
Advanced Topics in

Types and Programming Languages

Benjamin C. Pierce, editor

The MIT Press

Cambridge, Massachusetts

London, England



©2005 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by

any electronic of mechanical means (including photocopying, recording, or

information storage and retrieval) without permission in writing from the

publisher.

This book was set in Lucida Bright by the editor and authors using the LATEX

document preparation system.

Printed and bound in the United States of America.

Library of Congress Cataloging­in­Publication Data

Advanced Topics in Types and programming languages / Benjamin C. Pierce,

editor

p. cm.

Includes bibliographical references and index.

ISBN 0­262­16228­8 (hc.: alk. paper)

1. Programming languages (Electronic computers). I. Pierce, Benjamin C.

QA76.7.A36 2005

005.13—dc22

200457123

10 9 8 7 6 5 4 3 2 1



7 Typed Operational Reasoning

Andrew Pitts

The aim of this chapter is to explain, by example, some methods for reason­

ing about equivalence of programs based directly upon a type system and

an operational semantics for the programming language in question. We will

concentrate on methods for reasoning about equivalence of representations

of abstract data types. This provides an excellent example: it is easy to appre­

ciate why such methods are useful and at the same time non­trivial problems

have to be solved to get a sound reasoning principle in the presence of non­

termination and recursion. Rather than just treat abstract data types, we will

cover full existential types, using a programming language combining a pure

fragment of ML (including records and recursive functions) with System F.

7.1 Introduction

As explained in TAPL, Chapter 24, type systems involving existentially quan­

tified type variables provide a useful foundation for explaining and relating

various features of programming languages to do with information hiding.

To establish the properties of such type­theoretic interpretations of infor­

mation hiding requires a theory of semantic equivalence for expressions of

existential type. Methods involving type­indexed families of relations between

between expressions have proved very useful in this respect. Study of rela­

tional properties of typed calculi goes back to the logical relations for simply

typed lambda calculus in Plotkin (1973) and Statman (1985) and discussed in

Chapter 6, and the notion of relational parametricity for polymorphic types

in Reynolds (1983). More relevant to the kind of example considered in this

chapter is Mitchell’s principle for establishing the denotational equivalence

of programs involving higher­order functions and different implementations

of an abstract datatype in terms of the existence of a simulation relation be­



246 7 Typed Operational Reasoning

tween the implementations (Mitchell, 1991a). This principle was extended by

Plotkin and Abadi (1993) to encompass all the (possibly impredicative) exis­

tential types of the Girard­Reynolds polymorphic lambda calculus.

One feature of these works is that they develop proof principles for deno­

tational models of programming languages. The relevance of such principles

to the operational behavior of programs relies upon ‘goodness of fit’ results

(some published, some not) connecting operational and denotational seman­

tics. Another feature of the above works is that they do not treat the use of

general recursive definitions; and so the languages considered are not Tur­

ing powerful. It is folklore that a proof principle for denotational equality at

existential type, phrased in terms of the existence of certain simulation rela­

tions, is still valid in the presence of recursively defined functions of higher

type, provided one imposes some admissibility conditions on the notion of

relation. In fact using techniques for defining operationally based logical re­

lations developed in Pitts (2000), we will see in this chapter that suitable

admissibility conditions for relations and an associated proof principle for

operational equivalence at existential type can be phrased directly, and quite

simply, in terms of the syntax and operational semantics of a programming

language combining existential types with recursively defined, higher­order

functions. The programming language we work with combines a pure frag­

ment of ML (including records and recursive functions) with the polymorphic

lambda calculus of Girard (1972) and Reynolds (1974).

7.2 Overview

In order to get the most out of this chapter you should have some familiarity

with TAPL, Chapters 23 and 24. The material in this chapter is technically

quite intricate (especially the definition and properties of the logical relation

in §7.6) and it is easy to lose sight of the wood for the trees. So here is an

overview of the chapter.

Equivalence of programs One application of formal semantics of program­

ming languages is to give a mathematically precise definition of what it

means for one program to be semantically equal to another. In this chapter

we use operational semantics and discuss a notion of program equivalence

called contextual equivalence (§7.5).

Extensionality principles In order to reason about program equivalence, it

is useful to establish the validity of proof methods for it. The most basic

method uses the congruence property—reasoning by “replacing equals by

equals”—which holds of contextual equivalence by construction. In §7.1



7.3 Motivating Examples 247

we discuss informally some methods for proving contextual equivalence

of implementations of abstract datatypes. The discussion culminates with

the Extensionality Principle 7.3.6. One goal of this chapter is to give a

mathematically precise formulation of this principle and to establish its

validity.

Logical relations The Extensionality Principle is phrased in terms of type­

respecting relations between the terms of our example language. In order

to formulate this principle precisely and then prove it we develop an alter­

native characterisation of contextual equivalence in terms of a certain “log­

ical relation” (§7.6). The combination of features in our language—higher­

order recursive functions and fully impredicative polymorphic types—

force us to use a form of logical relation with quite a difficult definition.

Chapter 6 presents another use of logical relations with a simpler defini­

tion; as such, that chapter provides a useful warm­up for this one.

7.3 Motivating Examples

In this section we motivate the use of logical relations for reasoning about

existential types by giving some examples.

To begin, let us recall the syntax for expressions involving existentially

quantified type variables from TAPL, Chapter 24. If T is a type expression and

X is a type variable, then we write {∃X,T} for the corresponding existentially

quantified type. Free occurrences of X in T become bound in this type expres­

sion. We write [X , S]T for the result of substituting a type S for all free

occurrences of X in T, renaming bound type variables as necessary to avoid

capture.1 It t is a term of type [X , S]T, then we can “pack” the type S and

the term t together to get a term

{*S,t} as {∃X,T} (7.1)

of the indicated existential type. To eliminate such terms we use the form

let {*X,x}=t1 in t2 (7.2)

This is a binding construct: free occurrences of the type variable X and the

value variable x in t2 become bound in the term. The typing of such terms

goes as follows:

if t1 has type {∃X,T} and t2 has type T2 when we assume the variable

x has type T, then provided X does not occur free in T2, we can conclude

that the term in (7.2) has type T2.

1. Throughout this chapter we will always identify expressions, be they types or terms, up to

renaming of bound variables.



248 7 Typed Operational Reasoning

(Such rules are better presented symbolically, but we postpone doing that

until we give a formal definition of the language we will be using, in the next

section.) The italicized restriction on free occurrences of X in T2 in the above

rule is what distinguishes an existential type from a type­indexed dependent

sum, where there is free access both to the type component as well as the

term component of a “packed” term: see Mitchell and Plotkin (1988), p. 474 et

seq, for a discussion of this point.

Since we wish to consider existential types in the context of an ML­like

language, we adopt an eager strategy for evaluating expressions like (7.1)

and (7.2). Thus to evaluate the first, one evaluates t to canonical form, v say,

and returns the canonical form {*S,v} as {∃X,T}; to evaluate the second,

one evaluates t1 to canonical form, {*S,v} as {∃X,T} say, and then evalu­

ates [X, S][x, v]t2.

7.3.1 Example: Consider the existentially quantified record type

type Counter = {∃X, {mk:X, inc:X→X, get:X→Int}}

where Int is a type of integers. Values of type Counter consist of some type

together with values of the appropriate types implementing mk, inc, and get.

For example

val counter1 = {*Int, {mk = 0,

inc = λx:Int.x+1,

get = λx:Int.x } as Counter

and

val counter2 = {*Int, {mk = 0,

inc = λx:Int.x­1,

get = λx:Int.0­x } as Counter

are both values of type Counter. The terms

let {*X,x} = counter1 in x.get(x.inc(x.mk))

let {*X,x} = counter2 in x.get(x.inc(x.mk))

(where we use the syntax r.f for selecting field f of record r) are both terms

of type Int which evaluate to 1. By contrast, of the terms

let {*X,x} = counter1 in x.get(x.inc(1))

let {*X,x} = counter2 in x.get(x.inc(1))

the first evaluates to 2, whereas the second evaluates to 0; but in this case

neither term is well­typed. Indeed, it is the case that any well­typed closed

term involving occurrences of the term counter1 will exhibit precisely the

same evaluation behavior if we replace those occurrences by counter2. In

other words, counter1 and counter2 are equivalent in the following sense. 2



7.3 Motivating Examples 249

7.3.2 Definition [Contextual equivalence, informally]: We write t1 =ctx t2:T

to indicate that two terms t1 and t2 of the same type T are contextually equiv­

alent. By definition, this means that for all well­typed terms t[t1] containing

instances of t1, if t[t2] is the term obtained by replacing those instances

by t2, then t[t1] and t[t2] give exactly the same observable results when

evaluated. 2

This notion of program equivalence assumes we have already fixed upon a

definition of the “observable results” of evaluating terms. It also presupposes

that the meaning of a well­typed term should only depend upon the final

result (if any) of evaluating it. This is reasonable for deterministic and non­

interactive programming even in the presence of computational effects like

side­effecting state or raising exceptions, provided we include those effects as

part of the observable results of evaluation. Certainly, contextual equivalence

is a widely used notion of program equivalence in the literature and it is the

one we adopt here.

For the terms in Example 7.3.1, it is the case that

counter1 =ctx counter2:Counter (7.3)

but the quantification over all possible contexts t[−] in the definition of =ctx

makes a direct proof of this and similar facts rather difficult. Thus one is

led to ask whether there are proof principles for contextual equivalence that

make proving such equivalences at existential types more tractable. Since

values {*S,v} as {∃X,T} of a given existential type {∃X,T} are specified by

pairs of data S and v, as a first stab at such a proof principle one might

try componentwise equivalence. Equivalence in the second component will of

course mean contextual equivalence; but in the first component, where the

expressions involved are types, what should equivalence mean? If we take

it to mean syntactic identity, =, (which for us includes renaming of bound

variables) we obtain the following proof principle.2

7.3.3 Principle [Extensionality for ∃­types, Version I]: For an existential type

E
def
= {∃X,T}, types T1, T2, and values v1, v2, if T1 = T2 and v1 =ctx v2:[X ,

T2]T, then ({*T1,v1} as E) =ctx ({*T2,v2} as E):{∃X,T}. 2

The hypotheses of Principle 7.3.3 are far too strong for it to be very useful.

For example, it cannot be used to prove (7.3), since in this case T1 = Int = T2,

but

2. This and subsequent proof principles for {∃X,T} are called extensionality principles by

analogy with the familiar extensionality principle for functions; it is a convenient terminology,

but perhaps the analogy is a little stretched.



250 7 Typed Operational Reasoning

val v1 = {mk=0, inc=λx:Int.x+1, get=λx:Int.x}

and

val v2 = {mk=0, inc=λx:Int.x­1, get=λx:Int.0­x}

are clearly not contextually equivalent values of the record type

{mk:Int,inc:Int→Int,get:Int→Int}

(for example, we get different integers when evaluating t[v1] and t[v2] when

t[−] is (−.inc)0). However, they do become contextually equivalent if in

the second term we use a variant of integers in which the roles of positive

and negative are reversed. Such “integers” are of course in bijection with

the usual ones and this leads us to our second version of an extensionality

principle for existential types—in which the use of syntactic identity as the

notion of type equivalence is replaced by the more flexible one of bijection.

A bijection i : T1 � T2 means a closed term i : T1→T2 for which there is

a closed term i−1 : T2→T1 which is a two­sided inverse up to contextual

equivalence: i−1(i x1) =ctx x1 : T1 and i(i−1 x2) =ctx x2 : T2.

7.3.4 Principle [Extensionality for ∃­types, Version II]: For each existential

type E
def
= {∃X,T}, types T1, T2, and values v1, v2, if there is a bijection

i : T1 � T2 such that T(i) v1 =ctx v2 : [X, T2]T, then

({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T}.

In stating this principle we have used the notation T(i) for the “action” of

types T on bijections i: given a type T, possibly containing free occurrences

of a type variable X, one can define an induced bijection T(i) : [X , T1]T �

[X, T2]T (with inverse T(i−1)). For example, if T is the type

{mk:X, inc:X→X, get:X→Int}

then T(i) is

λx:{ mk:T1, inc:T1→T1, get:T1→Int}.

{ mk = i(x.mk),

inc = λx2:T2.i(x.inc(i
−1 x2)),

get = λx2:T2.x.get(i
−1 x2)) }

and T(i−1) is

λx:{ mk:T2, inc:T2→T2, get:T2→Int}.

{ mk = i−1(x.mk),

inc = λx1:T1.i
−1(x.inc(i x1)),

get = λx1:T1.x.get(i x1)) }.



7.3 Motivating Examples 251

(In general, if T is a simple type then the definition of T(i) and T(i−1) can

be done by induction on the structure of T; for recursively defined types, the

definition of the induced bijection is not so straightforward.) 2

We can use this second version of the extensionality principle for existen­

tial types to prove the contextual equivalence in (7.3), using the bijection

i
def
= (λx:Int.0­x) : Int � Int.

This does indeed satisfy T(i) v1 =ctx v2 : Int when v1, v2, and T are de­

fined as above. (Of course these contextual equivalences, and indeed the fact

that this particular term i is a bijection, all require proof; but the methods

developed in this chapter render this straightforward.) However, the use of

bijections between types is still too restrictive for proving many common ex­

amples of contextual equivalence of abstract datatype implementations, such

as the following.

7.3.5 Example: Consider the following existentially quantified record type, where

Bool is a type of booleans.

type Semaphore = {∃X, {bit:X, flip:X→X, read:X→Bool}}

The following terms have type Semaphore:

val semaphore1 =

{*Bool, {bit = true

flip = λx:Bool.not x,

read = λx:Bool.x } as Semaphore;

val semaphore2 =

{*Int, {bit = 1,

flip = λx:Int.0­2*x,

read = λx:Int.x >= 0} as Semaphore

There is no bijection Bool � Int, so one cannot use Principle 7.3.4 to prove

semaphore1 =ctx semaphore2 : Semaphore. (7.4)

Nevertheless, this contextual equivalence does hold. An informal argument

for this makes use of the following relation r : Bool ↔ Int between values

of type Bool and of type Int.

r
def
= {(true,m) |m = (−2)n for some even n ≥ 0}

∪ {(false,m) |m = (−2)n for some odd n ≥ 0}.

Write si for the second component of semaphorei (i = 1,2). Then



252 7 Typed Operational Reasoning

• s1.bit evaluates to true; s2.bit evaluates to 1; and (true,1) ∈ r ;

• if (t1,t2) ∈ r , then (s1.flip)t1 and (s2.flip)t2 evaluate to a pair of

values which are again r ­related;

• if (t1,t2) ∈ r , then (s1.read)t1 and (s2.read)t2 evaluate to the same

boolean value.

The informal argument for the contextual equivalence (7.4) goes as follows:

“any context t[−] which is well­typed whenever its hole ‘−’ is filled with a

term of type Semaphore can only make use of a term placed in its hole by

opening it as an abstract pair {X,x} and applying the methods bit, flip,

and read in some combination; therefore the above observations about r

are enough to show that t[semaphore1] and t[semaphore2] always have the

same evaluation behavior.” 2

The validity of this informal argument and in particular the assumptions

it makes about the way a context can “use” its hole are far from immediate

and need formal justification. Leaving that for later, at least we can state the

relational principle a bit more precisely.

7.3.6 Principle [Extensionality for ∃­types, Final Version]: For each existen­

tial type E
def
= {∃X,T}, types T1, T2, and values v1, v2, if there is a relation

r : T1 ↔ T2 between terms of type T1 and of type T2, such that (v1,v2) ∈ T[r],

then ({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T}. 2

Evidently this principle presupposes the existence of an “action” of types on

term­relations that sends relations r : T1 ↔ T2 to relations T[r] : [X ,

T1]T ↔ [X , T2]T and with certain other properties. It is the definition of

this action that is at the heart of the matter. It has to be phrased with some

care in order for the above extensionality principle to be valid for languages

involving non­termination of evaluation (through the presence of fixpoint re­

cursion for example). We will give a precise definition in §7.6 (Definition 7.6.9)

for a language combining impredicative polymorphism with fixpoint recur­

sion at the level of terms. How best to define such relational actions in the

presence of recursion at the level of types is still a matter for research (see

Exercise 7.8.1).

7.3.7 Note: Principle 7.3.4 generalizes Principle 7.3.3, because if T1 = T2, then the

identity function i
def
= λx:T1.x is a bijection T1 � T2 satisfying

(T(i) v) =ctx v (for any v)



7.4 The Language 253

so that v1 =ctx v2 implies (T(i) v1) =ctx v2. Principle 7.3.6 generalizes Prin­

ciple 7.3.4, because each bijection i : T1 � T2 can be replaced by its graph

ri
def
= {(u1,u2) | i u1 =ctx u2}

which in fact has the property that (v1,v2) ∈ T[ri] if and only if (T(i) v1) is

contextually equivalent to v2. 2

As mentioned in the Introduction, Principle 7.3.6 is an operational gen­

eralization of similar principles for the denotational semantics of abstract

datatypes over the simply typed lambda calculus (Mitchell, 1991a) and rela­

tionally parametric models of the polymorphic lambda calculus (Plotkin and

Abadi, 1993). It permits many examples of contextual equivalence at existen­

tial types to be proved rather easily. Nevertheless, we will see in §7.7 that it is

incomplete for the particular ML­like language we consider here, in the sense

that ({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T} can hold even though

there is no relation r for which (v1,v2) ∈ T[r] holds (see Example 7.7.4).

7.4 The Language

In this section we define a small, ML­like programming language that we will

use in the rest of the chapter. It combines Girard’s System F (1972) (in other

words, the polymorphic lambda calculus of Reynolds [1974]) with recursively

defined functions, record types and ground types; in common with ML (Mil­

ner, Tofte, Harper, and MacQueen, 1997), evaluation order is strict (i.e., left­to­

right, call­by­value). We will call the language FML. Its syntax and type system

are specified in Figure 7­1 and its operational semantics in Figure 7­2.

Syntax

In Figure 7­1, X and x respectively range over disjoint countably infinite sets

of type variables and value variables; l ranges over a countably infinite set

of field labels; c ranges over the constants true, false and n (for n ∈ Z);

Gnd is either the type of booleans Bool or the type of integers Int; and op

ranges over a fixed collection of arithmetic and boolean operations (such as

+, =, not, etc).

To simplify the definition of the language’s operational semantics we em­

ploy the now quite common device of using a syntax for terms that is in a

“reduced” (or “A­normal”) form, with all sequential evaluation expressed via

let­expressions. For example, the general form of (left­to­right, call­by­value)

function application is coded by

t1 t2
def
= let x1=t1 in (let x2=t2 in x1 x2). (7.5)



254 7 Typed Operational Reasoning

Syntax

t ::= terms:

v value

if v then t else t conditional

op(vi
i∈1..n) operation

v v application

v.l projection

v T type application

let {*X,x}=v in t unpacking

let x=t in t sequencing

v ::= values:

x value variable

c constant

fun x(x:T)=t:T recursive function

{li=vi
i∈1..n} record value

λX.v type abstraction

{*T,v} as {∃X,T} package value

T ::= types:

X type variable

Gnd ground type

T→T function type

{li:Ti
i∈1..n} record type

∀X.T universally quantified type

{∃X,T} existentially quantified type

Γ ::= typing contexts:

∅ empty context

Γ , x:T non­empty context

Γ , X non­empty context

Typing terms Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ ` c : Typeof (c) (T­Const)

Γ , f:T, x:T1 ` t : T2 T = T1→T2

Γ ` fun f(x:T1)=t:T2 : T
(T­Fun)

(Γ ` vi : Ti) i∈1..n

Γ ` {li=vi
i∈1..n} : {li:Ti

i∈1..n}
(T­Rcd)

Γ , X ` v : T X ∉ ftv(Γ)

Γ ` λX.v : ∀X.T
(T­Tabs)

Γ ` v1 : [X, T1]T T′ = {∃X, T}

Γ ` {*T1,v1} as T′ : T′
(T­Pack)

Γ ` v : Bool

Γ ` t1 : T Γ ` t2 : T

Γ ` if v then t1 else t2 : T
(T­If)

op:Gnd1,...,Gndn→Gnd

(Γ ` vi : Gndi) i∈1..n

Γ ` op(vi
i∈1..n) : Gnd

(T­Op)

Γ ` v1 : T1→T2 Γ ` v2 : T1

Γ ` v1 v2 : T2

(T­App)

Γ ` v : {li:Ti
i∈1..n}

Γ ` v.lj : Tj
(T­Proj)

Γ ` v : ∀X.T

Γ ` v T1 : [X, T1]T
(T­Tapp)

Γ , X, x:T ` t : T1

X ∉ ftv(Γ ,T1) Γ ` v : {∃X,T}

Γ ` let {*X,x}=v in t : T1

(T­Unpack)

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T­Seq)

Figure 7­1: FML syntax and typing



7.4 The Language 255

As a further simplification, function abstraction and recursive function dec­

laration have been rolled into the one form fun f(x:T1) = t:T2, which corre­

sponds to the expressions

let fun f (x:T1) = t:T2 in f end in Standard ML

or let rec f (x:T1) = t:T2 in f in Ocaml.

Ordinary function abstraction can be coded as

λx:T1.t
def
= fun f(x:T1) = t:T2 (7.6)

where f does not occur freely in t (and T2 is the type of t, given f has type

T1→T2 and x has type T1). In what follows we shall use the abbreviations (7.5)

and (7.6) without further comment. We shall also use infix notation for appli­

cation of constant arithmetic and boolean operators such as +, =, etc.

7.4.1 Remark [Value­restriction]: Note that the operation λX.(−) of polymor­

phic generalization is restricted to apply only to values. This is a real re­

striction since for a non­value term t, one cannot define λX.t to be the term

let x=t in λX.x, since the latter will in general be an ill­typed term. In an ML­

like language λX.t is not yet fully evaluated if t is a non­value; and thus eval­

uation must go under type abstraction λX.(−) and work on terms at types

with free type variables. By imposing the restriction that λX.t is only well­

formed when t is a value we can restrict attention to the evaluation of closed

terms of closed type, simplifying the technical development. The restriction

does not seem to affect the expressiveness of FML in practice and is compara­

ble to the “value restriction” on let­bound polymorphism used in the 1997

revision of Standard ML (Milner et al., 1997) and in Objective Caml (Leroy,

2000). However, this restriction does have an effect on the properties of FML.

For example, with the restriction the type∀X.X contains no closed values (see

Exercise 7.7.6); whereas without the restriction there are closed values of that

type, such as λX. (fun f(x:Bool) = f x : X) true. The “emptiness” of∀X.X

plays a role in the properties explored in Example 7.7.4 and Remark 7.7.7. 2

Operational Semantics

Although we do not do so, the operational semantics of FML could be speci­

fied in the style of the Definition of Standard ML (Milner, Tofte, Harper, and

MacQueen, 1997) as a syntax­directed, inductively defined relation between

terms and values.3 Here we are interested primarily in the notion of contex­

3. That Definition uses environments assigning values to value variables. For reasons of tech­

nical convenience we eliminate the use of environments by substituting them into the term

and only considering the evaluation relation between closed terms and values.



256 7 Typed Operational Reasoning

Frame stack syntax

S ::= frame stacks:

Id nil stack

S ◦ (x.t) stack cons

Typing frame stacks Γ ` S : T1 Ç T2

Γ ` Id : T Ç T (S­Nil)

Γ , x:T1 ` t : T2 Γ ` S : T2 Ç T3

Γ ` S ◦ (x.t) : T1 Ç T3

(S­Cons)

Primitive reductions t1 ; t2

if true then t1 else t2

; t1
(R­IfTrue)

if false then t1 else t2

; t2
(R­IfFalse)

the value of op(ci i∈1..n) is c

op(ci
i∈1..n) ; c

(R­Op)

v1 is fun f(x:T1)=t:T2

v1 v2 ; [f, v1][x, v2]t
(R­AppAbs)

{li=vi
i∈1..n}.j ; vj (R­ProjRcd)

(λX.v)T ; [X, T]v (R­TappTabs)

v is {*T1,v1} as {∃X,T}

let {*X,x}=v in t

; [X, T1][x, v1]t

(R­UnpackPack)

Termination 〈S, t〉 ↓ and t ↓

〈Id,v〉 ↓ (S­NilVal)

〈S, [x, v]t〉 ↓

〈S ◦ (x.t),v〉 ↓
(S­ConsVal)

〈S ◦ (x.t2),t1〉 ↓

〈S,let x=t1 in t2〉 ↓
(S­Seq)

t1 ; t2 〈S,t2〉 ↓

〈S,t1〉 ↓
(S­Red)

〈Id,t〉 ↓

t ↓
(Term)

Figure 7­2: FML operational semantics

tual equivalence (Definition 7.3.2) that this evaluation relation determines by

observing the results of evaluating terms in context. Because evaluation in

FML is strict and the language has a sufficiently expressive collection of con­

structs for deconstructing values, it turns out that the notion of contextual

equivalence is not affected much by the choice of what to observe of evalua­

tion. Most reasonable choices give rise to the same equivalence as the one we

adopt (see Exercise 7.5.10 below), which is based upon observing termination:

whether or not a term evaluates to some value, we care not which. So instead

of defining the relation of evaluation between terms and values, we proceed

directly to a definition of the termination relation, t ↓, for FML. This is given

in Figure 7­2, using an auxiliary notion of frame stack. (The conventions and

notations used in Figure 7­2 in connection with binding, free variables and

substitution are summarized in Figure 7­3.)

Frame stacks are finite lists of individual “evaluation frames.” They provide

a convenient syntax for the notion of evaluation context E[−] (Felleisen and

Hieb, 1992; Wright and Felleisen, 1994). Every closed term can be decomposed



7.4 The Language 257

Binding constructs

let {*X,x}=v in (−)

let x=t in (−)

fun f(x:T1)=(−:T2)

λX.(−)

∀X.(−)

{∃X,(−)}

S ◦ (x.(−))

We identify expressions up to renaming of

bound value and type variables.

Notation for free variable sets

ftv(E) is the finite set of free type variables

of the expression E (a type, a term, or a

frame stack);

fv(E) is the finite set of free value variables

of an expression E (a term, or a frame stack,

but not a type, since types do not contain

occurrences of value variables).

Closed types, terms and frame stacks

A type T is closed if ftv(T) = ∅.

A term or frame stack E is closed if fv(E) =

∅ (even if ftv(E) 6= ∅).

Notation for substitution

[X, T]E denotes the result of capture­

avoiding substitution of a type T for all free

occurrences of a type variable X in E (a type,

a term, or a frame stack);

[x, v]E denotes the result of capture­

avoiding substitution of a value v for all free

occurrences of the value variable x in a term

or frame stack E.

(Note that as their name suggests, value variables

stand for unknown values—the substitution of a

non­value term for a variable makes no sense syn­

tactically, in that it may result in an ill­formed ex­

pression.)

Figure 7­3: Binding, free variables and substitution

uniquely as E[t] where the evaluation context E[−] is a context with a unique

hole (−) occurring in the place where the next step of evaluation (called a

primitive reduction in Figure 7­2), if any, will take place. With FML’s reduced

syntax, such evaluation contexts turn out to be just nested sequences of the

let­construct

E[−] = let x1=(...(let xn=(−) in tn)...) in t1.

The corresponding frame stack

S = Id ◦ (x1.t1) ◦ · · · ◦ (xn.tn)

records this sequence as a list of evaluation frames, xi.ti (with free occur­

rences of xi in ti being bound in xi.ti). Under this correspondence it can be

shown that E[t] evaluates to some value in the standard evaluation­style (or

“big­step”) structural operational semantics if and only if 〈S,t〉 ↓ holds, for

the relation 〈−,−〉↓ defined in Figure 7­2. Not only does the use of frame



258 7 Typed Operational Reasoning

stacks enable a conveniently syntax­directed inductive definition of termina­

tion, but also frame stacks play a big role in §7.6 when defining the logical

relation that we use to establish properties of FML contextual equivalence.

7.4.2 Exercise [Recommended, ««]: Consider a relation 〈S1,t1〉 -→ 〈S2,t2〉 de­

fined by cases according to the structure of the term t1 and the frame stack

S1, as follows:

• 〈S ◦ (x.t),v〉 -→ 〈S, [x, v]t〉

• 〈S,let x=t1 in t2〉 -→ 〈S ◦ (x.t2),t1〉

• 〈S,t1〉 -→ 〈S,t2〉, if t1 ; t2.

Show that

〈S′@S,t〉 ↓ a (∃v) 〈S,t〉 -→
∗
〈Id,v〉 & 〈S′,v〉 ↓ (7.7)

where -→∗ denotes the reflexive­transitive closure of the -→ relation, and

S′@S is the frame stack obtained by appending the two lists of evaluation

frames S′ and S. Deduce that t ↓ holds if and only if there is some value v

with 〈Id,t〉 -→∗ 〈Id,v〉. 2

Typing

We will consider the termination relation only for frame stacks and terms

that are well­typed. A term t is well­typed with respect to a particular typing

context Γ if a typing judgment

Γ ` t : T (7.8)

can be derived for some type T using the rules in Figure 7­1. We identify

typing contexts Γ up to rearranging their constituent hypotheses (“X” or “x :

X”) and eliminating duplicates. Thus a typical typing context looks like

Γ = X1, . . . , Xm, x1 : T1, . . . , xn : Tn

where the type variables Xi and the value variables xj are all distinct (and

m = 0 or n = 0 is allowed). The typing judgments that are derivable from

the rules all have the property that the free type variables of T and each Tj

occur in the set {X1, . . . , Xm}, and the free value variables of t occur in the set

{x1, . . . , xn}. This is ensured by including some explicit side­conditions about

free variable occurrences in the typing rules (T­Abs) and (T­Unpack). In TAPL,

Chapters 23 and 24, such side­conditions are implicit, being subsumed by



7.4 The Language 259

extra well­formedness conditions for typing judgments. Also, we have chosen

to include sufficient explicit type information in terms to ensure that for any

given Γ and t, there is at most one T for which (7.8) holds. Apart from such

minor differences, the rules in Figure 7­1 for inductively generating the valid

FML typing judgments are all quite standard.

The judgment for typing frame stacks takes the form

Γ ` S : T1 Ç T2 (7.9)

where, in terms of the evaluation context corresponding to S, T2 is the overall

type of the context, given that T1 is the type of the hole. The rules for gen­

erating this judgment are given in Figure 7­2. Unlike for terms, we have not

included explicit type information in the syntax of frame stacks; for example,

Id is not tagged with a type. However, it is not hard to see that, given Γ , S,

and T1, there is at most one T2 for which (7.9) holds. This property is enough

for our purposes, since the argument type of a frame stack will always be

supplied in any particular situation in which we use it.

7.4.3 Exercise [«, 3]: Write Γ ` 〈S,t〉 : T to mean that Γ ` S : T′ Ç T and Γ ` t :

T′ hold for some type T′. Using the relation -→ from Exercise 7.4.2, show that

if ∅ ` 〈S1,t1〉 : T and 〈S1,t1〉 -→ 〈S2,t2〉, then ∅ ` 〈S2,t2〉 : T. 2

Unwinding Recursive Functions

In what follows we will need a finiteness property of recursively defined func­

tions with respect to the termination relation. This unwinding property, as

it is called, is a syntactic analog of the fact that the denotation of a re­

cursively defined function is constructed as the least upper bound (lub) of

finite approximations obtained by successively unfolding its definition start­

ing with the bottom denotation, i.e., the totally undefined partial function.

This gives rise to the useful principle of Scott induction in denotational se­

mantics: given an admissible property of denotations, i.e., one closed under

the formation of lubs of increasing chains, to show that it holds of the deno­

tation of recursively defined data it suffices to show that it holds of bottom

and is closed under application of the function that defines the data as a

fixed point. Here we use a syntactic analog of Scott induction for recursively

defined functions, fun f(x:T1) = u:T2, in order to prove the “fundamental

property” (Lemma 7.6.17) of the logical relation constructed in §7.6.

The proof of the unwinding property that we give here is made easier by

our syntax­directed definition of termination using frame stacks. For state­

ments and proofs of similar properties see for example: Mason, Smith, and

Talcott (1996), Section 4.3, Pitts and Stark (1998), Theorem 3.2, Birkedal and

Harper (1999), Section 3.1, and Lassen (1998), Section 4.5.



260 7 Typed Operational Reasoning

7.4.4 Theorem [Unwinding]: Given any closed recursive function value F of the

form fun f(x:T1)=u:T2, define the followings abbreviations4 :

F0
def
= fun f(x:T1) = (f x) : T2

Fn+1
def
= fun f(x:T1) = [f, Fn]u : T2

Thus F0 is a closed function value describing a function of type T1→T2 that

diverges when applied to any argument, and the Fn are obtained from this

by repeatedly substituting for the the value variable f in the body u of the

original function value F. Then for all terms t containing at most f free we

have [f, F]t ↓ if and only if (∃n) [f, Fn]t ↓. 2

Proof: By definition of the relation t ↓ in terms of the relation 〈S,t〉 ↓ (via

rule (Term) in Figure 7­2), it suffices to prove the more general property that

for all terms t and frame stacks S (containing at most f free) we have

〈[f, F]S, [f , F]t〉 ↓ a (∃n) 〈[f, Fn]S, [f , Fn]t〉 ↓ (7.10)

The proof of (7.10) is via a series of straightforward, if somewhat tedious,

inductions that we leave as an exercise. 2

7.4.5 Exercise [«««, 3]: This exercise leads you through a proof of (7.10). First

prove that

〈[f, Fn]S, [f, Fn]t〉 ↓ ⇒ 〈[f, F]S, [f , F]t〉 ↓ (7.11)

holds for all n, S and t by induction on the derivation of 〈[f , Fn]S, [f ,

Fn]t〉 ↓ from the rules in Figure 7­2. Conversely show that

〈[f, F]S, [f , F]t〉 ↓ ⇒ (∃n) 〈[f, Fn]S, [f, Fn]t〉 ↓ (7.12)

holds for all S and t, by induction on the derivation of 〈[f, F]S, [f, F]t〉 ↓

from the rules. To do this, you will first need to prove by induction on n that

〈[f, Fn]S, [f, Fn]t〉 ↓ ⇒ 〈[f, Fn+1]S, [f, Fn+1]t〉 ↓ (7.13)

holds for all n, S and t; the base case n = 0 involves yet another induction,

this time over the derivation of 〈[f, F0]S, [f , F0]t〉 ↓ from the rules. 2

4. Note that in the definition of Fn+1 , the outer binding instance of f is a dummy, since f does

not occur free in [f, Fn]u.



7.5 Contextual Equivalence 261

7.5 Contextual Equivalence

Definition 7.3.2 gave an informal definition of the notion of contextual equiv­

alence that applies to any (typed) programming language. In giving a precise

definition of this notion for the FML language we will take the more abstract,

relational approach of Gordon (1998) and Lassen (1998) that avoids the ex­

plicit use of program contexts t[−] in favor of congruence relations. For one

thing, program contexts are an inconveniently concrete notion, because sub­

stitution of terms t′ for the hole “−” in a context t[−] to produce a term

t[t′] may involve the capture of free variables in t′ by binders in t[−]. For

example, when we replace the hole “−” in the context fun f(x:T) = f [−] by

the term f x, its free value variables are captured by the fun­binder. Con­

sequently, contexts have to be treated more concretely than terms since re­

naming their bound variables may not preserve their meaning. For example,

if we identified fun f(x:T) = f [−] with fun g(x:T) = g [−] (where f and g

are distinct value variables), then we should have to identify the results of

filling the hole with f x, that is, we should have to identify the syntactically

unequal terms fun f(x:T) = f(f x) and fun g(x:T) = g(f x). But more than

this, the abstract treatment of contextual equivalence that we use focuses at­

tention upon the key features of this kind of program equality, namely that it

is a congruence and is “adequate” for observing termination. In a nutshell, we

will define contextual equivalence to be the largest type­respecting congru­

ence relation between FML terms that is adequate for observing termination.

7.5.1 Definition: A type­respecting binary relation between FML terms is a set R

of quadruples (Γ ,t,t′,T), each consisting of a typing context, two terms and

a type satisfying Γ ` t : T and Γ ` t′ : T. Figure 7­4 defines the properties

of reflexivity, symmetry, transitivity, substitutivity, and compatibility for such

relations; R has one of these properties if it is closed under the axioms and

rules under the corresponding heading in the figure. In these figures, and

elsewhere, we write Γ ` t R t′ : T instead of (Γ ,t,t′,T) ∈ R. We say that R is

• an equivalence relation if it has the reflexivity, symmetry and transitivity

properties;

• a congruence relation if it is an equivalence relation with the substitutivity

and compatibility properties;

• adequate (for the termination relation ↓ defined in Figure 7­2) if whenever

∅ ` t R t′ : T holds, then t ↓ holds if and only if t′ ↓ does. 2

7.5.2 Definition: We will need to use the following constructions on type­res­

pecting binary relations.



262 7 Typed Operational Reasoning

Reflexivity

Γ ` t : T

Γ ` t R t : T

Symmetry

Γ ` t R t′ : T

Γ ` t′ R t : T

Transitivity

Γ ` t R t′ : T Γ ` t′ R t′′ : T

Γ ` t R t′′ : T

Substitutivity

Γ ` v R v′ : T1 Γ , x : T1 ` t R t′ : T2

Γ ` [x, v]t R [x, v′]t′ : T2

Γ , X ` t R t′ : T

Γ ` [X, T1]t R [X, T1]t′ : [X, T1]T

Compatibility

(x:T) ∈ Γ

Γ ` x R x : T

Γ ` c R c : Typeof (c)

Γ , f:T1→T2, x:T1 ` t R t′ : T2

Γ ` fun f(x:T1)=t:T2 R

fun f(x:T1)=t
′:T2 : T1→T2

(Γ ` vi R v′i : Ti) i∈1..n

Γ ` {li=vi
i∈1..n} R {li=v

′
i
i∈1..n}

: {li:Ti
i∈1..n}

Γ , X ` v R v′ : T X ∉ ftv(Γ)

Γ ` λX.v R λX.v′ : ∀X.T

Γ ` v1 R v′1 : [X, T1]T

Γ ` {*T1,v1} as {∃X,T} R

{*T1,v
′
1} as {∃X,T} : {∃X,T}

Γ ` v R v′ : Bool

Γ ` t1 R t′1 : T Γ ` t2 R t′2 : T

Γ ` if v then t1 else t2 R

if v′ then t′1 else t
′
2 : T

op:Gnd1,...,Gndn→Gnd

(Γ ` vi R v′i : Gndi) i∈1..n

Γ ` op(vi
i∈1..n) R op(v′i

i∈1..n) : Gnd

Γ ` v1 R v′1 : T1→T2 Γ ` v2 R v′2 : T1

Γ ` v1 v2 R v′1 v
′
2 : T2

Γ ` v R v′ : {li:Ti
i∈1..n}

Γ ` v.lj R v′.lj : Tj

Γ ` v R v′ : ∀X.T

Γ ` v T1 R v′ T1 : [X, T1]T

Γ , X, x:T ` t R t′ : T1

X ∉ ftv(Γ ,T1) Γ ` v R v′ : {∃X,T}

Γ ` let {*X,x}=v in t R

let {*X,x}=v′ in t′ : T1

Γ ` t1 R t′1 : T1 Γ , x:T1 ` t2 R t′2 : T2

Γ ` let x=t1 in t2 R let x=t′1 in t′2 : T2

Figure 7­4: Properties of a type­respecting relation R between FML terms

(i) The identity relation is Id
def
= {(Γ ,t,t,T) | Γ ` t : T}.

(ii) The reciprocal of the relation R is Rop def
= {(Γ ,t′,t,T) | Γ ` t R t′ : T}.

(iii) The composition of relations R1 and R2 is

R1 ◦ R2
def
= {(Γ ,t,t′′,T) | ∃t′. Γ ` t R1 t

′ : T & Γ ` t′ R2 t
′′ : T}.



7.5 Contextual Equivalence 263

(iv) The transitive closure of the relation R is the countable union R+
def
=⋃

i∈N Ri , where R0 = R and Ri+1 = R ◦Ri .

(v) The open extension of the relation R is denoted R◦ and consists of all

quadruples (Γ ,t,t′,T) such that ∅ ` σ(t) R σ(t′) : σ(T) holds for all

Γ ­closing substitutions σ . If Γ = X1, . . . ,Xm, x1 : T1, . . . ,xn : Tn, then a Γ ­

closing substitution is given by a function [Xi , Ti | i = 1..m] mapping the

type variables Xi to closed types Ti and by a function [xj , vj | j = 1..n]

mapping the value variables xj to closed values vj of appropriate type,

namely satisfying ∅ ` vj : [Xi , Ti | i = 1..m]Tj .

(Note that R◦ only depends on the quadruples of the form (∅,t,t′,T) in

R.) 2

We wish to define contextual equivalence to be the largest adequate con­

gruence relation, but it is not immediately clear why a largest such relation

exists. Therefore we give a theorem rather than a definition.

7.5.3 Theorem [FML contextual equivalence, =ctx]: There exists a largest type­

respecting binary relation between FML terms that is a congruence and ade­

quate. We call it contextual equivalence and write it =ctx. 2

Proof: The proof makes use of the following series of facts, only the last of

which is not entirely straightforward to prove (see Exercise 7.5.4).

(i) The identity relation Id is an adequate congruence relation.

(ii) The collection of adequate relations is closed under taking unions.

(iii) Every compatible relation is reflexive, i.e., contains Id.

(iv) The set of all of compatible relations is closed under the operations

of composition and reciprocation; similarly for the set of all substitutive

relations and the set of all adequate relations.

(v) If the union of a non­empty family of compatible relations is transi­

tive, it is also compatible; similarly, if the union of a non­empty family of

reflexive and substitutive relations is transitive, it is also (reflexive and)

substitutive.

Let =ctx be the union of the family of relations that are adequate, compatible

and substitutive. Note that this family is non­empty by (i). By (ii), =ctx is ad­

equate. So it suffices to show that it is a congruence relation. It is certainly

reflexive by (i); and (iv) implies that it is also symmetric and transitive. So it

just remains to show that it is compatible and substitutive, and this follows

from (v), whose proof needs (iii). 2



264 7 Typed Operational Reasoning

7.5.4 Exercise [««]: Prove properties (iii) and (v) stated in the above proof. 2

It is not easy to use either the formulation in terms of contexts in Defi­

nition 7.3.2 or the more abstract characterisation of Theorem 7.5.3 to prove

that a particular pair of terms are contextually equivalent. For example, it is

not easy to see from these characterisations that terms in the primitive reduc­

tion relation of Figure 7­2 are contextually equivalent (Corollary 7.5.8). That

this is so follows from the coincidence of =ctx with a notion of equivalence

popularized by Mason and Talcott (1991).

7.5.5 Definition [ciu­Equivalence, =ciu]: Two closed FML terms belonging to the

same (closed) type are ciu­equivalent if they have the same termination be­

havior when they are paired with any frame stack (a “use” of the terms);

the relation is extended to open terms via closing substitutions (or “closed

instantiations”—thus we arrive at an explanation of the rather cryptic name

for this equivalence).

More formally, we define =ciu to be the type­respecting relation R◦ (us­

ing the operation from Definition 7.5.2(v)), where R consists of quadruples

(∅,t,t′,T) satisfying ∅ ` t : T, ∅ ` t′ : T, and ∀S. 〈S,t〉 ↓ a 〈S,t′〉 ↓. 2

7.5.6 Lemma: For any frame stack S and term t, define a term S[t] by induction of

the length of the stack S as follows:

Id[t]
def
= t

S ◦ (x.t′)[t]
def
= S[let x=t in t′]


 (7.14)

Then 〈S,t〉 ↓ if and only if S[t]↓ (i.e., 〈Id, S[t]〉 ↓). 2

Proof: This is proved by induction on the length of S. The base case S = Id

is trivial. The induction step follows from the fact that 〈S,let x=t in t′〉 ↓

holds if and only if it was derived using rule (S­Seq) in Figure 7­4, if and only

if 〈S ◦ (x.t′),t〉 ↓ holds. 2

7.5.7 Theorem [CIU Theorem for FML]: The contextual and ciu­equivalence rela­

tions coincide. 2

Proof: We first show that =ctx is contained in =ciu. Suppose

Γ ` t =ctx t
′ : T. (7.15)

Since=ctx satisfies the substitutivity and reflexivity properties from Figure 7­4,

it follows that

∅ ` σ(t) =ctx σ(t
′) : σ(T) (7.16)



7.5 Contextual Equivalence 265

for any Γ ­closing substitution σ . For any frame stack S, since =ctx satisfies

the compatibility (and reflexivity) properties from Figure 7­4, from (7.16) we

deduce that ∅ ` S[σ(t)] =ctx S[σ(t′)] : σ(T) (using the notation of (7.14)).

Since =ctx is adequate, this means that S[σ(t)]↓ if and only if S[σ(t′)]↓;

hence by Lemma 7.5.6, 〈S,σ(t)〉 ↓ if and only if 〈S,σ(t′)〉 ↓. As this holds for

all σ and S, we have Γ ` t =ciu t
′ : T, as required.

To complete the proof of the theorem we have to show conversely that

=ciu is contained in =ctx. We can deduce this as a corollary of a stronger

characterisation of =ctx in terms of logical relations (Theorem 7.6.25) that we

establish later; so we postpone the rest of this proof until then. 2

7.5.8 Corollary [Conversions]: The following are valid contextual equivalences:

(i) Γ ` if true then t1 else t2 =ctx t1 : T and

Γ ` if false then t1 else t2 =ctx t2 : T, where Γ ` ti : T for i = 1,2.

(ii) Γ ` op(ci
i∈1..n) =ctx c : Gnd, where c is the value of op(ci i∈1..n) and

Typeof (c) = Gnd.

(iii) Γ ` v1 v2 =ctx [f, v1][x, v2]t : T2,

where v1 = fun f(x:T1)=t:T2.

(iv) Γ ` {li=vi
i∈1..n}.j =ctx vj : Tj ,

where Γ ` {li=vi
i∈1..n} : {li:Ti

i∈1..n}.

(v) Γ ` (λX.v)T1 =ctx [X, T1]v : [X, T1]T, where Γ ` v : ∀X.T.

(vi) Γ ` let {*X,x}=({*T1,v1} as {∃X,T}) in t =ctx [X , T1][x , v1]t :

T2, where Γ , X, x:T ` t : T2 with X ∉ ftv(Γ ,T2).

(vii) Γ ` let x=v in t =ctx [x , v]t : T2, where Γ ` v : T1 and Γ , x:T1 `

t : T2.

(viii) Γ ` let x1=t1 in (let x2=t2 in t) =ctx

let x2=(let x1=t1 in t2) in t : T, where Γ ` t1 : T1,

Γ , x1:T1 ` t2 : T2 and Γ , x2:T2 ` t : T. 2

Proof: These are all ciu­equivalences, so we can just apply Theorem 7.5.7 (us­

ing the difficult half of the theorem whose proof we have postponed to §7.6!).

The ciu­equivalences all follow easily from the definition of the termination

relation (Figure 7­2) except for the last one, where one can apply property (7.7)

from Exercise 7.4.2 to reduce proving (viii) for =ciu to the special case when

t1 is a value: see the following exercise. 2



266 7 Typed Operational Reasoning

7.5.9 Exercise [«, 3]: Given

∅ ` t1 : T1

x1:T1 ` t2 : T2

x2:T2 ` t : T

use property (7.7) to show for all frame stacks S that

〈S ◦ (x1.let x2=t2 in t),t1〉 ↓ iff 〈S ◦ (x2.t) ◦ (x1.t2),t1〉 ↓.

Deduce part (viii) of Corollary 7.5.8. 2

7.5.10 Exercise [««]: Recall from Definition 7.5.1 the notion of an adequate type­

respecting binary relation. Let us call a type­respecting binary relation R

true­adequate if, whenever ∅ ` t R t′ : Bool holds, 〈Id,t〉 -→∗ 〈Id,true〉

holds if and only if 〈Id,t′〉 -→∗ 〈Id,true〉 does. Here -→∗ is the relation de­

fined in Exercise 7.4.2. One can adapt the proof of Theorem 7.5.3 to show that

there is a largest type­respecting binary relation =true
ctx between FML terms that

is a congruence and true­adequate. Show that =true
ctx coincides with contex­

tual equivalence, =ctx. 2

7.6 An Operationally Based Logical Relation

We now have a precise definition of contextual equivalence for FML terms. Be­

fore showing that the Extensionality Principle 7.3.6 holds for existential types

in FML, we need a precise definition of the action of types on term­relations,

r , T[r], mentioned in the principle. That is the topic of this section. We will

end up with a characterisation of =ctx in terms of a logical relation, yielding

several useful extensionality properties of contextual equivalence.

7.6.1 Notation: Let Typ denote the set of closed FML types. Given T ∈ Typ, let

• Term(T) denote the set of closed terms of type T, i.e., those terms t for

which ∅ ` t : T holds;

• Val(T) denote the subset of Term(T) whose elements are values; and

• Stack(T) denote the set of closed frame stacks whose argument type is T,

i.e., those frame stacks S for which ∅ ` S : T Ç T′ for some T′ ∈ Typ.

Given T,T′ ∈ Typ, let

• TRel(T,T′) denote the set of all subsets of Term(T) × Term(T′); we call

its elements term­relations;



7.6 An Operationally Based Logical Relation 267

• VRel(T,T′) denote the set of all subsets of Val(T) × Val(T′); we call its

elements value­relations;

• SRel(T,T′) denote the the set of all subsets of Stack(T) × Stack(T′); we

call its elements stack­relations. 2

Note that every value­relation is also a term­relation (since values are par­

ticular sorts of term): VRel(T,T′) ⊆ TRel(T,T′). On the other hand we can

obtain a value­relation from a term­relation just by restricting attention to

values: given r ∈ TRel(T,T′), define r v ∈ VRel(T,T′) by

r v def
= {(v,v′) ∈ Val(T)× Val(T′) | (v,v′) ∈ r}. (7.17)

We will be particularly interested in term­relations r that are indistinguish­

able, as far as termination properties are concerned, from their value restric­

tions, r v . Definition 7.6.3 makes this precise, using a Galois connection be­

tween term­relations and stack­relations. The definition may appear to be

rather mysterious; its nature will emerge as we develop the action of types

on term­relations and its properties. First we recall for the reader what is

meant in general by a “Galois connection.”

7.6.2 Definition: A Galois connection between partially ordered sets (P ,≤P) and

(Q,≤Q) is specified by a pair of functions f : P → Q and g : Q → P satisfying

q ≤Q f (p) if and only if p ≤P g(q), for all p ∈ P and q ∈ Q. 2

7.6.3 Definition [Closed and valuable term­relations]: Let T ∈ Typ and T′ ∈

Typ be closed types. Given a term­relation r ∈ TRel(T,T′), define a stack­

relation r s ∈ SRel(T,T′) by

(S, S′) ∈ r s if and only if for all (t,t′) ∈ r , 〈S,t〉 ↓ holds if and only if

〈S′,t′〉 ↓ does.

Conversely, given a stack­relation s ∈ SRel(T,T′), define a term­relation st ∈

TRel(T,T′) by

(t,t′) ∈ st if and only if for all (S, S′) ∈ s, 〈S,t〉 ↓ holds if and only if

〈S′,t′〉 ↓ does.

Call a term­relation r ∈ TRel(T,T′) closed if it satisfies r = r s t and valuable if

it satisfies r = r v s t . 2

7.6.4 Note: The operator (−)s t is denoted (−)>> in Pitts (1998; 2000). 2



268 7 Typed Operational Reasoning

7.6.5 Lemma: The operations (−)s and (−)t for turning term­relations into stack­

relations and vice versa, form a Galois connection:

s ⊆ r s if and only if r ⊆ st . (7.18)

Hence the operator (−)s t on term­relations is monotone (r1 ⊆ r2 implies

(r1)s t ⊆ (r2)s t ), inflationary (r ⊆ r s t ), and idempotent ((r s t)s t = r s t ). 2

Proof: If s ⊆ r s , then for any (t,t′) ∈ r we have for all (S, S′) ∈ s that

(S, S′) ∈ r s , so 〈S,t〉 ↓ iff 〈S′,t′〉 ↓; hence (t,t′) ∈ st . Thus s ⊆ r s implies

r ⊆ st . The converse implication holds by a similar argument. Once we have

(7.18), the other properties follow by standard arguments true of any Galois

connection, which we give in case the reader has not seen them before.

Thus for any term­relation r , since r s ⊆ r s , from (7.18) we conclude that

r ⊆ r s t ; so (−)s t is inflationary (and symmetrically, so is the operator (−)t s

on stack­relations).

Now we can deduce that (−)s and (−)t are order­reversing. For if r1 ⊆ r2,

then r1 ⊆ r2 ⊆ r
s t
2 , so by (7.18), r s

2 ⊆ r
s
1. Similarly, s1 ⊆ s2 implies st

2 ⊆ s
t
1.

Hence (−)s t is monotone (and so is (−)t s).

Finally, for idempotence, in view of the inflationary property we just have to

show (r s t)s t ⊆ r s t . But applying (7.18) to r s t ⊆ r s t we get r s ⊆ (r s t)s ; applying

the order­reversing operator (−)t to this yields (r s t)s t ⊆ r s t , as required. 2

7.6.6 Corollary: Every valuable term­relation is—in particular—a closed term­

relation. 2

Proof: Note that because (−)s t is idempotent (by the above lemma), any

term­relation of the form r s t is closed. Thus valuable term­relations (ones

satisfying r = r v s t ) are in particular closed. 2

The following exercise establishes a supply of valuable term­relations that

we will need later.

7.6.7 Exercise [Recommended, ««]: Given any value­relation r ∈ VRel(T,T′), show

that r s t is valuable, i.e., satisfies r s t = (r s t)v s t . 2

Closed term­relations (and hence also valuable term­relations) have excel­

lent “admissibility” properties that we record in the following lemma.

7.6.8 Lemma: If r ∈ TRel(T,T′) satisfies r = r s t (and in particular if it is valuable),

then it has the following properties.

Equivalence­respecting If (t,t′) ∈ r ,∅ ` t =ciu t1 : T, and∅ ` t′ =ciu t
′
1 :

T, then (t1,t
′
1) ∈ r .



7.6 An Operationally Based Logical Relation 269

Admissibility Given recursive function values F
def
= fun f(x:T1)=u:T2 and

F′
def
= fun f(x:T1)=u

′:T2, let Fn and F′n (n = 0,1, . . .) be their “unwindings,”

as in Theorem 7.4.4. If ([x, Fn]t, [x, F′n]t
′) ∈ r for all n = 0,1, . . ., then

([x, F]t, [x, F′]t′) ∈ r . 2

Proof: Suppose (t,t′) ∈ r , ∅ ` t =ciu t1 : T and ∅ ` t′ =ciu t′1 : T. To see

that (t1,t
′
1) ∈ r , since r = (r s)t , it suffices to show for all (S, S′) ∈ r s that

〈S,t1〉 ↓ iff 〈S′,t′1〉 ↓. But

〈S,t1〉 ↓ iff 〈S,t〉 ↓ (since ∅ ` t =ciu t1 : T)

iff 〈S′,t′〉 ↓ (since (S, S′) ∈ r s and (t,t′) ∈ r )

iff 〈S′,t′1〉 ↓ (since ∅ ` t′ =ciu t
′
1 : T).

For the Admissibility property we apply the Unwinding Theorem. Suppose

([x, Fn]t, [x, F′n]t
′) ∈ r holds for all n = 0,1, . . .. Then for any (S, S′) ∈ r s

we have

〈S, [x, F]t〉 ↓

iff for some n, 〈S, [x, Fn]t〉 ↓ (by Theorem 7.4.4)

iff for some n, 〈S′, [x, F′n]t
′〉 ↓ (since (S, S′) ∈ r s and

([x, Fn]t, [x, F′n]t
′) ∈ r )

iff 〈S, [x, F′]t′〉 ↓ (by Theorem 7.4.4 again)

and therefore ([x, F]t, [x, F′]t′) ∈ (r s)t ; but r s t = r . 2

7.6.9 Definition [Action of types on term­relations]: The action of types on

term­relations takes the following form: if T(X) is a type whose free type

variables lie among the list X = X1, . . . ,Xn, then given a corresponding list

of term relations r1 ∈ TRel(T1,T
′
1), . . . , rn ∈ TRel(Tn,T′n), we define a term

relation T[r] ∈ TRel([X , T]T, [X , T′]T). The definition is by induction on

the structure of T as follows.

Xi[r]
def
= (ri)

v s t

Gnd[r]
def
= (IdGnd)

s t

(T1→T2)[r]
def
= fun(T1[r],T2[r])

s t

{li:Ti
i∈1..n}[r]

def
= {li=Ti[r]

i∈1..n}s t

(∀X.T)[r]
def
= (λr.T[r , r])s t

{∃X,T}[r]
def
= {∃r,T[r , r]}s t



270 7 Typed Operational Reasoning

IdGnd ∈ VRel(Gnd,Gnd)

is {(c,c) | Typeof (c) = Gnd}.

fun(r1, r2) ∈ VRel(T1→T2,T
′
1→T

′
2),

given r1 ∈ TRel(T1,T
′
1) and r2 ∈ TRel(T2,T

′
2),

is defined by:

(v,v′) ∈ fun(r1, r2) if and only if for all

(v1,v
′
1) ∈ (r1)

v , it is the case that

(v v1,v′ v
′
1) ∈ r2.

{li=ri i∈1..n} ∈ VRel({li:Ti i∈1..n},

{li:T
′
i
i∈1..n})

given (ri ∈ TRel(Ti,T
′
i)

i∈1..n),

is defined by:

(v,v′) ∈ {li=ri i∈1..n} if and only if for all

i ∈ 1..n, it is the case that

(v.li ,v′.li) ∈ ri .

λr.R(r) ∈ VRel(∀X.T,∀X.T′),

given R(r) ∈ TRel([X , T1]T, [X , T′1]T
′)) for

r ∈ TRel(T1,T
′
1) and T1,T

′
1 ∈ Typ,

is defined by:

(v,v′) ∈ λr.R(r) if and only if for all

T1,T
′
1 ∈ Typ and all r ∈ TRel(T1,T

′
1), it

is the case that (v T1,v′ T
′
1) ∈ R(r).

{∃r,R(r)} ∈ VRel({∃X,T},{∃X,T′}),

given R(r) ∈ TRel([X , T1]T, [X , T′1]T
′)) for

r ∈ TRel(T1,T
′
1) and T1,T

′
1 ∈ Typ,

is defined by:

(v,v′) ∈ {∃r,R(r)} if and only if there

exist T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1) and

(v1,v
′
1) ∈ R(r) with

v = {*T1,v1} as {∃X,T} and

v′ = {*T′1,v
′
1} as {∃X,T′}.

Figure 7­5: Type­directed constructions on term­relations

In addition to the operations on term­, value­ and stack­relations given in

Definition 7.6.3, these definitions make use of the operations for constructing

value­relations from term­relations given in Figure 7­5. 2

We can use the action of types on term­relations to define a type­respecting

binary relation between open terms (in the sense of Definition 7.5.1) by in­

sisting that if we substitute related terms for the free value variables, the re­

sulting terms are still related. This “mapping related things to related things”

property is the common characteristic of the wide variety of constructs called

logical relations that have arisen since the seminal work of Plotkin (1973) and

Statman (1985) concerning simply typed λ­calculus; see also Chapter 6.

7.6.10 Definition [Logical relation, ∆]: Given Γ ` t : T and Γ ` t′ : T, with

Γ = X1, . . . ,Xm, x1 : T1, . . . ,xn : Tn say, we write Γ ` t ∆ t′ : T to mean that

for all Γ ­closing substitutions σ,σ ′ (cf. Definition 7.5.2(v)) and all families of

term­relations r = (ri ∈ TRel(σ(Xi), σ ′(Xi)) i∈1..m), if (σ(xj), σ ′(xj)) ∈ Tj[r]v

holds for each j = 1, . . . , n, then (σ(t), σ ′(t′)) ∈ T[r]. 2

7.6.11 Remark: Since it is far from straightforward, the form of Definitions 7.6.9

and 7.6.10 deserves some explanation. These definitions embody certain ex­



7.6 An Operationally Based Logical Relation 271

tensionality and parametricity properties (see §7.7 and Theorem 7.7.8) that

we wish to show hold for FML contextual equivalence: eventually we show

that the above logical relation ∆ coincides with contextual equivalence (Theo­

rem 7.6.25). To get that coincidence we have to formulate the definition of ∆

so that it satisfies the crucial property of Lemma 7.6.17 below (the so­called

fundamental property of the logical relation) and is adequate (Lemma 7.6.24).

The definition of the action of types on term­relations in Definition 7.6.9 is

carefully formulated to ensure these properties hold.

First of all, note the use of closing substitutions to reduce the logical re­

lation for open terms to that for closed ones. This builds in the “instantia­

tion” aspect of ciu­equivalence that we wish to prove of contextual equiva­

lence. (It also means that the logical relation has the “monotonicity” prop­

ertymonotonicity property of logical relations considered in Chapter 6.)

Secondly, we want T[r] to always be a closed term­relation, because then it

has the equivalence­respecting and admissibility properties noted in Lemma

7.6.8. This accounts for the use of (−)s t in the definition. The (−)s and (−)t

operators build into the logical relation a delicate interplay between terms

and frame stacks. Of course this relies on the formulation of the operational

semantics of FML in §7­3: although more traditional “big­step” or “small­

step” operational semantics lead to the same termination relation (cf. Exer­

cise 7.4.2), the pairing between frame stacks and terms defined in Figure 7­2

is ideal for our purposes.

Lastly, the call­by­value nature of FML dictates that relational parametric­

ity properties of polymorphic types should be with respect to term­relations

that are valuable; but instead of letting r range over such relations in the

definition of (∀X.T)[r] and {∃X,T}[r] we have used an equivalent formula­

tion in which r ranges over all term­relations (of appropriate type), but type

variables X are interpreted using the closure of the value­restriction opera­

tor (−)v : for in fact as r ranges over all term­relations, r v s t ranges over all

valuable term­relations. 2

The rest of this section is devoted to showing that contextual equivalence

and ciu­equivalence coincide with the logical relation.

7.6.12 Lemma: Each of the term relations T[r] defined in Definition 7.6.9 is valuable,

i.e., satisfies T[r] = T[r]v s t , and hence in particular by Corollary 7.6.6 is

closed. 2

Proof: It is immediate from the definition that each T[r] is of the form r s t

for some value­relation r ; so just apply Exercise 7.6.7. 2

The following lemma helps with calculations involving the action on term­

relations of function types. We give its proof in detail since it typifies the kind



272 7 Typed Operational Reasoning

of reasoning needed when working with the Galois connection given by the

(−)s and (−)t operators. (For related properties for record and ∀­types, see

Exercise 7.6.14.)

7.6.13 Lemma: The operation fun(−,−) from Definition 7.6.9(ii) satisfies

fun(r1, (r2)
s t)s t v = fun(r1, (r2)

s t) (7.19)

fun((r1)
v s t , (r2)

s t) = fun(r1, (r2)
s t). (7.20)

Proof: To prove (7.19), first note that since (−)s t is inflationary (Lemma 7.6.5)

we have fun(r1, (r2)s t) ⊆ fun(r1, (r2)s t)s t ; and since fun(r1, (r2)s t) is a value­

relation, it follows that fun(r1, (r2)s t) ⊆ fun(r1, (r2)s t)s t v . For the reverse

inclusion it suffices to prove

fun(r1, (r2)
s t)s t ⊆ fun(r1, (r2)

s t) (7.21)

and then apply (−)v to both sides (noting that fun(r1, (r2)s t), being a value­

relation, is equal to fun(r1, (r2)s t)v ). For (7.21) we use the following simple

property of the termination relation (Figure 7­2) with respect to application:

〈S ◦ (f.f v1),v〉 ↓ a 〈S,v v1〉 ↓

and hence

(〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓) a

(〈S ◦ (f.f v1),v〉 ↓a 〈S′ ◦ (f.f v′1),v
′〉 ↓) (7.22)

If (v,v′) ∈ fun(r1, (r2)s t) and (v1,v
′
1) ∈ (r1)

v , then we have (v v1,v′ v
′
1) ∈

(r s
2)

t by definition of the fun(−,−) operation on term­relations (Figure 7­5).

So if (S, S′) ∈ (r2)s , then

〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓

and hence by (7.22)

〈S ◦ (f.f v1),v〉 ↓ a 〈S′ ◦ (f.f v′1),v
′〉 ↓.

Since this holds for all (v,v′) ∈ fun(r1, (r2)s t), we deduce that

(S, S′) ∈ (r2)
s & (v1,v

′
1) ∈ (r1)

v ⇒

(S ◦ (f.f v1), S
′ ◦ (f.f v′1)) ∈ fun(r1, (r2)

s t)s.

So for any (S, S′) ∈ (r2)s and (v1,v
′
1) ∈ (r1)

v , since

(S ◦ (f.f v1), S
′ ◦ (f.f v′1)) ∈ fun(r1, (r2)

s t)s



7.6 An Operationally Based Logical Relation 273

it follows that if

(v,v′) ∈ fun(r1, (r2)
s t)s t (7.23)

then 〈S ◦ (f.f v1),v〉 ↓ a 〈S′ ◦ (f.f v′1),v
′〉 ↓, and hence by (7.22) it fol­

lows that 〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓. Since this holds for all (S, S′) ∈ (r2)s ,

it follows that (v v1,v′ v
′
1) ∈ (r2)

s t whenever (v1,v
′
1) ∈ (r1)

v . So (v,v′) ∈

fun(r1, (r2)s t) whenever (7.23) holds; thus we have proved the inclusion in

(7.21), as required.

Turning to the proof of (7.20), first note that since since (−)s t is inflation­

ary, we have (r1)v ⊆ (r1)v s t . So since fun(−,−) is clearly order­reversing

in its first argument, we have fun((r1)v s t , (r2)s t) ⊆ fun((r1)v , (r2)s t); and

fun((r1)v , (r2)s t) = fun(r1, (r2)s t), because fun(−,−) only depends upon the

values related by its first argument. Thus to prove (7.20), we just have to show

fun(r1, (r2)
s t) ⊆ fun((r1)

v s t , (r2)
s t). (7.24)

For this we use the following fact about termination

〈S ◦ (x.v x),v1〉 ↓a 〈S,v v1〉 ↓

which is immediate from the definition in Figure 7­2. From this it follows that

(〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓) a

(〈S ◦ (x.v x),v1〉 ↓a 〈S′ ◦ (x.v′ x),v′1〉 ↓) (7.25)

If (v,v′) ∈ fun(r1, (r2)s t) and (v1,v
′
1) ∈ (r1)

v , then by definition of fun(−,−)

we have (v v1,v′ v
′
1) ∈ (r2)

s t . So if (S, S′) ∈ (r2)s , then

〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓

and hence by (7.25) we have

〈S ◦ (x.v x),v1〉 ↓ a 〈S′ ◦ (x.v′ x),v′1〉 ↓.

Since this holds for all (v1,v
′
1) ∈ (r1)

v , we deduce that

(S, S′) ∈ (r2)
s & (v,v′) ∈ fun(r1, (r2)

s t) ⇒

(S ◦ (x.v x), S′ ◦ (x.v′ x)) ∈ (r1)
v s.

So for any (S, S′) ∈ (r2)s and (v,v′) ∈ fun(r1, (r2)s t), since (S ◦ (x.v x), S′ ◦

(x.v′ x)) ∈ (r1)v s , it follows for any (v1,v
′
1) ∈ ((r1)

v s t)v ⊆ ((r1)v s)t that

we have 〈S ◦ (x.v x),v1〉 ↓ a 〈S′ ◦ (x.v′ x),v′1〉 ↓, and hence by (7.25) that

〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓. Since this holds for all (S, S′) ∈ (r2)s , it follows that

(v v1,v′ v
′
1) ∈ (r2)

s t . Hence (v,v′) ∈ fun((r1)v s t , (r2)s t) whenever (v,v′) ∈

fun(r1, (r2)s t), as required for (7.24). 2



274 7 Typed Operational Reasoning

7.6.14 Exercise [Recommended, «]: Show that constructions (iii) and (iv) in Defini­

tion 7.6.9 satisfy

{li=(ri)
s t i∈1..n}s t v = {li=(ri)

s t i∈1..n} (7.26)

(λr.R(r)s t)s t v = λr.R(r)s t . (7.27)

(Cf. the proof of Lemma 7.6.13.) 2

7.6.15 Lemma: For all ground types Gnd, (IdGnd)s t v = IdGnd. 2

Proof: Since (−)s t is idempotent (Lemma 7.6.5), we have IdGnd ⊆ (IdGnd)s t ;

and since IdGnd is a value­relation it follows that IdGnd ⊆ (IdGnd)s t v . To prove

the reverse inclusion, for each constant c of type Gnd consider

diverge
def
= (fun f(b:Bool) = f b : Bool)true

Sc
def
= Id ◦ (x. if x=c then true else diverge).

Note that for all constants c′ of type Gnd

〈Sc,c
′〉 ↓ a c = c′. (7.28)

Furthermore, since (c′,c′′) ∈ IdGnd iff c′ = c′′, we have that (Sc, Sc) ∈ (IdGnd)s ;

so if the constants c and c′ satisfy (c,c′) ∈ (IdGnd)s t , then we have 〈Sc,c〉 ↓a

〈Sc,c′〉 ↓. So by (7.28), (c,c′) ∈ (IdGnd)s t implies c = c′; thus (IdGnd)s t v ⊆

IdGnd. 2

7.6.16 Lemma: The action of types on term­relations of Definition 7.6.9 has the fol­

lowing substitution property. For any types T and T′ with ftv(T) ⊆ X,X and

ftv(T′) ⊆ X, it is the case that ([X, T′]T)[r] = T[T′[r], r]. 2

Proof: This follows by induction on the structure of the type T; for the base

case when T = X, use Lemma 7.6.12. 2

7.6.17 Lemma [Fundamental property of the logical relation]: The logical re­

lation ∆ of Definition 7.6.10 has the substitutivity and compatibility proper­

ties defined in Figure 7­4. 2

Proof: The first substitutivity property in Figure 7­4 (closure under substi­

tuting values for value variables) holds for ∆ because of the way it is de­

fined in terms of closing substitutions. The second substitutivity property

(closure under substituting types for types variables) holds for ∆ because of

Lemma 7.6.16.



7.6 An Operationally Based Logical Relation 275

Now consider the compatibility properties given in Figure 7­4. There is one

for each clause in the grammar of FML terms and values (Figure 7­1). We con­

sider each in turn, giving the details in some cases and setting the others as

exercises (with solutions).

Value variables: This case is immediate from the definition of ∆ in Defini­

tion 7.6.10.

Constants: We have to show for each constant c, with Typeof (c) = Gnd

say, that (c,c) ∈ Gnd[r] = (IdGnd)s t . But by definition of IdGnd (Figure 7­5),

(c,c) ∈ IdGnd; and IdGnd ⊆ (IdGnd)s t by Lemma 7.6.5.

Recursive functions: Using property (7.19) and the fact that each T[r] is

valuable and hence closed (Lemma 7.6.12), the compatibility property for re­

cursive functions reduces to proving the property in Exercise 7.6.18.

Record values: This case follows from the property in Exercise 7.6.19.

Type abstractions: This case follows from the property in Exercise 7.6.20.

Package values: This case follows easily from the definition of {∃r,R(r)}

in Figure 7­5, using Lemma 7.6.16.

Conditionals: This case follows from the property in Exercise 7.6.21.

Operations: In view of Lemma 7.6.15, this compatibility property follows

once we prove (op(ci i∈1..n),op(ci i∈1..n)) ∈ (IdGnd)s t for any (suitably typed)

constants ci and operator op. But if the value of op(ci
i∈1..n) is the constant c

say, then for any S

〈S,op(ci
i∈1..n)〉 ↓ a 〈S,c〉 ↓.

Hence for any (S, S′) ∈ (IdGnd′)s (where Gnd′ = Typeof (c)), we have

〈S,op(ci
i∈1..n)〉 ↓a 〈S,c〉 ↓

a 〈S′,c〉 ↓ (since (c,c) ∈ IdGnd′ )

a 〈S′,op(ci
i∈1..n)〉 ↓.

So we do indeed have (op(ci i∈1..n),op(ci i∈1..n)) ∈ (IdGnd)s t .

Applications: This case amounts to proving that if recursive function values

v and v′ satisfy (v,v′) ∈ fun(r1, r2)s t for some closed term­relations r1 and

r2, then for any (v1,v
′
1) ∈ r1 it is the case that (v v1,v′ v

′
1) ∈ r2. But this

property follows immediately from the definition of fun(−,−) using the first

part of Lemma 7.6.13: for

(v,v′) ∈ fun(r1, r2)
s t v

= fun(r1, (r2)
s t)s t v (since r2 is closed)

= fun(r1, (r2)
s t) (by (7.19))

= fun(r1, r2) (since r2 is closed).



276 7 Typed Operational Reasoning

Projections: This case is similar to the previous one, but using property

(7.26) from Exercise 7.6.14 rather than (7.19).

Type applications: This case is similar to the previous one, using property

(7.27) from Exercise 7.6.14.

Unpacking: This case follows from the property in Exercise 7.6.22.

Sequencing: This case follows from the property in Exercise 7.6.23. 2

7.6.18 Exercise [Recommended, «««]: Suppose

F
def
= fun f(x:T1)=t:T2 ∈ Val(T1→T2)

F′
def
= fun f(x:T′1)=t

′:T′2 ∈ Val(T′1→T
′
2)

r1 ∈ TRel(T1,T
′
1)

r2 ∈ TRel(T2,T
′
2)

satisfy r2 = (r2)s t and

([f, v][x, v1]t, [f, v′][x, v′1]t
′) ∈ r2,

for all (v,v′) ∈ fun(r1, r2) and (v1,v
′
1) ∈ (r1)

v .

(7.29)

Use the admissibility property of valuable term­relations established in Lem­

ma 7.6.8 to show that (F,F′) ∈ fun(r1, r2). 2

7.6.19 Exercise [««]: Suppose for i ∈ 1..n that vi ∈ Val(Ti), v
′
i ∈ Val(T′i) and ri ∈

TRel(Ti,T
′
i) with ri = (ri)s t . Putting

v
def
= {li=vi

i∈1..n} ∈ Val({li:Ti
i∈1..n})

v′
def
= {li=v

′
i
i∈1..n} ∈ Val({li:T

′
i
i∈1..n})

show that if (vi ,v
′
i) ∈ ri for i ∈ 1..n, then (v,v′) is in the value­relation

{li=ri i∈1..n} defined in Figure 7­5. 2

7.6.20 Exercise [««]: Let T and T′ be types with at most X free. For each T1,T
′
1 ∈ Typ

and r ∈ TRel(T1,T
′
1) suppose we are given a closed term­relation R(r) in

TRel([X , T1]T, [X , T′1]T
′)) (i.e., R(r) = R(r)s t ). Show that if the values v

and v′ satisfy

X ` v : T

X ` v′ : T′

∀T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1). ([X, T1]v, [X, T′1]v

′) ∈ R(r)

then (λX.v, λX.v′) is in the value­relation λr.R(r) defined in Figure 7­5. 2



7.6 An Operationally Based Logical Relation 277

7.6.21 Exercise [««]: Suppose (v,v′) ∈ (IdBool)s t and (t1,t
′
1), (t2,t

′
2) ∈ r , where

r ∈ TRel(T,T′) is closed (i.e., r = (r)s t ). Show that

(if v then t1 else t2,if v′ then t′1 else t′2)

is in r . 2

7.6.22 Exercise [««]: Let T and T′ be types with at most X free. For each T1,T
′
1 ∈ Typ

and r1 ∈ TRel(T1,T
′
1) suppose we are given a closed term­relation R(r1) =

R(r1)s t in TRel([X , T1]T, [X , T′1]T
′)). Suppose we are also given a closed

term­relation r2 = (r2)s t ∈ TRel(T2,T
′
2) for some closed types T2,T

′
2 ∈ Typ.

Show that if the terms t,t′ satisfy

X, x : T ` t : T2

X, x : T′ ` t′ : T′2

∀T1,T
′
1 ∈ Typ, r1 ∈ TRel(T1,T

′
1), (v1,v

′
1) ∈ (r1)

v .

([X, T1][x, v1]t, [X, T1][x, v1]t) ∈ r2

then whenever (v,v′) ∈ {∃r1,R(r1)}s t v , it is also the case that

(let {*X,x}=v in t,let {*X,x}=v′ in t′)

is in r2. 2

7.6.23 Exercise [««]: Suppose we are given r1 ∈ TRel(T1,T
′
1), r2 ∈ TRel(T2,T

′
2) with

r1 valuable (i.e., r1 = (r1)v s t ) and r2 closed (i.e., r2 = (r2)s t ). Show that if the

terms t2,t
′
2 satisfy

x : T1 ` t2 : T2

x : T′1 ` t′2 : T′2

∀(v1,v
′
1) ∈ (r1)

v . ([x, v1]t2, [x, v′1]t
′
2) ∈ r2

then whenever (t1,t
′
1) ∈ r1, it is also the case that

(let x=t1 in t2,let x=t
′
1 in t′2)

is in r2. 2

7.6.24 Lemma [Adequacy]: The logical relation ∆ is adequate (Definition 7.5.1). 2

Proof: Suppose ∅ ` t ∆ t′ : T; we have to show that t ↓ holds iff t′ ↓ does,

or equivalently that

〈Id,t〉 ↓ iff 〈Id,t′〉 ↓. (7.30)



278 7 Typed Operational Reasoning

Unraveling Definition 7.6.10, the assumption that the closed terms t and t′

of closed type T are ∆­related means that (t,t′) ∈ T[], the latter being the

action of the type T on the empty list of term­relations. By Lemma 7.6.12, T[]

is valuable; so (t,t′) ∈ T[]v s t . Hence to prove (7.30), it suffices to show that

(Id, Id) ∈ (T[]v)s ; but for any (v,v′) ∈ T[]v ,

〈Id,v〉 ↓ iff 〈Id,v′〉 ↓

holds trivially by axiom (S­NilVal) in Figure 7­2. 2

We are finally able to put all the pieces together and prove the main result

of this section. At the same time we complete the proof of Theorem 7.5.7.

7.6.25 Theorem [=ctx equals ∆ equals =ciu]: FML contextual equivalence, =ctx, (as

defined in Theorem 7.5.3) coincides with the logical relation ∆ of Defini­

tion 7.6.10 and with ciu­equivalence, =ciu (Definition 7.5.5): Γ ` t =ctx t
′ : T

holds if and only if Γ ` t ∆ t′ : T does, if and only if Γ ` t =ciu t
′ : T does. 2

Proof: It suffices to show that the following chain of inclusions holds:

=ctx

(1)
⊆ =ciu

(3)
⊆ ∆

(2)
⊆ =ctx.

(1) This is the half of Theorem 7.5.7 that we have already proved in §7.5.

(2) We have not yet shown that ∆ is an equivalence relation; and in fact we

will only deduce this once we have shown that it coincides with =ctx and

=ciu (which are easily seen to be equivalence relations). However, we have

shown that ∆ is compatible, substitutive and adequate (Lemmas 7.6.17 and

7.6.24). In the proof of Theorem 7.5.3 we constructed =ctx as the union of

all such type­respecting relations, without regard to whether they were

also equivalence relations; therefore ∆ is contained in =ctx.

(3) Noting how =ciu and ∆ are defined on open terms via substitutions, we

can combine the first part of Lemma 7.6.8 with Lemma 7.6.12 to give

Γ ` t =ciu t
′ : T & Γ ` t′ ∆ t′′ : T ⇒ Γ ` t ∆ t′′ : T. (7.31)

We noted in the proof of Theorem 7.5.3 that every compatible term­relation

is reflexive. (This is easily proved by induction on the structure of terms.)

So since ∆ is compatible (Lemma 7.6.17) it is in particular reflexive. So

we can take t′ = t′′ in (7.31) to deduce that Γ ` t =ctx t′ : T implies

Γ ` t ∆ t′ : T. 2



7.7 Operational Extensionality 279

7.7 Operational Extensionality

In this section we develop some of the consequences of Theorem 7.6.25.

Now that we know that contextual equivalence coincides with ciu­equivalence

(Theorem 7.5.7), when giving general properties of =ctx we restrict attention

to closed terms of closed type where possible, since the corresponding prop­

erty for open terms can be obtained via closing substitutions.

7.7.1 Theorem [Extensionality for values]: We now give extensionality princi­

ples for the various types of value; for package values, the principle is a for­

malization of the final one discussed in the Introduction (Principle 7.3.6).

1. Constants: Given constants c, c′ of the same ground type, Gnd say, ∅ `

c =ctx c
′ : Gnd holds if and only if c = c′.

2. Functions: Given f:T1→T2, x:T1 ` t : T2 and f:T1→T2, x:T1 ` t′ : T2,

writing v and v′ for the recursive function values fun f(x:T1)=t:T2 and

fun f(x:T1)=t
′:T2 respectively, then ∅ ` v =ctx v′ : T1→T2 if and only

if for all ∅ ` v1 : T1, it is the case that ∅ ` [f , v][x , v1]t =ctx [f ,

v′][x, v1]t′ : T2.

3. Records: Given values ∅ ` vi : Ti and ∅ ` v′i : Ti for i ∈ 1..n, then

∅ ` {li=vi
i∈1..n} =ctx {li=v

′
i
i∈1..n} : {li:Ti

i∈1..n} if and only if for each

i ∈ 1..n, ∅ ` vi =ctx v
′
i : Ti .

4. Type abstractions: Given X ` v : T and X ` v′ : T, then ∅ ` λX.v =ctx

λX.v′ : ∀X.T if and only if for all closed types T′,∅ ` [X, T′]v =ctx [X,

T′]v′ : [X, T′]T.

5. Packages: For any closed existential type {∃X,T}, closed types T1, T2, and

values ∅ ` vi : [X, Ti]T (i = 1,2),

∅ ` {*T1,v1} as {∃X,T} =ctx {*T2,v2} as {∃X,T} : {∃X,T}

holds if there is some term­relation r ∈ TRel(T1,T2) with (v1,v2) ∈ T[r]. 2

Proof:

1. The property for constants follows from Lemma 7.6.15 combined with

Theorem 7.6.25.

2. Suppose for all ∅ ` v1 : T1 that

∅ ` [f, v][x , v1]t =ctx [f, v′][x, v1]t
′ : T2 (7.32)



280 7 Typed Operational Reasoning

where v and v′ are as in part 2 of the theorem. To show ∅ ` v =ctx

v′ : T1→T2, by Theorem 7.6.25 it suffices to show ∅ ` v ∆ v′ : T1→T2,

i.e., that (v,v′) ∈ (T1→T2)[] = fun(T1[],T2[])s t . In fact we show that

(v,v′) ∈ fun(T1[],T2[]). For this we have to prove that if (v1,v
′
1) ∈ T1[]v ,

then (v v1,v′ v
′
1) ∈ T2[]. By Theorem 7.6.25 again, this is the same as

showing: if ∅ ` v1 =ctx v
′
1 : T1, then ∅ ` v v1 =ctx v

′ v′1 : T2. As noted in

Corollary 7.5.8, we can turn the primitive reduction for function applica­

tion into a ciu­equivalence and hence by Theorem 7.6.25 into a contextual

equivalence:

∅ ` v v1 =ctx [f, v][x, v1]t : T2 (7.33)

and similarly for v′ v′1. Therefore we just need to show: if∅ ` v1 =ctx v
′
1 :

T1, then ∅ ` [f , v][x , v1]t =ctx [f , v′][x , v′1]t
′ : T2. But this

follows from the assumption (7.32) using the reflexivity and substitutivity

properties of =ctx. So we have established one half (the difficult half) of

the property in 2. For the converse, if ∅ ` v =ctx v
′ : T1→T2, then for any

∅ ` v1 : T1, the compatibility properties of =ctx give∅ ` v v1 =ctx v
′ v1 :

T2; and then as before, we can compose with (7.33) to get (7.32).

3. We leave the extensionality property for records as an exercise (7.7.2).

4. For the property for type abstractions, suppose

∀T′ ∈ Typ. ∅ ` [X, T′]v =ctx [X, T′]v′ : [X, T′]T. (7.34)

Note that since ∆ coincides with =ctx (Theorem 7.6.25) it is reflexive and

hence X ` v ∆ v : T holds. According to Definition 7.6.10 this means

that for all T1,T
′
1 ∈ Typ and r ∈ TRel(T1,T

′
1), ([X , T1]v, [X , T′1]v) ∈

T[r]. Since T[r] is closed (Lemma 7.6.12), we can combine (7.34) with the

first part of Lemma 7.6.8 (using =ctx in place of =ciu by virtue of Theo­

rem 7.6.25) to conclude that ([X , T1]v, [X, T′1]v
′) ∈ T[r] for all r . Then

using the equivalence in Corollary 7.5.8(v), we have

∀T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1). ((λX.v)T1,(λX.v

′)T′1) ∈ T[r]

and hence (λX.v, λX.v′) is in λr.T[r]. Since λr.T[r] ⊆ (λr.T[r])s t and

the latter is equal to (∀X.T)[] by definition, we have ∅ ` λX.v ∆ λX.v′ :

∀X.T, and hence by Theorem 7.6.25, ∅ ` λX.v =ctx λX.v′ : ∀X.T. So

we have established one half (the difficult half) of the property in 4. The

argument for the other half is similar to that for property 2, using Corol­

lary 7.5.8(v) and the congruence properties of =ctx.



7.7 Operational Extensionality 281

5. Finally, let us consider the extensionality property for package values.

(Note that unlike the other four, this only gives a sufficient condition for

contextual equivalence; Example 7.7.4 below shows that the condition is

not necessary.) If (v1,v2) ∈ T[r], then from Definition 7.6.9 we have

({*T1,v1} as {∃X,T},{*T2,v2} as {∃X,T}) ∈ {∃r,T[r]}

⊆ {∃r,T[r]}s t

= {∃X,T}[].

Thus ∅ ` {*T1,v1} as {∃X,T} ∆ {*T2,v2} as {∃X,T} : {∃X,T} and we

can apply Theorem 7.6.25 to get the desired contextual equivalence. 2

7.7.2 Exercise [««, 3]: Use Theorem 7.6.25, Corollary 7.5.8 and the definition of

the term­relation {li=ri i∈1..n} in Definition 7.6.9 to deduce extensionality prop­

erty 3 of Theorem 7.7.1. 2

To see how Theorem 7.7.1(5) can be used in practice, we will apply it to

establish the contextual equivalence of Example 7.3.5 from the Introduction.

7.7.3 Example: Recall the type Semaphore and its values semaphore1, semaphore2

from Example 7.3.5. To show∅ ` semaphore1 =ctx semaphore2 : Semaphore

using Theorem 7.7.1(5), it suffices to show that (v1,v2) ∈ T[r] where

T
def
= {bit:X, flip:X→X, read:X→Bool}

v1
def
= {bit=true, flip=λx:Bool.not x, read=λx:Int.x}

v2
def
= {bit=1, flip=λx:Int.0­2*x, read=λx:Int.x >= 0}

and r ∈ VRel(Bool,Int) is

r
def
= {(true,m) |m = (−2)n for some even n ≥ 0} ∪

{(false,m) |m = (−2)n for some odd n ≥ 0}.

Since r is a value­relation, we can use Lemma 7.6.13 to slightly simplify T[r]:

T[r]
def
= {bit=r s t ,flip=fun(r s t , r s t)s t ,read=fun(r s t , Ids t

Bool)
s t}s t

= {bit=r s t ,flip=fun(r , r s t)s t ,read=fun(r , Ids t
Bool)

s t}s t .

So since (−)s t is inflationary, to prove (v1,v2) ∈ T[r], it suffices to show

(true,1) ∈ r

(λx:Bool.not x, λx:Int.0­2*x) ∈ fun(r , r s t)

(λx:Int.x, λx:Int.x >= 0) ∈ fun(r , Ids t
Bool).



282 7 Typed Operational Reasoning

These follow from the definition of r—the first trivially and the second two

once we combine the definition of fun(−,−) with the fact (Lemma 7.6.8)

that closed relations such as r s t and Ids t
Bool respect ciu­equivalence. For ex­

ample, if (v1,v
′
1) ∈ r , then (λx:Bool.not x)v1 and (λx:Int.0­2*x)v′1 are

ciu­equivalent to r ­related values v2 and v′2; then since (v2,v
′
2) ∈ r ⊆ r

s t and

the latter is closed, we have ((λx:Bool.not x)v1,(λx:Int.0­2*x)v
′
1) ∈ r

s t .

As this holds for all (v1,v
′
1) ∈ r , we have (λx:Bool.not x, λx:Int.0­2*x) in

fun(r , r s t). 2

Theorem 7.7.1(5) gives a sufficient condition for contextual equivalence of

package values, but the condition is not necessary: it can be the case that

{* T1, v1} as {∃X, T} is contextually equivalent to {* T2, v2} as {∃X, T}

even though there is no r ∈ TRel(T1,T2) with (v1,v2) ∈ T[r]. The rest of

this section is devoted to giving an example of this unpleasant phenomenon

(based on a suggestion of Ian Stark arising out of our joint work on logical

relations for functions and dynamically allocated names in Pitts and Stark,

1993).

7.7.4 Example: Consider the following types and terms.

P
def
= (X→Bool)→Bool

Q
def
= {∃X,P}

N
def
= ∀X.X

diverge
def
= (fun f(b:Bool) = f b : Bool)true

G
def
= fun g(f:N→Bool) = diverge : Bool

G′
def
= fun g(f:Bool→Bool) =

(if f true then

if f false then diverge else true

else diverge) : Bool.

Thus N is a type with no values (Exercise 7.7.6); G is a function that diverges

when applied to any value of type N→Bool; and G′ is a function that diverges

when applied to any value of type Bool→Bool except ones (such as the iden­

tity function) that map true to true and false to false, in which case it

returns true. We claim that

(i) there is no r ∈ TRel(N,Bool) for which (G,G′) ∈ P[r] holds,

(ii) but nevertheless ∅ ` {*N,G} as Q =ctx {*Bool,G
′} as Q : Q. 2



7.7 Operational Extensionality 283

Proof: For (i) note that the definition of N implies that Val(N) = ∅, i.e., there

are no closed values of type N (Exercise 7.7.6). So any r ∈ TRel(N,Bool) satis­

fies r v = ∅. Now

P[r]v
def
= ((X→Bool)→Bool)[r]v

def
= fun((X→Bool)[r], Ids t

Bool)
s t v

= fun((X→Bool)[r], Ids t
Bool) using (7.19)

def
= fun(fun(r v s t , Ids t

Bool)
s t , Ids t

Bool)

= fun(fun(r v s t , Ids t
Bool)

s t v , Ids t
Bool) by definition of fun(−,−)

= fun(fun(r v s t , Ids t
Bool), Id

s t
Bool) using (7.19)

= fun(fun(r , Ids t
Bool), Id

s t
Bool) using (7.20)

= fun(fun(r v , Ids t
Bool), Id

s t
Bool) by definition of fun(−,−).

Since r v = ∅, we have fun(r v , Ids t
Bool) = Val(N→Bool)×Val(Bool→Bool); and

we know by Theorem 7.6.25 that Ids t
Bool is the relation {(t,t′) | ∅ ` t =ctx

t′ : Bool}. Therefore

P[r]v = {(v,v′) | ∅ ` v v1 =ctx v
′ v′1 : Bool

for all v1 ∈ Val(N→Bool) and v′1 ∈ Val(Bool→Bool) }.

However,∅ ` G v1 =ctx G
′ v′1 : Bool does not hold if we take v1 and v′1 to be

the values

v1
def
= fun f(x:N) = diverge : Bool

v′1
def
= fun f(x:Bool) = x : Bool

since evaluation of G v1 does not terminate, whereas evaluation of G′ v′1 does.

Therefore (G,G′) ∉ P[r]v , for any r ∈ TRel(N,Bool).

Turning to the proof of (ii), now we know that it cannot be deduced from

the extensionality principle for package values in Theorem 7.7.1, we have to

prove this contextual equivalence by brute force. The termination relation

defined in Fig. 7­2 provides a possible strategy (if rather a tedious one) for

proving ciu­equivalences and hence contextual equivalences—by what one

might call termination induction. Thus to prove (ii) it suffices to prove that

the two terms are ciu­equivalent:

∀S. 〈S,{*N,G} as Q〉 ↓ a 〈S,{*Bool,G′} as Q〉 ↓.

Attempting to do this by induction on the derivation of terminations 〈−,−〉↓

(for all S simultaneously), one rapidly realizes that a stronger induction hy­

pothesis is needed: prove for all frame stacks S and terms t that



284 7 Typed Operational Reasoning

〈[x, {*N,G} as Q]S, [x, {*N,G} as Q]t〉 ↓

if and only if 〈[x, {*Bool,G′} as Q]S, [x, {*Bool,G′} as Q]t〉 ↓.

It is possible to prove this by induction on the definition of the termination

relation in Fig. 7­2 (for all S and t simultaneously). We omit the details except

to note that the only difficult induction step is for the primitive reduction

(R­UnpackPack) in Fig. 7­3 in the case that t is the form let{*X,g}=x in t′.

For that step, one can first show for all frame stacks S and terms t that

〈[X, N][g , G]S, [X , N][g, G]t〉 ↓

if and only if 〈[X, Bool][g, G′]S, [X , Bool][g, G′]t〉 ↓.

This also is proved by induction on the definition of the termination relation.

Once again we omit the details except to note that now the only difficult in­

duction step is for the primitive reduction (R­AppAbs) in the case that t is of

the form g v for some value v. To prove that step one can use Lemma 7.7.5

below. This lemma lies at the heart of the reason why the contextual equiva­

lence in (ii) is valid: if an argument supplied to G′ is sufficiently polymorphic

(which is guaranteed by the existential abstraction), then when specialized to

Bool it cannot have the functionality (true , true, false , false) needed

to distinguish G′ from the divergent behavior of G. 2

7.7.5 Lemma: For any value v satisfying X, g:P ` v : X→Bool, evaluation of G′([X,

Bool][g , G′]v) does not terminate. 2

Proof: To prove this we can use the logical relation from the previous sec­

tion. Consider the following value­relation in VRel(Bool,Bool):

r
def
= {(true,true), (false,false), (true,false)}.

Note that

(X→Bool)[r]v
def
= fun(rv s t , Ids t

Bool)
s t v

(7.20)
= fun(r, Ids t

Bool)
s t v (7.19)

= fun(r , Ids t
Bool) (7.35)

and hence

P[r]v
def
= fun((X→Bool)[r], Ids t

Bool)
s t v = fun((X→Bool)[r]v , Ids t

Bool)
s t v

(7.35)
= fun(fun(r , Ids t

Bool), Id
s t
Bool)

s t v (7.19)
= fun(fun(r , Ids t

Bool), Id
s t
Bool). (7.36)

If (v1,v
′
1) ∈ fun(r , Ids t

Bool), since (true,true), (false,false) ∈ r and Ids t
Bool

is contextual equivalence (Theorem 7.6.25) we get

∅ ` v1 true =ctx v
′
1 true : Bool

∅ ` v1 false =ctx v
′
1 false : Bool.



7.7 Operational Extensionality 285

So using Corollary 7.5.8(iii) and the congruence properties of =ctx, we have

G′ v1 =ctx (if v1 true then

if v1 false then diverge else true

else diverge)

=ctx (if v
′
1 true then

if v′1 false then diverge else true

else diverge)

=ctx G
′ v′1

Therefore (G′ v1,G′ v
′
1) ∈ Ids t

Bool whenever (v1,v
′
1) ∈ fun(r , Ids t

Bool); and so

(G′,G′) ∈ P[r]v , by (7.36). Hence using Lemma 7.6.17 we have

([X, Bool][g, G′]v, [X, Bool][g , G′]v) ∈ (X→Bool)[r]v

= fun(r , Ids t
Bool) by (7.35).

So since (true,false) ∈ r , we get

([X, Bool][g, G′]v true, [X, Bool][g, G′]v false) ∈ Ids t
Bool.

Thus ([X , Bool][g , G′]v)true and ([X , Bool][g , G′]v)false are

contextually equivalent closed terms of type Bool. Therefore it cannot be

the case that the first evaluates to true and the second to false (cf. Exer­

cise 7.5.10); but in that case, by definition of G′, it must be that evaluation of

G′([X, Bool][g, G′]v) does not terminate. 2

7.7.6 Exercise [«, 3]: By considering the possible typing derivations from the rules

in Figure 7­1, show that there is no value v satisfying ∅ ` v : ∀X.X. (Note

that the syntactic restriction on values of universally quantified type men­

tioned in Remark 7.4.1 plays a crucial role here.) 2

7.7.7 Remark [The role of non­termination]: Example 7.7.4 shows that the log­

ical relation presented here is incomplete for proving contextual equivalence

of FML values of existential type. The example makes use of the fact that, be­

cause of the presence of recursive function values, evaluation of FML terms

need not terminate. However, it seems that the source of the incompleteness

has more to do with the existence of types with no values (such as∀X.X) than

with non­termination. Eijiro Sumii (private communication) has suggested the



286 7 Typed Operational Reasoning

following, “terminating” version of Example 7.7.4:

P
def
= (X→Bool)→Bool

Q
def
= {∃X,P}

N
def
= ∀X.X

H
def
= λf:N→Bool. false

H′
def
= λf:Bool→Bool.

(if f true then

if f false then false else true

else false) : Bool.

Consider a version of FML with only non­recursive function abstractions (i.e.

with λx:T.t rather than fun f(x:T) = t:T′). Evaluation is terminating in this

version. So to be non­trivial, contextual equivalence should be formulated in

terms of observing convergence to the same ground value in all contexts of

ground type. Making corresponding changes to the definition of the opera­

tions (−)s and (−)t on term­ and stack­relations, one could develop a logical

relation for this terminating version of FML. It seems that properties (i) and (ii)

in Example 7.7.4 are also true of H and H′ in this version (the first by the same

argument we gave, but the second by a different argument that nevertheless

hinges on the observation at the end of the proof of Example 7.7.4). We leave

investigating this as an extended exercise for the reader. 2

The proof of Lemma 7.7.5 exploits “relational parametricity” properties of

polymorphic types in FML. In fact Theorem 7.6.25 tells us far more about the

properties of type abstraction values than just the extensionality property of

Theorem 7.7.1(4).

7.7.8 Theorem [Relational parametricity for ∀­types]: Given X ` v : T and

X ` v′ : T, then ∅ ` λX.v =ctx λX.v′ : ∀X.T if and only if for all closed

types T1,T
′
1 ∈ Typ and all term­relations r ∈ TRel(T1,T

′
1) it is the case that

([X, T1]v, [X, T′1]v
′) ∈ T[r]. 2

Proof: By Theorem 7.6.25, we have that ∅ ` λX.v =ctx λX.v′ : ∀X.T iff

∅ ` λX.v ∆ λX.v′ : ∀X.T, i.e., iff (λX.v, λX.v′) ∈ (∀X.T)[] = (λr .T[r])s t .

Since λX.v and λX.v′ are values, the latter is the case iff (λX.v, λX.v′) ∈

(λr .T[r])s t v , and by Lemma 7.6.12 and Exercise 7.6.14 (λr .T[r])s t v = λr.T[r].

Hence ∅ ` λX.v =ctx λX.v′ : ∀X.T iff (λX.v, λX.v′) ∈ λr.T[r]. By definition

(Figure 7­5), this is the case iff for all for all closed types T1,T
′
1 ∈ Typ and

all term­relations r ∈ TRel(T1,T
′
1), ((λX.v)T1,(λX.v′)T

′
1) ∈ T[r]; and the



7.7 Operational Extensionality 287

latter holds iff ([X , T1]v, [X , T′1]v
′) ∈ T[r], because (λX.v)T1 =ciu [X ,

T1]v and (λX.v′)T′1 =ciu [X , T′1]v
′ (so that we can use Lemmas 7.6.8 and

7.6.12). 2

The force of Theorem 7.7.1(4) is to give a method for establishing that two

type abstraction values are contextually equivalent. By contrast, the force of

Theorem 7.7.8 is to give us useful properties of families of values parameter­

ized by type variables. Given such a value, X ` v : T, since =ctx is reflexive,

we have ∅ ` λX.v =ctx λX.v : ∀X.T; hence the theorem has the following

corollary.

7.7.9 Corollary: Given a value X ` v : T, for all T1,T
′
1 ∈ Typ and all r ∈

TRel(T1,T
′
1), it is the case that ([X, T1]v, [X, T′1]v) ∈ T[r]. 2

Such “relational parametricity” properties can often be exploited for prov­

ing contextual equivalences: we already saw an example in the proof of Lem­

ma 7.7.5 and other examples can be found in Pitts (2000), Bierman, Pitts, and

Russo (2000), and Johann (2002). However, the strict nature of function ap­

plication and type abstraction in FML means that it does not satisfy all the

parametricity properties one might expect. For example, in Pitts (2000), §7, it

is shown that

{∃X,T} � ∀Y.(∀X.T→Y)→Y

holds in the polymorphic version of PCF (Plotkin, 1977) studied in that pa­

per (where � is “bijection up to contextual equivalence”—see Principle 7.3.4).

However this bijection does not hold in general for FML (Exercise 7.7.10).

7.7.10 Exercise [«««]: Consider the type N
def
= ∀X.X from Example 7.7.4 that you

showed has no closed values in Exercise 7.7.6. Show that there cannot exist

values

i ∈ Val({∃X,N}→∀Y.(∀X.N→Y)→Y)

j ∈ Val((∀Y.(∀X.N→Y)→Y)→{∃X,N})

that are mutually inverse, in the sense that

p:{∃X,N} ` j(i p) =ctx p : {∃X,N}

y:∀Y.(∀X.N→Y)→Y ` i(j y) =ctx y : ∀Y.(∀X.N→Y)→Y. 2

7.7.11 Exercise [«««, 3]: Verify the claim made in Note 7.3.7 that Principle 7.3.4 is

a special case of Principle 7.3.6. To do so, you will first have to give a defini­

tion of the action of FML types on bijections mentioned in Principle 7.3.4. 2



288 7 Typed Operational Reasoning

7.8 Notes

This chapter is a revised and expanded version of Pitts (1998) and also draws

on material from Pitts (2000).

In discussing typed operational reasoning we have focused on reasoning

about contextual equivalence of program phrases. Being by construction a

congruence, contextual equivalence permits us to use the usual forms of

equational reasoning (replacing equals by equals) when deriving equivalences

between phrases. However, its definition does not lend itself to establish­

ing the basic laws that are needed to get such reasoning going. We studied

two characterisations of contextual equivalence in order to get round this

problem: ciu­equivalence (Definition 7.5.5) and a certain kind of operationally

based logical relation (Definition 7.6.10).

contextual equivalence!vs. bisimilarity The informal notion of contextual

equivalence (Definition 7.3.2) has been studied for a wide variety of pro­

gramming languages. If the language’s operational semantics involves non­

determinism—usually because the language supports some form of concur­

rent or interactive computation—then contextual equivalence tends to iden­

tify too many programs and various co­inductive notions of bisimilarity are

used instead (see the textbook by Sangiorgi and David, 2001, for example).

But even if we remain within the realm of languages with deterministic oper­

ational semantics, one may ask to what extent the results of this chapter are

stable with respect to adding further features such as recursive datatypes,

mutable state, and object­oriented features à la Objective Caml.

Ciu­equivalence has the advantage of being quite robust in this respect—

it can provide a characterisation of contextual equivalence in the presence

of such features (Honsell, Mason, Smith, and Talcott, 1995; Talcott, 1998).

However, its usefulness is mainly limited to establishing basic laws such as

the conversions in Corollary 7.5.8; it cannot be used directly to establish ex­

tensionality properties such as those in Theorem 7.7.1 without resorting to

tedious “termination inductions” of the kind we sketched in the proof of Ex­

ample 7.7.4. Ciu­equivalence is quite closely related to some notions of “ap­

plicative bisimilarity” that have been applied to functional and object­based

languages (Gordon, 1995, 1998), in that their congruence properties can both

be established using a clever technique due to Howe (1996). The advantage of

applicative bisimilarity is that it has extensionality built into its definition; so

when it does coincide with contextual equivalence, this provides a method of

establishing some extensionality properties for =ctx (such as (1)–(4) in Theo­

rem 7.7.1, but not, as far as I know, property (5) for package values).

The kind of operationally based logical relation we developed in this chap­

ter provides a very powerful analysis of contextual equivalence. We used it



7.8 Notes 289

to prove not only conversions and simple extensionality principles for FML,

but also quite subtle properties of =ctx such as Theorems 7.7.1(5) and 7.7.8.

Similar logical relations can be used to prove some properties of ML­style

references and of linear types: see Pitts and Stark (1998), Bierman, Pitts, and

Russo (2000), and Pitts (2002). Unfortunately, the characteristic feature of

logical relations—that functions are related iff they map related arguments

to related results—makes it difficult to define them in the presence of “recur­

sive features.” I mean by the latter programming language features which in a

denotational semantics lead one to have to solve domain equations in which

the defined domain occurs both positively (to the left of an even number

of function space constructions) and negatively (to the left of an odd num­

ber of function space constructions). Recursive datatypes involving function

types can lead to such domain equations; as does the use of references to

functions in ML. Suitable logical relations can be defined in the denotational

semantics of languages with such features using techniques such as those in

Pitts (1996), but they tell us properties of denotational equality, which is of­

ten a poor (if safe) approximation to contextual equivalence. For this reason

people have tried to develop syntactical analogs of these denotational logi­

cal relations: see Birkedal and Harper (1999). The unwinding theorem (Theo­

rem 7.4.4) provides the basis for such an approach. However, it seems like a

fresh idea is needed to make further progress. Therefore I set a last exercise,

whose solution is not included.

7.8.1 Exercise [««««. . . , 3]: Extend FML with isorecursive types, µX.T, as in Figure

20­1 of TAPL, Chapter 20. By finding an operationally based logical relation as

in §7.6 or otherwise, try to prove the kind of properties of contextual equiv­

alence for this extended language that we developed for FML in this chapter.

(For the special case of iso­recursive types µX.T for which T contains no neg­

ative occurrences of X, albeit for a non­strict functional language, see Johann

(2002). The generalized ideal model of recursive polymorphic in Vouillon and

Melliès (2004) uses the same kind of Galois connection as we used in §7.6 and

may well shed light on this exercise. Recent work by Sumii and Pierce [2005]

is also relevant.) 2





A Solutions to Selected Exercises 509

come equipped with their own notion of logical equivalence that can be de­

fined independently (i.e., without reference to the general definition of logical

equivalence). Thus, the definition of logical equivalence may refer to arbitrary

candidates and remain well­founded.

7.4.2 Hint: First prove

〈S1,t1〉 -→ 〈S2,t2〉 ⇒ (∀S)(〈S@S2,t2〉 ↓ ⇒ 〈S@S1,t1〉 ↓)

by considering the different cases for -→. Deduce the ‘if’ part of (7.7) from

this. For the ‘only if’ part, show that

{(S,t) | (∃S1, S2,v) S = S1@S2 & 〈S2,t〉 -→
∗
〈Id,v〉 & 〈S1,v〉 ↓}

is closed under the axiom and rules in Figure 7­2 inductively defining the

termination relation.

7.5.4 Solution: For property (iii), assuming R is compatible, argue by induction on

the derivation of Γ ` t : T that this typing judgment implies that Γ ` t R t :

T holds. For property (v), if R =
⋃
i∈I Ri with I 6= ∅ and each Ri compatible,

first note that by (iii), R is reflexive since it contains at least one relation Ri .

For each of the compatibility properties in Figure 7­4 with a single hypothesis,

it is clear that R has this property because each of the Ri does. For compat­

ibility properties with multiple hypotheses, we can break them down into a

chain of single­hypothesis compatibilities and appeal to the transitivity of R

(which we are assuming). For example consider the compatibility property for

function application. It suffices to show that R satisfies

Γ ` v1 R v′1 : T1→T2 Γ ` v2 : T1

Γ ` v1 v2 R v′1 v2 : T2

(A.1)

and

Γ ` v1 : T1→T2 Γ ` v2 R v′2 : T1

Γ ` v1 v2 R v1 v
′
2 : T2

. (A.2)

For then if Γ ` v1 R v′1 : T1→T2 and Γ ` v2 R v′2 : T1, we get

Γ ` v1 v2 R v′1 v2 : T2 by (A.1), since Γ ` v2 : T1

Γ ` v′1 v2 R v′1 v
′
2 : T2 by (A.2), since Γ ` v′1 : T1→T2.

and hence Γ ` v1 v2 R v′1 v
′
2 : T2 by transitivity. Each of the single­hypothesis

properties (A.1) and (A.2) holds of R because they hold for each Ri : each is

a special case of the compatibility property for function application because

each Ri , being compatible, is also reflexive by (iii).



510 A Solutions to Selected Exercises

7.5.10 Solution: Consider the frame stacks

S
def
= Id ◦ (x.(fun f(x′:Bool) = if x′ then true else f x′)x)

ST
def
= Id ◦ (x.(fun f(x′:T) = true)x)

Note that ∅ ` S : Bool Ç Bool and ∅ ` ST : T Ç Bool. It is not hard to see

for all ∅ ` b : Bool that

S[b]↓ iff 〈Id,b〉 -→∗ 〈Id,true〉 (A.3)

and for all ∅ ` t : T that

t ↓ iff 〈Id, ST[t]〉 -→
∗
〈Id,true〉 (A.4)

From (A.3) and the fact that =ctx is a congruence (so that∅ ` b =ctx b
′ : Bool

implies ∅ ` S[b] =ctx S[b′] : Bool) it follows that =ctx is true­adequate;

hence it is contained in =true
ctx . Similarly, (A.4) and the fact that =true

ctx is a

congruence implies that it is adequate and hence contained in =ctx.

7.6.7 Solution: Since (−)s t is inflationary we have r ⊆ r s t ; and since r only relates

values, this implies r ⊆ r s t v . Then since (−)s t is monotone, we have r s t ⊆

r s t v s t . Conversely, since (r ′)v ⊆ r ′ for any r ′, we have r s t v ⊆ r s t ; and then

since (−)s t is monotone and idempotent, r s t v s t ⊆ r s t s t = r s t .

7.6.14 Hint: The proof of (7.26) is just like the proof of (7.21), using the following

property of the termination relation:

(〈S,v.l〉 ↓a 〈S′,v′.l〉 ↓) iff (〈S ◦ (x.x.l),v〉 ↓a 〈S′ ◦ (x.x.l),v′〉 ↓).

Similarly, the proof of (7.27) follows from:

(〈S,v T〉 ↓a 〈S′,v′ T′〉 ↓) iff (〈S ◦ (x.x T),v〉 ↓a 〈S′ ◦ (x.x T′),v′〉 ↓).

7.6.18 Solution: It suffices to show

(∀n = 0,1, . . .) (Fn,F
′
n) ∈ fun(r1, r2) (A.5)

where Fn and F′n are the unwindings associated with F and F′ respectively, as

in Theorem 7.4.4. For if (A.5) holds, then using the fact that (−)s t is inflation­

ary

(Fn,F
′
n) ∈ fun(r1, r2) ⊆ fun(r1, r2)

s t

for each n; so by the Admissibility property in Lemma 7.6.8 we have (F,F′) ∈

fun(r1, r2)s t . Thus (F,F′) ∈ fun(r1, r2)s t v = fun(r1, r2) by Lemma 7.6.13,

since (r2)s t = r2. (A.5) is proved by induction on n:



A Solutions to Selected Exercises 511

Base case n = 0: By definition of F0, 〈S,F0 v1〉 ↓ does not hold for any S ∈

Stack(T2) and v1 ∈ Val(T1); similarly for F′0. Hence for all (v1,v
′
1) ∈ (r1)

v ,

(F0 v1,F
′
0 v

′
1) ∈ s

t for any s ∈ SRel(T2,T
′
2) and hence in particular for

s = (r2)s . So (F0 v1,F
′
0 v

′
1) ∈ (r2)

s t = r2 for all (v1,v
′
1) ∈ (r1)

v . Therefore

(F0,F
′
0) ∈ fun(r1, r2).

Induction step: Suppose (Fn,F′n) ∈ fun(r1, r2). Then for any (v1,v
′
1) ∈ (r1)

v ,

from (7.29) we have

([f, Fn][x, v1]t, [f, F′n][x, v′1]t
′) ∈ r2.

By definition of Fn+1 and Corollary 7.5.8 we have ∅ ` Fn+1v1 =ctx [f ,

Fn][x , v1]t; and similarly, ∅ ` F′n+1v
′
1 =ctx [f , F′n][x , v′1]t

′. So

since r2 is closed, we can apply the Equivalence­respecting property in

Lemma 7.6.8 to conclude that (Fn+1v1,F
′
n+1v

′
1) ∈ r2. Since this holds for

any (v1,v
′
1) ∈ (r1)

v , we have (Fn+1,F
′
n+1) ∈ fun(r1, r2).

7.6.19 Solution: To show (v,v′) ∈ {li=ri i∈1..n} we must show (v.li ,v′.li) ∈ ri for

each i ∈ 1..n. Since each ri is closed, this is equivalent to showing (v.li ,v′.li) ∈

(ri)s t , i.e. that 〈S,v.li〉 ↓ a 〈S′,v′.li〉 ↓ holds for all (S, S′) in (ri)s . But by

definition of v, 〈S,v.li〉 ↓ a 〈S,vi〉 ↓; and similarly for v′. So it suffices to

show 〈S,vi〉 ↓ a 〈S′,v′i〉; and this holds because by assumption (vi ,v
′
i) ∈ ri

and (S, S′) ∈ (ri)s .

7.6.20 Solution: To show (λX.v, λX.v′) ∈ λr.R(r)we have to show for each T1,T
′
1 ∈

Typ and r ∈ TRel(T1,T
′
1) that ((λX.v)T,(λX.v′)T′) ∈ R(r) . Since each

R(r) is closed, this is equivalent to showing ((λX.v)T,(λX.v′)T′) ∈ R(r)s t ,

i.e. that 〈S,(λX.v)T〉 ↓ a 〈S′,(λX.v′)T′〉 ↓ holds for all (S, S′) ∈ R(r)s. But

〈S,(λX.v)T〉 ↓a 〈S, [X , T1]v〉 ↓; and similarly for v′. So it suffices to show

〈S, [X , T1]v〉 ↓ a 〈S, [X , T′1]v
′〉 ↓; and this holds because by assumption

([X, T1]v, [X, T1]v) ∈ R(r) and (S, S′) ∈ R(r)s.

7.6.21 Hint: To show (if v then t1 else t2,if v′ then t′1 else t
′
2) ∈ r = (r)

s t it

suffices to show for all (S, S′) ∈ (r)s that

〈S,if v then t1 else t2〉 ↓a 〈S′,if v′ then t′1 else t′2〉 ↓

or equivalently that

〈S ◦ (x.if x then t1 else t2),v〉 ↓a

〈S′ ◦ (x.if x then t′1 else t′2),v
′〉 ↓.

Do this by proving that

(S ◦ (x.if x then t1 else t2), S
′ ◦ (x.if x then t′1 else t′2) ∈ (IdBool)

s.



512 A Solutions to Selected Exercises

7.6.22 Solution: For any (S, S′) ∈ (r2)s it follows from the assumptions on t,t′ and

the definition of {∃r1,R(r1)} (Figure 7­5) that

(S ◦ (y.let {*X,x}=y in t), S′ ◦ (y.let {*X,x}=y in t′))

is in {∃r1,R(r1)}s . Hence if (v,v′) ∈ {∃r1,R(r1)}s t v ⊆ ({∃r1,R(r1)}s)t , then

〈S ◦ (y.let {*X,x}=y in t),v〉 ↓ a 〈S′ ◦ (y.let {*X,x}=y in t′),v′〉 ↓

and so 〈S,let {*X,x}=v in t〉 ↓ a 〈S,let {*X,x}=v′ in t′〉 ↓. Since this is

true for all (S, S′) ∈ (r2)s , we deduce that

(let {*X,x}=v in t,let {*X,x}=v in t) ∈ (r2)
s t = r2.

7.6.23 Solution: For any (S, S′) ∈ (r2)s it follows from the assumptions on t,t′

that (S ◦ (x.t2), S′ ◦ (x.t
′
2)) ∈ (r1)

v s . Since ((r1)v s)t = r1, if (t1,t
′
1) ∈ r1 then

we get 〈S ◦ (x.t2),t1〉 ↓a 〈S′ ◦ (x.t′2),t
′
1〉 ↓, and hence that

〈S,let x=t1 in t2〉 ↓ a 〈S′,let x=t′1 in t′2〉 ↓.

Since this holds for all (S, S′) ∈ (r2)s , we deduce that

(let x=t1 in t2,let x=t′1 in t′2) ∈ (r2)
s t = r2.

7.7.10 Solution: Since N has no closed values, neither does {∃X,N}. On the other

hand

val v = λY.fun f(x:∀X.N→Y) = (f x):Y

is a closed value of type ∀Y.(∀X.N→Y)→Y. If i and j were to exist with

the stated properties we could use them to construct from v a closed value

of type {∃X,N}, which is impossible. (For i(j v) and v are ciu­equivalent

(Theorem 7.5.7); so since v ↓, we also have i(j v) ↓. Hence by Exercise 7.4.2,

〈Id,j v〉 -→∗ 〈Id,v′〉 for some v′, which is a closed value of type {∃X,N}, by

Exercise 7.4.3.)

8.2.1 Solution: As of this writing, the question of how far nominal module sys­

tems can be pushed is wide open. A step in this direction was recently taken

by Odersky, Cremet, Rockl, and Zenger (2003).

8.5.3 Solution: Define m1 to be the module

module m1 = mod {

type X = Int

val c = 0

val f = succ

}



References

Abadi, Martín, Luca Cardelli, Pierre­Louis Curien, and Jean­Jacques Lévy. Explicit sub­

stitutions. Journal of Functional Programming, 1(4):375–416, 1991. Summary in

ACM Symposium on Principles of Programming Languages (POPL), San Francisco,

California, 1990.

Adams, Rolf, Walter Tichy, and Annette Weinert. The cost of selective recompila­

tion and environment processing. ACM Transactions on Software Engineering and

Methodology, 3(1):3–28, January 1994.

Ahmed, Amal, Limin Jia, and David Walker. Reasoning about hierarchical storage.

In IEEE Symposium on Logic in Computer Science (LICS), Ottawa, Canada, pages

33–44, June 2003.

Ahmed, Amal and David Walker. The logical approach to stack typing. In ACM SIG­

PLAN Workshop on Types in Language Design and Implementation (TLDI), New

Orleans, Louisiana, pages 74–85, January 2003.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison­Wesley, Reading, Massachusetts, 1986.

Aiken, Alexander, Manuel Fähndrich, and Raph Levien. Better static memory man­

agement: Improving region­based analysis of higher­order languages. In ACM SIG­

PLAN Conference on Programming Language Design and Implementation (PLDI),

La Jolla, California, pages 174–185, June 1995.

Aiken, Alexander, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking

and inferring local non­aliasing. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), San Diego, California, pages 129–140,

June 2003.

Aiken, Alexander and Edward L. Wimmers. Solving systems of set constraints. In

IEEE Symposium on Logic in Computer Science (LICS), Santa Cruz, California, pages

329–340, June 1992.



536 References

Aiken, Alexander and Edward L. Wimmers. Type inclusion constraints and type infer­

ence. In ACM Symposium on Functional Programming Languages and Computer

Architecture (FPCA), Copenhagen, Denmark, pages 31–41, June 1993.

Altenkirch, Thorsten. Constructions, Inductive Types and Strong Normalization. PhD

thesis, Laboratory for Foundations of Computer Science, University of Edinburgh,

Edinburgh, Scotland, 1993.

Amadio, Roberto M. and Luca Cardelli. Subtyping recursive types. ACM Transac­

tions on Programming Languages and Systems, 15(4):575–631, 1993. Summary

in ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pp. 104–118; also DEC/Compaq Systems Research Center Research Report

number 62, August 1990.

Amtoft, Torben, Flemming Nielson, and Hanne Riis Nielson. Type and Effect Systems:

Behaviours for Concurrency. Imperial College Press, 1999.

Ancona, Davide and Elena Zucca. A theory of mixin modules: Basic and derived op­

erators. Mathematical Structures in Computer Science, 8(4):401–446, August 1998.

Ancona, Davide and Elena Zucca. A calculus of module systems. Journal of Functional

Programming, 12(2):91–132, March 2002.

Appel, Andrew W. Foundational proof­carrying code. In IEEE Symposium on Logic in

Computer Science (LICS), Boston, Massachusetts, pages 247–258, June 2001.

Appel, Andrew W. and Amy P. Felty. A semantic model of types and machine instruc­

tions for proof­carrying code. In ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), Boston, Massachusetts, pages 243–253, January

2000.

Aspinall, David. Subtyping with singleton types. In International Workshop on Com­

puter Science Logic (CSL), Kazimierz, Poland, volume 933 of Lecture Notes in Com­

puter Science, pages 1–15. Springer­Verlag, September 1994.

Aspinall, David and Martin Hofmann. Another type system for in­place update. In

European Symposium on Programming (ESOP), Grenoble, France, volume 2305 of

Lecture Notes in Computer Science, pages 36–52. Springer­Verlag, April 2002.

Augustsson, Lennart. Cayenne—A language with dependent types. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Baltimore, Maryland,

pages 239–250, 1998.

Baader, Franz and Jörg Siekmann. Unification theory. In D. M. Gabbay, C. J. Hogger,

and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic

Programming, volume 2, Deduction Methodologies, pages 41–125. Oxford Univer­

sity Press, 1994.

Baker, Henry G. Lively linear Lisp—look ma, no garbage! ACM SIGPLAN Notices, 27

(8):89–98, 1992.

Barendregt, Henk P. The Lambda Calculus. North Holland, revised edition, 1984.

Barendregt, Henk P. Introduction to generalized type systems. Journal of Functional

Programming, 1(2):125–154, 1991.



References 537

Barendregt, Henk P. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and

T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, Computa­

tional Structures. Oxford University Press, 1992.

Barendsen, Erik and Sjaak Smetsers. Conventional and uniqueness typing in graph

rewrite systems. In Foundations of Software Technology and Theoretical Computer

Science (FSTTCS), Bombay, India, volume 761 of Lecture Notes in Computer Science,

pages 41–51. Springer­Verlag, December 1993.

Barras, Bruno, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean­Christophe

Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan

Murthy, Catherine Parent, Christine Paulin­Mohring, Amokrane Saibi, and Benjamin

Werner. The Coq proof assistant reference manual: Version 6.1. Technical Report

RT­0203, INRIA, 1997.

Bauer, Lujo, Andrew W. Appel, and Edward W. Felten. Mechanisms for secure modular

programming in Java. Technical Report TR­603­99, Princeton University, 1999.

Bellantoni, Stephan and Stephan Cook. A new recursion­theoretic characterization of

polytime functions. Computational Complexity, 2(2):97–110, 1992.

Bellantoni, Stephan, K.­H. Niggl, and H. Schwichtenberg. Higher type recursion, rami­

fication and polynomial time. Annals of Pure and Applied Logic, 104:17–30, 2000.

Berardi, Stefano. Towards a mathematical analysis of the Coquand­Huet calculus

of constructions and the other systems in Barendregt’s cube. Technical report,

Department of Computer Science, CMU, and Dipartimento Matematica, Universita

di Torino, 1988.

Berthomieu, Bernard. Tagged types: A theory of order sorted types for tagged expres­

sions. Research Report 93083, LAAS, 7, avenue du Colonel Roche, 31077 Toulouse,

France, March 1993.

Berthomieu, Bernard and Camille le Moniès de Sagazan. A calculus of tagged types,

with applications to process languages. In Workshop on Types for Program Analysis

(TPA), informal proceedings, pages 1–15, May 1995.

Biagioni, Edoardo, Nicholas Haines, Robert Harper, Peter Lee, Brian G. Milnes, and

Eliot B. Moss. Signatures for a protocol stack: A systems application of Stan­

dard ML. In ACM Symposium on Lisp and Functional Programming (LFP), Orlando,

Florida, pages 55–64, June 1994.

Bierman, G. M., A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymor­

phic linear lambda calculus with recursion. In Workshop on Higher Order Opera­

tional Techniques in Semantics (HOOTS), Montréal, Québec, volume 41 of Electronic

Notes in Theoretical Computer Science. Elsevier, September 2000.

Birkedal, Lars and Robert W. Harper. Constructing interpretations of recursive types

in an operational setting. Information and Computation, 155:3–63, 1999.

Birkedal, Lars and Mads Tofte. A constraint­based region inference algorithm. Theo­

retical Computer Science, 258:299–392, 2001.



538 References

Birkedal, Lars, Mads Tofte, and Magnus Vejlstrup. From region inference to von Neu­

mann machines via region representation inference. In ACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, pages 171–183, 1996.

Blume, Matthias. The SML/NJ Compilation and Library Manager, May 2002. Available

from http://www.smlnj.org/doc/CM/index.html.

Blume, Matthias and Andrew W. Appel. Hierarchical modularity. ACM Transactions

on Programming Languages and Systems, 21(4):813–847, 1999.

Bonniot, Daniel. Type­checking multi­methods in ML (a modular approach). In Inter­

national Workshop on Foundations of Object­Oriented Languages (FOOL), informal

proceedings, January 2002.

Bourdoncle, François and Stephan Merz. Type­checking higher­order polymorphic

multi­methods. In ACM SIGPLAN–SIGACT Symposium on Principles of Program­

ming Languages (POPL), Paris, France, pages 302–315, January 1997.

Bracha, Gilad and William R. Cook. Mixin­based inheritance. In ACM SIGPLAN Confer­

ence on Object Oriented Programming: Systems, Languages, and Applications (OOP­

SLA)/European Conference on Object­Oriented Programming (ECOOP), Ottawa, On­

tario, pages 303–311, October 1990.

Brandt, Michael and Fritz Henglein. Coinductive axiomatization of recursive type

equality and subtyping. In International Conference on Typed Lambda Calculi and

Applications (TLCA), Nancy, France, volume 1210 of Lecture Notes in Computer

Science, pages 63–81. Springer­Verlag, April 1997. Full version in Fundamenta

Informaticae, 33:309–338, 1998.

Breazu­Tannen, Val, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance

as implicit coercion. Information and Computation, 93(1):172–221, July 1991. Also

in C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object­Oriented

Programming: Types, Semantics, and Language Design, MIT Press, 1994.

Bruce, Kim B. Typing in object­oriented languages: Achieving expressibility and

safety, 1995. Available through http://www.cs.williams.edu/~kim.

Bruce, Kim B. Foundations of Object­Oriented Languages: Types and Semantics. MIT

Press, 2002.

Bruce, Kim B., Luca Cardelli, Giuseppe Castagna, the Hopkins Objects Group

(Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens, and Benjamin

Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221–242,

1996.

Bruce, Kim B., Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings.

In International Symposium on Theoretical Aspects of Computer Software (TACS),

September 1997. An earlier version was presented as an invited lecture at the Third

International Workshop on Foundations of Object Oriented Languages (FOOL 3),

July 1996; full version in Information and Computation, 155(1–2):108­133, 1999.



References 539

de Bruijn, Nicolas G. A survey of the project AUTOMATH. In J. P. Seldin and J. R.

Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus,

and Formalism, pages 589–606. Academic Press, 1980.

Brus, Tom, Marko van Eekelen, Maarten van Leer, and Marinus Plasmeijer. Clean: A

language for functional graph rewriting. In ACM Symposium on Functional Pro­

gramming Languages and Computer Architecture (FPCA), Portland, Oregon, vol­

ume 274 of Lecture Notes in Computer Science, pages 364–384. Springer­Verlag,

September 1987.

Burstall, Rod and Butler Lampson. A kernel language for abstract data types and

modules. In International Symposium on Semantics of Data Types, Sophia­Antipolis,

France, volume 173 of Lecture Notes in Computer Science, pages 1–50. Springer­

Verlag, June 1984.

Burstall, Rod, David MacQueen, and Donald Sannella. HOPE: an experimental ap­

plicative language. In ACM Symposium on Lisp and Functional Programming (LFP),

Stanford, California, pages 136–143, August 1980.

Calcagno, Cristiano. Stratified operational semantics for safety and correctness of re­

gion calculus. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), London, England, pages 155–165, 2001.

Calcagno, Cristiano, Simon Helsen, and Peter Thiemann. Syntactic type soundness

results for the region calculus. Information and Computation, 173(2):199–221,

2002.

Cardelli, Luca. A polymorphic λ­calculus with Type:Type. Research report 10,

DEC/Compaq Systems Research Center, May 1986.

Cardelli, Luca. Phase distinctions in type theory, 1988a. Manuscript, available from

http://www.luca.demon.co.uk.

Cardelli, Luca. Typechecking dependent types and subtypes. In Foundations of Logic

and Functional Programming, Trento, Italy, (December, 1986), volume 306 of Lec­

ture Notes in Computer Science, pages 45–57. Springer­Verlag, 1988b.

Cardelli, Luca. Program fragments, linking, and modularization. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), Paris, France,

pages 266–277, January 1997.

Cardelli, Luca, James Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson. The

Modula­3 type system. In Proceedings of the Sixteenth Annual ACM Symposium

on Principles of Programming Languages, pages 202–212, January 1989.

Cardelli, Luca and Xavier Leroy. Abstract types and the dot notation. In IFIP TC2

Working Conference on Programming Concepts and Methods. North Holland, 1990.

Also appeared as DEC/Compaq SRC technical report 56.

Cardelli, Luca and Giuseppe Longo. A semantic basis for Quest. Journal of Functional

Programming, 1(4):417–458, October 1991. Summary in ACM Conference on Lisp

and Functional Programming, pp. 30­43, 1990. Also available as DEC/Compaq SRC

Research Report 55, Feb. 1990.



540 References

Cardelli, Luca and John Mitchell. Operations on records. Mathematical Structures

in Computer Science, 1:3–48, 1991. Also in C. A. Gunter and J. C. Mitchell, edi­

tors, Theoretical Aspects of Object­Oriented Programming: Types, Semantics, and

Language Design, MIT Press, 1994; available as DEC/Compaq Systems Research

Center Research Report #48, August, 1989; and in the Proceedings of Workshop

on the Mathematical Foundations of Programming Semantics (MFPS), New Orleans,

Louisiana, Springer LNCS, volume 442, pp. 22­52, 1989.

Cartmell, John. Generalised algebraic theories and contextual categories. Annals of

Pure and Applied Logic, 32:209–243, 1986.

Cartwright, Robert and Mike Fagan. Soft typing. In ACM SIGPLAN Conference on Pro­

gramming Language Design and Implementation (PLDI), Toronto, Ontario, pages

278–292, June 1991.

Cervesato, Iliano, Joshua S. Hodas, and Frank Pfenning. Efficient resource manage­

ment for linear logic proof search. Theoretical Computer Science, 232(1–2):133–

163, February 2000.

Cervesato, Iliano and Frank Pfenning. A linear logical framework. Information and

Computation, 179(1):19–75, November 2002.

Chaki, Sagar, Sriram K. Rajamani, and Jakob Rehof. Types as models: Model checking

message­passing programs. In ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages (POPL), Portland, Oregon, pages 45–57, 2002.

Chirimar, Jawahar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a com­

putational interpretation of linear logic. Journal of Functional Programming, 6(2):

195–244, March 1996.

Christiansen, Morten Voetmann and Per Velschow. Region­based memory manage­

ment in Java. Master’s thesis, University of Copenhagen, Department of Computer

Science, 1998.

Church, Alonzo. The Calculi of Lambda Conversion. Princeton University Press, 1941.

Church, Alonzo. The weak theory of implication. Kontroliertes Denken: Untersuchun­

gen zum Logikkalk ul und zur Logik der Einzelwissenschaften, pages 22–37, 1951.

Clement, Dominique, Joelle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A

simple applicative language: Mini­ML. In ACM Symposium on Lisp and Functional

Programming (LFP), Cambridge, Massachusetts, pages 13–27, August 1986.

Colby, Christopher, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth

Cline. A certifying compiler for Java. ACM SIGPLAN Notices, 35(5):95–107, May

2000.

Comon, Hubert. Constraints in term algebras (short survey). In Conference on Alge­

braic Methodology and Software Technology (AMAST), June, 1993, Workshops in

Computing, pages 97–108. Springer­Verlag, 1994.

Constable, Robert L., Stuart F. Allen, Mark Bromley, Rance Cleaveland, James F. Cre­

mer, Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Paul Mendler, Prakash

Panangaden, James T. Sasaki, and Scott F. Smith. Implementing Mathematics with

the NuPRL Proof Development System. Prentice­Hall, Englewood Cliffs, NJ, 1986.



References 541

Coquand, Catarina. The AGDA proof system homepage, 1998. http://www.cs.

chalmers.se/~catarina/agda/.

Coquand, Thierry. An analysis of Girard’s paradox. In IEEE Symposium on Logic in

Computer Science (LICS), Cambridge, Massachusetts, pages 227–236, June 1986.

Coquand, Thierry. An algorithm for testing conversion in type theory. In G. Huet

and G. Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge University

Press, 1991.

Coquand, Thierry. Pattern matching with dependent types. In Workshop on

Types for Proofs and Programs (TYPES), Båstad, Sweden, informal proceed­

ings. Available from ftp://ftp.cs.chalmers.se/pub/cs­reports/baastad.

92/proc.ps.Z, June 1992.

Coquand, Thierry and Gérard Huet. The calculus of constructions. Information and

Computation, 76(2–3):95–120, February/March 1988.

Coquand, Thierry, Randy Pollack, and Makoto Takeyama. A logical framework with

dependently typed records. In International Conference on Typed Lambda Calculi

and Applications (TLCA), Valencia, Spain, volume 2701 of Lecture Notes in Com­

puter Science, pages 105–119. Springer­Verlag, June 2003.

Courant, Judicaël. Strong normalization with singleton types. In Workshop on In­

tersection Types and Related Systems (ITRS), Copenhagen, Denmark, volume 70 of

Electronic Notes in Theoretical Computer Science. Elsevier, July 2002.

Crank, Erik and Matthias Felleisen. Parameter­passing and the lambda calculus.

In ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pages 233–244, January 1991.

Crary, Karl. A simple proof technique for certain parametricity results. In ACM SIG­

PLAN International Conference on Functional Programming (ICFP), Paris, France,

pages 82–89, September 1999.

Crary, Karl. Toward a foundational typed assembly language. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), New Orleans,

Louisiana, pages 198–212, January 2003.

Crary, Karl, Robert Harper, and Sidd Puri. What is a recursive module? In ACM SIG­

PLAN Conference on Programming Language Design and Implementation (PLDI),

pages 50–63, May 1999.

Crary, Karl, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in

type­erasure semantics. In ACM SIGPLAN International Conference on Functional

Programming (ICFP), Baltimore, Maryland, pages 301–312, 1998. Full version in

Journal of Functional Programming, 12(6), Nov. 2002, pp. 567–600.

Curtis, Pavel. Constrained Quantification in Polymorphic Type Analysis. PhD thesis,

Cornell University, Ithaca, New York, February 1990.

van Daalen, Diederik T. The Language Theory of Automath. PhD thesis, Technische

Hogeschool Eindhoven, Eindhoven, The Netherlands, 1980.



542 References

Damas, Luis and Robin Milner. Principal type schemes for functional programs. In

ACM Symposium on Principles of Programming Languages (POPL), Albuquerque,

New Mexico, pages 207–212, 1982.

Danvy, Olivier. Functional unparsing. Journal of Functional Programming, 8(6):621–

625, 1998.

DeLine, Rob and Manuel Fähndrich. Enforcing high­level protocols in low­level soft­

ware. In ACM SIGPLAN Conference on Programming Language Design and Imple­

mentation (PLDI), Snowbird, Utah, pages 59–69, June 2001.

Donahue, James and Alan Demers. Data types are values. ACM Transactions on

Programming Languages and Systems, 7(3):426–445, July 1985.

Došen, Kosta. A historical introduction to substructural logics. In K. Došen and

P. Schroeder­Heister, editors, Substructural Logics, pages 1–30. Oxford University

Press, 1993.

Dreyer, Derek, Karl Crary, and Robert Harper. A type system for higher­order mod­

ules. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Lan­

guages (POPL), New Orleans, Louisiana, pages 236–249, New Orleans, January

2003.

Dussart, Dirk, Fritz Henglein, and Christian Mossin. Polymorphic recursion and sub­

type qualifications: Polymorphic binding­time analysis in polynomial time. In Inter­

national Symposium on Static Analysis (SAS) , Paris, France, volume 983 of Lecture

Notes in Computer Science, pages 118–135. Springer­Verlag, July 1995.

Emms, Martin and Hans LeiSS. Extending the type checker for SML by polymor­

phic recursion—A correctness proof. Technical Report 96­101, Centrum für

Informations­ und Sprachverarbeitung, Universität München, 1996.

Erhard, Thomas. A categorical semantics of constructions. In IEEE Symposium on

Logic in Computer Science (LICS), Edinburgh, Scotland, pages 264–273, July 1988.

Fähndrich, Manuel. Bane: A Library for Scalable Constraint­Based Program Analysis.

PhD thesis, University of California at Berkeley, Berkeley, California, 1999.

Fähndrich, Manuel and Rob DeLine. Adoption and focus: Practical linear types for

imperative programming. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), Berlin, Germany, pages 13–24, June 2002.

Fähndrich, Manuel, Jakob Rehof, and Manuvir Das. Scalable context­sensitive flow

analysis using instantiation constraints. In ACM SIGPLAN Conference on Program­

ming Language Design and Implementation (PLDI), Vancouver, British Columbia,

Canada, pages 253–263, June 2000.

Felleisen, Matthias and Robert Hieb. A revised report on the syntactic theories of

sequential control and state. Theoretical Computer Science, 103(2):235–271, 1992.

Fisher, Kathleen and John H. Reppy. The design of a class mechanism for Moby. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Atlanta, Georgia, pages 37–49, May 1999.



References 543

Flanagan, Cormac and Shaz Qadeer. A type and effect system for atomicity. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), San Diego, California, pages 338–349, June 2003.

Flatt, Matthew and Matthias Felleisen. Units: Cool modules for HOT languages. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Montréal, Québec, pages 236–248, 1998.

Fluet, Matthew. Monadic regions. In Workshop on Semantics, Program Analysis and

Computing Environments for Memory Management (SPACE), informal proceedings,

January 2004.

Fluet, Matthew and Riccardo Pucella. Phantom types and subtyping. In IFIP Interna­

tional Conference on Theoretical Computer Science (TCS), pages 448–460, August

2002.

Foster, Jeffrey S., Tachio Terauchi, and Alex Aiken. Flow­sensitive type qualifiers. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Berlin, Germany, pages 1–12, June 2002.

Frey, Alexandre. Satisfying subtype inequalities in polynomial space. In International

Symposium on Static Analysis (SAS) , Paris, France, volume 1302 of Lecture Notes

in Computer Science, pages 265–277. Springer­Verlag, September 1997.

Fuh, You­Chin and Prateek Mishra. Type inference with subtypes. In European Sym­

posium on Programming (ESOP), Nancy, France, volume 300 of Lecture Notes in

Computer Science, pages 94–114. Springer­Verlag, March 1988.

Furuse, Jun P. and Jacques Garrigue. A label­selective lambda­calculus with optional

arguments and its compilation method. RIMS Preprint 1041, Kyoto University,

October 1995.

Garcia, Ronald, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, and Jeremia h Will­

cock. A comparative study of language support for generic programming. In ACM

SIGPLAN Conference on Object Oriented Programming: Systems, Languages, and

Applications (OOPSLA), Anaheim, California, pages 115–134, October 2003.

Garrigue, Jacques. Programming with polymorphic variants. In ACM SIGPLAN Work­

shop on ML, informal proceedings, September 1998.

Garrigue, Jacques. Code reuse through polymorphic variants. In Workshop on Foun­

dations of Software Engineering (FOSE), November 2000.

Garrigue, Jacques. Simple type inference for structural polymorphism. In Interna­

tional Workshop on Foundations of Object­Oriented Languages (FOOL), informal

proceedings, January 2002.

Garrigue, Jacques. Relaxing the value restriction. In International Symposium on

Functional and Logic Programming (FLOPS), Nara, Japan, volume 2998 of Lecture

Notes in Computer Science, pages 196–213. Springer­Verlag, April 2004.

Garrigue, Jacques and Hassan Aït­Kaci. The typed polymorphic label­selective

lambda­calculus. In ACM SIGPLAN–SIGACT Symposium on Principles of Program­

ming Languages (POPL), Portland, Oregon, pages 35–47, 1994.



544 References

Garrigue, Jacques and Didier Rémy. Extending ML with semi­explicit higher­order

polymorphism. Information and Computation, 155(1):134–169, 1999.

Gaster, Benedict R. Records, variants and qualified types. PhD thesis, University of

Nottingham, Nottingham, England, July 1998.

Gaster, Benedict R. and Mark P. Jones. A polymorphic type system for extensible

records and variants. Technical Report NOTTCS­TR­96­3, Department of Computer

Science, University of Nottingham, November 1996.

Gay, David and Alexander Aiken. Language support for regions. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), Snow­

bird, Utah, pages 70–80, June 2001.

Ghelli, Giorgio and Benjamin Pierce. Bounded existentials and minimal typing,

1992. Circulated in manuscript form. Full version in Theoretical Computer Science,

193(1–2):75–96, February 1998.

Gifford, David K. and John M. Lucassen. Integrating functional and imperative pro­

gramming. In ACM Symposium on Lisp and Functional Programming (LFP), Cam­

bridge, Massachusetts, pages 28–38, August 1986.

Girard, Jean­Yves. Interprétation fonctionnelle et élimination des coupures de l’arith­

métique d’ordre supérieur. Thèse d’état, University of Paris VII, 1972. Summary

in J. E. Fenstad, editor, Scandinavian Logic Symposium, pp. 63–92, North­Holland,

1971.

Girard, Jean­Yves. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Girard, Jean­Yves. Light linear logic. Information and Computation, 143:175–204,

1998.

Girard, Jean­Yves, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cam­

bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

Glew, Neal. Type dispatch for named hierarchical types. In ACM SIGPLAN Interna­

tional Conference on Functional Programming (ICFP), Paris, France, pages 172–182,

1999.

GNU. GNU C library, version 2.2.5, 2001. Available from http://www.gnu.org/

manual/glibc­2.2.5/html_mono/libc.html.

Goguen, Healfdene. A Typed Operational Semantics for Type Theory. PhD thesis,

LFCS, University of Edinburgh, Edinburgh, Scotland, 1994. Report ESC­LFCS­94­

304.

Gordon, Andrew D. Bisimilarity as a theory of functional programming. In Workshop

on the Mathematical Foundations of Programming Semantics (MFPS), New Orleans,

Louisiana, volume 1 of Electronic Notes in Theoretical Computer Science. Elsevier,

April 1995.

Gordon, Andrew D. Operational equivalences for untyped and polymorphic object

calculi. In A. D. Gordon and A. M. Pitts, editors, Higher­Order Operational Tech­

niques in Semantics, Publications of the Newton Institute, pages 9–54. Cambridge

University Press, 1998.



References 545

Gordon, Andrew D. and Alan Jeffrey. Authenticity by typing for security protocols. In

IEEE Computer Security Foundations Workshop (CSFW), Cape Breton, Nova Scotia,

pages 145–159, 2001a.

Gordon, Andrew D. and Alan Jeffrey. Typing correspondence assertions for commu­

niation protocols. In Workshop on the Mathematical Foundations of Programming

Semantics (MFPS), Aarhus, Denmark, volume 45 of Electronic Notes in Theoretical

Computer Science, pages 379–409. Elsevier, May 2001b.

Gordon, Andrew D. and Alan Jeffrey. Types and effects for asymmetric cryptographic

protocols. In IEE Computer Security Foundations Workshop (CSFW) , Cape Breton,

Nova Scotia, pages 77–91, 2002.

Gordon, Andrew D. and Don Syme. Typing a multi­language intermediate code.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), London, England, pages 248–260, January 2001.

Gordon, Michael J., Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF,

volume 78 of Lecture Notes in Computer Science. Springer­Verlag, 1979.

Gough, John. Compiling for the .NET Common Language Runtime. .NET series. Pren­

tice Hall, 2002.

Grossman, Dan, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James

Cheney. Region­based memory management in Cyclone. In ACM SIGPLAN Con­

ference on Programming Language Design and Implementation (PLDI), Berlin, Ger­

many, pages 282–293, 2002.

Gustavsson, Jörgen and Josef Svenningsson. Constraint abstractions. In Symposium

on Programs as Data Objects (PADO), Aarhus, Denmark, volume 2053 of Lecture

Notes in Computer Science, pages 63–83. Springer­Verlag, May 2001.

Hallenberg, Niels, Martin Elsman, and Mads Tofte. Combining region inference and

garbage collection. In ACM SIGPLAN Conference on Programming Language De­

sign and Implementation (PLDI), Berlin, Germany, pages 141–152, June 2002.

Hallgren, Thomas and Aarne Ranta. An extensible proof text editor (abstract). In

International Conference on Logic for Programming and Automated Reasoning

(LPAR), Reunion Island, volume 1955 of Lecture Notes in Computer Science, pages

70–84. Springer­Verlag, 2000.

Hamid, Nadeem, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni.

A syntactic approach to foundational proof­carrying code. In IEEE Symposium on

Logic in Computer Science (LICS), pages 89–100, July 2002.

Hanson, David R. Fast allocation and deallocation of memory based on object life­

times. Software—Practice and Experience, 20(1):5–12, 1990.

Hardin, Thérèse, Luc Maranget, and Bruno Pagano. Functional runtimes within the

lambda­sigma calculus. Journal of Functional Programming, 8(2):131–172, March

1998.

Harper, Robert, Furio Honsell, and Gordon Plotkin. A framework for defining logics.

Journal of the ACM, 40(1):143–184, 1993. Summary in IEEE Symposium on Logic in

Computer Science (LICS), Ithaca, New York, 1987.



546 References

Harper, Robert and Mark Lillibridge. A type­theoretic approach to higher­order mod­

ules with sharing. In ACM SIGPLAN–SIGACT Symposium on Principles of Program­

ming Languages (POPL), Portland, Oregon, pages 123–137, January 1994.

Harper, Robert and John C. Mitchell. On the type structure of Standard ML. ACM

Transactions on Programming Languages and Systems, 15(2):211–252, April 1993.

An earlier version appeared in ACM Symposium on Principles of Programming Lan­

guages (POPL), San Diego, California, under the title “The Essence of ML” (Mitchell

and Harper), 1988.

Harper, Robert, John C. Mitchell, and Eugenio Moggi. Higher­order modules and the

phase distinction. In ACM Symposium on Principles of Programming Languages

(POPL), San Francisco, California, pages 341–354, January 1990.

Harper, Robert and Frank Pfenning. On equivalence and canonical forms in the LF

type theory. ACM Transactions on Computational Logic, 2004. To appear. An ear­

lier version is available as Technical Report CMU­CS­00­148, School of Computer

Science, Carnegie Mellon University.

Harper, Robert and Robert Pollack. Type checking with universes. Theoretical Com­

puter Science, 89:107–136, 1991.

Harper, Robert and Christopher Stone. A type­theoretic interpretation of Standard

ML. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and Interaction:

Essays in Honour of Robin Milner. MIT Press, 2000.

Heintze, Nevin. Set based analysis of ML programs. In ACM Symposium on Lisp and

Functional Programming (LFP), Orlando, Florida, pages 306–317, June 1994.

Heintze, Nevin. Control­flow analysis and type systems. In International Sympo­

sium on Static Analysis (SAS) , Glasgow, Scotland, volume 983 of Lecture Notes in

Computer Science, pages 189–206. Springer­Verlag, 1995.

Helsen, Simon and Peter Thiemann. Syntactic type soundness for the region calculus.

In Workshop on Higher Order Operational Techniques in Semantics (HOOTS), Mon­

tréal, Québec, volume 41(3) of Electronic Notes in Theoretical Computer Science,

pages 1–20. Elsevier, September 2000.

Helsen, Simon and Peter Thiemann. Polymorphic specialization for ML. ACM Trans­

actions on Programming Languages and Systems, 26(4):652–701, July 2004.

Henglein, Fritz. Polymorphic Type Inference and Semi­Unification. PhD thesis, Rutgers

University, April 1989. Available as NYU Technical Report 443, May 1989, from

New York University, Courant Institute of Mathematical Sciences, Department of

Computer Science, 251 Mercer St., New York, NY 10012, USA.

Henglein, Fritz. Type inference with polymorphic recursion. ACM Transactions on

Programming Languages and Systems, 15(2):253–289, 1993.

Henglein, Fritz, Henning Makholm, and Henning Niss. A direct approach to control­

flow sensitive region­based memory management. In ACM SIGPLAN International

Conference on Principles and Practice of Declarative Programming (PPDP), Firenze,

Italy, pages 175–186, September 2001.



References 547

Henglein, Fritz and Christian Mossin. Polymorphic binding­time analysis. In European

Symposium on Programming (ESOP), Edinburgh, Scotland, volume 788 of Lecture

Notes in Computer Science, pages 287–301. Springer­Verlag, April 1994.

Hirschowitz, Tom and Xavier Leroy. Mixin modules in a call­by­value setting. In

European Symposium on Programming (ESOP), Grenoble, France, pages 6–20, April

2002.

Hoare, C. A. R. Proof of correctness of data representation. Acta Informatica, 1:

271–281, 1972.

Hofmann, Martin. A mixed modal/linear lambda calculus with applications to

bellantoni­cook safe recursion. In International Workshop on Computer Science

Logic (CSL), Aarhus, Denmark, pages 275–294, August 1997a.

Hofmann, Martin. Syntax and semantics of dependent types. In A. M. Pitts and

P. Dybjer, editors, Semantics and Logic of Computation, pages 79–130. Cambridge

University Press, 1997b.

Hofmann, Martin. Linear types and non­size­increasing polynomial time computa­

tion. In IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy, pages

464–473, June 1999.

Hofmann, Martin. Safe recursion with higher types and BCK­algebra. Annals of Pure

and Applied Logic, 104(1–3):113–166, 2000.

Honsell, Furio, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A variable typed

logic of effects. Information and Computation, 119(1):55–90, 1995.

Howard, William A. Hereditarily majorizable functionals of finite type. In A. S. Troel­

stra, editor, Metamathematical Investigation of Intuitionistic Arithmetic and Analy­

sis, volume 344 of Lecture Notes in Mathematics, pages 454–461. Springer­Verlag,

Berlin, 1973.

Howard, William A. The formulas­as­types notion of construction. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus, and Formalism, pages 479–490. Academic Press, 1980. Reprint of 1969

article.

Howe, Douglas J. Proving congruence of bisimulation in functional programming

languages. Information and Computation, 124(2):103–112, 1996.

Huet, Gérard. Résolution d’equations dans les langages d’ordre 1,2, ...,ω. Thèse de

Doctorat d’Etat, Université de Paris 7, Paris, France, 1976.

Igarashi, Atsushi and Naoki Kobayashi. A generic type system for the Pi­calculus.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), London, England, pages 128–141, January 2001.

Igarashi, Atsushi and Naoki Kobayashi. Resource usage analysis. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), Portland,

Oregon, pages 331–342, January 2002.



548 References

Igarashi, Atsushi and Benjamin C. Pierce. Foundations for virtual types. In European

Conference on Object­Oriented Programming (ECOOP), Lisbon, Portugal, June 1999.

Also in informal proceedings of the Workshop on Foundations of Object­Oriented

Languages (FOOL), January 1999. Full version in Information and Computation,

175(1): 34–49, May 2002.

Ishtiaq, Samin and Peter O’Hearn. BI as an assertion language for mutable data

structures. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), London, England, pages 14–26, January 2001.

Jacobs, Bart. Categorical Logic and Type Theory. Studies in Logic and the Foundations

of Mathematics 141. Elsevier, 1999.

Jategaonkar, Lalita A. ML with extended pattern matching and subtypes. Master’s

thesis, Massachusetts Institute of Technology, August 1989.

Jategaonkar, Lalita A. and John C. Mitchell. ML with extended pattern matching and

subtypes (preliminary version). In ACM Symposium on Lisp and Functional Pro­

gramming (LFP), Snowbird, Utah, pages 198–211, Snowbird, Utah, July 1988.

Jensen, Kathleen and Niklaus Wirth. Pascal User Manual and Report. Springer­Verlag,

second edition, 1975.

Jim, Trevor. What are principal typings and what are they good for? In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), St. Petersburg

Beach, Florida, pages 42–53, 1996.

Jim, Trevor, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of C. In General Track: USENIX Annual

Technical Conference, pages 275–288, June 2002.

Jim, Trevor and Jens Palsberg. Type inference in systems of recursive types with sub­

typing, 1999. Manuscript, available from http://www.cs.purdue.edu/homes/

palsberg/draft/jim­palsberg99.pdf.

Johann, Patricia. A generalization of short­cut fusion and its correctness proof.

Higher­Order and Symbolic Computation, 15(4):273–300, 2002.

Jones, Mark P. Qualified Types: Theory and Practice. Cambridge University Press,

1994.

Jones, Mark P. Using parameterized signatures to express modular structure. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

St. Petersburg Beach, Florida, January 21–24, 1996.

Jones, Mark P. Typing Haskell in Haskell. In ACM Haskell Workshop, informal pro­

ceedings, October 1999.

Jones, Mark P. and John C. Peterson. The Hugs 98 user manual, 1999. Available from

http://www.haskell.org/hugs/.

Jones, Mark P. and Simon Peyton Jones. Lightweight extensible records for Haskell.

In ACM Haskell Workshop, informal proceedings, October 1999.



References 549

Jouannaud, Jean­Pierre and Claude Kirchner. Solving equations in abstract algebras:

a rule­based survey of unification. In J.­L. Lassez and G. Plotkin, editors, Computa­

tional Logic: Essays in honor of Alan Robinson, pages 257–321. MIT Press, 1991.

Jouvelot, Pierre and David Gifford. Algebraic reconstruction of types and effects.

In ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pages 303–310, January 1991.

Jouvelot, Pierre and David K. Gifford. Reasoning about continuations with control

effects. In ACM SIGPLAN Conference on Programming Language Design and Im­

plementation (PLDI), Portland, Oregon, pages 218–226, June 1989.

Jung, Achim and Allen Stoughton. Studying the fully abstract model of PCF within its

continuous function model. In International Conference on Typed Lambda Calculi

and Applications (TLCA), Utrecht, The Netherlands, volume 664 of Lecture Notes in

Computer Science, pages 230–244. Springer­Verlag, March 1993.

Jutting, L.S. van Benthem, James McKinna, and Robert Pollack. Checking algorithms

for Pure Type Systems. In International Workshop on Types for Proofs and Pro­

grams (TYPES), Nijmegen, The Netherlands, May 1993, volume 806 of Lecture Notes

in Computer Science, pages 19–61. Springer­Verlag, 1994.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is dexptime­

complete. In Colloquium on Trees in Algebra and Programming (CAAP), Copen­

hagen, Denmark, volume 431 of Lecture Notes in Computer Science, pages 206–

220. Springer­Verlag, May 1990.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. The undecidability of the semi­

unification problem. Information and Computation, 102(1):83–101, January 1993.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. An analysis of ML typability.

Journal of the ACM, 41(2):368–398, March 1994.

Kirchner, Claude and Francis Klay. Syntactic theories and unification. In IEEE Sympo­

sium on Logic in Computer Science (LICS), Philadelphia, Pennsylvania, pages 270–

277, June 1990.

Knight, Kevin. Unification: a multidisciplinary survey. ACM Computing Surveys, 21

(1):93–124, March 1989.

Kobayashi, Naoki. Quasi­linear types. In ACM SIGPLAN–SIGACT Symposium on Princi­

ples of Programming Languages (POPL), San Antonio, Texas, pages 29–42, January

1999.

Kozen, Dexter, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive sub­

typing. Mathematical Structures in Computer Science, 5(1):113–125, 1995.

Kuncak, Viktor and Martin Rinard. Structural subtyping of non­recursive types is

decidable. In IEEE Symposium on Logic in Computer Science (LICS), Ottawa, Canada,

pages 96–107, June 2003.

Lafont, Yves. The linear abstract machine. Theoretical Computer Science, 59:157–180,

1988.



550 References

Lambek, Joachim. The mathematics of sentence structure. American Mathematical

Monthly, 65:154–170, 1958.

Lampson, Butler and Rod Burstall. Pebble, a kernel language for modules and abstract

data types. Information and Computation, 76:278–346, February/March 1988.

Lassen, Søren Bøgh. Relational Reasoning about Functions and Nondeterminism. PhD

thesis, Department of Computer Science, University of Aarhus, Aarhus, Denmark,

1998.

Lassez, Jean­Louis, Michael J. Maher, and Kim G. Marriott. Unification revisited. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming,

pages 587–625. Morgan Kaufmann, 1988.

Lee, Oukseh and Kwangkeun Yi. Proofs about a folklore let­polymorphic type infer­

ence algorithm. ACM Transactions on Programming Languages and Systems, 20

(4):707–723, July 1998.

Leivant, Daniel. Stratified functional programs and computational complexity.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), Charleston, South Carolina, pages 325–333, January 1993.

Leroy, Xavier. Polymorphic typing of an algorithmic language. Research Report 1778,

INRIA, October 1992.

Leroy, Xavier. Manifest types, modules and separate compilation. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), Portland,

Oregon, pages 109–122, January 1994.

Leroy, Xavier. Applicative functors and fully transparent higher­order modules.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), San Francisco, California, pages 142–153, January 1995.

Leroy, Xavier. A syntactic theory of type generativity and sharing. Journal of Func­

tional Programming, 6(5):667–698, September 1996.

Leroy, Xavier. The Objective Caml system: Documentation and user’s manual, 2000.

With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. Avail­

able from http://caml.inria.fr.

Leroy, Xavier and François Pessaux. Type­based analysis of uncaught exceptions.

ACM Transactions on Programming Languages and Systems, 22(2):340–377, March

2000. Summary in ACM SIGPLAN–SIGACT Symposium on Principles of Program­

ming Languages (POPL), San Antonio, Texas, 1999.

Lillibridge, Mark. Translucent Sums: A Foundation for Higher­Order Module Systems.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,

Pennsylvania, May 1997.

Lindholm, Tim and Frank Yellin. The Java Virtual Machine Specification. The Java

Series. Addison­Wesley, Reading, MA, January 1997.

Liskov, Barbara. A history of CLU. ACM SIGPLAN Notices, 28(3):133–147, 1993.



References 551

Loader, Ralph. Finitary PCF is not decidable. Theoretical Computer Science, 266(1–2):

341–364, September 2001.

Lucassen, John M. Types and Effects towards the Integration of Functional and Impera­

tive Programming. PhD thesis, Massachusetts Institute of Technology, Cambridge,

Massachusetts, August 1987. Technical Report MIT­LCS­TR­408.

Lucassen, John M. and David K. Gifford. Polymorphic effect systems. In ACM Sympo­

sium on Principles of Programming Languages (POPL), San Diego, California, pages

47–57, 1988.

Luo, Zhaohui. Computation and Reasoning: A Type Theory for Computer Science.

Number 11 in International Series of Monographs on Computer Science. Oxford

University Press, 1994.

Luo, Zhaohui and Robert Pollack. The LEGO proof development system: A user’s

manual. Technical Report ECS­LFCS­92­211, University of Edinburgh, May 1992.

MacQueen, David. Modules for Standard ML. In ACM Symposium on Lisp and Func­

tional Programming (LFP), Austin, Texas, pages 198–207, 1984.

MacQueen, David. Using dependent types to express modular structure. In ACM

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, pages 277–286, January 1986.

MacQueen, David B. and Mads Tofte. A semantics for higher­order functors. In Eu­

ropean Symposium on Programming (ESOP), Edinburgh, Scotland, volume 788 of

Lecture Notes in Computer Science, pages 409–423. Springer­Verlag, April 1994.

Magnusson, Lena and Bengt Nordström. The ALF proof editor and its proof engine. In

International Workshop on Types for Proofs and Programs (TYPES), Nijmegen, The

Netherlands, May, 1993, volume 806 of Lecture Notes in Computer Science, pages

213–237. Springer­Verlag, 1994.

Mairson, Harry G., Paris C. Kanellakis, and John C. Mitchell. Unification and ML type

reconstruction. In J.­L. Lassez and G. Plotkin, editors, Computational Logic: Essays

in Honor of Alan Robinson, pages 444–478. MIT Press, 1991.

Makholm, Henning. Region­based memory management in Prolog. Master’s thesis,

University of Copenhagen, Department of Computer Science, March 2000. Techni­

cal Report DIKU­TR­00/09.

Makholm, Henning. A Language­Independend Framework for Region Inference. PhD

thesis, University of Copenhagen, Department of Computer Science, Copenhagen,

Denmark, 2003.

Makholm, Henning and Kostis Sagonas. On enabling the WAM with region support.

In International Conference on Logic Programming (ICLP), volume 2401 of Lecture

Notes in Computer Science, pages 163–178. Springer­Verlag, July 2002.

Martelli, Alberto and Ugo Montanari. Unification in linear time and space: A struc­

tured presentation. Internal Report B76­16, Istituto di Elaborazione delle Infor­

mazione, Consiglio Nazionale delle Ricerche, Pisa, July 1976.



552 References

Martelli, Alberto and Ugo Montanari. An efficient unification algorithm. ACM Trans­

actions on Programming Languages and Systems, 4(2):258–282, 1982.

Martin­Löf, Per. Intuitionistic Type Theory. Bibliopolis, 1984.

Mason, Ian A., Scott F. Smith, and Carolyn L. Talcott. From operational semantics to

domain theory. Information and Computation, 128(1):26–47, 1996.

Mason, Ian A. and Carolyn L. Talcott. Equivalence in functional languages with effects.

Journal of Functional Programming, 1:287–327, 1991.

McAllester, David. On the complexity analysis of static analyses. Journal of the ACM,

49(4):512–537, July 2002.

McAllester, David. A logical algorithm for ML type inference. In International Con­

ference on Rewriting Techniques and Applications (RTA), Valencia, Spain, volume

2706 of Lecture Notes in Computer Science, pages 436–451. Springer­Verlag, June

2003.

McBride, Conor. Dependently Typed Functional Programs and their Proofs. PhD thesis,

LFCS, University of Edinburgh, Edinburgh, Scotland, 2000.

McBride, Conor and James McKinna. The view from the left. Journal of Functional

Programming, 14(1):69–111, 2004.

McKinna, James and Robert Pollack. Pure Type Sytems formalized. In International

Conference on Typed Lambda Calculi and Applications (TLCA), Utrecht, The Nether­

lands, volume 664 of Lecture Notes in Computer Science, pages 289–305. Springer­

Verlag, March 1993.

Melski, David and Thomas Reps. Interconvertibility of a class of set constraints

and context­free language reachability. Theoretical Computer Science, 248(1–2),

November 2000.

Milner, Robin. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17:348–375, August 1978.

Milner, Robin, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.

Milner, Robin, Mads Tofte, Robert Harper, and David MacQueen. The Definition of

Standard ML, Revised edition. MIT Press, 1997.

Minamide, Yasuhiko. A functional representation of data structures with a hole.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), San Diego, California, pages 75–84, January 1998.

Minamide, Yasuhiko, Greg Morrisett, and Robert Harper. Typed closure conversion.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), St. Petersburg Beach, Florida, pages 271–283, January 1996.

Miquel, Alexandre. Le calcul des constructions implicite: syntaxe et sémantique. PhD

thesis, University Paris 7, Paris, France, 2001.

Mitchell, John C. Coercion and type inference. In ACM Symposium on Principles

of Programming Languages (POPL), Salt Lake City, Utah, pages 175–185, January

1984.



References 553

Mitchell, John C. Representation independence and data abstraction. In ACM Sympo­

sium on Principles of Programming Languages (POPL), St. Petersburg Beach, Florida,

pages 263–276, January 1986.

Mitchell, John C. On the equivalence of data representations. In V. Lifschitz, editor,

Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of

John McCarthy, pages 305–330. Academic Press, 1991a.

Mitchell, John C. Type inference with simple subtypes. Journal of Functional Pro­

gramming, 1(3):245–286, July 1991b.

Mitchell, John C. Foundations for Programming Languages. MIT Press, 1996.

Mitchell, John C. and Gordon D. Plotkin. Abstract types have existential types. ACM

Transactions on Programming Languages and Systems, 10(3):470–502, 1988. Sum­

mary in ACM Symposium on Principles of Programming Languages (POPL), New

Orleans, Louisiana, 1985.

Moggi, Eugenio. Computational lambda­calculus and monads. In IEEE Symposium

on Logic in Computer Science (LICS), Asilomar, California, pages 14–23, June 1989.

Full version, titled Notions of Computation and Monads, in Information and Com­

putation, 93(1), pp. 55–92, 1991.

Moh, Shaw­Kwei. The deduction theorems and two new logical systems. Methodos, 2:

56–75, 1950.

Mohring, Christine. Algorithm development in the calculus of constructions. In IEEE

Symposium on Logic in Computer Science (LICS), Cambridge, Massachusetts, pages

84–91, June 1986.

Monnier, Stefan, Bratin Saha, and Zhong Shao. Principled scavenging. In ACM SIG­

PLAN Conference on Programming Language Design and Implementation (PLDI),

Snowbird, Utah, pages 81–91, June 2001.

Morrisett, Greg, Karl Crary, Neal Glew, and David Walker. Stack­based typed assembly

language. Journal of Functional Programming, 12(1):43–88, January 2002.

Morrisett, Greg, David Walker, Karl Crary, and Neal Glew. From System­F to typed

assembly language. ACM Transactions on Programming Languages and Systems,

21(3):527–568, May 1999.

Mossin, Christian. Flow Analysis of Typed Higher­Order Programs. PhD thesis, Uni­

versity of Copenhagen, Department of Computer Science, Copenhagen, Denmark,

1997. Also available as Technical Report DIKU­TR­97/1.

Müller, Martin. A constraint­based recast of ML­polymorphism. In International Work­

shop on Unification, June 1994. Also available as Technical Report 94­R­243, CRIN,

Nancy, France.

Müller, Martin. Notes on HM(X), August 1998. Available from http://www.ps.

uni­sb.de/~mmueller/papers/HMX.ps.gz.

Müller, Martin, Joachim Niehren, and Ralf Treinen. The first­order theory of ordering

constraints over feature trees. Discrete Mathematics and Theoretical Computer

Science, 4(2):193–234, 2001.



554 References

Müller, Martin and Susumu Nishimura. Type inference for first­class messages with

feature constraints. In Asian Computer Science Conference (ASIAN), Manila, The

Philippines, volume 1538 of Lecture Notes in Computer Science, pages 169–187.

Springer­Verlag, December 1998.

Mycroft, Alan. Polymorphic type schemes and recursive definitions. In International

Symposium on Programming, Toulouse, France, volume 167 of Lecture Notes in

Computer Science, pages 217–228, Toulouse, France, April 1984. Springer­Verlag.

Necula, George C. Proof­carrying code. In ACM SIGPLAN–SIGACT Symposium on Prin­

ciples of Programming Languages (POPL), Paris, France, pages 106–119, January

1997.

Necula, George C. Compiling with Proofs. PhD thesis, Carnegie Mellon University,

Pittsburgh, Pennsylvania, September 1998. Technical report CMU­CS­98­154.

Necula, George C. Translation validation for an optimizing compiler. In ACM SIG­

PLAN Conference on Programming Language Design and Implementation (PLDI),

Vancouver, British Columbia, Canada, pages 83–94, June 2000.

Necula, George C. and Peter Lee. Safe kernel extensions without run­time checking.

In USENIX Symposium on Operating Systems Design and Implementation (OSDI),

Seattle, Washington, pages 229–243, October 1996.

Necula, George C. and Peter Lee. The design and implementation of a certifying

compiler. In ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), Montréal, Québec, pages 333–344, June 1998a.

Necula, George C. and Peter Lee. Efficient representation and validation of logical

proofs. In IEEE Symposium on Logic in Computer Science (LICS), Indianapolis, Indi­

ana, pages 93–104, June 1998b.

Niehren, Joachim, Martin Müller, and Andreas Podelski. Inclusion constraints over

non­empty sets of trees. In Theory and Practice of Software Development (TAP­

SOFT), Lille, France, volume 1214 of Lecture Notes in Computer Science, pages

217–231. Springer­Verlag, April 1997.

Niehren, Joachim and Tim Priesnitz. Non­structural subtype entailment in automata

theory. Information and Computation, 186(2):319–354, November 2003.

Nielson, Flemming and Hanne Riis Nielson. From CML to its process algebra. Theo­

retical Computer Science, 155:179–219, 1996.

Nielson, Flemming, Hanne Riis Nielson, and Christopher L. Hankin. Principles of Pro­

gram Analysis. Springer­Verlag, 1999.

Nielson, Flemming, Hanne Riis Nielson, and Helmut Seidl. A succinct solver for ALFP.

Nordic Journal of Computing, 9(4):335–372, 2002.

Nielson, Hanne Riis and Flemming Nielson. Higher­order concurrent programs with

finite communication topology. In ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), Portland, Oregon, pages 84–97, January 1994.



References 555

Nishimura, Susumu. Static typing for dynamic messages. In ACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages (POPL), San Diego, California,

pages 266–278, 1998.

Niss, Henning. Regions are Imperative: Unscoped Regions and Control­Flow Sensi­

tive Memory Management. PhD thesis, University of Copenhagen, Department of

Computer Science, Copenhagen, Denmark, 2002.

Nöcker, Erick and Sjaak Smetsers. Partially strict non­recursive data types. Journal

of Functional Programming, 3(2):191–215, 1993.

Nöcker, Erick G. M. H., Sjaak E. W. Smetsers, Marko C. J. D. van Eekelen, and Mari­

nus J. Plasmeijer. Concurrent clean. In Symposium on Parallel Architectures and

Languages Europe, Volume I: Parallel Architectures and Algorithms (PARLE), Eind­

hoven, The Netherlands, volume 505 of Lecture Notes in Computer Science, pages

202–219. Springer­Verlag, June 1991.

Odersky, Martin. Observers for linear types. In European Symposium on Program­

ming (ESOP), Rennes, France, volume 582 of Lecture Notes in Computer Science,

pages 390–407. Springer­Verlag, February 1992.

Odersky, Martin, Vincent Cremet, Christine Rockl, and Matthias Zenger. A nominal

theory of objects with dependent types. In International Workshop on Foundations

of Object­Oriented Languages (FOOL), informal proceedings, 2003.

Odersky, Martin, Martin Sulzmann, and Martin Wehr. Type inference with constrained

types. Theory and Practice of Object Systems, 5(1):35–55, 1999. Summary in Inter­

national Workshop on Foundations of Object­Oriented Languages (FOOL), informal

proceedings, 1997.

O’Hearn, Peter. On bunched typing. Journal of Functional Programming, 13(4):747–

796, 2003.

O’Hearn, Peter and David Pym. The logic of bunched implications. Bulletin of Symbolic

Logic, 5(2):215–244, 1999.

Ohori, Atsushi. A polymorphic record calculus and its compilation. ACM Transac­

tions on Programming Languages and Systems, 17(6):844–895, November 1995.

Ohori, Atsushi and Peter Buneman. Type inference in a database programming lan­

guage. In ACM Symposium on Lisp and Functional Programming (LFP), Snowbird,

Utah, pages 174–183, July 1988.

Ohori, Atsushi and Peter Buneman. Static type inference for parametric classes. In

Conference on Object Oriented Programming: Systems, Languages, and Applica­

tions (OOPSLA), New Orleans, Louisiana, pages 445–456, October 1989. Also in C.

A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object­Oriented Pro­

gramming: Types, Semantics, and Language Design, MIT Press, 1994.

Orlov, Ivan E. The calculus of compatibility of propositions (in Russian). Matematich­

eskii Sbornik, 35:263–286, 1928.



556 References

Owre, Sam, Sreeranga Rajan, John M. Rushby, Natarajan Shankar, and Mandayam K.

Srivas. PVS: Combining specification, proof checking, and model checking. In

International Conference on Computer Aided Verification (CAV), New Brunswick,

New Jersey, volume 1102 of Lecture Notes in Computer Science, pages 411–414.

Springer­Verlag, July 1996.

Palsberg, Jens. Efficient inference of object types. Information and Computation, 123

(2):198–209, 1995.

Palsberg, Jens. Type­based analysis and applications. In ACM SIGPLAN–SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering (PASTE), Snow­

bird, Utah, pages 20–27, June 2001.

Palsberg, Jens and Patrick O’Keefe. A type system equivalent to flow analysis. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San

Francisco, California, pages 367–378, 1995.

Palsberg, Jens and Michael Schwartzbach. Type substitution for object­oriented

programming. In ACM SIGPLAN Conference on Object Oriented Programming:

Systems, Languages, and Applications (OOPSLA)/European Conference on Object­

Oriented Programming (ECOOP), Ottawa, Ontario, volume 25(10) of ACM SIGPLAN

Notices, pages 151–160, October 1990.

Palsberg, Jens and Michael I. Schwartzbach. Object­Oriented Type Systems. Wiley,

1994.

Palsberg, Jens, Mitchell Wand, and Patrick M. O’Keefe. Type inference with non­

structural subtyping. Formal Aspects of Computing, 9:49–67, 1997.

Parnas, David. The criteria to be used in decomposing systems into modules. Com­

munications of the ACM, 14(1):221–227, 1972.

Paterson, Michael S. and Mark N. Wegman. Linear unification. Journal of Computer

and System Sciences, 16:158–167, 1978.

Paulin­Mohring, Christine. Extracting Fω’s programs from proofs in the calculus

of constructions. In ACM Symposium on Principles of Programming Languages

(POPL), Austin, Texas, pages 89–104, January 1989.

Petersen, Leaf, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT

internal language. Technical Report CMU­CS­00­180, Department of Computer Sci­

ence, Carnegie Mellon University, 2000.

Petersen, Leaf, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for

memory allocation and data layout. In ACM SIGPLAN–SIGACT Symposium on Prin­

ciples of Programming Languages (POPL), New Orleans, Louisiana, pages 172–184,

January 2003.

Peyton Jones, Simon. Special issue: Haskell 98 language and libraries. Journal of

Functional Programming, 13, January 2003.

Pfenning, Frank and Rowan Davies. A judgmental reconstruction of modal logic.

Mathematical Structures in Computer Science, 11(4):511–540, 2001.



References 557

Pfenning, Frank and Carsten Schürmann. Algorithms for equality and unification

in the presence of notational definitions. In T. Altenkirch, W. Naraschewski,

and B. Reus, editors, International Workshop on Types for Proofs and Programs

(TYPES), Kloster Irsee, Germany, volume 1657 of Lecture Notes in Computer Sci­

ence. Springer­Verlag, 1998.

Pierce, Benjamin C. Types and Programming Languages. MIT Press, 2002.

Pierce, Benjamin C. and David N. Turner. Object­oriented programming without re­

cursive types. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), Charleston, South Carolina, pages 299–312, January 1993.

Pitts, Andrew M. Relational properties of domains. Information and Computation,

127:66–90, 1996.

Pitts, Andrew M. Existential types: Logical relations and operational equivalence.

In International Colloquium on Automata, Languages and Programming (ICALP),

Aalborg, Denmark, volume 1443 of Lecture Notes in Computer Science, pages 309–

326. Springer­Verlag, 1998.

Pitts, Andrew M. Parametric polymorphism and operational equivalence. Mathemat­

ical Structures in Computer Science, 10:321–359, 2000.

Pitts, Andrew M. Operational semantics and program equivalence. In G. Barthe, P. Dy­

bjer, and J. Saraiva, editors, Applied Semantics, Advanced Lectures, volume 2395 of

Lecture Notes in Computer Science, Tutorial, pages 378–412. Springer­Verlag, 2002.

Pitts, Andrew M. and Ian D. B. Stark. Observable properties of higher order functions

that dynamically create local names, or: What’s new? In International Symposium

on Mathematical Foundations of Computer Science, Gdańsk, Poland, volume 711 of

Lecture Notes in Computer Science, pages 122–141. Springer­Verlag, 1993.

Pitts, Andrew M. and Ian D. B. Stark. Operational reasoning for functions with local

state. In A. D. Gordon and A. M. Pitts, editors, Higher­Order Operational Techniques

in Semantics, Publications of the Newton Institute, pages 227–273. Cambridge Uni­

versity Press, 1998.

Plotkin, Gordon D. Lambda­definability and logical relations. Memorandum SAI–RM–

4, University of Edinburgh, Edinburgh, Scotland, October 1973.

Plotkin, Gordon D. LCF considered as a programming language. Theoretical Computer

Science, 5:223–255, 1977.

Plotkin, Gordon D. Lambda­definability in the full type hierarchy. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, pages 363–373. Academic Press, 1980.

Plotkin, Gordon D. and Martín Abadi. A logic for parametric polymorphism. In In­

ternational Conference on Typed Lambda Calculi and Applications (TLCA), Utrecht,

The Netherlands, volume 664 of Lecture Notes in Computer Science, pages 361–375.

Springer­Verlag, March 1993.



558 References

Polakow, Jeff and Frank Pfenning. Natural deduction for intuitionistic non­

commutative linear logic. In International Conference on Typed Lambda Calculi

and Applications (TLCA), L’Aquila, Italy, volume 1581 of Lecture Notes in Computer

Science, pages 295–309. Springer­Verlag, April 1999.

Poll, Erik. Expansion Postponement for Normalising Pure Type Systems. Journal of

Functional Programming, 8(1):89–96, 1998.

Pollack, Robert. The Theory of LEGO: A Proof Checker for the Extended Calculus of

Constructions. PhD thesis, University of Edinburgh, Edinburgh, Scotland, 1994.

Popkorn, Sally. First Steps in Modal Logic. Cambridge University Press, 1994.

Pottier, François. A versatile constraint­based type inference system. Nordic Journal

of Computing, 7(4):312–347, November 2000.

Pottier, François. A semi­syntactic soundness proof for HM(X). Research Report

4150, INRIA, March 2001a.

Pottier, François. Simplifying subtyping constraints: a theory. Information and Com­

putation, 170(2):153–183, November 2001b.

Pottier, François. A constraint­based presentation and generalization of rows. In IEEE

Symposium on Logic in Computer Science (LICS), Ottawa, Canada, pages 331–340,

June 2003.

Pottier, François and Vincent Simonet. Information flow inference for ML. ACM Trans­

actions on Programming Languages and Systems, 25(1):117–158, January 2003.

Pottier, François, Christian Skalka, and Scott Smith. A systematic approach to static

access control. In European Symposium on Programming (ESOP), Genova, Italy,

volume 2028 of Lecture Notes in Computer Science, pages 30–45. Springer­Verlag,

April 2001.

Pratt, Vaughan and Jerzy Tiuryn. Satisfiability of inequalities in a poset. Fundamenta

Informaticae, 28(1–2):165–182, 1996.

Pugh, William and Grant Weddell. Two­directional record layout for multiple in­

heritance. In ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), White Plains, New York, pages 85–91, June 1990.

Rajamani, Sriram K. and Jakob Rehof. A behavioral module system for the pi­calculus.

In International Symposium on Static Analysis (SAS) , Paris, France, volume 2126 of

Lecture Notes in Computer Science, pages 375–394. Springer­Verlag, July 2001.

Rajamani, Sriram K. and Jakob Rehof. Conformance checking for models of asyn­

chronous message passing software. In International Conference on Computer

Aided Verification (CAV), Copenhagen, Denmark, pages 166–179, July 2002.

Rehof, Jakob. Minimal typings in atomic subtyping. In ACM SIGPLAN–SIGACT Sym­

posium on Principles of Programming Languages (POPL), Paris, France, pages 278–

291, January 1997.

Rehof, Jakob and Manuel Fähndrich. Type­based flow analysis: From polymorphic

subtyping to CFL reachability. In ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), London, England, pages 54–66, 2001.



References 559

Reid, Alastair, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide. Knit: Com­

ponent composition for systems software. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), San Diego, California, pages 347–360,

October 2000.

Rémy, Didier. Typechecking records and variants in a natural extension of ML. In

ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas,

pages 242–249, January 1989. Long version in C. A. Gunter and J. C. Mitchell, ed­

itors, Theoretical Aspects of Object­Oriented Programming: Types, Semantics, and

Language Design, MIT Press, 1994.

Rémy, Didier. Algèbres Touffues. Application au Typage Polymorphe des Objets Enreg­

istrements dans les Langages Fonctionnels. PhD thesis, Université Paris VII, 1990.

Rémy, Didier. Extending ML type system with a sorted equational theory. Research

Report 1766, Institut National de Recherche en Informatique et Automatisme, Roc­

quencourt, BP 105, 78 153 Le Chesnay Cedex, France, 1992a.

Rémy, Didier. Projective ML. In ACM Symposium on Lisp and Functional Programming

(LFP), San Francisco, California, pages 66–75, June 1992b.

Rémy, Didier. Syntactic theories and the algebra of record terms. Research Report

1869, Institut National de Recherche en Informatique et Automatisme, Rocquen­

court, BP 105, 78 153 Le Chesnay Cedex, France, 1993.

Rémy, Didier. Programming objects with ML­ART: An extension to ML with abstract

and record types. In International Symposium on Theoretical Aspects of Computer

Software (TACS), Sendai, Japan, volume 789 of Lecture Notes in Computer Science,

pages 321–346. Springer­Verlag, April 1994.

Rémy, Didier and Jérôme Vouillon. Objective ML: An effective object­oriented exten­

sion to ML. Theory And Practice of Object Systems, 4(1):27–50, 1998. Summary

in ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), Paris, France, 1997.

van Renesse, Robbert, Kenneth P. Birman, Mark Hayden, Alexey Vaysburd, and David

Karr. Building adaptive systems using Ensemble. Software: Practice and Experience,

28(9):963–979, August 1998.

Restall, Greg. An Introduction to Substructural Logics. Routledge, February 2000.

Restall, Greg. Relevant and substructural logics. In D. Gabbay and J. Woods, editors,

Handbook of the History and Philosophy of Logic, volume 6, Logic and the Modalities

in the Twentieth Century. Elsevier, 2005. To appear.

Reynolds, John C. Automatic computation of data set definitions. In Information

Processing 68, Edinburgh, Scotland, volume 1, pages 456–461. North Holland, 1969.

Reynolds, John C. Towards a theory of type structure. In Colloque sur la Programma­

tion, Paris, France, volume 19 of Lecture Notes in Computer Science, pages 408–425.

Springer­Verlag, 1974.



560 References

Reynolds, John C. Syntactic control of interference. In ACM Symposium on Principles

of Programming Languages (POPL), Tucson, Arizona, pages 39–46, January 1978.

Reprinted in O’Hearn and Tennent, ALGOL­like Languages, vol. 1, pages 273–286,

Birkhäuser, 1997.

Reynolds, John C. Types, abstraction, and parametric polymorphism. In R. E. A.

Mason, editor, Information Processing 83, Paris, France, pages 513–523. Elsevier,

1983.

Reynolds, John C. Syntactic control of interference, part 2. Report CMU­CS­89­130,

Carnegie Mellon University, April 1989.

Reynolds, John C. Intuitionistic reasoning about shared mutable data structure. In

J. Davies, A. W. Roscoe, and J. Woodcock, editors, Millennial Perspectives in Com­

puter Science: Proceedings of the 1999 Oxford­Microsoft Symposium in honour of

Sir Tony Hoare. Palgrave Macmillan, 2000.

Robinson, J. Alan. Computational logic: The unification computation. Machine Intel­

ligence, 6:63–72, 1971.

Ross, Douglas T. The AED free storage package. Communications of the ACM, 10(8):

481–492, 1967.

Russo, Claudio V. Types for Modules. PhD thesis, Edinburgh University, Edinburgh,

Scotland, 1998. LFCS Thesis ECS–LFCS–98–389.

Russo, Claudio V. Non­dependent types for standard ML modules. In ACM SIGPLAN

International Conference on Principles and Practice of Declarative Programming

(PPDP), Paris France, pages 80–97, September 1999.

Russo, Claudio V. Recursive structures for Standard ML. In ACM SIGPLAN Interna­

tional Conference on Functional Programming (ICFP), Firenze, Italy, pages 50–61,

September 2001.

Sabry, Amr. What is a purely functional language? Journal of Functional Program­

ming, 8(1):1–22, January 1998.

Saha, Bratin, Nevin Heintze, and Dino Oliva. Subtransitive CFA using types. Technical

Report YALEU/DCS/TR­1166, Yale University, Department of Computer Science,

October 1998.

Sangiorgi, Davide and David. The π ­Calculus: a Theory of Mobile Processes. Cam­

bridge University Press, 2001.

Sannella, Donald, Stefan Sokolowski, and Andrzej Tarlecki. Toward formal develop­

ment of programs from algebraic specifications: Parameterisation revisited. Acta

Informatica, 29(8):689–736, 1992.

Schneider, Fred B. Enforceable security policies. ACM Transactions on Information

and System Security, 3(1):30–50, February 2000.

Schwartz, Jacob T. Optimization of very high level languages (parts I and II). Com­

puter Languages, 1(2–3):161–194, 197–218, 1975.



References 561

Seldin, Jonathan. Curry’s anticipation of the types used in programming languages.

In Proceedings of the Annual Meeting of the Canadian Society for History and Phi­

losophy of Mathematics, Toronto, Ontario, pages 143–163, May 2002.

Semmelroth, Miley and Amr Sabry. Monadic encapsulation in ML. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Paris, France, pages

8–17, September 1999.

Sestoft, Peter. Replacing function parameters by global variables. In ACM Sympo­

sium on Functional Programming Languages and Computer Architecture (FPCA),

London, England, pages 39–53, September 1989. Also available as University of

Copenhagen, Department of Computer Science Technical Report 88­7­2.

Sestoft, Peter. Moscow ML homepage, 2003. http://www.dina.dk/~sestoft/

mosml.html.

Severi, Paula and Erik Poll. Pure type systems with definitions. In International Sym­

posium on Logical Foundations of Computer Science (LFCS), St. Petersburg, Russia,

volume 813 of Lecture Notes in Computer Science, pages 316–328. Springer­Verlag,

September 1994.

Shao, Zhong. An overview of the FLINT/ML compiler. In ACM SIGPLAN Workshop on

Types in Compilation (TIC), Amsterdam, The Netherlands, June 1997.

Shao, Zhong. Typed cross­module compilation. In ACM SIGPLAN International Con­

ference on Functional Programming (ICFP), Baltimore, Maryland, pages 141–152,

September 1998.

Shao, Zhong. Transparent modules with fully syntactic signatures. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Paris, France, pages

220–232, September 1999.

Shao, Zhong, Christopher League, and Stefan Monnier. Implementing typed inter­

mediate languages. In ACM SIGPLAN International Conference on Functional Pro­

gramming (ICFP), Baltimore, Maryland, pages 313–323, September 1998.

Shivers, Olin. Control flow analysis in Scheme. In ACM SIGPLAN Conference on Pro­

gramming Language Design and Implementation (PLDI), Atlanta, Georgia, pages

164–174, June 1988.

Shivers, Olin. Control­Flow Analysis of Higher­Order Languages or Taming Lambda.

PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1991.

Simonet, Vincent. Type inference with structural subtyping: a faithful formalization

of an efficient constraint solver. In Asian Symposium on Programming Languages

and Systems (APLAS), Beijing, China, pages 283–302, November 2003.

Skalka, Christian and François Pottier. Syntactic type soundness for HM(X). In Work­

shop on Types in Programming (TIP), Dagstuhl, Germany, volume 75 of Electronic

Notes in Theoretical Computer Science. Elsevier, July 2002.

Smith, Frederick, David Walker, and Greg Morrisett. Alias types. In European Sym­

posium on Programming (ESOP), Berlin, Germany, volume 1782 of Lecture Notes in

Computer Science, pages 366–381. Springer­Verlag, April 2000.



562 References

Smith, Geoffrey S. Principal type schemes for functional programs with overloading

and subtyping. Science of Computer Programming, 23(2–3):197–226, December

1994.

Smith, Jan, Bengt Nordström, and Kent Petersson. Programming in Martin­Löf’s Type

Theory: An Introduction. Oxford University Press, 1990.

Statman, Richard. Logical relations and the typed λ­calculus. Information and Con­

trol, 65(2–3):85–97, May–June 1985.

Steele, Guy L., Jr. Common Lisp: The Language. Digital Press, 1990.

Stone, Christopher A. Singleton Kinds and Singleton Types. PhD thesis, Carnegie

Mellon University, Pittsburgh, Pennsylvania, August 2000.

Stone, Christopher A. and Robert Harper. Deciding type equivalence in a language

with singleton kinds. In ACM SIGPLAN–SIGACT Symposium on Principles of Pro­

gramming Languages (POPL), Boston, Massachusetts, pages 214–227, January 2000.

Stone, Christopher A. and Robert Harper. Extensional equivalence and singleton

types. 2005. To appear.

Streicher, Thomas. Semantics of Type Theory. Springer­Verlag, 1991.

Su, Zhendong, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf Treinen.

The first­order theory of subtyping constraints. In ACM SIGPLAN–SIGACT Sym­

posium on Principles of Programming Languages (POPL), Portland, Oregon, pages

203–216, January 2002.

Sulzmann, Martin. A General Framework for Hindley/Milner Type Systems with Con­

straints. PhD thesis, Yale University, Department of Computer Science, New Haven,

Connecticut, May 2000.

Sulzmann, Martin, Martin Müller, and Christoph Zenger. Hindley/Milner style type

systems in constraint form. Research Report ACRC–99–009, University of South

Australia, School of Computer and Information Science, July 1999.

Sumii, Eijiro and Benjamin C. Pierce. A bisimulation for type abstraction and re­

cursion. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Lan­

guages (POPL), Long Beach, California, 2005.

Sun. JavaTM 2 Platform Micro Edition (J2METM ) Technology for Creating Mobile

Devices—White Paper. Sun Microsystems, May 2000. Available from http://java.

sun.com/products/kvm/wp/KVMwp.pdf.

Tait, William W. Intensional interpretations of functionals of finite type I. Journal of

Symbolic Logic, 32(2):198–212, June 1967.

Talcott, C. Reasoning about functions with effects. In A. D. Gordon and A. M. Pitts,

editors, Higher Order Operational Techniques in Semantics, Publications of the

Newton Institute, pages 347–390. Cambridge University Press, 1998.

Talpin, Jean­Pierre and Pierre Jouvelot. Polymorphic type, region and effect inference.

Journal of Functional Programming, 2(2):245–271, 1992.



References 563

Talpin, Jean­Pierre and Pierre Jouvelot. The type and effect discipline. Information

and Computation, 111:245–296, 1994.

Tarditi, David, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper, and

Peter Lee. TIL: A type­directed optimizing compiler for ML. In ACM SIGPLAN Con­

ference on Programming Language Design and Implementation (PLDI), Philadephia,

Pennsylvania, pages 181–192, May 1996.

Tarjan, Robert Endre. Efficiency of a good but not linear set union algorithm. Journal

of the ACM, 22(2):215–225, April 1975.

Tarjan, Robert Endre. Applications of path compression on balanced trees. Journal

of the ACM, 26(4):690–715, October 1979.

Terlouw, J. Een nadere bewijstheoretische analyse van GSTTs. Manuscript, University

of Nijmegen, Netherlands, 1989.

Thorup, Kresten Krab. Genericity in Java with virtual types. In European Confer­

ence on Object­Oriented Programming (ECOOP), Jyväskylä, Finland, volume 1241

of Lecture Notes in Computer Science, pages 444–471. Springer­Verlag, June 1997.

Tiuryn, Jerzy. Subtype inequalities. In IEEE Symposium on Logic in Computer Science

(LICS), Santa Cruz, California, pages 308–317, June 1992.

Tiuryn, Jerzy and Mitchell Wand. Type reconstruction with recursive types and

atomic subtyping. In Theory and Practice of Software Development (TAPSOFT),

Orsay, France, volume 668 of Lecture Notes in Computer Science, pages 686–701.

Springer­Verlag, April 1993.

Tofte, Mads. Operational Semantics and Polymorphic Type Inference. PhD thesis,

Computer Science Department, Edinburgh University, Edinburgh, Scotland, 1988.

Tofte, Mads and Lars Birkedal. A region inference algorithm. ACM Transactions on

Programming Languages and Systems, 20(4):724–767, 1998.

Tofte, Mads, Lars Birkedal, Martin Elsman, and Niels Hallenberg. Region­based mem­

ory management in perspective. In ACM SIGPLAN International Conference on

Principles and Practice of Declarative Programming (PPDP), Firenze, Italy, pages

175–186, September 2001a.

Tofte, Mads, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Olesen,

and Peter Sestoft. Programming with regions in the ML Kit (for version 4). Technical

report, IT University of Copenhagen, October 2001b.

Tofte, Mads and Jean­Pierre Talpin. Implementing the call­by­value lambda­calculus

using a stack of regions. In ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages (POPL), Portland, Oregon, January 1994.

Tofte, Mads and Jean­Pierre Talpin. Region­based memory management. Information

and Computation, 132(2):109–176, February 1997.

Torgersen, Mads. Virtual types are statically safe. In International Workshop on Foun­

dations of Object­Oriented Languages (FOOL), informal proceedings, January 1998.



564 References

Trifonov, Valery and Scott Smith. Subtyping constrained types. In International Sym­

posium on Static Analysis (SAS) , Aachen, Germany, volume 1145 of Lecture Notes

in Computer Science, pages 349–365. Springer­Verlag, September 1996.

Turner, David N. and Philip Wadler. Operational interpretations of linear logic. The­

oretical Computer Science, 227:231–248, 1999. Special issue on linear logic.

Turner, David N., Philip Wadler, and Christian Mossin. Once upon a type. In ACM

Symposium on Functional Programming Languages and Computer Architecture

(FPCA)San Diego, California, pages 1–11, June 1995.

Vouillon, Jerome and Paul­André Melliès. Semantic types: A fresh look at the ideal

model for types. In ACM SIGPLAN–SIGACT Symposium on Principles of Program­

ming Languages (POPL), Venice, Italy, pages 52–63, 2004.

Wadler, Philip. Theorems for free! In ACM Symposium on Functional Programming

Languages and Computer Architecture (FPCA), London, England, pages 347–359,

September 1989.

Wadler, Philip. Linear types can change the world. In IFIP TC 2 Working Conference

on Programming Concepts and Methods, Sea of Galilee, Israel, pages 546–566, April

1990.

Wadler, Philip. The marriage of effects and monads. ACM Transactions on Computa­

tional Logic, 4(1):1–32, 2003.

Wahbe, Robert, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient

software­based fault isolation. In ACM Symposium on Operating Systems Principles

(SOSP), Asheville, North Carolina, pages 203–216, December 1993.

Walker, David, Karl Crary, and Greg Morrisett. Typed memory management via static

capabilities. ACM Transactions on Programming Languages and Systems, 22(4):

701–771, July 2000.

Walker, David and Greg Morrisett. Alias types for recursive data structures. In ACM

SIGPLAN Workshop on Types in Compilation (TIC), Montréal, Québec, September,

2000, volume 2071, pages 177–206. Springer­Verlag, 2001.

Walker, David and Kevin Watkins. On regions and linear types. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Firenze, Italy, pages

181–192, September 2001.

Wand, Mitchell. Complete type inference for simple objects. In IEEE Symposium on

Logic in Computer Science (LICS), Ithaca, New York, pages 37–44, June 1987a.

Wand, Mitchell. A simple algorithm and proof for type inference. Fundamenta Infor­

maticae, 10:115–122, 1987b.

Wand, Mitchell. Corrigendum: Complete type inference for simple objects. In IEEE

Symposium on Logic in Computer Science (LICS), Edinburgh, Scotland, page 132,

1988.

Wand, Mitchell. Type inference for objects with instance variables and inheritance.

In C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object­Oriented



References 565

Programming: Types, Semantics, and Language Design, pages 97–120. MIT Press,

1994.

Wang, Daniel C. and Andrew W. Appel. Type­preserving garbage collectors. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

London, England, pages 166–178, January 2001.

Wansbrough, Keith and Simon Peyton Jones. Once upon a polymorphic type. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San

Antonio, Texas, pages 15–28, January 1999.

Wells, Joe B. Typability and type checking in system F are equivalent and undecidable.

Annals of Pure and Applied Logic, 98(1–3):111–156, 1999.

Wells, Joe B. The essence of principal typings. In International Colloquium on Au­

tomata, Languages and Programming (ICALP), volume 2380 of Lecture Notes in

Computer Science, pages 913–925. Springer­Verlag, 2002.

Werner, Benjamin. Une Théorie des Constructions Inductives. PhD thesis, Université

Paris 7, Paris, France, May 1994.

Wirth, Niklaus. Systematic Programming: An Introduction. Prentice Hall, 1973.

Wirth, Niklaus. Programming in Modula­2. Texts and Monographs in Computer Sci­

ence. Springer­Verlag, 1983.

Wright, Andrew K. Simple imperative polymorphism. Lisp and Symbolic Computation,

8(4):343–355, 1995.

Wright, Andrew K. and Robert Cartwright. A practical soft type system for Scheme.

In ACM Symposium on Lisp and Functional Programming (LFP), Orlando, Florida,

pages 250–262, June 1994. Full version available in ACM Transactions on Program­

ming Languages and Systems, 19(1):87–52, January 1997.

Wright, Andrew K. and Matthias Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38–94, November 1994.

Xi, Hongwei. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon

University, Pittsburgh, Pennsylvania, 1998.

Xi, Hongwei and Robert Harper. A dependently typed assembly language. In ACM SIG­

PLAN International Conference on Functional Programming (ICFP), Firenze, Italy,

pages 169–180, September 2001.

Xi, Hongwei and Frank Pfenning. Dependent types in practical programming. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San

Antonio, Texas, pages 214–227, January 1999.

Zenger, Christoph. Indexed types. Theoretical Computer Science, 187:147–165, 1997.

Zwanenburg, Jan. Pure type systems with subtyping. In International Conference

on Typed Lambda Calculi and Applications (TLCA), L’Aquila, Italy, volume 1581 of

Lecture Notes in Computer Science, pages 381–396. Springer­Verlag, April 1999.




