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7 Typed Operational Reasoning

Andrew Pitts

The aim of this chapter is to explain, by example, some methods for reason­

ing about equivalence of programs based directly upon a type system and

an operational semantics for the programming language in question. We will

concentrate on methods for reasoning about equivalence of representations

of abstract data types. This provides an excellent example: it is easy to appre­

ciate why such methods are useful and at the same time non­trivial problems

have to be solved to get a sound reasoning principle in the presence of non­

termination and recursion. Rather than just treat abstract data types, we will

cover full existential types, using a programming language combining a pure

fragment of ML (including records and recursive functions) with System F.

7.1 Introduction

As explained in TAPL, Chapter 24, type systems involving existentially quan­

tified type variables provide a useful foundation for explaining and relating

various features of programming languages to do with information hiding.

To establish the properties of such type­theoretic interpretations of infor­

mation hiding requires a theory of semantic equivalence for expressions of

existential type. Methods involving type­indexed families of relations between

between expressions have proved very useful in this respect. Study of rela­

tional properties of typed calculi goes back to the logical relations for simply

typed lambda calculus in Plotkin (1973) and Statman (1985) and discussed in

Chapter 6, and the notion of relational parametricity for polymorphic types

in Reynolds (1983). More relevant to the kind of example considered in this

chapter is Mitchell’s principle for establishing the denotational equivalence

of programs involving higher­order functions and different implementations

of an abstract datatype in terms of the existence of a simulation relation be­
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tween the implementations (Mitchell, 1991a). This principle was extended by

Plotkin and Abadi (1993) to encompass all the (possibly impredicative) exis­

tential types of the Girard­Reynolds polymorphic lambda calculus.

One feature of these works is that they develop proof principles for deno­

tational models of programming languages. The relevance of such principles

to the operational behavior of programs relies upon ‘goodness of fit’ results

(some published, some not) connecting operational and denotational seman­

tics. Another feature of the above works is that they do not treat the use of

general recursive definitions; and so the languages considered are not Tur­

ing powerful. It is folklore that a proof principle for denotational equality at

existential type, phrased in terms of the existence of certain simulation rela­

tions, is still valid in the presence of recursively defined functions of higher

type, provided one imposes some admissibility conditions on the notion of

relation. In fact using techniques for defining operationally based logical re­

lations developed in Pitts (2000), we will see in this chapter that suitable

admissibility conditions for relations and an associated proof principle for

operational equivalence at existential type can be phrased directly, and quite

simply, in terms of the syntax and operational semantics of a programming

language combining existential types with recursively defined, higher­order

functions. The programming language we work with combines a pure frag­

ment of ML (including records and recursive functions) with the polymorphic

lambda calculus of Girard (1972) and Reynolds (1974).

7.2 Overview

In order to get the most out of this chapter you should have some familiarity

with TAPL, Chapters 23 and 24. The material in this chapter is technically

quite intricate (especially the definition and properties of the logical relation

in §7.6) and it is easy to lose sight of the wood for the trees. So here is an

overview of the chapter.

Equivalence of programs One application of formal semantics of program­

ming languages is to give a mathematically precise definition of what it

means for one program to be semantically equal to another. In this chapter

we use operational semantics and discuss a notion of program equivalence

called contextual equivalence (§7.5).

Extensionality principles In order to reason about program equivalence, it

is useful to establish the validity of proof methods for it. The most basic

method uses the congruence property—reasoning by “replacing equals by

equals”—which holds of contextual equivalence by construction. In §7.1
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we discuss informally some methods for proving contextual equivalence

of implementations of abstract datatypes. The discussion culminates with

the Extensionality Principle 7.3.6. One goal of this chapter is to give a

mathematically precise formulation of this principle and to establish its

validity.

Logical relations The Extensionality Principle is phrased in terms of type­

respecting relations between the terms of our example language. In order

to formulate this principle precisely and then prove it we develop an alter­

native characterisation of contextual equivalence in terms of a certain “log­

ical relation” (§7.6). The combination of features in our language—higher­

order recursive functions and fully impredicative polymorphic types—

force us to use a form of logical relation with quite a difficult definition.

Chapter 6 presents another use of logical relations with a simpler defini­

tion; as such, that chapter provides a useful warm­up for this one.

7.3 Motivating Examples

In this section we motivate the use of logical relations for reasoning about

existential types by giving some examples.

To begin, let us recall the syntax for expressions involving existentially

quantified type variables from TAPL, Chapter 24. If T is a type expression and

X is a type variable, then we write {∃X,T} for the corresponding existentially

quantified type. Free occurrences of X in T become bound in this type expres­

sion. We write [X , S]T for the result of substituting a type S for all free

occurrences of X in T, renaming bound type variables as necessary to avoid

capture.1 It t is a term of type [X , S]T, then we can “pack” the type S and

the term t together to get a term

{*S,t} as {∃X,T} (7.1)

of the indicated existential type. To eliminate such terms we use the form

let {*X,x}=t1 in t2 (7.2)

This is a binding construct: free occurrences of the type variable X and the

value variable x in t2 become bound in the term. The typing of such terms

goes as follows:

if t1 has type {∃X,T} and t2 has type T2 when we assume the variable

x has type T, then provided X does not occur free in T2, we can conclude

that the term in (7.2) has type T2.

1. Throughout this chapter we will always identify expressions, be they types or terms, up to

renaming of bound variables.
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(Such rules are better presented symbolically, but we postpone doing that

until we give a formal definition of the language we will be using, in the next

section.) The italicized restriction on free occurrences of X in T2 in the above

rule is what distinguishes an existential type from a type­indexed dependent

sum, where there is free access both to the type component as well as the

term component of a “packed” term: see Mitchell and Plotkin (1988), p. 474 et

seq, for a discussion of this point.

Since we wish to consider existential types in the context of an ML­like

language, we adopt an eager strategy for evaluating expressions like (7.1)

and (7.2). Thus to evaluate the first, one evaluates t to canonical form, v say,

and returns the canonical form {*S,v} as {∃X,T}; to evaluate the second,

one evaluates t1 to canonical form, {*S,v} as {∃X,T} say, and then evalu­

ates [X, S][x, v]t2.

7.3.1 Example: Consider the existentially quantified record type

type Counter = {∃X, {mk:X, inc:X→X, get:X→Int}}

where Int is a type of integers. Values of type Counter consist of some type

together with values of the appropriate types implementing mk, inc, and get.

For example

val counter1 = {*Int, {mk = 0,

inc = λx:Int.x+1,

get = λx:Int.x } as Counter

and

val counter2 = {*Int, {mk = 0,

inc = λx:Int.x­1,

get = λx:Int.0­x } as Counter

are both values of type Counter. The terms

let {*X,x} = counter1 in x.get(x.inc(x.mk))

let {*X,x} = counter2 in x.get(x.inc(x.mk))

(where we use the syntax r.f for selecting field f of record r) are both terms

of type Int which evaluate to 1. By contrast, of the terms

let {*X,x} = counter1 in x.get(x.inc(1))

let {*X,x} = counter2 in x.get(x.inc(1))

the first evaluates to 2, whereas the second evaluates to 0; but in this case

neither term is well­typed. Indeed, it is the case that any well­typed closed

term involving occurrences of the term counter1 will exhibit precisely the

same evaluation behavior if we replace those occurrences by counter2. In

other words, counter1 and counter2 are equivalent in the following sense. 2
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7.3.2 Definition [Contextual equivalence, informally]: We write t1 =ctx t2:T

to indicate that two terms t1 and t2 of the same type T are contextually equiv­

alent. By definition, this means that for all well­typed terms t[t1] containing

instances of t1, if t[t2] is the term obtained by replacing those instances

by t2, then t[t1] and t[t2] give exactly the same observable results when

evaluated. 2

This notion of program equivalence assumes we have already fixed upon a

definition of the “observable results” of evaluating terms. It also presupposes

that the meaning of a well­typed term should only depend upon the final

result (if any) of evaluating it. This is reasonable for deterministic and non­

interactive programming even in the presence of computational effects like

side­effecting state or raising exceptions, provided we include those effects as

part of the observable results of evaluation. Certainly, contextual equivalence

is a widely used notion of program equivalence in the literature and it is the

one we adopt here.

For the terms in Example 7.3.1, it is the case that

counter1 =ctx counter2:Counter (7.3)

but the quantification over all possible contexts t[−] in the definition of =ctx

makes a direct proof of this and similar facts rather difficult. Thus one is

led to ask whether there are proof principles for contextual equivalence that

make proving such equivalences at existential types more tractable. Since

values {*S,v} as {∃X,T} of a given existential type {∃X,T} are specified by

pairs of data S and v, as a first stab at such a proof principle one might

try componentwise equivalence. Equivalence in the second component will of

course mean contextual equivalence; but in the first component, where the

expressions involved are types, what should equivalence mean? If we take

it to mean syntactic identity, =, (which for us includes renaming of bound

variables) we obtain the following proof principle.2

7.3.3 Principle [Extensionality for ∃­types, Version I]: For an existential type

E
def
= {∃X,T}, types T1, T2, and values v1, v2, if T1 = T2 and v1 =ctx v2:[X ,

T2]T, then ({*T1,v1} as E) =ctx ({*T2,v2} as E):{∃X,T}. 2

The hypotheses of Principle 7.3.3 are far too strong for it to be very useful.

For example, it cannot be used to prove (7.3), since in this case T1 = Int = T2,

but

2. This and subsequent proof principles for {∃X,T} are called extensionality principles by

analogy with the familiar extensionality principle for functions; it is a convenient terminology,

but perhaps the analogy is a little stretched.
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val v1 = {mk=0, inc=λx:Int.x+1, get=λx:Int.x}

and

val v2 = {mk=0, inc=λx:Int.x­1, get=λx:Int.0­x}

are clearly not contextually equivalent values of the record type

{mk:Int,inc:Int→Int,get:Int→Int}

(for example, we get different integers when evaluating t[v1] and t[v2] when

t[−] is (−.inc)0). However, they do become contextually equivalent if in

the second term we use a variant of integers in which the roles of positive

and negative are reversed. Such “integers” are of course in bijection with

the usual ones and this leads us to our second version of an extensionality

principle for existential types—in which the use of syntactic identity as the

notion of type equivalence is replaced by the more flexible one of bijection.

A bijection i : T1 � T2 means a closed term i : T1→T2 for which there is

a closed term i−1 : T2→T1 which is a two­sided inverse up to contextual

equivalence: i−1(i x1) =ctx x1 : T1 and i(i−1 x2) =ctx x2 : T2.

7.3.4 Principle [Extensionality for ∃­types, Version II]: For each existential

type E
def
= {∃X,T}, types T1, T2, and values v1, v2, if there is a bijection

i : T1 � T2 such that T(i) v1 =ctx v2 : [X, T2]T, then

({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T}.

In stating this principle we have used the notation T(i) for the “action” of

types T on bijections i: given a type T, possibly containing free occurrences

of a type variable X, one can define an induced bijection T(i) : [X , T1]T �

[X, T2]T (with inverse T(i−1)). For example, if T is the type

{mk:X, inc:X→X, get:X→Int}

then T(i) is

λx:{ mk:T1, inc:T1→T1, get:T1→Int}.

{ mk = i(x.mk),

inc = λx2:T2.i(x.inc(i
−1 x2)),

get = λx2:T2.x.get(i
−1 x2)) }

and T(i−1) is

λx:{ mk:T2, inc:T2→T2, get:T2→Int}.

{ mk = i−1(x.mk),

inc = λx1:T1.i
−1(x.inc(i x1)),

get = λx1:T1.x.get(i x1)) }.



7.3 Motivating Examples 251

(In general, if T is a simple type then the definition of T(i) and T(i−1) can

be done by induction on the structure of T; for recursively defined types, the

definition of the induced bijection is not so straightforward.) 2

We can use this second version of the extensionality principle for existen­

tial types to prove the contextual equivalence in (7.3), using the bijection

i
def
= (λx:Int.0­x) : Int � Int.

This does indeed satisfy T(i) v1 =ctx v2 : Int when v1, v2, and T are de­

fined as above. (Of course these contextual equivalences, and indeed the fact

that this particular term i is a bijection, all require proof; but the methods

developed in this chapter render this straightforward.) However, the use of

bijections between types is still too restrictive for proving many common ex­

amples of contextual equivalence of abstract datatype implementations, such

as the following.

7.3.5 Example: Consider the following existentially quantified record type, where

Bool is a type of booleans.

type Semaphore = {∃X, {bit:X, flip:X→X, read:X→Bool}}

The following terms have type Semaphore:

val semaphore1 =

{*Bool, {bit = true

flip = λx:Bool.not x,

read = λx:Bool.x } as Semaphore;

val semaphore2 =

{*Int, {bit = 1,

flip = λx:Int.0­2*x,

read = λx:Int.x >= 0} as Semaphore

There is no bijection Bool � Int, so one cannot use Principle 7.3.4 to prove

semaphore1 =ctx semaphore2 : Semaphore. (7.4)

Nevertheless, this contextual equivalence does hold. An informal argument

for this makes use of the following relation r : Bool ↔ Int between values

of type Bool and of type Int.

r
def
= {(true,m) |m = (−2)n for some even n ≥ 0}

∪ {(false,m) |m = (−2)n for some odd n ≥ 0}.

Write si for the second component of semaphorei (i = 1,2). Then
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• s1.bit evaluates to true; s2.bit evaluates to 1; and (true,1) ∈ r ;

• if (t1,t2) ∈ r , then (s1.flip)t1 and (s2.flip)t2 evaluate to a pair of

values which are again r ­related;

• if (t1,t2) ∈ r , then (s1.read)t1 and (s2.read)t2 evaluate to the same

boolean value.

The informal argument for the contextual equivalence (7.4) goes as follows:

“any context t[−] which is well­typed whenever its hole ‘−’ is filled with a

term of type Semaphore can only make use of a term placed in its hole by

opening it as an abstract pair {X,x} and applying the methods bit, flip,

and read in some combination; therefore the above observations about r

are enough to show that t[semaphore1] and t[semaphore2] always have the

same evaluation behavior.” 2

The validity of this informal argument and in particular the assumptions

it makes about the way a context can “use” its hole are far from immediate

and need formal justification. Leaving that for later, at least we can state the

relational principle a bit more precisely.

7.3.6 Principle [Extensionality for ∃­types, Final Version]: For each existen­

tial type E
def
= {∃X,T}, types T1, T2, and values v1, v2, if there is a relation

r : T1 ↔ T2 between terms of type T1 and of type T2, such that (v1,v2) ∈ T[r],

then ({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T}. 2

Evidently this principle presupposes the existence of an “action” of types on

term­relations that sends relations r : T1 ↔ T2 to relations T[r] : [X ,

T1]T ↔ [X , T2]T and with certain other properties. It is the definition of

this action that is at the heart of the matter. It has to be phrased with some

care in order for the above extensionality principle to be valid for languages

involving non­termination of evaluation (through the presence of fixpoint re­

cursion for example). We will give a precise definition in §7.6 (Definition 7.6.9)

for a language combining impredicative polymorphism with fixpoint recur­

sion at the level of terms. How best to define such relational actions in the

presence of recursion at the level of types is still a matter for research (see

Exercise 7.8.1).

7.3.7 Note: Principle 7.3.4 generalizes Principle 7.3.3, because if T1 = T2, then the

identity function i
def
= λx:T1.x is a bijection T1 � T2 satisfying

(T(i) v) =ctx v (for any v)
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so that v1 =ctx v2 implies (T(i) v1) =ctx v2. Principle 7.3.6 generalizes Prin­

ciple 7.3.4, because each bijection i : T1 � T2 can be replaced by its graph

ri
def
= {(u1,u2) | i u1 =ctx u2}

which in fact has the property that (v1,v2) ∈ T[ri] if and only if (T(i) v1) is

contextually equivalent to v2. 2

As mentioned in the Introduction, Principle 7.3.6 is an operational gen­

eralization of similar principles for the denotational semantics of abstract

datatypes over the simply typed lambda calculus (Mitchell, 1991a) and rela­

tionally parametric models of the polymorphic lambda calculus (Plotkin and

Abadi, 1993). It permits many examples of contextual equivalence at existen­

tial types to be proved rather easily. Nevertheless, we will see in §7.7 that it is

incomplete for the particular ML­like language we consider here, in the sense

that ({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T} can hold even though

there is no relation r for which (v1,v2) ∈ T[r] holds (see Example 7.7.4).

7.4 The Language

In this section we define a small, ML­like programming language that we will

use in the rest of the chapter. It combines Girard’s System F (1972) (in other

words, the polymorphic lambda calculus of Reynolds [1974]) with recursively

defined functions, record types and ground types; in common with ML (Mil­

ner, Tofte, Harper, and MacQueen, 1997), evaluation order is strict (i.e., left­to­

right, call­by­value). We will call the language FML. Its syntax and type system

are specified in Figure 7­1 and its operational semantics in Figure 7­2.

Syntax

In Figure 7­1, X and x respectively range over disjoint countably infinite sets

of type variables and value variables; l ranges over a countably infinite set

of field labels; c ranges over the constants true, false and n (for n ∈ Z);

Gnd is either the type of booleans Bool or the type of integers Int; and op

ranges over a fixed collection of arithmetic and boolean operations (such as

+, =, not, etc).

To simplify the definition of the language’s operational semantics we em­

ploy the now quite common device of using a syntax for terms that is in a

“reduced” (or “A­normal”) form, with all sequential evaluation expressed via

let­expressions. For example, the general form of (left­to­right, call­by­value)

function application is coded by

t1 t2
def
= let x1=t1 in (let x2=t2 in x1 x2). (7.5)
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Syntax

t ::= terms:

v value

if v then t else t conditional

op(vi
i∈1..n) operation

v v application

v.l projection

v T type application

let {*X,x}=v in t unpacking

let x=t in t sequencing

v ::= values:

x value variable

c constant

fun x(x:T)=t:T recursive function

{li=vi
i∈1..n} record value

λX.v type abstraction

{*T,v} as {∃X,T} package value

T ::= types:

X type variable

Gnd ground type

T→T function type

{li:Ti
i∈1..n} record type

∀X.T universally quantified type

{∃X,T} existentially quantified type

Γ ::= typing contexts:

∅ empty context

Γ , x:T non­empty context

Γ , X non­empty context

Typing terms Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ ` c : Typeof (c) (T­Const)

Γ , f:T, x:T1 ` t : T2 T = T1→T2

Γ ` fun f(x:T1)=t:T2 : T
(T­Fun)

(Γ ` vi : Ti) i∈1..n

Γ ` {li=vi
i∈1..n} : {li:Ti

i∈1..n}
(T­Rcd)

Γ , X ` v : T X ∉ ftv(Γ)

Γ ` λX.v : ∀X.T
(T­Tabs)

Γ ` v1 : [X, T1]T T′ = {∃X, T}

Γ ` {*T1,v1} as T′ : T′
(T­Pack)

Γ ` v : Bool

Γ ` t1 : T Γ ` t2 : T

Γ ` if v then t1 else t2 : T
(T­If)

op:Gnd1,...,Gndn→Gnd

(Γ ` vi : Gndi) i∈1..n

Γ ` op(vi
i∈1..n) : Gnd

(T­Op)

Γ ` v1 : T1→T2 Γ ` v2 : T1

Γ ` v1 v2 : T2

(T­App)

Γ ` v : {li:Ti
i∈1..n}

Γ ` v.lj : Tj
(T­Proj)

Γ ` v : ∀X.T

Γ ` v T1 : [X, T1]T
(T­Tapp)

Γ , X, x:T ` t : T1

X ∉ ftv(Γ ,T1) Γ ` v : {∃X,T}

Γ ` let {*X,x}=v in t : T1

(T­Unpack)

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T­Seq)

Figure 7­1: FML syntax and typing
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As a further simplification, function abstraction and recursive function dec­

laration have been rolled into the one form fun f(x:T1) = t:T2, which corre­

sponds to the expressions

let fun f (x:T1) = t:T2 in f end in Standard ML

or let rec f (x:T1) = t:T2 in f in Ocaml.

Ordinary function abstraction can be coded as

λx:T1.t
def
= fun f(x:T1) = t:T2 (7.6)

where f does not occur freely in t (and T2 is the type of t, given f has type

T1→T2 and x has type T1). In what follows we shall use the abbreviations (7.5)

and (7.6) without further comment. We shall also use infix notation for appli­

cation of constant arithmetic and boolean operators such as +, =, etc.

7.4.1 Remark [Value­restriction]: Note that the operation λX.(−) of polymor­

phic generalization is restricted to apply only to values. This is a real re­

striction since for a non­value term t, one cannot define λX.t to be the term

let x=t in λX.x, since the latter will in general be an ill­typed term. In an ML­

like language λX.t is not yet fully evaluated if t is a non­value; and thus eval­

uation must go under type abstraction λX.(−) and work on terms at types

with free type variables. By imposing the restriction that λX.t is only well­

formed when t is a value we can restrict attention to the evaluation of closed

terms of closed type, simplifying the technical development. The restriction

does not seem to affect the expressiveness of FML in practice and is compara­

ble to the “value restriction” on let­bound polymorphism used in the 1997

revision of Standard ML (Milner et al., 1997) and in Objective Caml (Leroy,

2000). However, this restriction does have an effect on the properties of FML.

For example, with the restriction the type∀X.X contains no closed values (see

Exercise 7.7.6); whereas without the restriction there are closed values of that

type, such as λX. (fun f(x:Bool) = f x : X) true. The “emptiness” of∀X.X

plays a role in the properties explored in Example 7.7.4 and Remark 7.7.7. 2

Operational Semantics

Although we do not do so, the operational semantics of FML could be speci­

fied in the style of the Definition of Standard ML (Milner, Tofte, Harper, and

MacQueen, 1997) as a syntax­directed, inductively defined relation between

terms and values.3 Here we are interested primarily in the notion of contex­

3. That Definition uses environments assigning values to value variables. For reasons of tech­

nical convenience we eliminate the use of environments by substituting them into the term

and only considering the evaluation relation between closed terms and values.
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Frame stack syntax

S ::= frame stacks:

Id nil stack

S ◦ (x.t) stack cons

Typing frame stacks Γ ` S : T1 Ç T2

Γ ` Id : T Ç T (S­Nil)

Γ , x:T1 ` t : T2 Γ ` S : T2 Ç T3

Γ ` S ◦ (x.t) : T1 Ç T3

(S­Cons)

Primitive reductions t1 ; t2

if true then t1 else t2

; t1
(R­IfTrue)

if false then t1 else t2

; t2
(R­IfFalse)

the value of op(ci i∈1..n) is c

op(ci
i∈1..n) ; c

(R­Op)

v1 is fun f(x:T1)=t:T2

v1 v2 ; [f, v1][x, v2]t
(R­AppAbs)

{li=vi
i∈1..n}.j ; vj (R­ProjRcd)

(λX.v)T ; [X, T]v (R­TappTabs)

v is {*T1,v1} as {∃X,T}

let {*X,x}=v in t

; [X, T1][x, v1]t

(R­UnpackPack)

Termination 〈S, t〉 ↓ and t ↓

〈Id,v〉 ↓ (S­NilVal)

〈S, [x, v]t〉 ↓

〈S ◦ (x.t),v〉 ↓
(S­ConsVal)

〈S ◦ (x.t2),t1〉 ↓

〈S,let x=t1 in t2〉 ↓
(S­Seq)

t1 ; t2 〈S,t2〉 ↓

〈S,t1〉 ↓
(S­Red)

〈Id,t〉 ↓

t ↓
(Term)

Figure 7­2: FML operational semantics

tual equivalence (Definition 7.3.2) that this evaluation relation determines by

observing the results of evaluating terms in context. Because evaluation in

FML is strict and the language has a sufficiently expressive collection of con­

structs for deconstructing values, it turns out that the notion of contextual

equivalence is not affected much by the choice of what to observe of evalua­

tion. Most reasonable choices give rise to the same equivalence as the one we

adopt (see Exercise 7.5.10 below), which is based upon observing termination:

whether or not a term evaluates to some value, we care not which. So instead

of defining the relation of evaluation between terms and values, we proceed

directly to a definition of the termination relation, t ↓, for FML. This is given

in Figure 7­2, using an auxiliary notion of frame stack. (The conventions and

notations used in Figure 7­2 in connection with binding, free variables and

substitution are summarized in Figure 7­3.)

Frame stacks are finite lists of individual “evaluation frames.” They provide

a convenient syntax for the notion of evaluation context E[−] (Felleisen and

Hieb, 1992; Wright and Felleisen, 1994). Every closed term can be decomposed
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Binding constructs

let {*X,x}=v in (−)

let x=t in (−)

fun f(x:T1)=(−:T2)

λX.(−)

∀X.(−)

{∃X,(−)}

S ◦ (x.(−))

We identify expressions up to renaming of

bound value and type variables.

Notation for free variable sets

ftv(E) is the finite set of free type variables

of the expression E (a type, a term, or a

frame stack);

fv(E) is the finite set of free value variables

of an expression E (a term, or a frame stack,

but not a type, since types do not contain

occurrences of value variables).

Closed types, terms and frame stacks

A type T is closed if ftv(T) = ∅.

A term or frame stack E is closed if fv(E) =

∅ (even if ftv(E) 6= ∅).

Notation for substitution

[X, T]E denotes the result of capture­

avoiding substitution of a type T for all free

occurrences of a type variable X in E (a type,

a term, or a frame stack);

[x, v]E denotes the result of capture­

avoiding substitution of a value v for all free

occurrences of the value variable x in a term

or frame stack E.

(Note that as their name suggests, value variables

stand for unknown values—the substitution of a

non­value term for a variable makes no sense syn­

tactically, in that it may result in an ill­formed ex­

pression.)

Figure 7­3: Binding, free variables and substitution

uniquely as E[t] where the evaluation context E[−] is a context with a unique

hole (−) occurring in the place where the next step of evaluation (called a

primitive reduction in Figure 7­2), if any, will take place. With FML’s reduced

syntax, such evaluation contexts turn out to be just nested sequences of the

let­construct

E[−] = let x1=(...(let xn=(−) in tn)...) in t1.

The corresponding frame stack

S = Id ◦ (x1.t1) ◦ · · · ◦ (xn.tn)

records this sequence as a list of evaluation frames, xi.ti (with free occur­

rences of xi in ti being bound in xi.ti). Under this correspondence it can be

shown that E[t] evaluates to some value in the standard evaluation­style (or

“big­step”) structural operational semantics if and only if 〈S,t〉 ↓ holds, for

the relation 〈−,−〉↓ defined in Figure 7­2. Not only does the use of frame
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stacks enable a conveniently syntax­directed inductive definition of termina­

tion, but also frame stacks play a big role in §7.6 when defining the logical

relation that we use to establish properties of FML contextual equivalence.

7.4.2 Exercise [Recommended, ««]: Consider a relation 〈S1,t1〉 -→ 〈S2,t2〉 de­

fined by cases according to the structure of the term t1 and the frame stack

S1, as follows:

• 〈S ◦ (x.t),v〉 -→ 〈S, [x, v]t〉

• 〈S,let x=t1 in t2〉 -→ 〈S ◦ (x.t2),t1〉

• 〈S,t1〉 -→ 〈S,t2〉, if t1 ; t2.

Show that

〈S′@S,t〉 ↓ a (∃v) 〈S,t〉 -→
∗
〈Id,v〉 & 〈S′,v〉 ↓ (7.7)

where -→∗ denotes the reflexive­transitive closure of the -→ relation, and

S′@S is the frame stack obtained by appending the two lists of evaluation

frames S′ and S. Deduce that t ↓ holds if and only if there is some value v

with 〈Id,t〉 -→∗ 〈Id,v〉. 2

Typing

We will consider the termination relation only for frame stacks and terms

that are well­typed. A term t is well­typed with respect to a particular typing

context Γ if a typing judgment

Γ ` t : T (7.8)

can be derived for some type T using the rules in Figure 7­1. We identify

typing contexts Γ up to rearranging their constituent hypotheses (“X” or “x :

X”) and eliminating duplicates. Thus a typical typing context looks like

Γ = X1, . . . , Xm, x1 : T1, . . . , xn : Tn

where the type variables Xi and the value variables xj are all distinct (and

m = 0 or n = 0 is allowed). The typing judgments that are derivable from

the rules all have the property that the free type variables of T and each Tj

occur in the set {X1, . . . , Xm}, and the free value variables of t occur in the set

{x1, . . . , xn}. This is ensured by including some explicit side­conditions about

free variable occurrences in the typing rules (T­Abs) and (T­Unpack). In TAPL,

Chapters 23 and 24, such side­conditions are implicit, being subsumed by
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extra well­formedness conditions for typing judgments. Also, we have chosen

to include sufficient explicit type information in terms to ensure that for any

given Γ and t, there is at most one T for which (7.8) holds. Apart from such

minor differences, the rules in Figure 7­1 for inductively generating the valid

FML typing judgments are all quite standard.

The judgment for typing frame stacks takes the form

Γ ` S : T1 Ç T2 (7.9)

where, in terms of the evaluation context corresponding to S, T2 is the overall

type of the context, given that T1 is the type of the hole. The rules for gen­

erating this judgment are given in Figure 7­2. Unlike for terms, we have not

included explicit type information in the syntax of frame stacks; for example,

Id is not tagged with a type. However, it is not hard to see that, given Γ , S,

and T1, there is at most one T2 for which (7.9) holds. This property is enough

for our purposes, since the argument type of a frame stack will always be

supplied in any particular situation in which we use it.

7.4.3 Exercise [«, 3]: Write Γ ` 〈S,t〉 : T to mean that Γ ` S : T′ Ç T and Γ ` t :

T′ hold for some type T′. Using the relation -→ from Exercise 7.4.2, show that

if ∅ ` 〈S1,t1〉 : T and 〈S1,t1〉 -→ 〈S2,t2〉, then ∅ ` 〈S2,t2〉 : T. 2

Unwinding Recursive Functions

In what follows we will need a finiteness property of recursively defined func­

tions with respect to the termination relation. This unwinding property, as

it is called, is a syntactic analog of the fact that the denotation of a re­

cursively defined function is constructed as the least upper bound (lub) of

finite approximations obtained by successively unfolding its definition start­

ing with the bottom denotation, i.e., the totally undefined partial function.

This gives rise to the useful principle of Scott induction in denotational se­

mantics: given an admissible property of denotations, i.e., one closed under

the formation of lubs of increasing chains, to show that it holds of the deno­

tation of recursively defined data it suffices to show that it holds of bottom

and is closed under application of the function that defines the data as a

fixed point. Here we use a syntactic analog of Scott induction for recursively

defined functions, fun f(x:T1) = u:T2, in order to prove the “fundamental

property” (Lemma 7.6.17) of the logical relation constructed in §7.6.

The proof of the unwinding property that we give here is made easier by

our syntax­directed definition of termination using frame stacks. For state­

ments and proofs of similar properties see for example: Mason, Smith, and

Talcott (1996), Section 4.3, Pitts and Stark (1998), Theorem 3.2, Birkedal and

Harper (1999), Section 3.1, and Lassen (1998), Section 4.5.
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7.4.4 Theorem [Unwinding]: Given any closed recursive function value F of the

form fun f(x:T1)=u:T2, define the followings abbreviations4 :

F0
def
= fun f(x:T1) = (f x) : T2

Fn+1
def
= fun f(x:T1) = [f, Fn]u : T2

Thus F0 is a closed function value describing a function of type T1→T2 that

diverges when applied to any argument, and the Fn are obtained from this

by repeatedly substituting for the the value variable f in the body u of the

original function value F. Then for all terms t containing at most f free we

have [f, F]t ↓ if and only if (∃n) [f, Fn]t ↓. 2

Proof: By definition of the relation t ↓ in terms of the relation 〈S,t〉 ↓ (via

rule (Term) in Figure 7­2), it suffices to prove the more general property that

for all terms t and frame stacks S (containing at most f free) we have

〈[f, F]S, [f , F]t〉 ↓ a (∃n) 〈[f, Fn]S, [f , Fn]t〉 ↓ (7.10)

The proof of (7.10) is via a series of straightforward, if somewhat tedious,

inductions that we leave as an exercise. 2

7.4.5 Exercise [«««, 3]: This exercise leads you through a proof of (7.10). First

prove that

〈[f, Fn]S, [f, Fn]t〉 ↓ ⇒ 〈[f, F]S, [f , F]t〉 ↓ (7.11)

holds for all n, S and t by induction on the derivation of 〈[f , Fn]S, [f ,

Fn]t〉 ↓ from the rules in Figure 7­2. Conversely show that

〈[f, F]S, [f , F]t〉 ↓ ⇒ (∃n) 〈[f, Fn]S, [f, Fn]t〉 ↓ (7.12)

holds for all S and t, by induction on the derivation of 〈[f, F]S, [f, F]t〉 ↓

from the rules. To do this, you will first need to prove by induction on n that

〈[f, Fn]S, [f, Fn]t〉 ↓ ⇒ 〈[f, Fn+1]S, [f, Fn+1]t〉 ↓ (7.13)

holds for all n, S and t; the base case n = 0 involves yet another induction,

this time over the derivation of 〈[f, F0]S, [f , F0]t〉 ↓ from the rules. 2

4. Note that in the definition of Fn+1 , the outer binding instance of f is a dummy, since f does

not occur free in [f, Fn]u.
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7.5 Contextual Equivalence

Definition 7.3.2 gave an informal definition of the notion of contextual equiv­

alence that applies to any (typed) programming language. In giving a precise

definition of this notion for the FML language we will take the more abstract,

relational approach of Gordon (1998) and Lassen (1998) that avoids the ex­

plicit use of program contexts t[−] in favor of congruence relations. For one

thing, program contexts are an inconveniently concrete notion, because sub­

stitution of terms t′ for the hole “−” in a context t[−] to produce a term

t[t′] may involve the capture of free variables in t′ by binders in t[−]. For

example, when we replace the hole “−” in the context fun f(x:T) = f [−] by

the term f x, its free value variables are captured by the fun­binder. Con­

sequently, contexts have to be treated more concretely than terms since re­

naming their bound variables may not preserve their meaning. For example,

if we identified fun f(x:T) = f [−] with fun g(x:T) = g [−] (where f and g

are distinct value variables), then we should have to identify the results of

filling the hole with f x, that is, we should have to identify the syntactically

unequal terms fun f(x:T) = f(f x) and fun g(x:T) = g(f x). But more than

this, the abstract treatment of contextual equivalence that we use focuses at­

tention upon the key features of this kind of program equality, namely that it

is a congruence and is “adequate” for observing termination. In a nutshell, we

will define contextual equivalence to be the largest type­respecting congru­

ence relation between FML terms that is adequate for observing termination.

7.5.1 Definition: A type­respecting binary relation between FML terms is a set R

of quadruples (Γ ,t,t′,T), each consisting of a typing context, two terms and

a type satisfying Γ ` t : T and Γ ` t′ : T. Figure 7­4 defines the properties

of reflexivity, symmetry, transitivity, substitutivity, and compatibility for such

relations; R has one of these properties if it is closed under the axioms and

rules under the corresponding heading in the figure. In these figures, and

elsewhere, we write Γ ` t R t′ : T instead of (Γ ,t,t′,T) ∈ R. We say that R is

• an equivalence relation if it has the reflexivity, symmetry and transitivity

properties;

• a congruence relation if it is an equivalence relation with the substitutivity

and compatibility properties;

• adequate (for the termination relation ↓ defined in Figure 7­2) if whenever

∅ ` t R t′ : T holds, then t ↓ holds if and only if t′ ↓ does. 2

7.5.2 Definition: We will need to use the following constructions on type­res­

pecting binary relations.
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Reflexivity

Γ ` t : T

Γ ` t R t : T

Symmetry

Γ ` t R t′ : T

Γ ` t′ R t : T

Transitivity

Γ ` t R t′ : T Γ ` t′ R t′′ : T

Γ ` t R t′′ : T

Substitutivity

Γ ` v R v′ : T1 Γ , x : T1 ` t R t′ : T2

Γ ` [x, v]t R [x, v′]t′ : T2

Γ , X ` t R t′ : T

Γ ` [X, T1]t R [X, T1]t′ : [X, T1]T

Compatibility

(x:T) ∈ Γ

Γ ` x R x : T

Γ ` c R c : Typeof (c)

Γ , f:T1→T2, x:T1 ` t R t′ : T2

Γ ` fun f(x:T1)=t:T2 R

fun f(x:T1)=t
′:T2 : T1→T2

(Γ ` vi R v′i : Ti) i∈1..n

Γ ` {li=vi
i∈1..n} R {li=v

′
i
i∈1..n}

: {li:Ti
i∈1..n}

Γ , X ` v R v′ : T X ∉ ftv(Γ)

Γ ` λX.v R λX.v′ : ∀X.T

Γ ` v1 R v′1 : [X, T1]T

Γ ` {*T1,v1} as {∃X,T} R

{*T1,v
′
1} as {∃X,T} : {∃X,T}

Γ ` v R v′ : Bool

Γ ` t1 R t′1 : T Γ ` t2 R t′2 : T

Γ ` if v then t1 else t2 R

if v′ then t′1 else t
′
2 : T

op:Gnd1,...,Gndn→Gnd

(Γ ` vi R v′i : Gndi) i∈1..n

Γ ` op(vi
i∈1..n) R op(v′i

i∈1..n) : Gnd

Γ ` v1 R v′1 : T1→T2 Γ ` v2 R v′2 : T1

Γ ` v1 v2 R v′1 v
′
2 : T2

Γ ` v R v′ : {li:Ti
i∈1..n}

Γ ` v.lj R v′.lj : Tj

Γ ` v R v′ : ∀X.T

Γ ` v T1 R v′ T1 : [X, T1]T

Γ , X, x:T ` t R t′ : T1

X ∉ ftv(Γ ,T1) Γ ` v R v′ : {∃X,T}

Γ ` let {*X,x}=v in t R

let {*X,x}=v′ in t′ : T1

Γ ` t1 R t′1 : T1 Γ , x:T1 ` t2 R t′2 : T2

Γ ` let x=t1 in t2 R let x=t′1 in t′2 : T2

Figure 7­4: Properties of a type­respecting relation R between FML terms

(i) The identity relation is Id
def
= {(Γ ,t,t,T) | Γ ` t : T}.

(ii) The reciprocal of the relation R is Rop def
= {(Γ ,t′,t,T) | Γ ` t R t′ : T}.

(iii) The composition of relations R1 and R2 is

R1 ◦ R2
def
= {(Γ ,t,t′′,T) | ∃t′. Γ ` t R1 t

′ : T & Γ ` t′ R2 t
′′ : T}.
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(iv) The transitive closure of the relation R is the countable union R+
def
=⋃

i∈N Ri , where R0 = R and Ri+1 = R ◦Ri .

(v) The open extension of the relation R is denoted R◦ and consists of all

quadruples (Γ ,t,t′,T) such that ∅ ` σ(t) R σ(t′) : σ(T) holds for all

Γ ­closing substitutions σ . If Γ = X1, . . . ,Xm, x1 : T1, . . . ,xn : Tn, then a Γ ­

closing substitution is given by a function [Xi , Ti | i = 1..m] mapping the

type variables Xi to closed types Ti and by a function [xj , vj | j = 1..n]

mapping the value variables xj to closed values vj of appropriate type,

namely satisfying ∅ ` vj : [Xi , Ti | i = 1..m]Tj .

(Note that R◦ only depends on the quadruples of the form (∅,t,t′,T) in

R.) 2

We wish to define contextual equivalence to be the largest adequate con­

gruence relation, but it is not immediately clear why a largest such relation

exists. Therefore we give a theorem rather than a definition.

7.5.3 Theorem [FML contextual equivalence, =ctx]: There exists a largest type­

respecting binary relation between FML terms that is a congruence and ade­

quate. We call it contextual equivalence and write it =ctx. 2

Proof: The proof makes use of the following series of facts, only the last of

which is not entirely straightforward to prove (see Exercise 7.5.4).

(i) The identity relation Id is an adequate congruence relation.

(ii) The collection of adequate relations is closed under taking unions.

(iii) Every compatible relation is reflexive, i.e., contains Id.

(iv) The set of all of compatible relations is closed under the operations

of composition and reciprocation; similarly for the set of all substitutive

relations and the set of all adequate relations.

(v) If the union of a non­empty family of compatible relations is transi­

tive, it is also compatible; similarly, if the union of a non­empty family of

reflexive and substitutive relations is transitive, it is also (reflexive and)

substitutive.

Let =ctx be the union of the family of relations that are adequate, compatible

and substitutive. Note that this family is non­empty by (i). By (ii), =ctx is ad­

equate. So it suffices to show that it is a congruence relation. It is certainly

reflexive by (i); and (iv) implies that it is also symmetric and transitive. So it

just remains to show that it is compatible and substitutive, and this follows

from (v), whose proof needs (iii). 2
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7.5.4 Exercise [««]: Prove properties (iii) and (v) stated in the above proof. 2

It is not easy to use either the formulation in terms of contexts in Defi­

nition 7.3.2 or the more abstract characterisation of Theorem 7.5.3 to prove

that a particular pair of terms are contextually equivalent. For example, it is

not easy to see from these characterisations that terms in the primitive reduc­

tion relation of Figure 7­2 are contextually equivalent (Corollary 7.5.8). That

this is so follows from the coincidence of =ctx with a notion of equivalence

popularized by Mason and Talcott (1991).

7.5.5 Definition [ciu­Equivalence, =ciu]: Two closed FML terms belonging to the

same (closed) type are ciu­equivalent if they have the same termination be­

havior when they are paired with any frame stack (a “use” of the terms);

the relation is extended to open terms via closing substitutions (or “closed

instantiations”—thus we arrive at an explanation of the rather cryptic name

for this equivalence).

More formally, we define =ciu to be the type­respecting relation R◦ (us­

ing the operation from Definition 7.5.2(v)), where R consists of quadruples

(∅,t,t′,T) satisfying ∅ ` t : T, ∅ ` t′ : T, and ∀S. 〈S,t〉 ↓ a 〈S,t′〉 ↓. 2

7.5.6 Lemma: For any frame stack S and term t, define a term S[t] by induction of

the length of the stack S as follows:

Id[t]
def
= t

S ◦ (x.t′)[t]
def
= S[let x=t in t′]


 (7.14)

Then 〈S,t〉 ↓ if and only if S[t]↓ (i.e., 〈Id, S[t]〉 ↓). 2

Proof: This is proved by induction on the length of S. The base case S = Id

is trivial. The induction step follows from the fact that 〈S,let x=t in t′〉 ↓

holds if and only if it was derived using rule (S­Seq) in Figure 7­4, if and only

if 〈S ◦ (x.t′),t〉 ↓ holds. 2

7.5.7 Theorem [CIU Theorem for FML]: The contextual and ciu­equivalence rela­

tions coincide. 2

Proof: We first show that =ctx is contained in =ciu. Suppose

Γ ` t =ctx t
′ : T. (7.15)

Since=ctx satisfies the substitutivity and reflexivity properties from Figure 7­4,

it follows that

∅ ` σ(t) =ctx σ(t
′) : σ(T) (7.16)
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for any Γ ­closing substitution σ . For any frame stack S, since =ctx satisfies

the compatibility (and reflexivity) properties from Figure 7­4, from (7.16) we

deduce that ∅ ` S[σ(t)] =ctx S[σ(t′)] : σ(T) (using the notation of (7.14)).

Since =ctx is adequate, this means that S[σ(t)]↓ if and only if S[σ(t′)]↓;

hence by Lemma 7.5.6, 〈S,σ(t)〉 ↓ if and only if 〈S,σ(t′)〉 ↓. As this holds for

all σ and S, we have Γ ` t =ciu t
′ : T, as required.

To complete the proof of the theorem we have to show conversely that

=ciu is contained in =ctx. We can deduce this as a corollary of a stronger

characterisation of =ctx in terms of logical relations (Theorem 7.6.25) that we

establish later; so we postpone the rest of this proof until then. 2

7.5.8 Corollary [Conversions]: The following are valid contextual equivalences:

(i) Γ ` if true then t1 else t2 =ctx t1 : T and

Γ ` if false then t1 else t2 =ctx t2 : T, where Γ ` ti : T for i = 1,2.

(ii) Γ ` op(ci
i∈1..n) =ctx c : Gnd, where c is the value of op(ci i∈1..n) and

Typeof (c) = Gnd.

(iii) Γ ` v1 v2 =ctx [f, v1][x, v2]t : T2,

where v1 = fun f(x:T1)=t:T2.

(iv) Γ ` {li=vi
i∈1..n}.j =ctx vj : Tj ,

where Γ ` {li=vi
i∈1..n} : {li:Ti

i∈1..n}.

(v) Γ ` (λX.v)T1 =ctx [X, T1]v : [X, T1]T, where Γ ` v : ∀X.T.

(vi) Γ ` let {*X,x}=({*T1,v1} as {∃X,T}) in t =ctx [X , T1][x , v1]t :

T2, where Γ , X, x:T ` t : T2 with X ∉ ftv(Γ ,T2).

(vii) Γ ` let x=v in t =ctx [x , v]t : T2, where Γ ` v : T1 and Γ , x:T1 `

t : T2.

(viii) Γ ` let x1=t1 in (let x2=t2 in t) =ctx

let x2=(let x1=t1 in t2) in t : T, where Γ ` t1 : T1,

Γ , x1:T1 ` t2 : T2 and Γ , x2:T2 ` t : T. 2

Proof: These are all ciu­equivalences, so we can just apply Theorem 7.5.7 (us­

ing the difficult half of the theorem whose proof we have postponed to §7.6!).

The ciu­equivalences all follow easily from the definition of the termination

relation (Figure 7­2) except for the last one, where one can apply property (7.7)

from Exercise 7.4.2 to reduce proving (viii) for =ciu to the special case when

t1 is a value: see the following exercise. 2
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7.5.9 Exercise [«, 3]: Given

∅ ` t1 : T1

x1:T1 ` t2 : T2

x2:T2 ` t : T

use property (7.7) to show for all frame stacks S that

〈S ◦ (x1.let x2=t2 in t),t1〉 ↓ iff 〈S ◦ (x2.t) ◦ (x1.t2),t1〉 ↓.

Deduce part (viii) of Corollary 7.5.8. 2

7.5.10 Exercise [««]: Recall from Definition 7.5.1 the notion of an adequate type­

respecting binary relation. Let us call a type­respecting binary relation R

true­adequate if, whenever ∅ ` t R t′ : Bool holds, 〈Id,t〉 -→∗ 〈Id,true〉

holds if and only if 〈Id,t′〉 -→∗ 〈Id,true〉 does. Here -→∗ is the relation de­

fined in Exercise 7.4.2. One can adapt the proof of Theorem 7.5.3 to show that

there is a largest type­respecting binary relation =true
ctx between FML terms that

is a congruence and true­adequate. Show that =true
ctx coincides with contex­

tual equivalence, =ctx. 2

7.6 An Operationally Based Logical Relation

We now have a precise definition of contextual equivalence for FML terms. Be­

fore showing that the Extensionality Principle 7.3.6 holds for existential types

in FML, we need a precise definition of the action of types on term­relations,

r , T[r], mentioned in the principle. That is the topic of this section. We will

end up with a characterisation of =ctx in terms of a logical relation, yielding

several useful extensionality properties of contextual equivalence.

7.6.1 Notation: Let Typ denote the set of closed FML types. Given T ∈ Typ, let

• Term(T) denote the set of closed terms of type T, i.e., those terms t for

which ∅ ` t : T holds;

• Val(T) denote the subset of Term(T) whose elements are values; and

• Stack(T) denote the set of closed frame stacks whose argument type is T,

i.e., those frame stacks S for which ∅ ` S : T Ç T′ for some T′ ∈ Typ.

Given T,T′ ∈ Typ, let

• TRel(T,T′) denote the set of all subsets of Term(T) × Term(T′); we call

its elements term­relations;
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• VRel(T,T′) denote the set of all subsets of Val(T) × Val(T′); we call its

elements value­relations;

• SRel(T,T′) denote the the set of all subsets of Stack(T) × Stack(T′); we

call its elements stack­relations. 2

Note that every value­relation is also a term­relation (since values are par­

ticular sorts of term): VRel(T,T′) ⊆ TRel(T,T′). On the other hand we can

obtain a value­relation from a term­relation just by restricting attention to

values: given r ∈ TRel(T,T′), define r v ∈ VRel(T,T′) by

r v def
= {(v,v′) ∈ Val(T)× Val(T′) | (v,v′) ∈ r}. (7.17)

We will be particularly interested in term­relations r that are indistinguish­

able, as far as termination properties are concerned, from their value restric­

tions, r v . Definition 7.6.3 makes this precise, using a Galois connection be­

tween term­relations and stack­relations. The definition may appear to be

rather mysterious; its nature will emerge as we develop the action of types

on term­relations and its properties. First we recall for the reader what is

meant in general by a “Galois connection.”

7.6.2 Definition: A Galois connection between partially ordered sets (P ,≤P) and

(Q,≤Q) is specified by a pair of functions f : P → Q and g : Q → P satisfying

q ≤Q f (p) if and only if p ≤P g(q), for all p ∈ P and q ∈ Q. 2

7.6.3 Definition [Closed and valuable term­relations]: Let T ∈ Typ and T′ ∈

Typ be closed types. Given a term­relation r ∈ TRel(T,T′), define a stack­

relation r s ∈ SRel(T,T′) by

(S, S′) ∈ r s if and only if for all (t,t′) ∈ r , 〈S,t〉 ↓ holds if and only if

〈S′,t′〉 ↓ does.

Conversely, given a stack­relation s ∈ SRel(T,T′), define a term­relation st ∈

TRel(T,T′) by

(t,t′) ∈ st if and only if for all (S, S′) ∈ s, 〈S,t〉 ↓ holds if and only if

〈S′,t′〉 ↓ does.

Call a term­relation r ∈ TRel(T,T′) closed if it satisfies r = r s t and valuable if

it satisfies r = r v s t . 2

7.6.4 Note: The operator (−)s t is denoted (−)>> in Pitts (1998; 2000). 2
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7.6.5 Lemma: The operations (−)s and (−)t for turning term­relations into stack­

relations and vice versa, form a Galois connection:

s ⊆ r s if and only if r ⊆ st . (7.18)

Hence the operator (−)s t on term­relations is monotone (r1 ⊆ r2 implies

(r1)s t ⊆ (r2)s t ), inflationary (r ⊆ r s t ), and idempotent ((r s t)s t = r s t ). 2

Proof: If s ⊆ r s , then for any (t,t′) ∈ r we have for all (S, S′) ∈ s that

(S, S′) ∈ r s , so 〈S,t〉 ↓ iff 〈S′,t′〉 ↓; hence (t,t′) ∈ st . Thus s ⊆ r s implies

r ⊆ st . The converse implication holds by a similar argument. Once we have

(7.18), the other properties follow by standard arguments true of any Galois

connection, which we give in case the reader has not seen them before.

Thus for any term­relation r , since r s ⊆ r s , from (7.18) we conclude that

r ⊆ r s t ; so (−)s t is inflationary (and symmetrically, so is the operator (−)t s

on stack­relations).

Now we can deduce that (−)s and (−)t are order­reversing. For if r1 ⊆ r2,

then r1 ⊆ r2 ⊆ r
s t
2 , so by (7.18), r s

2 ⊆ r
s
1. Similarly, s1 ⊆ s2 implies st

2 ⊆ s
t
1.

Hence (−)s t is monotone (and so is (−)t s).

Finally, for idempotence, in view of the inflationary property we just have to

show (r s t)s t ⊆ r s t . But applying (7.18) to r s t ⊆ r s t we get r s ⊆ (r s t)s ; applying

the order­reversing operator (−)t to this yields (r s t)s t ⊆ r s t , as required. 2

7.6.6 Corollary: Every valuable term­relation is—in particular—a closed term­

relation. 2

Proof: Note that because (−)s t is idempotent (by the above lemma), any

term­relation of the form r s t is closed. Thus valuable term­relations (ones

satisfying r = r v s t ) are in particular closed. 2

The following exercise establishes a supply of valuable term­relations that

we will need later.

7.6.7 Exercise [Recommended, ««]: Given any value­relation r ∈ VRel(T,T′), show

that r s t is valuable, i.e., satisfies r s t = (r s t)v s t . 2

Closed term­relations (and hence also valuable term­relations) have excel­

lent “admissibility” properties that we record in the following lemma.

7.6.8 Lemma: If r ∈ TRel(T,T′) satisfies r = r s t (and in particular if it is valuable),

then it has the following properties.

Equivalence­respecting If (t,t′) ∈ r ,∅ ` t =ciu t1 : T, and∅ ` t′ =ciu t
′
1 :

T, then (t1,t
′
1) ∈ r .
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Admissibility Given recursive function values F
def
= fun f(x:T1)=u:T2 and

F′
def
= fun f(x:T1)=u

′:T2, let Fn and F′n (n = 0,1, . . .) be their “unwindings,”

as in Theorem 7.4.4. If ([x, Fn]t, [x, F′n]t
′) ∈ r for all n = 0,1, . . ., then

([x, F]t, [x, F′]t′) ∈ r . 2

Proof: Suppose (t,t′) ∈ r , ∅ ` t =ciu t1 : T and ∅ ` t′ =ciu t′1 : T. To see

that (t1,t
′
1) ∈ r , since r = (r s)t , it suffices to show for all (S, S′) ∈ r s that

〈S,t1〉 ↓ iff 〈S′,t′1〉 ↓. But

〈S,t1〉 ↓ iff 〈S,t〉 ↓ (since ∅ ` t =ciu t1 : T)

iff 〈S′,t′〉 ↓ (since (S, S′) ∈ r s and (t,t′) ∈ r )

iff 〈S′,t′1〉 ↓ (since ∅ ` t′ =ciu t
′
1 : T).

For the Admissibility property we apply the Unwinding Theorem. Suppose

([x, Fn]t, [x, F′n]t
′) ∈ r holds for all n = 0,1, . . .. Then for any (S, S′) ∈ r s

we have

〈S, [x, F]t〉 ↓

iff for some n, 〈S, [x, Fn]t〉 ↓ (by Theorem 7.4.4)

iff for some n, 〈S′, [x, F′n]t
′〉 ↓ (since (S, S′) ∈ r s and

([x, Fn]t, [x, F′n]t
′) ∈ r )

iff 〈S, [x, F′]t′〉 ↓ (by Theorem 7.4.4 again)

and therefore ([x, F]t, [x, F′]t′) ∈ (r s)t ; but r s t = r . 2

7.6.9 Definition [Action of types on term­relations]: The action of types on

term­relations takes the following form: if T(X) is a type whose free type

variables lie among the list X = X1, . . . ,Xn, then given a corresponding list

of term relations r1 ∈ TRel(T1,T
′
1), . . . , rn ∈ TRel(Tn,T′n), we define a term

relation T[r] ∈ TRel([X , T]T, [X , T′]T). The definition is by induction on

the structure of T as follows.

Xi[r]
def
= (ri)

v s t

Gnd[r]
def
= (IdGnd)

s t

(T1→T2)[r]
def
= fun(T1[r],T2[r])

s t

{li:Ti
i∈1..n}[r]

def
= {li=Ti[r]

i∈1..n}s t

(∀X.T)[r]
def
= (λr.T[r , r])s t

{∃X,T}[r]
def
= {∃r,T[r , r]}s t
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IdGnd ∈ VRel(Gnd,Gnd)

is {(c,c) | Typeof (c) = Gnd}.

fun(r1, r2) ∈ VRel(T1→T2,T
′
1→T

′
2),

given r1 ∈ TRel(T1,T
′
1) and r2 ∈ TRel(T2,T

′
2),

is defined by:

(v,v′) ∈ fun(r1, r2) if and only if for all

(v1,v
′
1) ∈ (r1)

v , it is the case that

(v v1,v′ v
′
1) ∈ r2.

{li=ri i∈1..n} ∈ VRel({li:Ti i∈1..n},

{li:T
′
i
i∈1..n})

given (ri ∈ TRel(Ti,T
′
i)

i∈1..n),

is defined by:

(v,v′) ∈ {li=ri i∈1..n} if and only if for all

i ∈ 1..n, it is the case that

(v.li ,v′.li) ∈ ri .

λr.R(r) ∈ VRel(∀X.T,∀X.T′),

given R(r) ∈ TRel([X , T1]T, [X , T′1]T
′)) for

r ∈ TRel(T1,T
′
1) and T1,T

′
1 ∈ Typ,

is defined by:

(v,v′) ∈ λr.R(r) if and only if for all

T1,T
′
1 ∈ Typ and all r ∈ TRel(T1,T

′
1), it

is the case that (v T1,v′ T
′
1) ∈ R(r).

{∃r,R(r)} ∈ VRel({∃X,T},{∃X,T′}),

given R(r) ∈ TRel([X , T1]T, [X , T′1]T
′)) for

r ∈ TRel(T1,T
′
1) and T1,T

′
1 ∈ Typ,

is defined by:

(v,v′) ∈ {∃r,R(r)} if and only if there

exist T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1) and

(v1,v
′
1) ∈ R(r) with

v = {*T1,v1} as {∃X,T} and

v′ = {*T′1,v
′
1} as {∃X,T′}.

Figure 7­5: Type­directed constructions on term­relations

In addition to the operations on term­, value­ and stack­relations given in

Definition 7.6.3, these definitions make use of the operations for constructing

value­relations from term­relations given in Figure 7­5. 2

We can use the action of types on term­relations to define a type­respecting

binary relation between open terms (in the sense of Definition 7.5.1) by in­

sisting that if we substitute related terms for the free value variables, the re­

sulting terms are still related. This “mapping related things to related things”

property is the common characteristic of the wide variety of constructs called

logical relations that have arisen since the seminal work of Plotkin (1973) and

Statman (1985) concerning simply typed λ­calculus; see also Chapter 6.

7.6.10 Definition [Logical relation, ∆]: Given Γ ` t : T and Γ ` t′ : T, with

Γ = X1, . . . ,Xm, x1 : T1, . . . ,xn : Tn say, we write Γ ` t ∆ t′ : T to mean that

for all Γ ­closing substitutions σ,σ ′ (cf. Definition 7.5.2(v)) and all families of

term­relations r = (ri ∈ TRel(σ(Xi), σ ′(Xi)) i∈1..m), if (σ(xj), σ ′(xj)) ∈ Tj[r]v

holds for each j = 1, . . . , n, then (σ(t), σ ′(t′)) ∈ T[r]. 2

7.6.11 Remark: Since it is far from straightforward, the form of Definitions 7.6.9

and 7.6.10 deserves some explanation. These definitions embody certain ex­
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tensionality and parametricity properties (see §7.7 and Theorem 7.7.8) that

we wish to show hold for FML contextual equivalence: eventually we show

that the above logical relation ∆ coincides with contextual equivalence (Theo­

rem 7.6.25). To get that coincidence we have to formulate the definition of ∆

so that it satisfies the crucial property of Lemma 7.6.17 below (the so­called

fundamental property of the logical relation) and is adequate (Lemma 7.6.24).

The definition of the action of types on term­relations in Definition 7.6.9 is

carefully formulated to ensure these properties hold.

First of all, note the use of closing substitutions to reduce the logical re­

lation for open terms to that for closed ones. This builds in the “instantia­

tion” aspect of ciu­equivalence that we wish to prove of contextual equiva­

lence. (It also means that the logical relation has the “monotonicity” prop­

ertymonotonicity property of logical relations considered in Chapter 6.)

Secondly, we want T[r] to always be a closed term­relation, because then it

has the equivalence­respecting and admissibility properties noted in Lemma

7.6.8. This accounts for the use of (−)s t in the definition. The (−)s and (−)t

operators build into the logical relation a delicate interplay between terms

and frame stacks. Of course this relies on the formulation of the operational

semantics of FML in §7­3: although more traditional “big­step” or “small­

step” operational semantics lead to the same termination relation (cf. Exer­

cise 7.4.2), the pairing between frame stacks and terms defined in Figure 7­2

is ideal for our purposes.

Lastly, the call­by­value nature of FML dictates that relational parametric­

ity properties of polymorphic types should be with respect to term­relations

that are valuable; but instead of letting r range over such relations in the

definition of (∀X.T)[r] and {∃X,T}[r] we have used an equivalent formula­

tion in which r ranges over all term­relations (of appropriate type), but type

variables X are interpreted using the closure of the value­restriction opera­

tor (−)v : for in fact as r ranges over all term­relations, r v s t ranges over all

valuable term­relations. 2

The rest of this section is devoted to showing that contextual equivalence

and ciu­equivalence coincide with the logical relation.

7.6.12 Lemma: Each of the term relations T[r] defined in Definition 7.6.9 is valuable,

i.e., satisfies T[r] = T[r]v s t , and hence in particular by Corollary 7.6.6 is

closed. 2

Proof: It is immediate from the definition that each T[r] is of the form r s t

for some value­relation r ; so just apply Exercise 7.6.7. 2

The following lemma helps with calculations involving the action on term­

relations of function types. We give its proof in detail since it typifies the kind
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of reasoning needed when working with the Galois connection given by the

(−)s and (−)t operators. (For related properties for record and ∀­types, see

Exercise 7.6.14.)

7.6.13 Lemma: The operation fun(−,−) from Definition 7.6.9(ii) satisfies

fun(r1, (r2)
s t)s t v = fun(r1, (r2)

s t) (7.19)

fun((r1)
v s t , (r2)

s t) = fun(r1, (r2)
s t). (7.20)

Proof: To prove (7.19), first note that since (−)s t is inflationary (Lemma 7.6.5)

we have fun(r1, (r2)s t) ⊆ fun(r1, (r2)s t)s t ; and since fun(r1, (r2)s t) is a value­

relation, it follows that fun(r1, (r2)s t) ⊆ fun(r1, (r2)s t)s t v . For the reverse

inclusion it suffices to prove

fun(r1, (r2)
s t)s t ⊆ fun(r1, (r2)

s t) (7.21)

and then apply (−)v to both sides (noting that fun(r1, (r2)s t), being a value­

relation, is equal to fun(r1, (r2)s t)v ). For (7.21) we use the following simple

property of the termination relation (Figure 7­2) with respect to application:

〈S ◦ (f.f v1),v〉 ↓ a 〈S,v v1〉 ↓

and hence

(〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓) a

(〈S ◦ (f.f v1),v〉 ↓a 〈S′ ◦ (f.f v′1),v
′〉 ↓) (7.22)

If (v,v′) ∈ fun(r1, (r2)s t) and (v1,v
′
1) ∈ (r1)

v , then we have (v v1,v′ v
′
1) ∈

(r s
2)

t by definition of the fun(−,−) operation on term­relations (Figure 7­5).

So if (S, S′) ∈ (r2)s , then

〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓

and hence by (7.22)

〈S ◦ (f.f v1),v〉 ↓ a 〈S′ ◦ (f.f v′1),v
′〉 ↓.

Since this holds for all (v,v′) ∈ fun(r1, (r2)s t), we deduce that

(S, S′) ∈ (r2)
s & (v1,v

′
1) ∈ (r1)

v ⇒

(S ◦ (f.f v1), S
′ ◦ (f.f v′1)) ∈ fun(r1, (r2)

s t)s.

So for any (S, S′) ∈ (r2)s and (v1,v
′
1) ∈ (r1)

v , since

(S ◦ (f.f v1), S
′ ◦ (f.f v′1)) ∈ fun(r1, (r2)

s t)s
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it follows that if

(v,v′) ∈ fun(r1, (r2)
s t)s t (7.23)

then 〈S ◦ (f.f v1),v〉 ↓ a 〈S′ ◦ (f.f v′1),v
′〉 ↓, and hence by (7.22) it fol­

lows that 〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓. Since this holds for all (S, S′) ∈ (r2)s ,

it follows that (v v1,v′ v
′
1) ∈ (r2)

s t whenever (v1,v
′
1) ∈ (r1)

v . So (v,v′) ∈

fun(r1, (r2)s t) whenever (7.23) holds; thus we have proved the inclusion in

(7.21), as required.

Turning to the proof of (7.20), first note that since since (−)s t is inflation­

ary, we have (r1)v ⊆ (r1)v s t . So since fun(−,−) is clearly order­reversing

in its first argument, we have fun((r1)v s t , (r2)s t) ⊆ fun((r1)v , (r2)s t); and

fun((r1)v , (r2)s t) = fun(r1, (r2)s t), because fun(−,−) only depends upon the

values related by its first argument. Thus to prove (7.20), we just have to show

fun(r1, (r2)
s t) ⊆ fun((r1)

v s t , (r2)
s t). (7.24)

For this we use the following fact about termination

〈S ◦ (x.v x),v1〉 ↓a 〈S,v v1〉 ↓

which is immediate from the definition in Figure 7­2. From this it follows that

(〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓) a

(〈S ◦ (x.v x),v1〉 ↓a 〈S′ ◦ (x.v′ x),v′1〉 ↓) (7.25)

If (v,v′) ∈ fun(r1, (r2)s t) and (v1,v
′
1) ∈ (r1)

v , then by definition of fun(−,−)

we have (v v1,v′ v
′
1) ∈ (r2)

s t . So if (S, S′) ∈ (r2)s , then

〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓

and hence by (7.25) we have

〈S ◦ (x.v x),v1〉 ↓ a 〈S′ ◦ (x.v′ x),v′1〉 ↓.

Since this holds for all (v1,v
′
1) ∈ (r1)

v , we deduce that

(S, S′) ∈ (r2)
s & (v,v′) ∈ fun(r1, (r2)

s t) ⇒

(S ◦ (x.v x), S′ ◦ (x.v′ x)) ∈ (r1)
v s.

So for any (S, S′) ∈ (r2)s and (v,v′) ∈ fun(r1, (r2)s t), since (S ◦ (x.v x), S′ ◦

(x.v′ x)) ∈ (r1)v s , it follows for any (v1,v
′
1) ∈ ((r1)

v s t)v ⊆ ((r1)v s)t that

we have 〈S ◦ (x.v x),v1〉 ↓ a 〈S′ ◦ (x.v′ x),v′1〉 ↓, and hence by (7.25) that

〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓. Since this holds for all (S, S′) ∈ (r2)s , it follows that

(v v1,v′ v
′
1) ∈ (r2)

s t . Hence (v,v′) ∈ fun((r1)v s t , (r2)s t) whenever (v,v′) ∈

fun(r1, (r2)s t), as required for (7.24). 2
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7.6.14 Exercise [Recommended, «]: Show that constructions (iii) and (iv) in Defini­

tion 7.6.9 satisfy

{li=(ri)
s t i∈1..n}s t v = {li=(ri)

s t i∈1..n} (7.26)

(λr.R(r)s t)s t v = λr.R(r)s t . (7.27)

(Cf. the proof of Lemma 7.6.13.) 2

7.6.15 Lemma: For all ground types Gnd, (IdGnd)s t v = IdGnd. 2

Proof: Since (−)s t is idempotent (Lemma 7.6.5), we have IdGnd ⊆ (IdGnd)s t ;

and since IdGnd is a value­relation it follows that IdGnd ⊆ (IdGnd)s t v . To prove

the reverse inclusion, for each constant c of type Gnd consider

diverge
def
= (fun f(b:Bool) = f b : Bool)true

Sc
def
= Id ◦ (x. if x=c then true else diverge).

Note that for all constants c′ of type Gnd

〈Sc,c
′〉 ↓ a c = c′. (7.28)

Furthermore, since (c′,c′′) ∈ IdGnd iff c′ = c′′, we have that (Sc, Sc) ∈ (IdGnd)s ;

so if the constants c and c′ satisfy (c,c′) ∈ (IdGnd)s t , then we have 〈Sc,c〉 ↓a

〈Sc,c′〉 ↓. So by (7.28), (c,c′) ∈ (IdGnd)s t implies c = c′; thus (IdGnd)s t v ⊆

IdGnd. 2

7.6.16 Lemma: The action of types on term­relations of Definition 7.6.9 has the fol­

lowing substitution property. For any types T and T′ with ftv(T) ⊆ X,X and

ftv(T′) ⊆ X, it is the case that ([X, T′]T)[r] = T[T′[r], r]. 2

Proof: This follows by induction on the structure of the type T; for the base

case when T = X, use Lemma 7.6.12. 2

7.6.17 Lemma [Fundamental property of the logical relation]: The logical re­

lation ∆ of Definition 7.6.10 has the substitutivity and compatibility proper­

ties defined in Figure 7­4. 2

Proof: The first substitutivity property in Figure 7­4 (closure under substi­

tuting values for value variables) holds for ∆ because of the way it is de­

fined in terms of closing substitutions. The second substitutivity property

(closure under substituting types for types variables) holds for ∆ because of

Lemma 7.6.16.
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Now consider the compatibility properties given in Figure 7­4. There is one

for each clause in the grammar of FML terms and values (Figure 7­1). We con­

sider each in turn, giving the details in some cases and setting the others as

exercises (with solutions).

Value variables: This case is immediate from the definition of ∆ in Defini­

tion 7.6.10.

Constants: We have to show for each constant c, with Typeof (c) = Gnd

say, that (c,c) ∈ Gnd[r] = (IdGnd)s t . But by definition of IdGnd (Figure 7­5),

(c,c) ∈ IdGnd; and IdGnd ⊆ (IdGnd)s t by Lemma 7.6.5.

Recursive functions: Using property (7.19) and the fact that each T[r] is

valuable and hence closed (Lemma 7.6.12), the compatibility property for re­

cursive functions reduces to proving the property in Exercise 7.6.18.

Record values: This case follows from the property in Exercise 7.6.19.

Type abstractions: This case follows from the property in Exercise 7.6.20.

Package values: This case follows easily from the definition of {∃r,R(r)}

in Figure 7­5, using Lemma 7.6.16.

Conditionals: This case follows from the property in Exercise 7.6.21.

Operations: In view of Lemma 7.6.15, this compatibility property follows

once we prove (op(ci i∈1..n),op(ci i∈1..n)) ∈ (IdGnd)s t for any (suitably typed)

constants ci and operator op. But if the value of op(ci
i∈1..n) is the constant c

say, then for any S

〈S,op(ci
i∈1..n)〉 ↓ a 〈S,c〉 ↓.

Hence for any (S, S′) ∈ (IdGnd′)s (where Gnd′ = Typeof (c)), we have

〈S,op(ci
i∈1..n)〉 ↓a 〈S,c〉 ↓

a 〈S′,c〉 ↓ (since (c,c) ∈ IdGnd′ )

a 〈S′,op(ci
i∈1..n)〉 ↓.

So we do indeed have (op(ci i∈1..n),op(ci i∈1..n)) ∈ (IdGnd)s t .

Applications: This case amounts to proving that if recursive function values

v and v′ satisfy (v,v′) ∈ fun(r1, r2)s t for some closed term­relations r1 and

r2, then for any (v1,v
′
1) ∈ r1 it is the case that (v v1,v′ v

′
1) ∈ r2. But this

property follows immediately from the definition of fun(−,−) using the first

part of Lemma 7.6.13: for

(v,v′) ∈ fun(r1, r2)
s t v

= fun(r1, (r2)
s t)s t v (since r2 is closed)

= fun(r1, (r2)
s t) (by (7.19))

= fun(r1, r2) (since r2 is closed).
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Projections: This case is similar to the previous one, but using property

(7.26) from Exercise 7.6.14 rather than (7.19).

Type applications: This case is similar to the previous one, using property

(7.27) from Exercise 7.6.14.

Unpacking: This case follows from the property in Exercise 7.6.22.

Sequencing: This case follows from the property in Exercise 7.6.23. 2

7.6.18 Exercise [Recommended, «««]: Suppose

F
def
= fun f(x:T1)=t:T2 ∈ Val(T1→T2)

F′
def
= fun f(x:T′1)=t

′:T′2 ∈ Val(T′1→T
′
2)

r1 ∈ TRel(T1,T
′
1)

r2 ∈ TRel(T2,T
′
2)

satisfy r2 = (r2)s t and

([f, v][x, v1]t, [f, v′][x, v′1]t
′) ∈ r2,

for all (v,v′) ∈ fun(r1, r2) and (v1,v
′
1) ∈ (r1)

v .

(7.29)

Use the admissibility property of valuable term­relations established in Lem­

ma 7.6.8 to show that (F,F′) ∈ fun(r1, r2). 2

7.6.19 Exercise [««]: Suppose for i ∈ 1..n that vi ∈ Val(Ti), v
′
i ∈ Val(T′i) and ri ∈

TRel(Ti,T
′
i) with ri = (ri)s t . Putting

v
def
= {li=vi

i∈1..n} ∈ Val({li:Ti
i∈1..n})

v′
def
= {li=v

′
i
i∈1..n} ∈ Val({li:T

′
i
i∈1..n})

show that if (vi ,v
′
i) ∈ ri for i ∈ 1..n, then (v,v′) is in the value­relation

{li=ri i∈1..n} defined in Figure 7­5. 2

7.6.20 Exercise [««]: Let T and T′ be types with at most X free. For each T1,T
′
1 ∈ Typ

and r ∈ TRel(T1,T
′
1) suppose we are given a closed term­relation R(r) in

TRel([X , T1]T, [X , T′1]T
′)) (i.e., R(r) = R(r)s t ). Show that if the values v

and v′ satisfy

X ` v : T

X ` v′ : T′

∀T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1). ([X, T1]v, [X, T′1]v

′) ∈ R(r)

then (λX.v, λX.v′) is in the value­relation λr.R(r) defined in Figure 7­5. 2
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7.6.21 Exercise [««]: Suppose (v,v′) ∈ (IdBool)s t and (t1,t
′
1), (t2,t

′
2) ∈ r , where

r ∈ TRel(T,T′) is closed (i.e., r = (r)s t ). Show that

(if v then t1 else t2,if v′ then t′1 else t′2)

is in r . 2

7.6.22 Exercise [««]: Let T and T′ be types with at most X free. For each T1,T
′
1 ∈ Typ

and r1 ∈ TRel(T1,T
′
1) suppose we are given a closed term­relation R(r1) =

R(r1)s t in TRel([X , T1]T, [X , T′1]T
′)). Suppose we are also given a closed

term­relation r2 = (r2)s t ∈ TRel(T2,T
′
2) for some closed types T2,T

′
2 ∈ Typ.

Show that if the terms t,t′ satisfy

X, x : T ` t : T2

X, x : T′ ` t′ : T′2

∀T1,T
′
1 ∈ Typ, r1 ∈ TRel(T1,T

′
1), (v1,v

′
1) ∈ (r1)

v .

([X, T1][x, v1]t, [X, T1][x, v1]t) ∈ r2

then whenever (v,v′) ∈ {∃r1,R(r1)}s t v , it is also the case that

(let {*X,x}=v in t,let {*X,x}=v′ in t′)

is in r2. 2

7.6.23 Exercise [««]: Suppose we are given r1 ∈ TRel(T1,T
′
1), r2 ∈ TRel(T2,T

′
2) with

r1 valuable (i.e., r1 = (r1)v s t ) and r2 closed (i.e., r2 = (r2)s t ). Show that if the

terms t2,t
′
2 satisfy

x : T1 ` t2 : T2

x : T′1 ` t′2 : T′2

∀(v1,v
′
1) ∈ (r1)

v . ([x, v1]t2, [x, v′1]t
′
2) ∈ r2

then whenever (t1,t
′
1) ∈ r1, it is also the case that

(let x=t1 in t2,let x=t
′
1 in t′2)

is in r2. 2

7.6.24 Lemma [Adequacy]: The logical relation ∆ is adequate (Definition 7.5.1). 2

Proof: Suppose ∅ ` t ∆ t′ : T; we have to show that t ↓ holds iff t′ ↓ does,

or equivalently that

〈Id,t〉 ↓ iff 〈Id,t′〉 ↓. (7.30)
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Unraveling Definition 7.6.10, the assumption that the closed terms t and t′

of closed type T are ∆­related means that (t,t′) ∈ T[], the latter being the

action of the type T on the empty list of term­relations. By Lemma 7.6.12, T[]

is valuable; so (t,t′) ∈ T[]v s t . Hence to prove (7.30), it suffices to show that

(Id, Id) ∈ (T[]v)s ; but for any (v,v′) ∈ T[]v ,

〈Id,v〉 ↓ iff 〈Id,v′〉 ↓

holds trivially by axiom (S­NilVal) in Figure 7­2. 2

We are finally able to put all the pieces together and prove the main result

of this section. At the same time we complete the proof of Theorem 7.5.7.

7.6.25 Theorem [=ctx equals ∆ equals =ciu]: FML contextual equivalence, =ctx, (as

defined in Theorem 7.5.3) coincides with the logical relation ∆ of Defini­

tion 7.6.10 and with ciu­equivalence, =ciu (Definition 7.5.5): Γ ` t =ctx t
′ : T

holds if and only if Γ ` t ∆ t′ : T does, if and only if Γ ` t =ciu t
′ : T does. 2

Proof: It suffices to show that the following chain of inclusions holds:

=ctx

(1)
⊆ =ciu

(3)
⊆ ∆

(2)
⊆ =ctx.

(1) This is the half of Theorem 7.5.7 that we have already proved in §7.5.

(2) We have not yet shown that ∆ is an equivalence relation; and in fact we

will only deduce this once we have shown that it coincides with =ctx and

=ciu (which are easily seen to be equivalence relations). However, we have

shown that ∆ is compatible, substitutive and adequate (Lemmas 7.6.17 and

7.6.24). In the proof of Theorem 7.5.3 we constructed =ctx as the union of

all such type­respecting relations, without regard to whether they were

also equivalence relations; therefore ∆ is contained in =ctx.

(3) Noting how =ciu and ∆ are defined on open terms via substitutions, we

can combine the first part of Lemma 7.6.8 with Lemma 7.6.12 to give

Γ ` t =ciu t
′ : T & Γ ` t′ ∆ t′′ : T ⇒ Γ ` t ∆ t′′ : T. (7.31)

We noted in the proof of Theorem 7.5.3 that every compatible term­relation

is reflexive. (This is easily proved by induction on the structure of terms.)

So since ∆ is compatible (Lemma 7.6.17) it is in particular reflexive. So

we can take t′ = t′′ in (7.31) to deduce that Γ ` t =ctx t′ : T implies

Γ ` t ∆ t′ : T. 2
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7.7 Operational Extensionality

In this section we develop some of the consequences of Theorem 7.6.25.

Now that we know that contextual equivalence coincides with ciu­equivalence

(Theorem 7.5.7), when giving general properties of =ctx we restrict attention

to closed terms of closed type where possible, since the corresponding prop­

erty for open terms can be obtained via closing substitutions.

7.7.1 Theorem [Extensionality for values]: We now give extensionality princi­

ples for the various types of value; for package values, the principle is a for­

malization of the final one discussed in the Introduction (Principle 7.3.6).

1. Constants: Given constants c, c′ of the same ground type, Gnd say, ∅ `

c =ctx c
′ : Gnd holds if and only if c = c′.

2. Functions: Given f:T1→T2, x:T1 ` t : T2 and f:T1→T2, x:T1 ` t′ : T2,

writing v and v′ for the recursive function values fun f(x:T1)=t:T2 and

fun f(x:T1)=t
′:T2 respectively, then ∅ ` v =ctx v′ : T1→T2 if and only

if for all ∅ ` v1 : T1, it is the case that ∅ ` [f , v][x , v1]t =ctx [f ,

v′][x, v1]t′ : T2.

3. Records: Given values ∅ ` vi : Ti and ∅ ` v′i : Ti for i ∈ 1..n, then

∅ ` {li=vi
i∈1..n} =ctx {li=v

′
i
i∈1..n} : {li:Ti

i∈1..n} if and only if for each

i ∈ 1..n, ∅ ` vi =ctx v
′
i : Ti .

4. Type abstractions: Given X ` v : T and X ` v′ : T, then ∅ ` λX.v =ctx

λX.v′ : ∀X.T if and only if for all closed types T′,∅ ` [X, T′]v =ctx [X,

T′]v′ : [X, T′]T.

5. Packages: For any closed existential type {∃X,T}, closed types T1, T2, and

values ∅ ` vi : [X, Ti]T (i = 1,2),

∅ ` {*T1,v1} as {∃X,T} =ctx {*T2,v2} as {∃X,T} : {∃X,T}

holds if there is some term­relation r ∈ TRel(T1,T2) with (v1,v2) ∈ T[r]. 2

Proof:

1. The property for constants follows from Lemma 7.6.15 combined with

Theorem 7.6.25.

2. Suppose for all ∅ ` v1 : T1 that

∅ ` [f, v][x , v1]t =ctx [f, v′][x, v1]t
′ : T2 (7.32)
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where v and v′ are as in part 2 of the theorem. To show ∅ ` v =ctx

v′ : T1→T2, by Theorem 7.6.25 it suffices to show ∅ ` v ∆ v′ : T1→T2,

i.e., that (v,v′) ∈ (T1→T2)[] = fun(T1[],T2[])s t . In fact we show that

(v,v′) ∈ fun(T1[],T2[]). For this we have to prove that if (v1,v
′
1) ∈ T1[]v ,

then (v v1,v′ v
′
1) ∈ T2[]. By Theorem 7.6.25 again, this is the same as

showing: if ∅ ` v1 =ctx v
′
1 : T1, then ∅ ` v v1 =ctx v

′ v′1 : T2. As noted in

Corollary 7.5.8, we can turn the primitive reduction for function applica­

tion into a ciu­equivalence and hence by Theorem 7.6.25 into a contextual

equivalence:

∅ ` v v1 =ctx [f, v][x, v1]t : T2 (7.33)

and similarly for v′ v′1. Therefore we just need to show: if∅ ` v1 =ctx v
′
1 :

T1, then ∅ ` [f , v][x , v1]t =ctx [f , v′][x , v′1]t
′ : T2. But this

follows from the assumption (7.32) using the reflexivity and substitutivity

properties of =ctx. So we have established one half (the difficult half) of

the property in 2. For the converse, if ∅ ` v =ctx v
′ : T1→T2, then for any

∅ ` v1 : T1, the compatibility properties of =ctx give∅ ` v v1 =ctx v
′ v1 :

T2; and then as before, we can compose with (7.33) to get (7.32).

3. We leave the extensionality property for records as an exercise (7.7.2).

4. For the property for type abstractions, suppose

∀T′ ∈ Typ. ∅ ` [X, T′]v =ctx [X, T′]v′ : [X, T′]T. (7.34)

Note that since ∆ coincides with =ctx (Theorem 7.6.25) it is reflexive and

hence X ` v ∆ v : T holds. According to Definition 7.6.10 this means

that for all T1,T
′
1 ∈ Typ and r ∈ TRel(T1,T

′
1), ([X , T1]v, [X , T′1]v) ∈

T[r]. Since T[r] is closed (Lemma 7.6.12), we can combine (7.34) with the

first part of Lemma 7.6.8 (using =ctx in place of =ciu by virtue of Theo­

rem 7.6.25) to conclude that ([X , T1]v, [X, T′1]v
′) ∈ T[r] for all r . Then

using the equivalence in Corollary 7.5.8(v), we have

∀T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1). ((λX.v)T1,(λX.v

′)T′1) ∈ T[r]

and hence (λX.v, λX.v′) is in λr.T[r]. Since λr.T[r] ⊆ (λr.T[r])s t and

the latter is equal to (∀X.T)[] by definition, we have ∅ ` λX.v ∆ λX.v′ :

∀X.T, and hence by Theorem 7.6.25, ∅ ` λX.v =ctx λX.v′ : ∀X.T. So

we have established one half (the difficult half) of the property in 4. The

argument for the other half is similar to that for property 2, using Corol­

lary 7.5.8(v) and the congruence properties of =ctx.
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5. Finally, let us consider the extensionality property for package values.

(Note that unlike the other four, this only gives a sufficient condition for

contextual equivalence; Example 7.7.4 below shows that the condition is

not necessary.) If (v1,v2) ∈ T[r], then from Definition 7.6.9 we have

({*T1,v1} as {∃X,T},{*T2,v2} as {∃X,T}) ∈ {∃r,T[r]}

⊆ {∃r,T[r]}s t

= {∃X,T}[].

Thus ∅ ` {*T1,v1} as {∃X,T} ∆ {*T2,v2} as {∃X,T} : {∃X,T} and we

can apply Theorem 7.6.25 to get the desired contextual equivalence. 2

7.7.2 Exercise [««, 3]: Use Theorem 7.6.25, Corollary 7.5.8 and the definition of

the term­relation {li=ri i∈1..n} in Definition 7.6.9 to deduce extensionality prop­

erty 3 of Theorem 7.7.1. 2

To see how Theorem 7.7.1(5) can be used in practice, we will apply it to

establish the contextual equivalence of Example 7.3.5 from the Introduction.

7.7.3 Example: Recall the type Semaphore and its values semaphore1, semaphore2

from Example 7.3.5. To show∅ ` semaphore1 =ctx semaphore2 : Semaphore

using Theorem 7.7.1(5), it suffices to show that (v1,v2) ∈ T[r] where

T
def
= {bit:X, flip:X→X, read:X→Bool}

v1
def
= {bit=true, flip=λx:Bool.not x, read=λx:Int.x}

v2
def
= {bit=1, flip=λx:Int.0­2*x, read=λx:Int.x >= 0}

and r ∈ VRel(Bool,Int) is

r
def
= {(true,m) |m = (−2)n for some even n ≥ 0} ∪

{(false,m) |m = (−2)n for some odd n ≥ 0}.

Since r is a value­relation, we can use Lemma 7.6.13 to slightly simplify T[r]:

T[r]
def
= {bit=r s t ,flip=fun(r s t , r s t)s t ,read=fun(r s t , Ids t

Bool)
s t}s t

= {bit=r s t ,flip=fun(r , r s t)s t ,read=fun(r , Ids t
Bool)

s t}s t .

So since (−)s t is inflationary, to prove (v1,v2) ∈ T[r], it suffices to show

(true,1) ∈ r

(λx:Bool.not x, λx:Int.0­2*x) ∈ fun(r , r s t)

(λx:Int.x, λx:Int.x >= 0) ∈ fun(r , Ids t
Bool).
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These follow from the definition of r—the first trivially and the second two

once we combine the definition of fun(−,−) with the fact (Lemma 7.6.8)

that closed relations such as r s t and Ids t
Bool respect ciu­equivalence. For ex­

ample, if (v1,v
′
1) ∈ r , then (λx:Bool.not x)v1 and (λx:Int.0­2*x)v′1 are

ciu­equivalent to r ­related values v2 and v′2; then since (v2,v
′
2) ∈ r ⊆ r

s t and

the latter is closed, we have ((λx:Bool.not x)v1,(λx:Int.0­2*x)v
′
1) ∈ r

s t .

As this holds for all (v1,v
′
1) ∈ r , we have (λx:Bool.not x, λx:Int.0­2*x) in

fun(r , r s t). 2

Theorem 7.7.1(5) gives a sufficient condition for contextual equivalence of

package values, but the condition is not necessary: it can be the case that

{* T1, v1} as {∃X, T} is contextually equivalent to {* T2, v2} as {∃X, T}

even though there is no r ∈ TRel(T1,T2) with (v1,v2) ∈ T[r]. The rest of

this section is devoted to giving an example of this unpleasant phenomenon

(based on a suggestion of Ian Stark arising out of our joint work on logical

relations for functions and dynamically allocated names in Pitts and Stark,

1993).

7.7.4 Example: Consider the following types and terms.

P
def
= (X→Bool)→Bool

Q
def
= {∃X,P}

N
def
= ∀X.X

diverge
def
= (fun f(b:Bool) = f b : Bool)true

G
def
= fun g(f:N→Bool) = diverge : Bool

G′
def
= fun g(f:Bool→Bool) =

(if f true then

if f false then diverge else true

else diverge) : Bool.

Thus N is a type with no values (Exercise 7.7.6); G is a function that diverges

when applied to any value of type N→Bool; and G′ is a function that diverges

when applied to any value of type Bool→Bool except ones (such as the iden­

tity function) that map true to true and false to false, in which case it

returns true. We claim that

(i) there is no r ∈ TRel(N,Bool) for which (G,G′) ∈ P[r] holds,

(ii) but nevertheless ∅ ` {*N,G} as Q =ctx {*Bool,G
′} as Q : Q. 2
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Proof: For (i) note that the definition of N implies that Val(N) = ∅, i.e., there

are no closed values of type N (Exercise 7.7.6). So any r ∈ TRel(N,Bool) satis­

fies r v = ∅. Now

P[r]v
def
= ((X→Bool)→Bool)[r]v

def
= fun((X→Bool)[r], Ids t

Bool)
s t v

= fun((X→Bool)[r], Ids t
Bool) using (7.19)

def
= fun(fun(r v s t , Ids t

Bool)
s t , Ids t

Bool)

= fun(fun(r v s t , Ids t
Bool)

s t v , Ids t
Bool) by definition of fun(−,−)

= fun(fun(r v s t , Ids t
Bool), Id

s t
Bool) using (7.19)

= fun(fun(r , Ids t
Bool), Id

s t
Bool) using (7.20)

= fun(fun(r v , Ids t
Bool), Id

s t
Bool) by definition of fun(−,−).

Since r v = ∅, we have fun(r v , Ids t
Bool) = Val(N→Bool)×Val(Bool→Bool); and

we know by Theorem 7.6.25 that Ids t
Bool is the relation {(t,t′) | ∅ ` t =ctx

t′ : Bool}. Therefore

P[r]v = {(v,v′) | ∅ ` v v1 =ctx v
′ v′1 : Bool

for all v1 ∈ Val(N→Bool) and v′1 ∈ Val(Bool→Bool) }.

However,∅ ` G v1 =ctx G
′ v′1 : Bool does not hold if we take v1 and v′1 to be

the values

v1
def
= fun f(x:N) = diverge : Bool

v′1
def
= fun f(x:Bool) = x : Bool

since evaluation of G v1 does not terminate, whereas evaluation of G′ v′1 does.

Therefore (G,G′) ∉ P[r]v , for any r ∈ TRel(N,Bool).

Turning to the proof of (ii), now we know that it cannot be deduced from

the extensionality principle for package values in Theorem 7.7.1, we have to

prove this contextual equivalence by brute force. The termination relation

defined in Fig. 7­2 provides a possible strategy (if rather a tedious one) for

proving ciu­equivalences and hence contextual equivalences—by what one

might call termination induction. Thus to prove (ii) it suffices to prove that

the two terms are ciu­equivalent:

∀S. 〈S,{*N,G} as Q〉 ↓ a 〈S,{*Bool,G′} as Q〉 ↓.

Attempting to do this by induction on the derivation of terminations 〈−,−〉↓

(for all S simultaneously), one rapidly realizes that a stronger induction hy­

pothesis is needed: prove for all frame stacks S and terms t that
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〈[x, {*N,G} as Q]S, [x, {*N,G} as Q]t〉 ↓

if and only if 〈[x, {*Bool,G′} as Q]S, [x, {*Bool,G′} as Q]t〉 ↓.

It is possible to prove this by induction on the definition of the termination

relation in Fig. 7­2 (for all S and t simultaneously). We omit the details except

to note that the only difficult induction step is for the primitive reduction

(R­UnpackPack) in Fig. 7­3 in the case that t is the form let{*X,g}=x in t′.

For that step, one can first show for all frame stacks S and terms t that

〈[X, N][g , G]S, [X , N][g, G]t〉 ↓

if and only if 〈[X, Bool][g, G′]S, [X , Bool][g, G′]t〉 ↓.

This also is proved by induction on the definition of the termination relation.

Once again we omit the details except to note that now the only difficult in­

duction step is for the primitive reduction (R­AppAbs) in the case that t is of

the form g v for some value v. To prove that step one can use Lemma 7.7.5

below. This lemma lies at the heart of the reason why the contextual equiva­

lence in (ii) is valid: if an argument supplied to G′ is sufficiently polymorphic

(which is guaranteed by the existential abstraction), then when specialized to

Bool it cannot have the functionality (true , true, false , false) needed

to distinguish G′ from the divergent behavior of G. 2

7.7.5 Lemma: For any value v satisfying X, g:P ` v : X→Bool, evaluation of G′([X,

Bool][g , G′]v) does not terminate. 2

Proof: To prove this we can use the logical relation from the previous sec­

tion. Consider the following value­relation in VRel(Bool,Bool):

r
def
= {(true,true), (false,false), (true,false)}.

Note that

(X→Bool)[r]v
def
= fun(rv s t , Ids t

Bool)
s t v

(7.20)
= fun(r, Ids t

Bool)
s t v (7.19)

= fun(r , Ids t
Bool) (7.35)

and hence

P[r]v
def
= fun((X→Bool)[r], Ids t

Bool)
s t v = fun((X→Bool)[r]v , Ids t

Bool)
s t v

(7.35)
= fun(fun(r , Ids t

Bool), Id
s t
Bool)

s t v (7.19)
= fun(fun(r , Ids t

Bool), Id
s t
Bool). (7.36)

If (v1,v
′
1) ∈ fun(r , Ids t

Bool), since (true,true), (false,false) ∈ r and Ids t
Bool

is contextual equivalence (Theorem 7.6.25) we get

∅ ` v1 true =ctx v
′
1 true : Bool

∅ ` v1 false =ctx v
′
1 false : Bool.
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So using Corollary 7.5.8(iii) and the congruence properties of =ctx, we have

G′ v1 =ctx (if v1 true then

if v1 false then diverge else true

else diverge)

=ctx (if v
′
1 true then

if v′1 false then diverge else true

else diverge)

=ctx G
′ v′1

Therefore (G′ v1,G′ v
′
1) ∈ Ids t

Bool whenever (v1,v
′
1) ∈ fun(r , Ids t

Bool); and so

(G′,G′) ∈ P[r]v , by (7.36). Hence using Lemma 7.6.17 we have

([X, Bool][g, G′]v, [X, Bool][g , G′]v) ∈ (X→Bool)[r]v

= fun(r , Ids t
Bool) by (7.35).

So since (true,false) ∈ r , we get

([X, Bool][g, G′]v true, [X, Bool][g, G′]v false) ∈ Ids t
Bool.

Thus ([X , Bool][g , G′]v)true and ([X , Bool][g , G′]v)false are

contextually equivalent closed terms of type Bool. Therefore it cannot be

the case that the first evaluates to true and the second to false (cf. Exer­

cise 7.5.10); but in that case, by definition of G′, it must be that evaluation of

G′([X, Bool][g, G′]v) does not terminate. 2

7.7.6 Exercise [«, 3]: By considering the possible typing derivations from the rules

in Figure 7­1, show that there is no value v satisfying ∅ ` v : ∀X.X. (Note

that the syntactic restriction on values of universally quantified type men­

tioned in Remark 7.4.1 plays a crucial role here.) 2

7.7.7 Remark [The role of non­termination]: Example 7.7.4 shows that the log­

ical relation presented here is incomplete for proving contextual equivalence

of FML values of existential type. The example makes use of the fact that, be­

cause of the presence of recursive function values, evaluation of FML terms

need not terminate. However, it seems that the source of the incompleteness

has more to do with the existence of types with no values (such as∀X.X) than

with non­termination. Eijiro Sumii (private communication) has suggested the
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following, “terminating” version of Example 7.7.4:

P
def
= (X→Bool)→Bool

Q
def
= {∃X,P}

N
def
= ∀X.X

H
def
= λf:N→Bool. false

H′
def
= λf:Bool→Bool.

(if f true then

if f false then false else true

else false) : Bool.

Consider a version of FML with only non­recursive function abstractions (i.e.

with λx:T.t rather than fun f(x:T) = t:T′). Evaluation is terminating in this

version. So to be non­trivial, contextual equivalence should be formulated in

terms of observing convergence to the same ground value in all contexts of

ground type. Making corresponding changes to the definition of the opera­

tions (−)s and (−)t on term­ and stack­relations, one could develop a logical

relation for this terminating version of FML. It seems that properties (i) and (ii)

in Example 7.7.4 are also true of H and H′ in this version (the first by the same

argument we gave, but the second by a different argument that nevertheless

hinges on the observation at the end of the proof of Example 7.7.4). We leave

investigating this as an extended exercise for the reader. 2

The proof of Lemma 7.7.5 exploits “relational parametricity” properties of

polymorphic types in FML. In fact Theorem 7.6.25 tells us far more about the

properties of type abstraction values than just the extensionality property of

Theorem 7.7.1(4).

7.7.8 Theorem [Relational parametricity for ∀­types]: Given X ` v : T and

X ` v′ : T, then ∅ ` λX.v =ctx λX.v′ : ∀X.T if and only if for all closed

types T1,T
′
1 ∈ Typ and all term­relations r ∈ TRel(T1,T

′
1) it is the case that

([X, T1]v, [X, T′1]v
′) ∈ T[r]. 2

Proof: By Theorem 7.6.25, we have that ∅ ` λX.v =ctx λX.v′ : ∀X.T iff

∅ ` λX.v ∆ λX.v′ : ∀X.T, i.e., iff (λX.v, λX.v′) ∈ (∀X.T)[] = (λr .T[r])s t .

Since λX.v and λX.v′ are values, the latter is the case iff (λX.v, λX.v′) ∈

(λr .T[r])s t v , and by Lemma 7.6.12 and Exercise 7.6.14 (λr .T[r])s t v = λr.T[r].

Hence ∅ ` λX.v =ctx λX.v′ : ∀X.T iff (λX.v, λX.v′) ∈ λr.T[r]. By definition

(Figure 7­5), this is the case iff for all for all closed types T1,T
′
1 ∈ Typ and

all term­relations r ∈ TRel(T1,T
′
1), ((λX.v)T1,(λX.v′)T

′
1) ∈ T[r]; and the
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latter holds iff ([X , T1]v, [X , T′1]v
′) ∈ T[r], because (λX.v)T1 =ciu [X ,

T1]v and (λX.v′)T′1 =ciu [X , T′1]v
′ (so that we can use Lemmas 7.6.8 and

7.6.12). 2

The force of Theorem 7.7.1(4) is to give a method for establishing that two

type abstraction values are contextually equivalent. By contrast, the force of

Theorem 7.7.8 is to give us useful properties of families of values parameter­

ized by type variables. Given such a value, X ` v : T, since =ctx is reflexive,

we have ∅ ` λX.v =ctx λX.v : ∀X.T; hence the theorem has the following

corollary.

7.7.9 Corollary: Given a value X ` v : T, for all T1,T
′
1 ∈ Typ and all r ∈

TRel(T1,T
′
1), it is the case that ([X, T1]v, [X, T′1]v) ∈ T[r]. 2

Such “relational parametricity” properties can often be exploited for prov­

ing contextual equivalences: we already saw an example in the proof of Lem­

ma 7.7.5 and other examples can be found in Pitts (2000), Bierman, Pitts, and

Russo (2000), and Johann (2002). However, the strict nature of function ap­

plication and type abstraction in FML means that it does not satisfy all the

parametricity properties one might expect. For example, in Pitts (2000), §7, it

is shown that

{∃X,T} � ∀Y.(∀X.T→Y)→Y

holds in the polymorphic version of PCF (Plotkin, 1977) studied in that pa­

per (where � is “bijection up to contextual equivalence”—see Principle 7.3.4).

However this bijection does not hold in general for FML (Exercise 7.7.10).

7.7.10 Exercise [«««]: Consider the type N
def
= ∀X.X from Example 7.7.4 that you

showed has no closed values in Exercise 7.7.6. Show that there cannot exist

values

i ∈ Val({∃X,N}→∀Y.(∀X.N→Y)→Y)

j ∈ Val((∀Y.(∀X.N→Y)→Y)→{∃X,N})

that are mutually inverse, in the sense that

p:{∃X,N} ` j(i p) =ctx p : {∃X,N}

y:∀Y.(∀X.N→Y)→Y ` i(j y) =ctx y : ∀Y.(∀X.N→Y)→Y. 2

7.7.11 Exercise [«««, 3]: Verify the claim made in Note 7.3.7 that Principle 7.3.4 is

a special case of Principle 7.3.6. To do so, you will first have to give a defini­

tion of the action of FML types on bijections mentioned in Principle 7.3.4. 2
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7.8 Notes

This chapter is a revised and expanded version of Pitts (1998) and also draws

on material from Pitts (2000).

In discussing typed operational reasoning we have focused on reasoning

about contextual equivalence of program phrases. Being by construction a

congruence, contextual equivalence permits us to use the usual forms of

equational reasoning (replacing equals by equals) when deriving equivalences

between phrases. However, its definition does not lend itself to establish­

ing the basic laws that are needed to get such reasoning going. We studied

two characterisations of contextual equivalence in order to get round this

problem: ciu­equivalence (Definition 7.5.5) and a certain kind of operationally

based logical relation (Definition 7.6.10).

contextual equivalence!vs. bisimilarity The informal notion of contextual

equivalence (Definition 7.3.2) has been studied for a wide variety of pro­

gramming languages. If the language’s operational semantics involves non­

determinism—usually because the language supports some form of concur­

rent or interactive computation—then contextual equivalence tends to iden­

tify too many programs and various co­inductive notions of bisimilarity are

used instead (see the textbook by Sangiorgi and David, 2001, for example).

But even if we remain within the realm of languages with deterministic oper­

ational semantics, one may ask to what extent the results of this chapter are

stable with respect to adding further features such as recursive datatypes,

mutable state, and object­oriented features à la Objective Caml.

Ciu­equivalence has the advantage of being quite robust in this respect—

it can provide a characterisation of contextual equivalence in the presence

of such features (Honsell, Mason, Smith, and Talcott, 1995; Talcott, 1998).

However, its usefulness is mainly limited to establishing basic laws such as

the conversions in Corollary 7.5.8; it cannot be used directly to establish ex­

tensionality properties such as those in Theorem 7.7.1 without resorting to

tedious “termination inductions” of the kind we sketched in the proof of Ex­

ample 7.7.4. Ciu­equivalence is quite closely related to some notions of “ap­

plicative bisimilarity” that have been applied to functional and object­based

languages (Gordon, 1995, 1998), in that their congruence properties can both

be established using a clever technique due to Howe (1996). The advantage of

applicative bisimilarity is that it has extensionality built into its definition; so

when it does coincide with contextual equivalence, this provides a method of

establishing some extensionality properties for =ctx (such as (1)–(4) in Theo­

rem 7.7.1, but not, as far as I know, property (5) for package values).

The kind of operationally based logical relation we developed in this chap­

ter provides a very powerful analysis of contextual equivalence. We used it
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to prove not only conversions and simple extensionality principles for FML,

but also quite subtle properties of =ctx such as Theorems 7.7.1(5) and 7.7.8.

Similar logical relations can be used to prove some properties of ML­style

references and of linear types: see Pitts and Stark (1998), Bierman, Pitts, and

Russo (2000), and Pitts (2002). Unfortunately, the characteristic feature of

logical relations—that functions are related iff they map related arguments

to related results—makes it difficult to define them in the presence of “recur­

sive features.” I mean by the latter programming language features which in a

denotational semantics lead one to have to solve domain equations in which

the defined domain occurs both positively (to the left of an even number

of function space constructions) and negatively (to the left of an odd num­

ber of function space constructions). Recursive datatypes involving function

types can lead to such domain equations; as does the use of references to

functions in ML. Suitable logical relations can be defined in the denotational

semantics of languages with such features using techniques such as those in

Pitts (1996), but they tell us properties of denotational equality, which is of­

ten a poor (if safe) approximation to contextual equivalence. For this reason

people have tried to develop syntactical analogs of these denotational logi­

cal relations: see Birkedal and Harper (1999). The unwinding theorem (Theo­

rem 7.4.4) provides the basis for such an approach. However, it seems like a

fresh idea is needed to make further progress. Therefore I set a last exercise,

whose solution is not included.

7.8.1 Exercise [««««. . . , 3]: Extend FML with isorecursive types, µX.T, as in Figure

20­1 of TAPL, Chapter 20. By finding an operationally based logical relation as

in §7.6 or otherwise, try to prove the kind of properties of contextual equiv­

alence for this extended language that we developed for FML in this chapter.

(For the special case of iso­recursive types µX.T for which T contains no neg­

ative occurrences of X, albeit for a non­strict functional language, see Johann

(2002). The generalized ideal model of recursive polymorphic in Vouillon and

Melliès (2004) uses the same kind of Galois connection as we used in §7.6 and

may well shed light on this exercise. Recent work by Sumii and Pierce [2005]

is also relevant.) 2
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come equipped with their own notion of logical equivalence that can be de­

fined independently (i.e., without reference to the general definition of logical

equivalence). Thus, the definition of logical equivalence may refer to arbitrary

candidates and remain well­founded.

7.4.2 Hint: First prove

〈S1,t1〉 -→ 〈S2,t2〉 ⇒ (∀S)(〈S@S2,t2〉 ↓ ⇒ 〈S@S1,t1〉 ↓)

by considering the different cases for -→. Deduce the ‘if’ part of (7.7) from

this. For the ‘only if’ part, show that

{(S,t) | (∃S1, S2,v) S = S1@S2 & 〈S2,t〉 -→
∗
〈Id,v〉 & 〈S1,v〉 ↓}

is closed under the axiom and rules in Figure 7­2 inductively defining the

termination relation.

7.5.4 Solution: For property (iii), assuming R is compatible, argue by induction on

the derivation of Γ ` t : T that this typing judgment implies that Γ ` t R t :

T holds. For property (v), if R =
⋃
i∈I Ri with I 6= ∅ and each Ri compatible,

first note that by (iii), R is reflexive since it contains at least one relation Ri .

For each of the compatibility properties in Figure 7­4 with a single hypothesis,

it is clear that R has this property because each of the Ri does. For compat­

ibility properties with multiple hypotheses, we can break them down into a

chain of single­hypothesis compatibilities and appeal to the transitivity of R

(which we are assuming). For example consider the compatibility property for

function application. It suffices to show that R satisfies

Γ ` v1 R v′1 : T1→T2 Γ ` v2 : T1

Γ ` v1 v2 R v′1 v2 : T2

(A.1)

and

Γ ` v1 : T1→T2 Γ ` v2 R v′2 : T1

Γ ` v1 v2 R v1 v
′
2 : T2

. (A.2)

For then if Γ ` v1 R v′1 : T1→T2 and Γ ` v2 R v′2 : T1, we get

Γ ` v1 v2 R v′1 v2 : T2 by (A.1), since Γ ` v2 : T1

Γ ` v′1 v2 R v′1 v
′
2 : T2 by (A.2), since Γ ` v′1 : T1→T2.

and hence Γ ` v1 v2 R v′1 v
′
2 : T2 by transitivity. Each of the single­hypothesis

properties (A.1) and (A.2) holds of R because they hold for each Ri : each is

a special case of the compatibility property for function application because

each Ri , being compatible, is also reflexive by (iii).



510 A Solutions to Selected Exercises

7.5.10 Solution: Consider the frame stacks

S
def
= Id ◦ (x.(fun f(x′:Bool) = if x′ then true else f x′)x)

ST
def
= Id ◦ (x.(fun f(x′:T) = true)x)

Note that ∅ ` S : Bool Ç Bool and ∅ ` ST : T Ç Bool. It is not hard to see

for all ∅ ` b : Bool that

S[b]↓ iff 〈Id,b〉 -→∗ 〈Id,true〉 (A.3)

and for all ∅ ` t : T that

t ↓ iff 〈Id, ST[t]〉 -→
∗
〈Id,true〉 (A.4)

From (A.3) and the fact that =ctx is a congruence (so that∅ ` b =ctx b
′ : Bool

implies ∅ ` S[b] =ctx S[b′] : Bool) it follows that =ctx is true­adequate;

hence it is contained in =true
ctx . Similarly, (A.4) and the fact that =true

ctx is a

congruence implies that it is adequate and hence contained in =ctx.

7.6.7 Solution: Since (−)s t is inflationary we have r ⊆ r s t ; and since r only relates

values, this implies r ⊆ r s t v . Then since (−)s t is monotone, we have r s t ⊆

r s t v s t . Conversely, since (r ′)v ⊆ r ′ for any r ′, we have r s t v ⊆ r s t ; and then

since (−)s t is monotone and idempotent, r s t v s t ⊆ r s t s t = r s t .

7.6.14 Hint: The proof of (7.26) is just like the proof of (7.21), using the following

property of the termination relation:

(〈S,v.l〉 ↓a 〈S′,v′.l〉 ↓) iff (〈S ◦ (x.x.l),v〉 ↓a 〈S′ ◦ (x.x.l),v′〉 ↓).

Similarly, the proof of (7.27) follows from:

(〈S,v T〉 ↓a 〈S′,v′ T′〉 ↓) iff (〈S ◦ (x.x T),v〉 ↓a 〈S′ ◦ (x.x T′),v′〉 ↓).

7.6.18 Solution: It suffices to show

(∀n = 0,1, . . .) (Fn,F
′
n) ∈ fun(r1, r2) (A.5)

where Fn and F′n are the unwindings associated with F and F′ respectively, as

in Theorem 7.4.4. For if (A.5) holds, then using the fact that (−)s t is inflation­

ary

(Fn,F
′
n) ∈ fun(r1, r2) ⊆ fun(r1, r2)

s t

for each n; so by the Admissibility property in Lemma 7.6.8 we have (F,F′) ∈

fun(r1, r2)s t . Thus (F,F′) ∈ fun(r1, r2)s t v = fun(r1, r2) by Lemma 7.6.13,

since (r2)s t = r2. (A.5) is proved by induction on n:
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Base case n = 0: By definition of F0, 〈S,F0 v1〉 ↓ does not hold for any S ∈

Stack(T2) and v1 ∈ Val(T1); similarly for F′0. Hence for all (v1,v
′
1) ∈ (r1)

v ,

(F0 v1,F
′
0 v

′
1) ∈ s

t for any s ∈ SRel(T2,T
′
2) and hence in particular for

s = (r2)s . So (F0 v1,F
′
0 v

′
1) ∈ (r2)

s t = r2 for all (v1,v
′
1) ∈ (r1)

v . Therefore

(F0,F
′
0) ∈ fun(r1, r2).

Induction step: Suppose (Fn,F′n) ∈ fun(r1, r2). Then for any (v1,v
′
1) ∈ (r1)

v ,

from (7.29) we have

([f, Fn][x, v1]t, [f, F′n][x, v′1]t
′) ∈ r2.

By definition of Fn+1 and Corollary 7.5.8 we have ∅ ` Fn+1v1 =ctx [f ,

Fn][x , v1]t; and similarly, ∅ ` F′n+1v
′
1 =ctx [f , F′n][x , v′1]t

′. So

since r2 is closed, we can apply the Equivalence­respecting property in

Lemma 7.6.8 to conclude that (Fn+1v1,F
′
n+1v

′
1) ∈ r2. Since this holds for

any (v1,v
′
1) ∈ (r1)

v , we have (Fn+1,F
′
n+1) ∈ fun(r1, r2).

7.6.19 Solution: To show (v,v′) ∈ {li=ri i∈1..n} we must show (v.li ,v′.li) ∈ ri for

each i ∈ 1..n. Since each ri is closed, this is equivalent to showing (v.li ,v′.li) ∈

(ri)s t , i.e. that 〈S,v.li〉 ↓ a 〈S′,v′.li〉 ↓ holds for all (S, S′) in (ri)s . But by

definition of v, 〈S,v.li〉 ↓ a 〈S,vi〉 ↓; and similarly for v′. So it suffices to

show 〈S,vi〉 ↓ a 〈S′,v′i〉; and this holds because by assumption (vi ,v
′
i) ∈ ri

and (S, S′) ∈ (ri)s .

7.6.20 Solution: To show (λX.v, λX.v′) ∈ λr.R(r)we have to show for each T1,T
′
1 ∈

Typ and r ∈ TRel(T1,T
′
1) that ((λX.v)T,(λX.v′)T′) ∈ R(r) . Since each

R(r) is closed, this is equivalent to showing ((λX.v)T,(λX.v′)T′) ∈ R(r)s t ,

i.e. that 〈S,(λX.v)T〉 ↓ a 〈S′,(λX.v′)T′〉 ↓ holds for all (S, S′) ∈ R(r)s. But

〈S,(λX.v)T〉 ↓a 〈S, [X , T1]v〉 ↓; and similarly for v′. So it suffices to show

〈S, [X , T1]v〉 ↓ a 〈S, [X , T′1]v
′〉 ↓; and this holds because by assumption

([X, T1]v, [X, T1]v) ∈ R(r) and (S, S′) ∈ R(r)s.

7.6.21 Hint: To show (if v then t1 else t2,if v′ then t′1 else t
′
2) ∈ r = (r)

s t it

suffices to show for all (S, S′) ∈ (r)s that

〈S,if v then t1 else t2〉 ↓a 〈S′,if v′ then t′1 else t′2〉 ↓

or equivalently that

〈S ◦ (x.if x then t1 else t2),v〉 ↓a

〈S′ ◦ (x.if x then t′1 else t′2),v
′〉 ↓.

Do this by proving that

(S ◦ (x.if x then t1 else t2), S
′ ◦ (x.if x then t′1 else t′2) ∈ (IdBool)

s.
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7.6.22 Solution: For any (S, S′) ∈ (r2)s it follows from the assumptions on t,t′ and

the definition of {∃r1,R(r1)} (Figure 7­5) that

(S ◦ (y.let {*X,x}=y in t), S′ ◦ (y.let {*X,x}=y in t′))

is in {∃r1,R(r1)}s . Hence if (v,v′) ∈ {∃r1,R(r1)}s t v ⊆ ({∃r1,R(r1)}s)t , then

〈S ◦ (y.let {*X,x}=y in t),v〉 ↓ a 〈S′ ◦ (y.let {*X,x}=y in t′),v′〉 ↓

and so 〈S,let {*X,x}=v in t〉 ↓ a 〈S,let {*X,x}=v′ in t′〉 ↓. Since this is

true for all (S, S′) ∈ (r2)s , we deduce that

(let {*X,x}=v in t,let {*X,x}=v in t) ∈ (r2)
s t = r2.

7.6.23 Solution: For any (S, S′) ∈ (r2)s it follows from the assumptions on t,t′

that (S ◦ (x.t2), S′ ◦ (x.t
′
2)) ∈ (r1)

v s . Since ((r1)v s)t = r1, if (t1,t
′
1) ∈ r1 then

we get 〈S ◦ (x.t2),t1〉 ↓a 〈S′ ◦ (x.t′2),t
′
1〉 ↓, and hence that

〈S,let x=t1 in t2〉 ↓ a 〈S′,let x=t′1 in t′2〉 ↓.

Since this holds for all (S, S′) ∈ (r2)s , we deduce that

(let x=t1 in t2,let x=t′1 in t′2) ∈ (r2)
s t = r2.

7.7.10 Solution: Since N has no closed values, neither does {∃X,N}. On the other

hand

val v = λY.fun f(x:∀X.N→Y) = (f x):Y

is a closed value of type ∀Y.(∀X.N→Y)→Y. If i and j were to exist with

the stated properties we could use them to construct from v a closed value

of type {∃X,N}, which is impossible. (For i(j v) and v are ciu­equivalent

(Theorem 7.5.7); so since v ↓, we also have i(j v) ↓. Hence by Exercise 7.4.2,

〈Id,j v〉 -→∗ 〈Id,v′〉 for some v′, which is a closed value of type {∃X,N}, by

Exercise 7.4.3.)

8.2.1 Solution: As of this writing, the question of how far nominal module sys­

tems can be pushed is wide open. A step in this direction was recently taken

by Odersky, Cremet, Rockl, and Zenger (2003).

8.5.3 Solution: Define m1 to be the module

module m1 = mod {

type X = Int

val c = 0

val f = succ

}
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