function $f: X \rightarrow X^{\prime}$ equivariant if it satisfies $f(\pi \cdot x)=\pi \cdot(f x)$ for all $x \in X$ and $\pi \in$ Perm. Show that an element $f \in\left(X \rightarrow_{\mathrm{fs}} X^{\prime}\right)$ of the nominal set of finitely supported functions [p 14] satisfies $\operatorname{supp}(f)=\emptyset$ iff f is an equivariant function.
7. Let $\left(a_{n} \mid n \in \mathbb{N}\right)$ be an enumeration of the countably infinite set \mathbb{A} of atoms. Is the function $n \mapsto a_{n}$ finitely supported? Is the set $\left\{a_{2 n} \mid n \in \mathbb{N}\right\}$ a finitely supported subset of \mathbb{A} regarded as a nominal set in the usual way (Example 7(i))?
8. Show that for every finitely supported subset S of the nominal set \mathbb{A} of atoms, either S is finite or $\mathbb{A}-S$ is finite.
9. Let X be a nominal set. We call a subset $S \subseteq X$ equivariant if it satisfies $\pi \cdot x \in S$ for all $\pi \in$ Perm and all $x \in S$. Show that an element $S \in$
$P_{\mathrm{fs}}(X)$ of the nominal set of finitely supported subsets of X [p 14] satisfies $\operatorname{supp}(S)=\emptyset$ iff S is an equivariant subset.
10. Let X and Y be nominal sets.

Show that the following are equivariant subsets (cf. Exercise 9):
(i) Truth: $X \in P_{\mathrm{fs}}(X)$.
(ii) Equality: $\left\{\left(x, x^{\prime}\right) \in X \times X \mid x=x^{\prime}\right\} \in P_{\mathrm{fs}}(X \times X)$.
(iii) Membership: $\left\{(x, S) \in X \times P_{\mathrm{fs}}(X) \mid x \in S\right\} \in P_{\mathrm{fs}}\left(X \times P_{\mathrm{fs}}(X)\right)$.

Show that the following are equivariant functions (Exercise 6):
(iv) Conjunction: $(-) \cap(-) \in P_{\mathrm{fs}}(X) \times P_{\mathrm{fs}}(X) \rightarrow_{\mathrm{fs}} P_{\mathrm{fs}}(X)$.
(v) Negation: $\neg \in P_{\mathrm{fs}}(X) \rightarrow_{\mathrm{fs}} P_{\mathrm{fs}}(X)$, where $\neg S \triangleq\{x \in X \mid x \notin S\}$.
(vi) Universal quantification: $\bigcap \in P_{\mathrm{fs}}\left(P_{\mathrm{fs}}(X)\right) \rightarrow_{\mathrm{fs}} P_{\mathrm{fs}}(X)$, where $\bigcap \mathcal{S} \triangleq$ $\{x \in X \mid(\forall S \in \mathcal{S}) x \in S\}$.
(vii) Substitution: $f^{*} \in P_{\mathrm{fs}}(Y) \rightarrow_{\mathrm{fs}_{\mathrm{s}}} P_{\mathrm{fs}}(X)$, where $f \in X \rightarrow_{\mathrm{fs}} Y$ is an equivariant function and $f^{*} S \triangleq\{x \in X \mid f(x) \in S\}$.
(viii) Classification: $\chi \in P_{\mathrm{fs}}(X \times Y) \rightarrow_{\mathrm{fs}}\left(X \rightarrow_{\mathrm{fs}} P_{\mathrm{fs}}(Y)\right)$, where $\chi S \triangleq \lambda x \in$ $X .\{y \in Y \mid(x, y) \in S\}$.

