
Math. Struct. in Comp. Science (2002), vol. 12, pp. 265–279. Printed in the United Kingdom
c� 2002 Cambridge University Press

Tripos theory in retrospect
A N D R E W M. P I T T S

Cambridge University Computer Laboratory,
William Gates Building, JJ Thomson Avenue,
Cambridge CB3 0FD, UK

Received 7 December 1999; revised 7 August 2000

The notion of tripos (Hyland, Johnstone, and Pitts 1980; Pitts 1981) was motivated by the desire to
explain in what sense Higg’s description of sheaf toposes as � -valued sets and Hyland’s
realizability toposes are instances of the same construction. The construction itself can be seen as
the universal solution to the problem of realizing the predicates of a first order hyperdoctrine as
subobjects in a logos with effective equivalence relations. In this note it is shown that the resulting
logos is actually a topos if and only if the original hyperdoctrine satisfies a certain comprehension
property. Triposes satisfy this property, but there are examples of non-triposes satisfying this form
of comprehension.

1. Introduction

In 1979 I was fortunate enough to attend some lectures in which Martin Hyland described, for the
first time in public, how to use Kleene’s notion of recursive realizability (Kleene 1945) to build
what subsequently came to be known as the effective topos (Hyland 1982). Although motivated
by applications in constructive analysis, this topos turned out to have some intriguing proper-
ties (Hyland 1988; Rosolini 1990) of use to the related fields of type theory and programming
language semantics; see (Phoa 1990) and (Reus and Streicher 1999), for example. But back in
1979, the personal significance of Hyland’s lectures was that they led me to formulate the notion
of ‘tripos’ and were the catalyst for the research that formed my PhD thesis. The description Hy-
land gave of his topos was analogous to Higg’s version of the category of sheaves on a complete
Heyting algebra � , in terms of ‘ � -valued sets’ (see Fourman and Scott 1979, Section 4). Yet
the properties of the effective topos are in many respects quite different from those of a category
of sheaves. For example, it is not a Grothendieck topos (see Hyland, Johnstone, and Pitts 1980,
p 222). Thus the following question naturally arose:

Question. Is there a common generalisation, with useful properties, of the constructions of � -
valued sets and of the effective topos?

Drawing upon Lawvere’s treatment of logic in terms of hyperdoctrines (Lawvere 1969; Lawvere
1970), I came up with an answer to this question based on a structure of indexed collections
of posets with certain properties. Peter Johnstone (my PhD supervisor) suggested naming these
structures with the acronym tripos—standing for Topos Representing Indexed Partially Ordered
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Set � — and the rest, as they say, is history. Well in any case, the three of us developed the initial
properties of set-based triposes in (Hyland, Johnstone, and Pitts 1980) � and I went on in my
thesis (Pitts 1981) to develop and apply the theory of triposes over an arbitrary base.

The purpose of this note is to point out that there is a slightly more general class of hyper-
doctrines than triposes answering the above Question. The generalisation hinges upon a careful
analysis of the comprehension properties that a hyperdoctrine may possess (different from the
ones in the classic paper by Lawvere (1970) to do with reflecting predicates into subobjects).
Thus there are hyperdoctrines that generate toposes in just the same way that triposes do, yet
whose ‘powerobject’ structure is weaker than that required of triposes. This is explained, and ex-
amples given, in Section 4. The scene is set by recalling material on hyperdoctrines in Section 2
and the category of partial equivalence relations of a hyperdoctrine (i.e. the ‘tripos to topos’
construction) in Section 3.

I have been aware of this generalisation of triposes since about 1982, but never found a good
excuse to air it in print. I’m grateful to the Tutorial Workshop on Realizability Semantics held
as part of FLoC’99 for providing the opportunity to do so. A preliminary version of this paper
appears in the proceedings of that workshop (Birkedal and Rosolini 1999).

2. First order hyperdoctrines

We will be concerned with categorical structures that are based on the notion of hyperdoc-
trine (Lawvere 1969) and that are tailored to modelling theories in first order intuitionistic pred-
icate logic with equality. Such a structure has a ‘base’ category � (with finite products) for
modelling the sorts and terms of a first order theory; and a � -indexed category (Johnstone and
Paré 1978) � for modelling its formulas. Since we will only be concerned with provability rather
than proofs, we restrict attention to indexed partially ordered sets rather than indexed categories.
The following definition recalls the properties of ���
	��
� needed to soundly model first order in-
tuitionistic predicate logic with equality. The fact that we are dealing with full first order logic,
rather than a fragment of it, masks some properties (‘Frobenius reciprocity’, stability of the
equality predicate under re-indexing, etc) which the definition would otherwise have to contain:
see (Pitts 2000, Section 5) for more details.

Definition 2.1. Let � be a category with finite products. A first order hyperdoctrine � over �
is specified by a contravariant functor ���������������������! from � into the category �"�#���$ of
partially ordered sets and monotone functions, with the following properties.
(i) For each � -object % , the partially ordered set �
�&%'� is a Heyting algebra, i.e. has a greatest

element ( ( ), binary meets ( ) ), a least element ( * ), binary joins ( + ), and relative pseudo-
complements ( � ).

(ii) For each � -morphism ,-�.%/�#�10 , the monotone function �
�2,3�4�5�
�206�7�����
�&%'� is a
homomorphism of Heyting algebras.

8
It was partly a joke: the Tripos is the name Cambridge University gives to its examinations; for example, Martin’s
lectures were a graduate-level course on Constructive Analysis for Part III of that year’s Mathematical Tripos. Maybe
Peter was not making a serious suggestion, but being an obedient pupil, I adopted it.9
How appropriate that the first paper on triposes should have three authors.
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(iii) For each diagonal morphism :<;>=@?BA#CD?�E6? in F , the left adjoint to G
H�:I;7J at the top
element KML�G
HN?'J exists. In other words there is an element O ; of G
HN?PE�?'J satisfying
for all QRLSG
HN?DET?UJ that

K>VWG
H�:
;7JXH2Q"J if and only if O4;YVZQ6[
(iv) For each product projection \'=$]IE�?DA�CB] in F , the monotone function G
H&\^J_=`G
H&]aJbA#CG
H&]cES?'J has both a left adjoint H2de?'J�f and a right adjoint Hhg�?UJif :

Q>V-G
H&\^JXH2Q�jNJ if and only if H�de?'J f H2Q"JbVkQ�jG
HN\^JlH&Q�jNJ_VkQ if and only if Q"j^VmHng�?'JifoH&Q"JX[
Moreover, these adjoints are natural in ] , i.e. given pq=r]cA�CB] j in F , we have

G
H&] j ET?'J s tvulw.xnyXz|{tv} ; {N~��
G
H2]cET?UJtv} ; { ~

G
H2] j J s thu�{ G
H&]aJ
G
H&] j ET?'J s tvulw.xnyXz|{t�� ; {N~��

G
H2]cET?UJt�� ; { ~
G
H2] j J s thu�{ G
H&]aJ�[

The elements of G
H&?'J , as ? ranges over F -objects, will be referred to as G -predicates.

Here are two examples of first order hyperdoctrines that are relevant to the development of
tripos theory.

Example 2.2 (Hyperdoctrine of a complete Heyting algebra). Let � be a complete Heyting
algebra. It determines a first order hyperdoctrine over the category �^�!� of sets and functions
as follows. For each set ? we take G
H&?'J�O�� ; , the ? -fold product of � in the category of
Heyting algebras; so the G -predicates are indexed families of elements of � , ordered componen-
twise. Given �-=#?�A#C1� , G
H��3J4=#�'�RA#C1� ; is the Heyting algebra homomorphism given
by re-indexing along � . Equality predicates O�; in � ; w ; are given by

O4;IHN�^��� j J'�l���O
� K if ��Ok� j� if �-�Ok� j

where of course K and � are respectively the greatest and least elements of � . The quantifiers
use set-indexed joins ( � ) and meets ( � ), which � possesses because it is complete: given Q�L� f w ; one has

H2d5?'J�foH2Q"J �l���O��.��L�]�[ �
 r¡ ; Q6H&������J Hng�?'Jif¢H2Q"J �l���O£���¤LS]�[ �6 r¡ ; Q
HN�����¢J
in � f .

Example 2.3 (Realizability hyperdoctrines). A partial combinatory algebra (PCA) is specified
by a set ¥ together with a partial binary operation H�A�J§¦!H�A�Jb=r¥RES¥©¨B¥ for which there exist
elements ª¢�«pqLT¥ satisfying for all ¬#�«¬ j �«¬ j j LS¥ that

ªI¦l¬6­ and H2ª
¦®¬5Ja¦�¬ j#¯ ¬p�¦l¬q­��°H�p±¦�¬eJa¦�¬ j ­�� and H�H2p±¦�¬5J§¦l¬ j J§¦®¬ j j#¯ H&¬q¦�¬ j j J§¦rH2¬ j ¦®¬ j j J
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where in general ²�³ means ‘ ² is defined’ and ²T´�²@µ is Kleene equivalence, i.e. ‘ ² is defined
if and only ² µ is, and in that case they are equal’. For example the set of natural numbers ¶
is a partial combinatory algebra if we define ·P¸$¹ to be the value at ¹ (if any) of the · th
partial recursive function, for some suitable enumeration. Another important example, in which
the application function ºi»�¼b¸.º�»�¼ is total, is given by the untyped lambda terms modulo ½|¾ -
conversion.

Given a PCA ¿ , we can form a first order hyperdoctrine À over Á^Â$Ã . For each set Ä , the
partially ordered set À
ºNÄ'¼ is defined as follows. Let Å�ºN¿Æ¼�Ç denote the set of functions fromÄ to the powerset of ¿ . Let È denote the binary relation on this set defined by: ÉÊÈÊÉËµ if and
only if there is some Ì5µ7Í©¿ such that for all ÎRÍ©Ä and ÌÏÍ>É4ºNÎ�¼ , Ì5µo¸!Ì is defined and inÉ_µ�ºNÎ�¼ . Standard properties of PCAs imply that this relation is reflexive and transitive, i.e. is a
preorder. Then define À
ºNÄ'¼ to be the quotient of Å�º&¿Ð¼«Ç by the equivalence relation generated
by È ; the partial order between equivalence classes ÑÒÉ�Ó is that induced by È . Given a functionÔcÕ ÄÖ»�×/Ø , the function À
º Ô ¼ Õ À
º&ØI¼Ë»¢×ÙÀ
ºNÄ'¼ sends ÑÒÉ�Ó to ÑÒÉÛÚ Ô Ó ; it is easily seen to be
well-defined, monotone and functorial.

As is well known, PCAs are functionally complete. In particular, from Ü and Ý one can con-
struct elements Þ|ß&Þ3à`ß&Þ#á so that º2Ì�ß�Ì µ ¼qâ×ãºäÞ�¸@Ìe¼_¸@Ì µ is an injection of ¿Yå'¿ into ¿ with left
inverse Ìæâ×çº�Þ à ¸èÌ�ß2Þ á ¸èÌ5¼ . From this it follows that each À
ºNÄ'¼ is a Heyting algebra with the
Heyting operations given as follows.é/êlë�ìí Ñ î.ÎæÍTÄ�ï�¿|Ó

ÑÒÉ�Óeð'Ñ É µ Ó êlë�ìí Ñ î.ÎæÍTÄ�ïlñ$º�Þ�¸®Ìe¼Ð¸®Ì µ^ò Ì
Í�É4º&Î�¼oóZÌ µ ÍæÉ µ º&Î�¼�ôlÓõ êlë�ìí Ñ î.ÎæÍTÄ�ï�öèÓ
ÑÒÉ�Óe÷'Ñ É µ Ó êlë�ìí Ñ î.ÎæÍTÄ�ïlñ$º�Þ�¸�Þ¢àX¼Ð¸®Ì ò ÌøÍæÉ4ºNÎ�¼�ô_ùúñ$ºäÞ�¸iÞ#á�¼§¸®Ì µ ò Ì µ ÍúÉ µ ºNÎ¢¼�ôlÓ
ÑÒÉ�Ó5×PÑ É µ Ó êlë�ìí Ñ î.ÎæÍTÄ�ïlñ�Ì µ^ò®û Ì�Í�É4º&Î�¼¢ï«Ì µ ¸lÌ is defined and in É µ º&Î�¼�ôlÓ�ï

The equality À -predicate for Ä is given by

í Ç êlë�ìí Ñ î|ºNÎ^ß�Î µ ¼bÍSÄBåTÄ�ï if Î í Î µ then ¿ else ö�Ó
and the quantifier operations on any ÑÒÉ�Ó�Í�À
º&üýåWÄ'¼ are given by set-theoretic union and
intersection:

º�þeÄ'¼�ÿoº�Ñ É�ÓN¼ êlë�ìí Ñ î���Í�ü�ï������ Ç É4º���ß�Î¢¼�Óº û Ä'¼iÿ¢º�Ñ É�ÓN¼ êlë�ìí Ñ î���Í�ü�ï�	���� Ç É4º���ß�Î¢¼�Ó�ï
We will call this first order hyperdoctrine the realizability hyperdoctrine determined by the partial
combinatory algebra ¿ .

Let us recall briefly the connection between first order hyperdoctrines and first order logic
(see Makkai 1993; or Pitts 2000, Section 5 for an overview). Given a first order signature of sortsÄ , function symbols

Ô'Õ ÄTàèß®ïlï®ïlß�Ä�

×ÖÄ , and relation symbols ��
kÄTàèß®ïlïlï®ß�Ä�
 , a structureÑ Ñä»bÓ Ó for the signature in a first order hyperdoctrine º��
ßiÀ
¼ assigns a � -object Ñ Ñ Ä�Ó Ó to each sort,
a � -morphism Ñ Ñ Ô Ó Ó Õ Ñ Ñ Ä
à«Ó ÓÆåÛ¸®¸l¸¢åWÑ Ñ Ä�
$Ó Ób»#×çÑ Ñ Ä�Ó Ó to each function symbol, and a À -predicate
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� � ��� ��������� � ����� �� "!#!$!% &� � �(')� ��*
to each relation symbol. Then each term + over the signature, with

variables in ,.- � / �10 � �32$4#4#4$2 / '"0 � ' � and of sort
�

say, can be interpreted as a 5 -morphism� � + � � 0 � � , � ��6�78� � �9� �
, where

� � , � � - � � ����� �: ;!$!#!< =� � ��'>� �
; and each first order formula ? , with

free variables in , say, can be interpreted as a
�

-predicate
� � ? � �@�"����� � , � �A* . The definitions of

� � + � �
and

� � ? � � proceed by induction on the structure of those expressions, using the various properties
given in Definition 2.1 to interpret the logical symbols. For example, the atomic formula +B-�C;+ED
asserting the equality of two terms of sort

�
is mapped to the

�
-predicate

���GF�� � + � � 2 � � +HD � ��I�*#� -KJ J CML L * ;
and a universally quantified formula N / 0 � 4 ? is mapped to

� N � � �9� �A* J J O L L ��� � ? � �A* . Note in particular
that a first order sentence (i.e. a formula with no free variables) gets interpreted as an element of���EP3*

, where
P

is the terminal object in 5 . We say that the structure satisfies a sentence ? if
� � ? � � is

the top element of
����PQ*

. This notion of satisfaction is sound for first order intuitionistic logic, in
the sense that all provable sentences are satisfied. It is also complete, in the sense that a sentence
is provable if it is satisfied by all structures in first order hyperdoctrines. This completeness result
is not very informative because the collection of such structures includes one (in a ‘Lindenbaum-
Tarski’ hyperdoctrine constructed from syntax) in which satisfaction coincides with provability.
A more useful R consequence of this connection between first order logic and first order hyper-
doctrines is the ability to use the familiar language of first order logic to give constructions in a
hyperdoctrine that would otherwise involve complicated, order-enriched commutative diagrams.
To do this one uses the following language.

Definition 2.4 (Internal language of a hyperdoctrine). One can associate to each first order
hyperdoctrine

� 5 2 ��* a signature having a sort for each 5 -object, an S -ary function symbol for
each 5 -morphism of the form

���� T!#!$!U V��'T6�7W�
and an S -ary relation symbol for each�

-predicate in
�������� V!#!$!X ���'Y*

(for each list
��� 2#4#4$4#2 �('

of objects and each object
�

). The
terms and first order formulas over this signature form the internal language of the hyperdoctrine.

There is an obvious structure in
� 5 2 ��* for this signature and this enables one to use the

internal language to name various 5 -objects, 5 -morphisms and
�

-predicates; and satisfaction
by this structure of sentences in the internal language can be used to express conditions on the
hyperdoctrine. We make extensive use of this in the rest of the paper.

3. The category of partial equivalence relations of a hyperdoctrine

Higg’s version of the topos of sheaves on a complete Heyting algebra and Hyland’s realizability
topos on a partial combinatory algebra can be obtained by applying the same construction to the
indexed partially ordered sets in Examples 2.2 and 2.3 respectively. The construction only relies
upon the fact that these indexed posets are first order hyperdoctrines in the sense of Definition 2.1.
(In fact it only relies upon the -[Z]\ part of first order logic/hyperdoctrines, but the considerations
in the next section need full first order logic.) Here is the construction.

Definition 3.1 (The category 5 � �]� ). Let 5 be a category with finite products and
�

a first order
hyperdoctrine over 5 . Define a category 5 � �]� as follows.

^
More useful, of course, only for those people who prefer the ‘element-centric’ language of predicate logic; others
prefer to stick with the ‘arrow-centric’ language of category theory.
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(i) An object is a pair _a`&bGcKd with ` a e -object and cgfih�_�`kj"`Vd a h -predicate satisfying
the following sentences of the internal language of _le�b�h�d expressing that it is a partial
equivalence relation (i.e. symmetric and transitive, but not necessarily reflexive).

mon b nqpsr `gt%c�_ n b nqp d9uvc�_ n�p b n d (1)m�n b n�p b nqp pUr `gt%c�_ n b nqp dswTc�_ nqp b n�p p d"uxc�_ n b n�p p dyt (2)

(ii) A morphism from _�`�z3bHc�zyd to _�`�{%bGc|{3d is given by a h -predicate }~f�h�_�`�z<j�`�{$d satisfy-
ing the following sentences of the internal language of _�e�bEh�d expressing that it respects the
partial equivalence relations c�z and c�{ , and is single-valued and total with respect to them.

mon z r `�z3b n { r `�{Bt�}�_ n z�b n {$d9uxc�z�_ n z�b n z#dowTc|{)_ n {%b n {3d (3)m�n z b n�pz r ` z b n { b nqp{ r ` { t�c z _ n z b nqpz dswTc { _ n { b n�p{ dowT}�_ n z b n { d"uv}�_ nqpz b nqp{ d (4)m�n z r `�z3b n {%b n p{ r `�{Bt�}�_ n z�b n {$dswT}�_ n z�b n p{ diuxc�{%_ n {%b n p{ d (5)mon z r ` z t�c z _ n z b n z d9ux� n { r ` { tG}�_ n z b n { d�t (6)

(iii) The identity morphism on _�`&bHcKd is given by c itself.
(iv) Composition of } r _a` z bGc z di����_a` { bGc { d and � r _�` { bGc { d"�q��_�`���bGc|�Qd is the h -

predicate in h�_�`�z]j9` � d determined by the formula � n { r `({�tG}�_ n z�b n {3d�w;��_ n {)b n � d in
the internal language of _le�b�h�d .

That composition in e�� h]� is well defined, associative and has the indicated morphisms as
identities all follows from the soundness of first order hyperdoctrines for first order intuitionistic
logic. The same is true for the following characterisation of finite products and subobjects in
e�� h]� .
Lemma 3.2 (Finite products in e�� h]� ).
(i) e�� h]� has a terminal object: it is _E�%b�� z d , where � is terminal in e .
(ii) The product of e�� h]� -objects _�` z bHc z d and _�` { bGc { d is

_�`�z3bHc�zyd _�`�z�j�`�{%bGc�z[j"c|{3d�>� �%� _�`�{�bGc|{Qd
where ` z ` z j�` {� � � � ` { is the product in e , and c[z:j�c�{]f�h�_G_�`�z|j�`�{$dMj
_a` z j�` { dGd and �<�Bfih�_G_�` z j�` { d�j�`���d are defined by:

_ac�z]jic|{Qdy_a��bG� p d@�$�l�� c�z%_��sz�_a�Xdyb��sz�_a� p d�dUw�c|{)_���{�_a�Yd�b���{�_a� p dGd
�<�H_��ob n ��d �$�l�� c|�H_����G_a�Yd�b n ��d�t

Lemma 3.3 (Subobjects in e�� h]� ).
(i) Every subobject of a e�� h]� -object _a`&bGc�d can be represented by a monomorphism of the form
c��   r _a`&bGc��  [d��q�¡_�`¢bGcKd where  £fih�_�`.d satisfies

mon9r `gt% K_ n d&uvc�_ n b n d (7)m�n b n b r `gt% K_ n d�w�c�_ n b nqp d9u¤ �_ n�p d (8)
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and where ¥�¦ §£¨i©�ªa«­¬i«V® is defined from ¥ and § by

ª¯¥�¦ §�®yªa°�±G°q²a®¢³#´lµ¶ ¥�ª�°�±G°q²A®s·T§Kªa°�®�¸
This sets up an isomorphism between the sub-poset of ©�ª�«.® consisting of those § satisfying
(7) and (8) and the usual poset of subobjects of ªa«&±G¥K® in ¹�º ©]» .

(ii) ¹�º ©]» has pullbacks of subobjects. The pullback of ¥�¦ §½¼�ª�«&±H¥�¦ §�®"¾�¿8ª�«&±H¥K® along a
morphism ÀÁ¼�ª�« ² ±G¥ ² ®Â¾�¿¡ªa«&±G¥�® is the subobject of ªa« ² ±H¥ ² ® determined, as in (i), by the
element § ² ¨�©�ªa« ² ® given by

§ ² ªa° ² ®¢³#´lµ¶ Ã °9¼%«�¸HÀ�ª�° ² ±G°�®s·T§Kªa°�®y¸

Recall that a category Ä is a logos if it has finite limits, pullback-stable images and dual images
of subobjects along morphisms, and pullback-stable finite joins of subobjects (Makkai and Reyes
1977). Any category Ä with finite limits determines an Ä -indexed poset ÅqÆ�Ç�ÈÉ¼�Ä�ÊlË�¾q¿ÍÌ�Î�Ï$Ð)Ñ
mapping Ä -objects to their posets of subobjects and mapping Ä -morphisms to pullback func-
tions. (Well of course the posets involved may actually be poclasses unless one assumes Ä is
well-powered, but size is not an issue here.) Then we can give an alternative characterisation
of logoses in terms of hyperdoctrines: they are precisely the finitely complete categories Ä for
which Å�Æ�ÇyÈ is a first order hyperdoctrine over Ä . Using this fact combined with Lemmas 3.2
and 3.3, we can deduce some exactness properties of ¹�º ©]» .
Theorem 3.4. The category ¹�º ©]» of partial equivalence relations of a first order hyperdoctrine
is a logos. Moreover, all equivalence relations in ¹�º ©]» have a quotient, i.e. have a coequalizer
whose kernel-pair is the equivalence relation (see Makkai and Reyes 1977, Definition 3.3.7); one
says that a logos has effective equivalence relations in this case.

Proof. Since ¹�º ©]» has finite products (Lemma 3.2) and pullbacks of all monomorphisms
(Lemma 3.3), it also has equalizers and hence all finite limits. Using the soundness of first order
logic for the internal language of ªl¹�±�©�® and the characterisation of subobjects in Lemma 3.3,
it is straightforward to deduce that ÅqÆ�Ç3ÒMÓ ÔUÕ is a first order hyperdoctrine over ¹�º ©]» and hence
that the latter is a logos. As for quotients of equivalence relations, if a monomorphism ªa«Ö¬
«&±$ª¯¥×¬¢¥�®#¦ Ø�®1¾�¿Ùª�«Ú¬¢«&±G¥Û¬&¥K® determines an equivalence relation on ª�«¢±G¥K® in ¹�º ©]» ,
then it follows that ª�«&±HØ�® is also a ¹�º ©]» -object, and that Ø determines a morphism from ª�«&±H¥K®
to ª�«¢±GØ]® which is the quotient of the equivalence relation.

Definition 3.5 (Constant objects in ¹�º ©]» ). We can define a functor Ü Ô ¼|¹Ý¾�¿x¹�º ©]» as
follows. On objects, Ü Ô maps « to ªa«&±�Þ�ß[® ; and on morphisms, Ü Ô maps àá¼X«�âK¾q¿ã«�ä to
the morphism from ª�« â ±�Þ ß�å ® to ª�« ä ±�Þ ß<æ ® given by the formula à@ªa° â ®�Þ ß<æ ° ä in the internal
language of ª�¹�±�©�® . From Lemma 3.2 we have that Ü Ô preserves finite products; and from
Lemma 3.3 it follows that Å�Æ�Ç$ÒMÓ ÔUÕ�ª¯Ü Ô ª�«V®G® is isomorphic to ©�ªa«V® , naturally in « . Objects of
the form Ü Ô ª�«V® in ¹�º ©]» are called constant objects in (Pitts 1981).
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It is not hard to see that any ç�è é]ê -object ë�ì¢íGîKï can be presented as a quotient of the subobject
of ð�ñ�ëaìVï determined by the é -predicate î�ë�ò�í�ò�ï , with the quotient morphism given by î itself:

è è î�ë�ò�í�ò�ï�ê ê ó ëaì&íGî�ï

ð ñ ëaìVï�ô
From this observation it is but a short step to the following (folklore?) characterisation of the
category of partial equivalence relations of a first order hyperdoctrine.

Theorem 3.6 (Universal property of ð ñ=õ ç÷öqøùç�è é]ê ). Let ç be a category with finite prod-
ucts and let é be a first order hyperdoctrine over ç . Then ð ñTõ çgöqøùç�è é]ê gives the universal
way of realizing é -predicates as subobjects in a logos with effective equivalence relations. For ifú

is such a logos and û õ ç÷ö�ø ú
is a functor preserving finite products, then there is a natural

equivalence

poset of first order hyperdoctrine morphisms: é�ëEö�ï üqý�þ$ÿÂëaû�ëEö�ï�ï
category of logos morphisms over ç : ç�è é]ê î�ô��

ç
��� �

Thus é��øùç�è é]ê provides a left adjoint (qua bicategories) to the functor mapping û õ ç÷ö�ø ú
to

üqý�þ ÿ ë¯ûqë�ö�ï�ï . The logos morphism ç�è ü�ý�þ ÿ ë¯ûqë�ö�ï�ïlê<öqø ú
which is the counit of this adjunction

at û õ ç ö�ø ú is always full and faithful; moreover, it is also essentially surjective (and hence
an equivalence) if and only if every

ú
-object is a quotient of a subobject of some object in the

image of û .
In a sense the construction ë�ç�íEé�ï��øvç�è é]ê falls between two stools. If one just wants to

realize é -predicates as subobjects in a logos, then the full subcategory of ç�è é]ê consisting of
subobjects of constant objects is the universal solution. On the other hand, as well as considering
logoses with effective equivalence relations, it is very natural to consider ones with finite disjoint
coproducts as well—i.e. Heyting pretoposes (cf. Pitts 1989). The universal solution to realizing
é -predicates in a Heyting pretopos is the mild generalisation of ç�è é]ê (implicit in Makkai and
Reyes 1977, Part II) whose objects are partial equivalence relations ‘spread over a finite number
of ç -objects’: the definition is like that given on pp 45–46 of (Pitts 1989).

4. When is ç�è é]ê a topos?

Let ç be a category with finite products and é a first order hyperdoctrine over it. Suppose that
ç�è é]ê does happen to be a topos (Johnstone 1977). So for each object, and in particular for each
constant object ð ñ ëaìVï there is a powerobject

	 � ��

���
equipped with a membership relation� ��� 

��� ð�ñ�ëaìVï�� 	 ��� 

��� such that every subobject � ð ñ ë�ìVï���� arises
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via a pullback
� ���������� �!

"$#&%('
)+*�,+-/.�0 � � ���1�� 32 * , -
.�0

(9)

from a unique morphism 465 !87:9 2 *�,�-
.�0 . Let us suppose that 2 *�,;-
.�0 is �=<>�@?BADC . � ,
say. So the membership relation )E*�,�-
.�0 is given, as in Lemma 3.3, by a F -predicate GIH . )
F ���J �<>�1� . Amongst other things, GIH . must respect the partial equivalence relation AKC . :

LNM 5 �O?QP&?RPTS 5 <>�VU GIH . � M ?RPW�+XYADC . �ZP&?BP[S$�3\ G]H . � M ?BP[S$�]U (10)

Specialising to the case when ! is a constant object �^���=_`�bac�Z_�?]aedQ� , for which subobjects
� � � �=�1�� �!caf� � ���J �_E�

are determined by arbitrary F -predicates g ) F ���h i_E� , we find that the morphism 4 is a
F -predicate in F �=_j �<>�1� which, in order for (9) to be a pullback, satisfies

L:M 5 �O?lk 5 _mU g � M ?lkn�porq(P 5 <>�VU G]H . � M ?BPW�+X 4 ��kB?BPT�IU (11)

Since 4 does determine a morphism �=_b?Ba d ��7:9s�Z<>�O?BADC . � it also satisfies
L k 5 _b?RP&?RPTS 5 <>�tU 4 ��kB?BPT�+X 4 ��kB?RPTS$��\uADC . �vPw?BPTS/� (12)

and
L k 5 _mUxk`a . ky\zq(P 5 <>�VU 4 ��kB?BPT� , which since k{a . k is | means that

L k 5 _mU&qQP 5 <>�VU 4 ��kB?RPW�IU (13)

From (10), (11) and (12) we deduce
L k 5 _b?QP 5 <>�tU 4 ��kB?BPT��\ L:M 5 �}U G]H . � M ?BPT�lo g � M ?lkn�

which combined with (13) gives
L k 5 _mURq(P 5 <>�tU L:M 5 �tU G]H . � M ?BPT�po g � M ?~kn�]U (14)

So we have shown that if �y� F�� is a topos, then � � ? F � satisfies the following Comprehension
Axiom.

Axiom 4.1 (CA). For all � -objects � there is a � -object <>� and a F -predicate GIH . ) F ���� <>�1� such that for any � -object _ and F -predicate g ) F ���� ^_E� , F satisfies the sentence (14)
of its internal language.

Theorem 4.2 (First order hyperdoctrine + CA = topos). Suppose � is a category with finite
products and F is a first order hyperdoctrine over � . Then the associated category of partial
equivalence relations �y� F�� is a topos if and only if � � ? F � satisfies (CA).

Proof. The argument above gives the ‘only if’ direction. Conversely suppose the hyperdoc-
trine does satisfy (CA). We will show how to construct the powerobject 2 -
.�� �E0 of any object���O?R��� in �y� F�� . Define ADC . ) F �=<>�J �<>��� by

ADC . �vPw?BP S �@�����o A{� . �vPT��X LNM 5 �}U GIH . � M ?RPW�no G]H . � M ?BP S �
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where
�{�Q���Z�W�1������ �$�N�3�x�V�R�] N������¡B�W�E¢¤£¥�=��¡~�:�l��¦

�§�:�E¡l�©¨��x�V�R�I  � ���E¡R�W�;¦ª£¥���E¡l�©¨��E¢6�]  � �=�©¨v¡R�W�~�]�
One can show that �=«>�O¡]�D¬ � � is a ­y® ¯�° -object and that the formula �] ;������¡B�W�D¦t�{�:���Z�W�
determines (via Lemma 3.3) a subobject

± �=�O¡~£��D²��Z«>�O¡B�D¬ � �I� (15)

For any other ­y® ¯�° -object
�Z³�¡~´µ�

and subobject
¶ ���O¡R£���²j�=³�¡R´µ�

(16)

determined by · ± ¯ ���J²�³`�
say, let ¸ ± ¯ �=³j²�«>�1� be

¸ ��¹B¡R�W� ������ �§�:�3�x�V�R�I  � ���E¡R�W� � · ��¹B¡~�:�l�+¦º´m�=¹R¡~¹n�
Routine calculation in the internal logic of � ­ ¡ ¯ � shows that ¸ is a morphism from �Z³�¡R´µ� to�=«>�O¡]�D¬ � � , that the subobject (16) is the pullback of (15) along »=¼ ² ¸ , and that ¸ is the unique
morphism in ­y® ¯�° with this property. So

�=«>�O¡]�D¬ � � is indeed a powerobject for
���O¡R£��

. Thus
when

� ­ ¡ ¯ � satisfies (CA), ­y® ¯�° has finite limits (Theorem 3.4) and powerobjects and hence is
a topos.

In Axiom 4.1, one way to satisfy (14) is to insist that its ‘Skolemized’ version holds, i.e. that
there is a ­ -morphism ½ �¾³j¿©ÀJ«>�

satisfying
�:¹��&³m�Á�N���w�t�Â�] N���=��¡ ½ ��¹n�l� � · ���E¡l¹n�

i.e. such that ·ÄÃÅ¯ � »=¼ �}² ½ �I�v�] N�Æ� in ¯ ���s²�³`�
. (Of course, such an ½ is not necessarily

unique up to equality of ­ -morphisms.) This leads to the definition of tripos.

Definition 4.3 (Triposes). Let ­ be a category with finite products. A ­ -tripos is a first order
hyperdoctrine ¯ over ­ equipped with the following extra structure. For each ­ -object

�
there

is a ­ -object «>� and a ¯ -predicate �] ;� ± ¯ ���Ç²È«>�1� such that given any ³ and · ±
¯ ���¤²^³E�

, there is a ­ -morphism ÉW·�Ê �&³j¿©ÀË«>�
with ·ÌÃÍ¯ � »=¼ � ² ÉW·�Ê �I�v�]  � � . Since this

implies that ¯ satisfies (CA) we know from the above theorem that ­y® ¯�° is a topos—the topos
generated by the ­ -tripos ¯ .

If the base category ­ happens to be cartesian closed, one can further simplify this Skolemized
version of (CA).

Theorem 4.4 (Generic predicates). Let ­ be a category with finite products and ¯ a first order
hyperdoctrine over ­
(i) If ¯ is a tripos, then it possesses a generic predicate (Hyland, Johnstone, and Pitts 1980, Def-

inition 1.2(iii)). By definition this means that there is some ­ -object Î�ÏRÐRÑ and ¯ -predicate
Î�Ï�Ò ± ¯ � Î�Ï~ÐRÑ � such that for any

³
and Ó ± ¯ �=³`� there is a ­ -morphism ÔÕÓ>Ö �&³j¿:À Î�Ï~ÐBÑ

with Ó×ÃY¯ � ÔxÓÆÖ ��� Î�Ï�Ò � .
(ii) Conversely, assuming ­ is cartesian closed, if ¯ has a generic predicate, then it is a tripos.
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Proof. For part (i), using the tripos structure of Ø we can take Ù�Ú~ÛRÜ�ÝsÞ^ß and Ù�Ú�à�Ý
Øâálãlä
å[æ=ç(èEé�êlëIávì]í�éIë , using the isomorphism ãnä/å�æ=çQèEé[ê¥îpÞ^ß�ïÝ ßmðjÞ^ß . For any ñóòYØâá=ô`ë , we
get Øâá=õ©öTëIáZñeë÷òtØâálßyðªôEë and can define øÕñ>ù to be ú[Øâá�õNö[ëIáZñeë]ûfîeô¤üNýuÞ^ß . A simple
calculation shows that Øâá�øÕñÆùwëIá�Ù�Ú�à:ë�Ý×ñ . Hence we do have a generic predicate.

For part (ii) suppose that þ is cartesian closed and that the hyperdoctrine Ø has a generic
predicate Ù�Ú�à3ò�ØâávÙ�Ú~ÛRÜ�ë . For each þ -object ÿ define Þ>ÿ to be the exponential Ù�Ú~ÛRÜ�� and the
membership predicate ì]í � ò�Øâá=ÿ×ð�Ù�ÚRÛRÜ��>ë to be Øâá���� � ëIá�Ù�Ú�à;ë , where ��� � îwÿ×ð�Ù�ÚRÛRÜ�� ü©ýÙ�Ú~ÛBÜ is evaluation (counit of the exponential adjunction ÿ ðªálü�ë � álü�ë � at Ù�Ú~ÛBÜ ). For any� òyØâá�ÿtðÆô`ë we have ø � ù�îxÿ ð>ô�ü:ý Ù�ÚRÛRÜ and can take its transpose across the exponential
adjunction to get a morphism ú � û^îQôÍü:ýhÙ�Ú~ÛBÜ	� . It is straightforward to see that this has the
property required in Definition 4.3.

Example 4.5. The hyperdoctrines in Examples 2.2 and 2.3 both possess generic predicates and
hence by Theorem 4.4 are 
���
 -triposes (since 
���
 is cartesian closed).

In the first case we can take Ù�Ú~ÛRÜ to be (the underlying set of) � and Ù�Ú�àÍò÷Øâá��@ëÆÝ����
to be the identity function; for any ñ�òOØâá�ÿ1ë , øxñÆù is just ñ itself. The topos generated by this
tripos is precisely Higg’s category of � -valued sets, equivalent to the category of sheaves on the
complete Heyting algebra � : see (Fourman and Scott 1979).

In the second example we can take Ù�Ú~ÛRÜ to be the powerset Þmá���ë of the PCA � and Ù�Ú�àÈò
Øâá=Þmá��{ë~ë to be equivalence class of the identity function; for any ñ6òÍØâáZôEë , choosing a rep-
resentative ��ò Þmá���ë�� for it, we can take øÕñÆù@Ý�� since Øâá���ëIávÙ�Ú�à:ë�Ý�Øâá���ëIá�� æ=ç è��! #"%$ ë�Ý� æ=ç è��! #"'& � $ Ý��(� $ Ýtñ . The topos generated by this tripos is the so-called realizability topos
of the partial combinatory algebra � : see (Hyland, Johnstone, and Pitts 1980; Pitts 1981; van
Oosten 1991; Longley 1995).

There are two minor differences between Definition 4.3 and the definition of tripos given
in (Hyland, Johnstone, and Pitts 1980) or (Pitts 1981). The first has to do with generalised quan-
tifiers; the second has to do with the use of preorders rather than partial orders. These differences
are discussed in the next two remarks.

Remark 4.6 (Generalised quantification). The original definition of tripos assumes that þ
has all finite limits, rather than just finite products, and that there are adjoints ( )�*(å,+-* ) for all
the monotone functions Øâá/.;ë , rather than just for the case when . is a product projection or
diagonal; furthermore these adjoints are required to be stable in the sense that ‘Beck-Chevalley’
conditions hold: 0 12 3 45 * ÿ

implies

Øâá 0 ë 687 Øâá 3 ë
Øâá 5 ë

9 � 2 "
6;: Øâá=ÿ1ë

9 � 4 "
pullback in þ commutes in <>=@?#��
 .

(If this holds for all pullbacks, then a similar condition holds for the left adjoints ) * as well.)
From the work of Lawvere (1969) we know that in a first order hyperdoctrine as defined in



Andrew M. Pitts 12

Section 2 such generalised quantifiers are definable from the usual ones:ACB-DFEHGIA�J�GLK#M�NO B@PRQ;SUT;JWVYX[Z�A�P\G^]_E`A�P\GA/a\D�EHGIA�J�GLK#M�NO abPWQ;SUT;JWVYX[Z�A�P\GdceE`A�P\G%T
These formulas do define adjoints to f A�Z-G and these adjoints satisfy the Beck-Chevalley condi-
tion for certain pullback squares—the ones that exist by dint of the finite product structure in g .
However, there is no reason why the Beck-Chevalley condition should hold for all the pullback
squares that happen to exist in g . In this sense the definitions in (Hyland, Johnstone, and Pitts
1980) and (Pitts 1981) assume a bit more than is strictly necessary.

Remark 4.7 (Canonically presented hyperdoctrines). The original definition of tripos was
phrased in terms of indexed preordered sets gih�jlk�m nporqbsto8u , rather than indexed posetsgWh�jvk@m n>s@w#q�x . Each setting has its conveniences and it is easy to pass between the two.
However, one advantage of using preorders is that one can often identify predicates on y with
functions from y to some fixed object. For example if we present the realizability triposes of
Example 2.3 using indexed preordered sets, then we can take f A y G to be z A�{UG X rather than a
quotient of it. Triposes in which predicates are functions are called canonically presented in (Hy-
land, Johnstone, and Pitts 1980; Pitts 1981).

In the partially ordered setting we are using here, we can say that a first order hyperdoctrineA gR|,f G as in Definition 2.1 is canonically presented by a g -object }�~���� if for each g -object �
there is a surjective function ��� Q g A ��|�}'~���� G f A � G | natural in � . For then we can makeg A k�|�}'~���� G into a g -indexed preordered set equivalent to f by declaring

Z���Z	�
in g A ��|%}�~���� G

to mean that ��� A�Z-G�� ��� A/Z��CG holds in f A � G . Note that from Theorem 4.4(i) we have that if f is
a g -tripos, then f Q gWh�j�ktmen>s@w#q�x can be canonically presented by z�� . However, if f merely
satisfies (CA), then it is not necessarily canonically presentable. The following example shows
this. It already occurs in (Pitts 1981, Section 2.9). However, I was not aware at that time of the
general result (Theorem 4.2) of which it is an instance. (If I had been, doubtless the definition of
tripos would have been different.)

Example 4.8 (A non-tripos satisfying CA). Let ����� denote the category of finite sets and
functions. From any infinite Boolean algebra � we can define a hyperdoctrine fH� over ���/� that
satisfies (CA), but which is not a tripos, as follows.

In fact f�� is just like Example 2.2 except that we restrict the base category to be finite sets so
that the quantifiers use only the finite meets and joins assumed to exist in � . Thus for each finite
set y , define f � A y G to be the the y -fold product � X of the Boolean algebra � ; and for eachZ�Q y�k@m S

in ����� , define f�� A/Z-G�Q f A�S�G k�m�f A y G to be � D . Equality predicates
V X

inf � A y��dy G are given by the functionsV X A�J | J � G KIM�NV ��� if
JiV�Jt�� if
J �V�Jt�

and quantification is given byA/a y G � A�EYG KIM�NV¢¡¤£¦¥ � Tt§�¨;© X E`A�£ | J@G ACB y G � A/EHG KIM�NV¢¡¤£¦¥ � Ttª�¨;© X E`A�£ | J@G�T
The fact that f�� is a first order hyperdoctrine of course only depends upon the Heyting algebra
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structure of « . However, to see that it also satisfies the Comprehension Axiom 4.1 we make
essential use of the fact that « has complements ( ¬ ) rather than just relative pseudocomplements
( ­ ).

For each finite set ® , we take ¯p® to be the set °²±�³�´`µ8¶ of functions from ® to the two-
element Boolean subalgebra °²±�³�´`µ of « . The membership · -predicate ¸�¹ ¶»º ·R¼�®¾½�¯p®À¿ is
given by function application. Then for any Á º ·>Â>¼�®Ã½iÄÅ¿ we have´ÇÆÉÈ�Ê�Ë²Ì>È`Í;Ë ¶ ´Æ È�Ê�Ë²Ì>È`Í;Ë ¶ Á�¼�Î	³�Ï,¿-Ði¬�Á�¼�ÎÅ³�Ï,¿Æ È Ê�Ë²Ì È Í;Ë ¶�Ñ�Ò Ë�Ó�Ô�Õ Ö�×-Ø%ÙÚÁ�¼�Î	³�ÏÛ¿Æ È�Ê�Ë²Ì Ñ�Ü Ë�Ó�ÔÝÕ ÖÅ×�ÞWÈ�Í;Ë ¶Lß ¼�Î�¿,Ù�Á�¼�Î	³�Ï,¿
the last step using the fact that « is a distributive lattice. Thus by definition of ¯p® and ¸%¹ ¶ , the
formula à ÏUá;Äãâ�ä ß á;¯p®�â à Î^á²®�âF¸%¹ ¶ ¼�Î	³ ß ¿ÝÙeÁ�¼�ÎÅ³�Ï,¿
of the internal language of · is satisfied. Hence (CA) holds and å�æ�ç¦è · ÂÝé is a topos for any
Boolean algebra « , whether or not it is infinite.

However, if « is infinite then · Â cannot be made into a tripos for any choice of ® ê­¼�¯p®�³�¸%¹ ¶ ¿ . For if it could, then by Theorem 4.4 it would possess a generic predicate and hence
be canonically presented by some object ë�ì�í�î in å�æ�ç . So in particular there would be a surjection
from the finite set ë�ì�í�î�ïÆ å�æ/ç¦¼�ð;³�ë'ì�í�î�¿ onto · Â ¼,ðr¿�ïÆ « , which is impossible.

Remark 4.9 (An open problem in topos theory). If ñ is a category with finite products and· a first order hyperdoctrine over ñ , then Lemmas 3.2 and 3.3 imply that the Heyting algebraòtó¤ô�õUö ÷	ø ¼�ð�¿ of subobjects of the terminal object ð in the logos ñWè · é is isomorphic to ·R¼�ð�¿ . In
Example 4.8, · Â ¼�ð�¿ is the Boolean algebra « . Thus by Theorem 4.2, å�æ�ç�è · Â�é is a topos withòtó¤ô#ù¤ú!û\ö ÷@ü¤ø ¼�ð�¿ isomorphic to « . In general the subobjects of ð in a topos ý (i.e. its ‘truth-values’)
form a Heyting algebra. We have just seen that every Boolean algebra can arise as

òtó¤ô²þ ¼�ð�¿ for
some topos ý . However, it is not known whether every Heyting algebra can arise in this way.
(Probably the free Heyting algebra on countably many generators cannot be the Heyting algebra
of truth-values of a topos; see Pitts 1992, Section 1 for more on this topic.)

5. Conclusion

The notion of ‘tripos’ was motivated by the desire to explain in what sense Higg’s description
of sheaf toposes as ÿ -valued sets and Hyland’s realizability toposes are instances of the same
construction. The construction itself involves building a category of partial equivalence relations
and can be seen as the universal way of realizing the predicates of a first order hyperdoctrine as
subobjects in a logos having effective equivalence relations (Theorem 3.6). This yields a topos if
and only if the hyperdoctrine satisfies a certain comprehension property (Theorem 4.2). Triposes
satisfy this property, but there are examples of non-triposes satisfying this form of comprehension
(Example 4.8).

So should the definition of tripos in (Pitts 1981) have used this more general form? The main
use for triposes seems to occur when one has some non-standard notion of predicate and one
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wishes to see that it can be used to generate a topos. For examples see (van Oosten 1991; Hof-
mann 1999; Awody, Birkedal, and Scott 1999). In this respect the condition (CA) seems useful,
because it is more permissive that its Skolemized form. However, triposes often arise by applying
various constructions to other triposes. In particular, (Pitts 1981) establishes quite a rich theory of
triposes akin to that for sheaf theory, involving notions of geometric morphism, Lawvere-Tierney
topologies, etc. I do not know how far this theory extends to the case of hyperdoctrines satisfy-
ing the (CA) axiom, but I guess it is not very far. For example, one of the most useful results
in (Pitts 1981) concerns the question of iteration: if � is a tripos over � and � a tripos over
��� ��� , when is �	��
���
������������ ����������� ����� ��� the topos of partial equivalence relations
of a � -tripos? Theorem 6.2 of (Pitts 1981) provides a practically useful answer to this question—
namely that �������! #"$�%����
&�'�! ( is a � -tripos with ��� �)�*� equivalent to �)� ���+� ��� , provided �
has ‘fibrewise quantification’. Fibrewise quantification is a concept that applies to triposes based
on toposes and occurs frequently (e.g. Examples 2.2 and 2.3 have fibrewise quantification). It
means that the quantifiers in � are induced by morphisms , �.-0/1� �#2&354�6�7$���98#:(;=< in a
certain obvious fashion (cf. Hyland, Johnstone, and Pitts 1980, Proposition 1.12), where 2 is the
subobject classifier of the topos and 8#:(;=< the carrier of the generic predicate of the tripos (The-
orem 4.4). We saw in Example 4.8 that hyperdoctrines satisfying (CA) do not necessarily have
generic predicates, so the notion of fibrewise quantification and its consequences for iteration are
not so useful in that setting.
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