Process Calculus Based Upon
Evaluation to Committed Form

Andrew M. Pitts and Joshua R. X. Ross

Cambridge University Computer Laboratory, Cambridge CB2 3QG, UK

An approach to the semantics of CCS-like communicating processes
is proposed that is based upon evaluation of processes to input-
or output-committed form, with no explicit mention of silent ac-
tions. This leads to a co-inductively defined notion of evaluation
bisimilarity—a form of weak branching-time equivalence which is
shown to be a congruence, even in the presence of summation.
The relationship between this evaluation-based approach and the
more traditional, labelled transition semantics is investigated. In
particular, with some restriction on sums, CCS observation equiv-
alence is characterised purely in terms of evaluation to committed
form, and evaluation bisimilarity is characterised as a weak delay
equivalence. These results are extended to the higher order case,
where evaluation bisimilarity coincides with Sangiorgi’s weak con-
text bisimilarity. An evaluation-based approach to m-calculus and
the relationship with Milner and Sangiorgi’s reduction-based no-
tion of barbed bisimulation are also examined.

1 Introduction

Beginning with Milner’s CCS [14], it has become commonplace to specify the
operational semantics of languages for concurrent, communicating processes
by means of an action-labelled transition relation between process expressions;
and ideally, by one that is inductively defined by rules following the structure
of expressions [23]. In particular this provides the means for defining notions
of process equivalence in terms of various kinds of bisimulation relation de-
rived from the labelled transition system, with associated co-induction proof
techniques. This approach to process calculi has been very fruitful. So before
proposing an alternative approach, as we do in this paper, it is necessary to
examine the weak points of the status quo. We identify two which influenced
the worked presented here.

First, the construction of weak, branching-time congruences is not as simple
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as one might wish. The gap between CCS observation equivalence and obser-
vation congruence in the presence of summation is the best known example of
the difficulties we have in mind; but see also [6]. The use of a transition sys-
tem in which externally unobservable behaviour is represented explicitly (by
T-transitions) does not always fit well with defining congruences (i.e. equiva-
lences respecting the language constructs) which abstract from such behaviour
(i.e. are ‘weak’), but which do not identify processes with different ‘may’ and
‘must’ behaviour with respect to external actions.

Secondly and perhaps more significantly, for languages that have higher-order
features [17,28], or which combine concurrent communication with higher or-
der functions [5,24], it has proved difficult to devise labelled transition seman-
tics that are both simple and give rise to weak bisimilarities with expected
properties. For example, witness the difficulties caused by the combination of
(higher order) value-passing actions with static restriction discussed by San-
giorgi in [27].

Milner and Sangiorgi were partly addressing this second kind of problem when
they introduced the notion of barbed bisimulation [18], defined in terms of a
reduction relation and a convergence predicate. This approach is both simple
(especially when combined with the use of ‘chemistry’ [2], i.e. a structural
congruence relation) and uniform—in the sense that one can easily apply it to
some quite different-looking calculi. It has certainly been applied successfully:
see [16,25,4]. Yet there remain difficulties of the first kind mentioned above,
to do with factoring out reductions (i.e. 7-transitions) in weak equivalences;
and the ‘barbed’ approach usually involves quite heavy use of closure under
contexts in order to obtain a congruence relation.

For sequential languages, the use of a reduction relation to specify operational
semantics usually comes along with some fixed strategy for reducing configu-
rations, including a notion of which configurations are in final, or canonical,
form. Therefore, for many purposes one can abstract away from the single
steps of reduction and just consider an evaluation relation between configura-
tions and the canonical forms to which they give rise (if any). As for one-step
reduction relations, so for ‘big-step’ evaluation relations, the ideal situation
is where evaluation to canonical form is inductively defined by rules that fol-
low the syntactical structure of the language. For programming languages,
the best known example of a large scale operational semantics in this style
is the definition of Standard ML [19]. In a somewhat purer vein, evaluation
to canonical form is a key part of Martin-Lof’s type-theoretic foundation for
constructive mathematics [12].

This paper attempts to demonstrate that process calculi can be based upon
evaluation to canonical form and that some of the problems mentioned above
are solved thereby; in particular, in this approach there is no mention of 7-



transitions a priori. At first it might seem unlikely that the interactive na-
ture of process communication can be adequately captured by an evaluation
relation. But note that canonical forms may well contain unevaluated subex-
pressions that get ‘activated’ in bisimulation equivalences based upon eval-
uation. The paradigmatic example is Abramsky’s ‘lazy’ lambda calculus [1],
in which evaluation does not take place ‘under the lambda’—canonical forms
are lambda abstractions, \z.E, with E unevaluated. Abramsky’s applicative
bisimulation is the greatest symmetric relation R between closed lambda terms
such that if M; R My and M; |} Ax.E;, then M, || Ax.E5 holds for some
E, with E\[N/x] R Ey[N/x] for all closed N. Here |} denotes the (call-by-
name) evaluation relation. The ‘interaction’ embodied in this definition is one
of evaluating to a lambda abstraction versus supplying an argument for the
parameter in the body of the abstraction.

To develop a similar style of semantics for processes, the crucial question is of
course: “what are the canonical forms?” For CCS-like calculi, a natural answer
is to take processes like a(x).P(x) and av.Q) which are committed to input and
output actions respectively. (We consider other answers in Section 4.2.) We
develop this ‘evaluation to committed form’ approach in Section 2 (for the non
value-passing case, for simplicity). As is the case for the reduction-based ap-
proach leading to barbed bisimilarity, we work modulo a structural congruence
relation. In fact this seems to be necessary for the evaluation-based approach
to yield a sufficiently rich theory (see Remark 4). We define an associated
notion of evaluation bisimilarity and adapt Howe’s work [10] on congruence
properties of applicative bisimilarity to show that it is a congruence. (Although
we put restrictions on summation in Section 2, the congruence property holds
without them: see Section 4.4.) Besides being a congruence, evaluation bisim-
ilarity seems a reasonable ‘weak, branching-time’ process equivalence whose
definition is completely 7-free. In Section 3 we investigate its relationship to
existing, transition-based equivalences.

To do that we first have to examine the relationship between our notion of eval-
uation to committed form, P |} £.P’, and the usual labelled transition relation.
Roughly speaking, P |} £.P’' means that P can do some number of 7-transitions
followed by an /-transition to become a process strongly equivalent to P': see
Lemma 19 and Theorem 21. These results permit one to characterise CCS
observation equivalence purely in terms of evaluation to committed form (at
least in the case that summation is restricted to action-guarded summands).
Moreover, they lead to a characterisation of evaluation bisimilarity as delay
bisimulation equivalence [13,29]—which is like CCS observation equivalence

except that T4 s used in place of T, see Theorem 24. Delay bisimula-
tion equivalence is finer than CCS observation equivalence, but coarser than
Van Glabbeek and Weijland’s branching bisimulation equivalence: see [6]. Sim-
ilar delay equivalences have occurred recently in work on higher order process
calculi [27] and on integrations of functions and processes [3]. Pleasingly, the



evaluation-based approach extends smoothly to higher order processes and
we obtain a coincidence between evaluation bisimilarity and Sangiorgi’s weak
context bisimilarity (Theorem 27). This is described briefly in Section 4 along
with a number of other topics: a treatment of asynchronous-output m-calculus
in terms of evaluation to input-committed form, the relationship between our
evaluation-based approach and the ‘barbed’ approach, and the relation be-
tween evaluation and transition in the presence of unrestricted summation.

2 Evaluation Bisimilarity

As a first illustration of the use of an evaluation relation to specify the be-
haviour of communicating processes, we consider a subset of CCS [14] which
we call normal CCS, or NCCS for short. It has operators for composition,
restriction, recursion, and synchronous input and output, but has summa-
tion restricted to normal processes—which by definition are (finite) sums of
processes committed to input or output actions. Thus for example, the CCS
process 2.0 + 3.0 is in NCCS, but 2.0 + (7.0|2.0) and 2.0 + 7.7.0 are not. '

Why use this restricted form of CCS to introduce the evaluation-based se-
mantics of processes? The answer lies in the fact that with the restriction to
input/output-guarded summation, there is a close correspondence between the
evaluation- and the labelled transition-based semantics of CCS (see Section 3);
whereas in the presence of unguarded summation, the situation is more com-
plicated (see Section 4.4). Since the notions of evaluation to committed form
and evaluation bisimilarity we are going to introduce seem rather natural ones,
this ‘misbehaviour’ of unguarded summation is perhaps an indication of its
semantically problematic nature.? It is worth remarking that unguarded re-
curston causes no problems for the tie-up between evaluation and transition,

and so is included in NCCS.

NCCS process expressions are given by the grammar

processes FE:=X|N|E|E | (vx)E | fir(X=F)
normal processes N:=0|K | N+ N

committed processes K:=x.E |z.E

where X ranges over a countably infinite set of process variables and x ranges
over a countably infinite set of channel names. Name restriction is written

I Indeed, T-prefixing is only included implicitly in NCCS—see Definition 8.
2 Of course the fact that unguarded summation does not respect CCS observation
equivalence is a better known indicator of its problematic nature.



(vz)E, rather than E \ = as in CCS, and we prefer to make it a binding
operation: free occurrences in E of the name = become bound in (vz)E. The
other binding operation is for recursively defined processes: free occurrences
in F of the process variable X become bound in fiz(X=F).

Note Throughout the paper we identify expressions up to a-conversion of
bound names and variables, and write E =, E' to indicate that E and E' are
syntactically identical modulo «-conversion.

We use fu(E) and fn(FE) to indicate respectively the finite set of free variables
and free names of E. An NCCS process expression F is closed if fo(E) is
empty and open otherwise. Most of the time we will refer to closed process
expressions simply as processes, and use letters like P, @), R, ... to denote them.
For simplicity we have omitted any relabelling operator from NCCS. Instead
we make do with name substitution as an operation on syntax: E[z'/x] denotes
the result (well-defined up to a-conversion) of substituting the name 2’ for all
free occurrences of the name z in E. Similarly E[E’/X] denotes the result of
substituting the process expression E’ for all free occurrences of the variable
X in E. Following usual CCS practice, we write a typical committed process
as (.P where ¢ ranges over labels, which are either names (z) or co-names (I):

o=z |T.
As usual, { =z if / = x is a name, and ¢ = x if / = T is a co-name.

Before defining an evaluation semantics for NCCS processes, we have to give
a notion of structural congruence that turns out to be an essential ingredient
of the definition.

Definition 1 An NCCS congruence relation, &, is an equivalence relation
between NCCS process expressions which is closed under the following rules.

E\EE, E EE,

(crl)
B/} € B|1}
B, € B, )
(vx)Ey € (va)Esy
E, ¢ E
L& B (cr3)
EEE (crd)
(.E, E L.Ey
Ny E Ny N{E N
! i 2 (crb)

Ny + N E Ny + N

Structural congruence, =, is the smallest such relation containing the following



pairs of processes:

Pi|(P|Ps) = (PL|Py)|Ps
P1|P2 = P2|P1
PlO=P

(va)(P1|Py) = ((va) PO\ if @ & fn(P)
(vay)(vae) P = (va)(vay) P
(vr)0 =0

N1+(N2+N3)E(N1+N2)+N3
N1+NQEN2—|—N1
N+0=N.

Notions of structural congruence are an extremely useful way to simplify the
specification of the operational semantics of reactive systems. They were first
popularised by the ‘chemical abstract machine’ of Berry and Boudol [2]. The
form we are using is like that used in Milner’s presentation of reduction for
m-calculus processes in [16]. In one sense the identifications made by such
congruences just take us one step further up the path abstracting away from
inessential choices in the concrete representation of syntax. Although there
is some choice as to which identities should be ‘structural’ (for example, we
have not included any identities for recursive processes), those relating to
composition and restriction seem essential for evaluation to committed form
to lead to a sufficiently rich theory of process evaluation and equivalence. (See
Remark 4 below.)

Definition 2 (Evaluation to committed form) The NCCS evaluation re-
lation takes the form P |} K, where P and K are processes and K is in ‘com-
mitted form’, i.e. is of the form £.P' for some name or co-name ¢ and some
process P'. It is inductively generated by the following aziom and rules.

M if P, = P and P{ = P, (10)
Py | (P}
(N +£.P)|Q | £.(P|Q) (Y1)
P P P 0Py, PPy K 12)
PP, | K
PYER  egqedy (3)

(vx)P | L.(vz)P'
Blfir(X=E)/X]|Q § K

fie(X=E)Q U & s




For readers familiar with the usual labelled transition semantics of CCS, the
above rules should suggest that P || £.P’ means that P can do some number of
T-transitions followed by an /-transition to become P’. This intuition is roughly
correct: we will make the relationship between evaluation and transition pre-
cise in Section 3 (see Corollary 22). Manifestly Definition 2 is a ‘r-free’ de-
scription of how processes execute. Here is a simple example to illustrate a dis-
tinctive feature of the evaluation rule ({2) for synchronised communication—
namely that the effects of such synchronisations (i.e. ‘7-transitions’) are only
observable if there is some externally observable (input or output) action that
the process can offer.

Example 3 Let P = x.0|Z.0. Then rule (2) cannot be applied and P |} K
holds just for K = x.2.0 and K = Z.x.0. For Ply.0 however, in addition to
evaluations committing to x and T, the evaluation P|y.0 | y.0 can be deduced

using rule (|}2) together with rules (10) and (41).

Remark 4 Note that evaluation to committed form takes place modulo struc-
tural congruence—this is the force of rule (110). Not only does this permit a
simpler presentation of the rules, it appears to be necessary for the notion of
evaluation bisimilarity given below to have the expected structural properties.
For example without (110), in Example 3 one could only deduce (2.0]z7.0)]y.0 |
y.P' for P' = (2.0]2.0)|0, whereas x.0|(z.0|y.0) | y.(0](0]0)) would still hold.
Therefore, without structural congruence, the definition of evaluation bisimi-
larity given below would fail to make composition associative.

Since one is working modulo structural congruence, in trying to construct the
proof of an evaluation from the bottom up, one cannot deduce the last rule
used in the proof merely from the syntactic structure of the process expression
on the left hand side of {}. In this respect the situation is similar to that for
reduction in the 7-calculus as formulated in [16]. Note that rules (y1)—({4)
explain how the various NCCS syntactic constructs evaluate, but only in the
context of some parallel process, () (which of course may be 0). Given that
one is working modulo structural congruence anyway, the presence of such
contexts is not much of a further complication to the business of constructing
proofs of evaluation. Note that there is no need to use a context [—]|@ in rules
({2) and ({3) since the apparently more general rules

Py P P LP, (PIP)QVK
(P|R)|Q 4 K

P|Q | ¢.P'
((vz)P)|Q I L.(va) P!

are derivable. Here are some further derived properties of evaluation that we
will need. They are easily established by induction on the proofs of evaluation.

if v ¢ {0,0}Ufn(Q)



Lemma 5(i) If P || £.P’, then P|Q |} (.(P'|Q) for any Q.

(ii) If (vz)P |} L.P", then P | £.P" for some P" with (vz)P' = P".

(iii) Evaluation is name equivariant, in the sense that for any permutation o of
the set of channel names, if P |} K then Plo] || K[o|. (Plo] indicates the
substituted expression Plo(z)/x |z € dom(0)].)

(iw) If N | K, then N+ N' || K.

Definition 6 (Evaluation bisimilarity) A binary relation R between NCCS
processes is an evaluation simulation if P R Py implies for all Q) that

PQ U 0.P = 3P, (P|Q U L.P, & P, R P)).

If the reciprocal relation R™" %< {(P,, Py) | P, R Pi} is also an evaluation
stmulation, we say that R is an evaluation bisimulation. Finally, two NCCS
processes are evaluation bisimilar, written P, ~y P, if P, R P, holds for
some evaluation bisimulation R.

Here are some simple properties of ~, proved using Lemma 5.

Lemma 7 FEvaluation bisimilarity is the greatest evaluation bisimulation. It
15 an equivalence relation and contains structural congruence. Moreover, if
Py~ P, then Pi|Q ~y P»|Q, (vx)Py ~ (vx)Ps, and Pyo] ~y Pslo] (for any
process Q, name x, and permutation of names o).

Although the topic will be pursued in detail in the next section, we wish to give
the reader some feel now for how evaluation bisimilarity compares with known
equivalences on (N)CCS processes. To do so we need to introduce 7-guarded
processes.

Definition 8 (7-Prefixing) Although we did not include an operation T.P
for prefizing by a silent action in the NCCS syntax, as one might expect it is
present implicitly:

P ¥ (v2)(x.P|z.0)

where x is not free in P. More generally, one can extend summation to include
T-guarded summands: given a normal process N and a process P define

N+.P ¥ (v2)(N+2z.P)z.0)

where x is not free in N or P. (Clearly, one can also define sums with more
than one T-guarded summand.)

Note that 7.P is not a normal process (according to the grammar for NCCS
expressions given at the beginning of this section). Thus ‘N + 7.P’ is not a
well-formed NCCS expression; but as the notation N +, P is supposed to



indicate, this well-formed NCCS expression has the evaluation behaviour one
might expect of the sum of N and 7.P.

Example 9 FEvaluation bisimilarity satisfies the following T-laws which illus-
trate that it is a ‘weak’ equivalence:

P~y 1P (1)
N+, N' ~;, (N+N')+, N". (2)

The validity of these laws will be established via the characterisation of ~ in
terms of delay bisimulation equivalence given in the next section (Theorem 24).
Property (1) may seem surprisingly strong, given that ~ is a congruence
(Theorem 14) and that (1) fails for CCS observation congruence. But it does
not imply that we can just erase 7 in ‘T-prefixed’ sums: for notwithstanding
(1), in general N+, N' is not evaluation bisimilar to N+ N'. The next example
illustrates this (and is of course an inequivalence one might expect to hold of
a weak, branching-time equivalence).

Example 10

2.0 4+;y.0 2, 2.0 +y.0 (x #y). (3)

PROOF. We use the fact (Lemma 7) that ~ is an evaluation bisimilarity.
First note that from the definitions of = and |} one has

(2.0 4+, 1.0)|2.0 & (v2')((2.0 + 2'.4.0)|2'.0)|2.0 |} 2.4.0

whereas (2.0 4+ y.0)|2.0 |} z.P holds only with P = 2.0 + 3.0 Hence if the two
processes in (3) were evaluation bisimilar, then so would be 3.0 and z.0+y.0.
But that is impossible because .0 + y.0 || .0 whereas y.0 | z.Q) does not
hold for any @ (since y # ).

To finish this series of examples, we give an example to show that ~; does
not coincide with the best known weak equivalence, CCS observation equiv-
alence [14, 5.1]. (We will see in the next section that ~; does coincide with
another known equivalence—delay bisimulation equivalence—which is strictly
finer than observation equivalence.)

Example 11

z.(y.0+,0) %, 2.(y.0 +, 0) + 2.0 (x £ vy) (4)

PROOF. Note that z.(y.0+,0)+2.0 |} .0 whereas z.(y.04,0) | z.P holds
only with P = 3.0 +, 0. Hence if the two processes in (4) were evaluation



bisimilar, then so would be 0 and y.0 +, 0—which is plainly false since 0 Jf
whereas 4.0 +, 0 || y.(vz)z.0. O

The definition of evaluation bisimilarity for NCCS is analogous to the notion
of applicative bisimilarity for functional languages introduced by Abramsky [1]
and studied by Howe [10] and others—so much so, that we can adapt Howe’s
method [11] for proving congruence properties of applicative bisimilarity in
the presence of non-determinism to the case in point: see Theorem 14 be-
low. However, there is one important complication compared with applicative
bisimilarity—namely the quantification over contexts [—]|@ which occurs in
Definition 6. Here is an example to show that such contexts are necessary to
obtain congruence properties of bisimilarity in this setting. The example uses
Q) = y.0, with y a fresh name. We will see in the next section (Theorem 26)
that this is in fact the only instance of ) one needs to consider.

Example 12 Suppose that R satisfies

PLR P, & P, |} L.P = 3P, (P, |} L.P, & P! R P})

5
PLR Py & Py | £.P,= 3P/ (P, | {.P] & P| R P)) (5)

Then it s not necessarily the case that R C ~, and hence in particular ~
cannot be defined as the greatest relation satisfying (5).

PROOF. For example, define R by

PRP, & (P =220+22.0& P, =2.0[z.0)
V P1 = P2.

If P is either z.2.0 + Z.2.0 or £.0|z.0, then P || K holds just for K = x.2.0
and K = 7.2.0. Therefore R certainly satisfies (5). However z.7.0 + Z.z.0 is
not evaluation bisimilar to £.0|Z.0. For (2.0|z.0)|y.0 || y.0, whereas (z.7.0 +
7.2.0)|y.0 || y.P only holds for P = 2.2.0+Z.2.0 and clearly 2.2.0+Z.2.0 %
0. O

The greatest R satisfying (5) is indeed an equivalence relation, but not a
congruence since this example shows that it relates .Z.0 + Z.2.0 to 2.0|z.0,
but does not relate (z.2.0 + z.2.0)|y.0 to (2.0|z.0)|y.0. By contrast, we show
now that ~ is indeed a congruence for NCCS.

Definition 13 FExtend evaluation bisimilarity from closed to open process ex-
pressions by taking closed instantiations: we write

E1 23 E2

10



to mean that By[P/X] >~y B[P/ X] holds for all substitutions of processes P
for the free variables X of Ey, Es.

Theorem 14 ~j is an NCCS congruence relation (cf. Definition 1).

That ~j is an equivalence relation satisfying (crl) and (cr2) follows from
Lemma 7. To establish the other properties, the first proof strategy that
comes to mind is to take the smallest relation containing ~} and closed under
(cr3)—(crb), and show that its restriction to closed expressions is an evaluation
bisimulation. It is hard to see how to do this directly, because in an evalua-
tion P |l £.P', P' may be structurally quite different from P. Instead we use
an indirect approach adapted from [10,11] which makes use of the following
‘congruence candidate’ relation.

Definition 15 Let >~ be the binary relation between process expressions in-
ductively defined by rules (crl)—(cr5) together with

Bl b o and By~ B ot
———— if B\ = E} and E; ~} E (~;1)
E; 211 ’
X~ X (~12)
0~} 0 (~3)

To show that ~j is closed under rules (cr3)—(cr5) (and hence complete the
proof of Theorem 14), it suffices to prove that =~ coincides with ~j, because
~] is closed under those rules by definition. To do so, we need the following
properties of ~j.

Lemma 16 For all (open) NCCS process expressions E, Ey, Es, ... and all

11



(closed) NCCS processes Py, Ps, . .., the following properties hold:

E~ E (6)

By = E, = B~ B (7)

B~ B, = B~ B, (8)

By~ By & B, ~% B} = BB /X] ~ E}[Ey/X] (9)

B, ~| By = Eilo] ~ Es[o] (10)

P|P' =P & P, = P2 ~ 3P, P! (P’ SPeR SR
& PP ~y P)

(va)P{ = PL & Py >~ P, = 3P, (P] ~ P, & (va) Py ~ P) (12)

(P =P & P~ P, = 3P (P| ~ P’ & 0.P) ~, P) (13)

fir(X=F) = P & Py 211 Py = 3E; (B ~) E2 & fir(X=Ey) ~y Pp) (14)
N{—FN{’ =P &P~ _li P, = EUV;,N”(N’ ok N’ & N" . N"

&NQWLN; ~y P)

E, 2]‘1 FEy = Fy (Zﬁ)tc FE, (16)

where in (10) o is any permutation of the set of names, and in (16) (~})*
denotes the transitive closure of ~J.

PROOF. Property (6) is easily proved by induction on the structure of the
process expression F, and then properties (7) and (8) follow from this and
rule (~}1). Property (9) is proved by induction on the derivation of £} ~} Ej,
using the fact that the same substitution property holds for ~f (by deﬁnltlon)
and for = (an easily verified fact). Property (10) is easily proved by induction
on the derivation of F) ~j Fy. It is needed for the proofs of properties (11)-
(15), to ensure that the processes asserted to exist on the right-hand sides
of the implications can be chosen with their free names different from any
given finite set of names not occurring free in the processes on the left-hand
sides. Each of these properties is established by induction on the derivation
of P ~} P,. Finally, property (16) follows by induction on the derivation of
FE) >~ F; using the fact that >~ and = are symmetric relations, together with
properties (6)—(8). O

The key property of >~ is given by the following lemma. The presence of the
structural congruence relation = introduces an extra complication compared
with [10, Theorem 1] which is dealt with using properties (11)—(15).

Lemma 17

P L.P & Py =~} P,= 3P} (P, |} {.P} & P} =~} Py)

12



PROOF. We proceed by induction on the derivation of P; || ¢.P]. More
precisely, we show that

RE (P, K)| V¢, PPy (K =(.P| & P, ~} P, =
APy (P, | (.Py & P =~ Py))}

is closed under the rules in Definition 2.

Case ({0). Closure under this rule follows immediately from the fact that
~ is closed under rule (~}1), together with the fact that = is contained in
~, (Lemma 7).

Case ({1). We have to show
(N, + £.P)|P], L.(P{|P])) € R. (17)

But if (N7 + 0. P))| P/ =~} P», then by property (11), there are P;, and Py such
that

(N, +L.P}) =} P} (18)
P!~ P} (19)
P)|PY ~, P,. (20)

By property (15) applied to (18), there are N, and NJ such that

(P~ NI (22)
N+ NI ~ P, (23)

By property (13) applied to (22), there is Py’ such that

P~ Py (24)
0P~ N,

Since £.P)" |} £.P)", it follows from this last equivalence that NJ | £.QQ%' holds
for some @} with

Py QY. (25)
By parts (iv) and (i) of Lemma 5 applied to N | £.Q% we get

(N3 + N3 [P 4 €.(Q5' | ). (26)

13



By Lemma 7 on (23) we get (N5 + NJ)|Py ~y P;| Py and hence by (20)
(N + NP =, Py

Then by (26), P> | £.Q for some @ with Q5| Py ~; Q. Hence once again using
Lemma 7, this time on (25), we get

PPy ~y QY |Py ~y Q. (27)
Applying the congruence property (crl) that is part of the definition of ~j to

(24) and (19), we get P{|P{" ~} Py"|P,; and then (~}1) applied to this and
(27) yields P{|P]' ~} @Q, as required for (17).

Case ({2). Suppose (P],£.Q}), (P, 0.QY), and (Q}|QY,¢.Q,) are all in R.
We have to prove that (P{|P]', ¢'.Q1) € R, i.e. that if

P/|P! ~ P, (28)
then P || £.Q, for some @, satisfying Q1 >~} Q.

Property (11) applied to (28) implies that there are P; and Pj so that

P~ P, (29)
P/ 211 Py (30)
P|P! ~, P,. (31)

Since (P/, 0.Q}), (P!, 0.QY) € R, from (29) and (30) we get
Py 0.Q, (32)
Py eQy (33)

for some @, and @ satisfying Q) ~} Q5 and QY ~} Q3, and hence by (crl)
also satisfying Q' |QT =~} Q5|Q%. Then since (Q1|QY, ¢'.Q1) € R, there is some
() such that

Q5/Q3 4 £.Q (34)
Q1 = Q. (35)
Evaluation rule ({2) on (32)—(34) yields P;|Py |} ¢'.Q. Therefore from (31) we

get that P |} {".Q)y holds for some Q) satisfying @ >~ @3, and hence by (~j1)
on (35), also satisfying Q1 ~| @2, as required.

Case ({/3). The argument in this case is similar to the previous one and is
omitted.
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Case ({4). Suppose (E:[fix(X=F;)/X]|P{, (.Q1) € R. We have to show
that (fix(X=E1)|P;, (.Q1) € R, i.e. that if

fir(X=E)|P; ~n P (36)
then P, |} £.Q5 for some @y satisfying Q1 ~ (2.

Properties (11) and (14) plus Lemma 7 applied to (36) imply that there are
E5 and Pj so that

Ey 211 Ey (37)
P :1'1 P, (38)
fir (X=E»)|Py =~ P>. (39)

Now by property (cr3) of ~j, from (37) we get fir(X=FE) ~] fir(X=E,) and
hence by (9) that E\[fiv(X=E)/X] ~ Es[fir(X=E,)/X]. Property (crl) of
~, applied to this and (38) yields

E\[fir(X=E\)/X]|P| = Bblfir(X=E,)/X]|P;.

So since (Ei[fit(X=E,)/X]|P], (.Q1) € R, it follows that there is some )%,
with

Byl fiz(X=Ey)/ X]| Py I £.0, (40)
Q1 =~ Q5. (41)

By ({4) on (40), we get fir(X=E,)|Py | £.Q). Therefore by (39) there is some
Qo satisfying P, |} £.Q2 and @, ~y @2, and hence by (~j1) on (41), also
satisfying ()1 ~] @2, as required. 0O

Proof of Theorem 14 We noted above that it suffices to prove that ~j
coincides with ~}. Property (8) of Lemma 16 gives the inclusion one way. For
the reverse inclusion, it suffices to prove for closed process expressions that

P1211P2:>P121}P2 (42)

since the general case for open expressions follows from (9) in Lemma 16 and
the way =~ is defined from ~ (Definition 13). To prove (42), we exploit the
fact that ~ is the largest evaluation bisimulation. Since ~j is by definition
closed under the congruence rule (crl), it follows from Lemma 17 that ~j
restricted to closed processes is an evaluation simulation (cf. Definition 6).
Since the definition of ~ is not symmetric (because of rule (~1)), one can-
not immediately conclude that it is also an evaluation bisimulation. However,
by property (16) of Lemma 16 its transitive closure, (~})", is a symmetric
relation; and clearly Lemma 17 implies that
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Thus (=)' is an evaluation bisimulation. Hence it is contained in ~; and
hence so is ~], as required. O

Quite possibly there are other, more direct ways of proving this theorem for a
calculus as simple as NCCS (for example, via the characterisation of evaluation
bisimilarity given in by Theorem 24 in the next section). However, the above
adaptation of ‘Howe’s method’ [10,11] has the distinct advantage of robustness:
our experience shows that the same method can be used for more complicated
calculi, such as those considered in Sections 4.1 and 4.2.

We believe that evaluation to committed form and the associated notion of
evaluation bisimilarity have a certain naturalness for the type of interaction
embodied in CCS. The fact that >~ yields a congruent notion of process
equivalence for NCCS is at least some evidence in favour of this belief. But two
interrelated questions immediately arise. What equational laws are validated
by ~, and what is its relationship to other, known process equivalences? We
address both questions in the next section.

3 Evaluation versus Transition

The standard labelled transition system for CCS [14], adapted to the syntax
of NCCS, takes the form P = P’ where P and P’ are NCCS processes and
the action « is either a name, a co-name, or the distinguished internal action
7. Labelled transitions are inductively generated by the axiom and rules in
Figure 1. We write s for the reflexive-transitive closure of the relation 5,
and write P =5 P’ (respectively P RALLAN P') to mean that P o prLp
(respectively P % P" = P') holds for some P"”. Finally, recall from [14]
that two processes are strongly equivalent, P, ~ Py, if they are related by some
symmetric binary relation R satisfying

VP, Py, Pla(PLR P& Py % Pl = 3P, (P, % P & P, R P)).

We recall some facts about strong equivalence that we will need (see [14,
Chapter 4]).

Lemma 18(i) ~ is a congruence relation (for the NCCS syntaz) containing
structural congruence and satisfying a ‘back-and-forth’ property with respect
to actions of the form 7, i.e. if P, ~ Py and P; ALY P{, then P, RALY P,
for some Py with P| ~ P;.

(ii) Recursive processes are strongly equivalent to their unfoldings: fir(X=FE) ~

Elfis(X=E)/X].
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(PSP (—1)

P % P P, % P

(—2)
PP, S PP, PP PP,
nLpe pLp (=3
_>
P|P, = P{|P;
a !
r=r it od {z,2) (—4)
(vz)P =5 (vx) P!
Elfir(X=E)/X] % P )
fir(X=E) % P
N LP N, &P (=56)

N+N, 5P N+N, 5P

Fig. 1. Rules for NCCS labelled transitions

Lemma 19 For all NCCS processes P, P',(Q), committed processes K, and
labels £

(i) If P 5P then P | (.P'
(ii) If P2 P and P'|Q U K, then P|Q | K
(1ii) If P |} ¢.P', then P L pr for some P" with P" ~ P'.

PROOF. Properties (i) and (ii) are proved by induction on the derivation
of labelled transitions from the rules (—1)—(—6). Property (iii) is proved by
induction on the derivation of the evaluation P | £.P' from the rules (40)—({4)
using the properties of ~ mentioned in the preceding lemma. 0O

Remark 20 In fact the proof of part (iii) of the lemma is valid with ~ re-
placed by any relation satisfying properties (i) and (ii) of Lemma 18. Struc-
tural congruence itself possesses the first of these properties. However, it does
not possess the second since we have not chosen to regard the unfolding of
recursive process erpressions as ‘structural’—because of the use of substitu-
tion involved. (This is in contrast to the unfolding of replicated processes,
!P = |P|P, present in the m-calculus structural congruence [16].) Conse-
quently, in part (iii) of the lemma we have to make do with the next best thing
to =, namely strong equivalence. For example, one has fir(X=x.X)|y.0 | y.P
for P = x.fix(X=x.X), but fix(X=2.X)|y.0 T P’ holds only with P' =
fix(X=x.X)|0 which is strongly equivalent, but not structurally congruent to
P.
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Theorem 21 For all NCCS processes P, P', labels ¢, and names x & fn(P)

(i) AP" (P =% P" & P" ~ P') < 3P" (P |, {.P" & P" ~ P').
(i) AP" (P =5 P" & P" ~ P') < 3P" (P|2.0 |} .P" & P" ~ P').
(iii) AP" (P~ P" & P" ~ P') < 3P" (P|{.z.0 |} z.P" & P" ~ P').

PROOF. Combine Lemma 19 with the following simple properties of the
labelled transition system:

P 5P = (e fn(P)Ufn(P)
Plz.0 =% P' = 3P" (P T P" & P"|0 =, P')
P|lo.0 7% P' = 3P" (P 7 P" & P"|0 =, P')

where z ¢ fn(P)uU {¢}. O

Note that modulo strong equivalence, part (i) of the theorem characterises
evaluation to committed form in terms of transition, whereas part (ii) charac-
terises NCCS reduction—i.e. zero or more 7-transitions—in terms of evalua-
tion. The theorem also yields the following characterisation of the restriction
to NCCS of CCS observation equivalence, ~ (which coincides with observa-
tion congruence, because of the limited form of summation in NCCS). Recall
from [14] that two processes are observation equivalent if they are related by
some weak bisimulation—a relation R such that both R and R~ satisfy: for
all Pl,PQ lflePQ then

P, 5Py =3P, (P, = P,& P/ R P)) (wb1)
V(P 5P = 3P, (P, =55 P, & P! R P))) (wh2)

Corollary 22 Observation equivalence is the largest symmetric binary rela-
tion R on NCCS processes satisfying that if Py R Py then

Pi|z.0 | x.P = 3P, (P2|z.0 | z.Py & P/ R P;)
Pi0.2.0 I} 2.P! = 3P} (Pyl.x.0 | 2.P, & P! R P))

hold for any label £ and any name x ¢ fn(PPy) (or equivalently, for some
such x, by the equivariance properties of evaluation with respect to permuting
free names).

PROQOF. Since strong equivalence is contained in =, it follows easily from
Theorem 21 that = is such an R. Conversely, one can also use the theorem to
show that for any such R, the composition ~R~ is a weak bisimulation and
hence R C ~R~ C . 0O
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Part (i) of Theorem 21 immediately suggests a way to modify the notion
of observation equivalence in order to obtain a transition-based bisimilarity
coinciding with the notion of evaluation bisimilarity introduced in the previous
section—namely change clause (wb2) to

ve(P, L P =3P, (P, 5% P& P! R P))) (wh2)

Definition 23 (Delay bisimulation equivalence) A binary relation R be-
tween NCCS processes is a delay simulation if P, R P, implies that both (wb1)
and (wb2) hold. If R~ is also a delay simulation, we say R is a delay bisim-
ulation. Two processes are delay bisimilar, written Py ~q P, if P, R Py holds
for some delay bisimulation R.

This notion of process equivalence is studied by Weijland [29] who credits its
formulation to Milner [13]; see also [6]. It is also the specialisation to first
order processes of Sangiorgi’s notion of weak context bisimilarity for higher
order process calculi, studied in [27].

Theorem 24 For NCCS processes, evaluation bisimilarity coincides with de-
lay bisimilarity.

PROOF. We will need the following facts about delay bisimulation equiva-
lence which can easily be proved from the definition.

(a) ~q is the greatest delay bisimulation, is an equivalence relation, and con-
tains strong equivalence.

(b) If Py ~q P, then P|Q ~q P|Q. (In fact delay bisimilarity is an NCCS
congruence.)

These facts, together with part (i) of Theorem 21, imply that ~, is an evalua-
tion bisimulation. Thus P, ~q P, implies P, ~ P,. For the converse implica-
tion it suffices to show that ~ is a delay (bi)simulation. So suppose Py >~ P;.
There are two cases to consider.

Case P, = P|. We have to show P, LA P; for some P, with P ~y Pj.
Picking any = ¢ fn(P,P,), Pi|x.0 || z.P/' holds for some P;' ~ P/ by Theo-
rem 21(ii). Since P, ~ P, we also have Py|z.0 ~; P,|z.0 (by Lemma 7), so
Py|z.0 | z.Py for some Py with P{' ~ Pj. By 21(ii) again, P, s P} for some
P, ~ PJ. By (a), since P/ ~ P! (i = 1,2), we also have that P/ ~q P/; and

hence by the first part of the proof we have that P/ ~; P/. Since P{' ~ Py,
we do indeed have P| ~ P;, as required.
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Case P, i>P1’. We have to show Py =5 P} for some Pj with P| ~; P;. The
proof is similar to the previous case, but using part (i) of Theorem 21. O

The theorem provides a simple way of establishing the 7-laws for evalua-
tion bisimilarity mentioned in Example 9, since it is easy to see that they
hold up to delay bisimulation equivalence. Indeed the theorem provides one
route to establishing a complete axiomatisation of the equations between finite
(i.e. fiz-free), closed NCCS process expressions that are satisfied by evalua-
tion bisimilarity—e.g. by reusing known axiomatisations for delay bisimilar-
ity [29,6]. Since the primary concern of this paper is to introduce the notions
of evaluation to committed form and evaluation bisimilarity for a range of
calculi, we do not pursue the topic of axiomatisations any further here.

Remark 25 (Internal non-deterministic choice) Just as one can code T-
guarded summation in NCCS (Definition 8), internal non-deterministic choice,
@, can be defined up to evaluation bisimilarity. To be more precise, consider
extending the syntax of NCCS process expressions:

E:=---|EQE.
Ezxtend the evaluation relation of Definition 2 with the rules

PlQ I K
(Ao P)|QIK

(i=1,2) (o)

and extend the labelled transition relation with the usual axioms for internal

choice (cf. [7])
PoP 5P (i=1,2).
Then Theorem 24 holds for this extended system. Moreover
P @ P, ~y (vz)(z.P|2.0|z.P2) (v ¢ fn(PP)) (43)

because it is simple enough to see that these two processes are delay bisimilar.
Thus internal choice is already definable in NCCS up to evaluation bisimi-
larity. (The evaluation semantics of other forms of choice are considered in

Section 4.4.)

We can also use Theorem 24 to resolve the question raised in the previous
section about the extent to which quantification over contexts [—]|@ in the
definition of evaluation bisimulation can be avoided. As the following result
shows, we need only consider a single context [—]|x.0, with z fresh. This result
is in the same spirit as Sangiorgi’s characterisation of his weak context bisim-
ilarity in terms of ‘normal bisimulations’: see [27, Theorem 7.4]. However, the
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reduction in context quantification we are dealing with here is much less subtle
than that involved in going from context bisimilarity to normal bisimilarity.
We have more to say about a higher order version of evaluation bisimilarity
in Section 4.1.

Theorem 26 FEvaluation bisimilarity is the largest symmetric binary relation
R on NCCS processes satisfying that if Py R P», then for any name x ¢
fn(PPy) (or equivalently, for some such x) and any P, {

Pi|z.0 |l 0.P! = 3P} (Py|x.0 | L.P) & P} R P)). (44)

PROOF. It follows from the definition of o~ that it is a symmetric relation
satisfying (44). Conversely, given such an R, we have to show R C ~. We use
a form of ‘bisimulation up to context’ (and up to ~) technique reminiscent of
those considered in [26].

Let R be the relation inductively defined by the following axiom and rule:
PIQPZ ifPlNQlRQZNPZ (45)

— (46)
PlRPQ andxgéfn(PIPQ).

Note that R contains R and is symmetric, because R is. It suffices to show
that R is a delay simulation: for then it is also a delay bisimulation and so it,
and hence also R, is contained in the largest one, ~4, which by Theorem 24
is equal to ~. So one must prove that P, R P, implies that (wb1) and (wb2’)
hold of R. This can be done by induction on the derivation of P, R P, from
(45) and (46), using Theorem 21. O

4 Further Topics

In this section we outline briefly some further developments of the approach
to process calculi based upon evaluation to committed form.

4.1 FEvaluation bisimilarity for higher order calculi

Consider a higher order version of NCCS in which synchronised communica-
tion involves passing process expressions. Input-committed processes now take
the form z.F where F = (X)FE is an abstraction (and free occurrences of the
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process variable X in E are bound in F'); such a process is ready to receive a
process P on channel = and then continue with E[P/X]. Output-committed
processes take the form z.C' where C' = (v@)(P,) P, is a concretion (free oc-
currences of the names & in Py or P, are bound in C'); such a process is ready
to send P; on channel x and then continue with P, all within a scope in which
the names Z are restricted. See for example Sangiorgi [27] for further syntactic
details and a labelled transition system formalising the intended input/output

behaviour. Transitions now take the form P = P’ and P i)A, where in the
second case if £ is a name then A is an abstraction, and if ¢ is a co-name then
A is a concretion. First order prefixing can be regarded as a special case of
higher order prefixing if we define x.P to mean z.(X)P where X ¢ fv(P), and
define Z.P to mean Z.(0)P. (Sangiorgi also considers 7 prefixing, but as we
noted in Definition 8, this is definable in terms of label prefixing, composition
and restriction.)

In loc. cit. Sangiorgi considers the problem of defining a suitable bisimilarity
which, unlike previous attempts, identifies some pairs of processes (such as
7.(0)0 and (vx)y.(x.0)0) which one can argue should be behaviourly equiva-
lent in the presence of statically bound restrictions. He develops a congruent
notion of bisimilarity, called (weak) context bisimilarity, and shows that it has
the desired properties. Weak context bisimilarity is a generalisation to higher
order of the notion of delay bisimilarity. Indeed the form of the definition is
exactly as in Definition 23, except that in clause (wbh2’) P{ and Pj are now ab-
stractions or concretions (according to whether £ is a name or a co-name). So
one has to extend the relation R from processes to these syntactic categories
in order to assert in (wb2') that P{ and Pj are related by R. This is done by
defining

FRF, & VO(FLeC)R (Fye())

CORC, ¥ VF(CeF)R (CyoF)) )

where F o C ¥ (v#)(E[P,/X]|Ps) when F = (X)E, C = (v#)(P)P, and
TN fn(E) =0; C e F is defined symmetrically.

Interestingly, it turns out that Theorem 24 easily extends to a coincidence of
a higher order version of evaluation bisimilarity with Sangiorgi’s weak context
bisimilarity, as we now indicate. First, evaluation to committed form extends
very naturally to the higher order case. We replace ({2) by

PI‘U’K-AI PZ‘U’ZAZ Al.AQU«K
PP, | K

The other evaluation rules remain essentially as in Definition 2, but one also
has to suitably extend the notion of structural congruence to abstractions
and concretions. Secondly, evaluation bisimilarity also extends naturally to
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the higher order calculus: ~~ is the greatest symmetric relation R on higher
order processes such that if P, R P, then for all @, if P;|Q | ¢.A; then
P|Q |} . Ay, for some Ay with A} R Ay (where R is extended to abstractions
and concretions as in (47)).

Theorem 27 Higher order evaluation bisimilarity coincides with Sangiorgi’s
weak context bisimilarity [27, Definition 3.11].

The proof is very much as for Theorem 24, once one has established the higher
order analogue of Theorem 21. The latter uses Sangiorgi’s strong context bisim-
ilarity [27, Definition 3.1] where Theorem 21 uses strong equivalence, ~. The
proof of Theorem 26 also extends: one can replace the quantification over @)
with the use of a single process Q) = x.0 (x fresh) without affecting the rela-
tion of higher order evaluation bisimilarity. (It may be that the quantification
implicit in the use of (47) can also be reduced along the lines of [27, Section 7]
using Sangiorgi’s ‘Factorisation Theorem’ (loc. cit., Theorem 4.7), but we have
not checked this.)

4.2 FEvaluation to input-committed form

If parallel composition in process calculus plays a role analogous to appli-
cation in functional languages, then input-committed processes z(X).E are
somewhat like lambda abstractions AX.E ‘located” at . (The analogy can be
made more precise, as in [15].) Experience with applicative bisimilarity for
functional calculi [1,10] suggests considering an evaluation-based approach to
process calculi in which the only canonical forms are input-committed pro-
cesses. For variety, we illustrate how this looks for the 7-calculus [16] with
asynchronous output and no summation—the ‘essence’ of the language to
judge by recent results [8,21,4]. The syntax of such processes is

P:=z.(x)P|z.(x)|0|P|P | (vz)P |!P

where x ranges over names. One works modulo a structural congruence rela-
tion, =, generated by the relevant identities in Definition 1 together with an
identity for unfolding replicated processes: |P = P|!P. This identity means
that we will not need an explicit evaluation rule for replicated processes. Sim-
ilarly, by building restrictions into the other rules, we can do without an
explicit rule for restriction (in other words ({3) will become derivable). Al-
together we arrive at the following remarkably compact evaluation semantics
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for this variety of m-calculus.

Pl y.(z) P
Py y.(2) P
QU y.(z)Q (vWI)Qy/r] | K
(v2)((51-(y2)|Q) J K
D) ((y-(2)P)|Q) ¥ y.(z)(wD)(PIQ) ify & T

if P, = P, and Vz (P = P))

Then define input-committed evaluation bisimilarity, ~;., for this calculus to
be the largest symmetric binary relation R between processes such that if
P, R P,, then for all Q, y, and (x)P]

PQ Y y.(x)P{ = 3P, (P|Q I y.(2) Py & Vo (P R F)).

One can adapt the method used for the proof of Theorem 14 to show that ~;.
s a congruence for this m-calculus. We have not investigated the relationship
between ~;. and other notions of weak congruence that have been proposed in
the literature. This is partly because the work of Honda and Yoshida [9], Four-
net and Gonthier [4] and others, suggests that for this kind of asynchronous-
output calculus one should observe outputs rather than inputs. It is possible
to give a congruent notion of evaluation bisimilarity based on evaluation to
output-committed form (which would be Z.C', with C' a concretion of the form
(vZ)({y)|P) in this case), but we do not give the details here.

4.8  Barbed bistmulation

Milner and Sangiorgi [18] introduced the notion of barbed bisimulations for
process calculi, based upon a reduction-oriented approach to process seman-
tics. It has proved useful for defining equivalences in the m-calculus and related
systems (see [4], for example). The motivations for the evaluation-based ap-
proach we have introduced in this paper are quite similar to those expressed
in [18]. Technically, the evaluation-to-committed-form approach seems more
elegant: barbed bisimilarities are defined using a reduction relation and a
convergence predicate and these usually have to be defined from a labelled
transition system; whereas evaluation bisimilarity is defined using a single,
inductively defined evaluation relation. On the other hand, the evaluation-
to-committed-form approach is very much tied to defining equivalences that
ignore internal actions (i.e. weak rather than strong equivalences); and it im-
poses a harder discipline than the reduction-based approach, since it may be
easier to find reasonable notions of reduction and convergence for some ‘new’
process calculus which may arise.
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Whatever the pros and cons of each approach, observe that for NCCS at least,
the results of Section 3 mean that weak barbed bisimilarities can be defined
starting just from the evaluation relation. For we saw in Theorem 21(ii) that
reduction can be defined in terms of evaluation (modulo strong equivalence);
and if we follow [18, Section 5.1] and define

T*0T*

ry € apep L py,
then by Lemma 19 we have that
Pl < 3K (P | K)

(fortunately, from a notational point of view). Here is a characterisation of
observation equivalence for NCCS as a barbed congruence whose definition
is phrased in terms of evaluation. It seems unlikely that NCCS evaluation
bisimilarity (i.e. delay bisimilarity) can be given a ‘barbed’ characterisation.

Theorem 28 Observation equivalence, =, is the largest symmetric binary re-
lation R on NCCS processes satisfying that if P, R P, then for any NCCS
context C|—|, process P{, and name x ¢ fn(C[P,], C|Ps])

C[P]|z.0 |} z.P! = 3P} (C[Py)|z.0 |} z.P} & P R P})

CIPJL = CIRJL. (48)

PROOF. Let = denote the largest such relation. Note that ~ is an NCCS
congruence, because of the restricted form of summation in the calculus. Using
Theorem 21 it follows that ~ is a relation satisfying the property stated in
the theorem, and hence is contained in the largest one, i.e.

To show the reverse containment, we verify that =, is a weak simulation,
i.e. satisfies properties (wbl) and (wb2) mentioned in Section 3. In doing so,
we will make use of the fact that ~; is an NCCS congruence—this is clear
from its definition.

~,, has property (wb1l). Suppose P = P, and that P, — P|. We have to
find Pj such that P, RAN P} and P} =, P,.

Choosing any = ¢ fn(P,P,), by Lemma 19(ii) we have P;|z.0 | x.P]; hence
by property (48) of ~s,, Po|z.0 |} x.Py for some Py with P| ~;, Py. Then since
z ¢ fn(P), by Theorem 21(ii), there is some P} with P, =5 P} ~ PJ. Since
Py and PJ are strongly equivalent, they are certainly observation equivalent,
and hence by (49) we have P =, Py =, Py, as required for (wbl).
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~, has property (wb2). Suppose P, =, P, and that P, £>P1’ We have to
find P} such that P, s P} and P! =, P,

Let Z be all the names occurring free in P; or P, and choose names x,y, z
distinct from 7 and from each other. Since =, is a congruence, we have

Py|0.2.0|Z.y.0 ~, P|0.7.0|Z.4.0.
By Lemma 19(ii) we have (P;|(.2.0|Z.y.0)|2.0 | 2.(P}{]y.0); hence by property

(48) of ~, there is some Py with (P;|0.2.0|7.y.0)]2.0 |} 2.PY and P!|y.0 ~ Py.
It follows by Theorem 21(ii) that

P|l.x.0lz.y.0 55 Q (50)

holds for some () with @@ ~ PJ. Since @ is strongly equivalent to Pj it is
also observation equivalent to it and hence by (49) we have () ~, Pj. But
P} =y, P[|y.0; so

P{ly.0 =, Q (51)

and hence by the congruence property of &, we have (vZy)Q =~ (vZy)(P{|y.0).
Now fn((v@y)(Py]y.0)) = 0, so by property (48) of ~, we have

(viy) QY. (52)

Now since z,y ¢ fn(P,) 2 fn(¢), (50) can only hold because either

(a) P, =5 P} holds for some P, such that @ = P,|0]y.0; or
TT*

(b) P, —— P} holds for some Pj such that Q = Pj|x.0|Z.y.0; or
(c) Py % P} holds for some P} such that Q = Py|{.2.0|Z.y.0.

In fact cases (b) and (c¢) are impossible. For in either case, (vZy)Q can do 7*Z
which contradicts (52)(by parts (i) and (ii) of Lemma 19). So case (a) holds.
Since P{|y.0 ~, Q ~ Py|y.0, it follows that

|~ P{|(vy)y.0 = (vy)(P{ly.0) = (vy)(Ps]y.0) =~ Ps|(vy)y.0 =~ Pj.

Hence by (49) P =, Py, as required for (wb2). O
4.4 Unrestricted summation

Consider extending NCCS with an unrestricted binary summation operator:

E:=---|F+E.
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What rules for evaluation to committed form should + satisfy? We have al-
ready seen in Remark 25 that one obvious rule ({}®) leads to internal non-
deterministic choice. Another possibility is just

P K
P+P UK
for © = 1,2. Note however that we chose to build the ‘weakening’ property
of Lemma 5(i) into the rules ({}0)—({}4) rather than stating it as a separate

rule. Accordingly, we should stabilise the above rule for 4+ with respect to
weakening—which leads to the rule

P ep
(P, + P)|Q | £.(P|Q)

Note that this conservatively extends the existing rules for evaluating normal
summations: if P, and P, are normal processes, then the rule does not give
any new evaluations for the NCCS process P, + P,. Therefore when adding
rule (§5) we may as well restrict axiom ({}1) to

(€.P)|Q U £.(PlQ) (41')

(i=1,2). (U5)

The method for proving congruence given in the proof of Theorem 14 works
just as well for this extended language equipped with rules ({}0), ({}1’), and
(2)-(I5). So we obtain:

Theorem 29 FEvaluation bisimilarity (defined just as in Definition 6) is a
congruence for NCCS extended with sums satisfying (|1').

Next we consider the problem of finding labelled transition rules for 4+ which
permit the results of Section 3 (Theorem 24 in particular) to go through. Two
possibilities from the literature which come to mind are:
CCS summation (see [14]).
P5P
— L (i=1,2).
P+ P, %P

External non-deterministic choice (see [7, Chapter 5])

P 5P P, 5P,
P, +P, 5P+ P P, +P, 5P+ P
p5P
T (i=1,2).
P+P 5P
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(Recall that ¢ ranges over names and co-names, while « ranges over names, co-
names and 7.) For either of these choices of transition rules, Theorem 24 fails,
i.e. evaluation bisimilarity does not coincide with delay bisimulation equiva-
lence. This is easy to see if + is interpreted as CCS summation, because unlike
~, delay bisimulation equivalence fails to be a congruence for + for the same
reason that observational equivalence fails to be a CCS congruence. For exam-
ple, using the 7-prefixing operation of Definition 8, .0 + (7.3.0) is not delay
bisimilar to .0 + 3.0, but the two processes are evaluation bisimilar—using
the fact that 7.y.0 ~; 3.0 and the congruence property stated in the theorem
above. (Contrast this with Example 10.)

If + is interpreted as external non-deterministic choice, ~; and ~g still fail
to coincide. For example, consider
def

P, ¥ P @ ((21.0 +1.0)|2.0)

where x,y, z are distinct and we take the internal choice operator & to be
defined by (43). By calculating the possible labelled transitions of P; and
P; using the rules for external choice, it is not hard to check that these two
processes are delay bisimilar. However, they are not evaluation bisimilar: for
Py || 2.P) with P ~ 1.0 + y.0; whereas if P, || z.P| then P = (2,.0 ®
29.0) + y.0, which clearly is not evaluation bisimilar to Pj.

The following characterisation of evaluation bisimilarity for the calculus with
unrestricted summation was suggested by Catuscia Palamidessi [20].

Theorem 30 Consider NCCS extended with +. Let |} be inductively generated
by the rules (10), (I1'), and (112)-(5). Let = be inductively generated by the
rules (—1)—(—5) together with the following countable collection of rules (one
for eachn > 1):

P=Q1 5Q: ... Qui15Q, Q.5P
P+p 5P

(i=1,2). (—64,)

Then evaluation bisimilarity (Definition 6) coincides with delay bisimulation
equivalence (Definition 23).

PROOF. One first shows that Lemma 19 continues to hold for the extended
system. The proof of part (ii) of the lemma is exactly as before, because
(—6,) does not introduce 7-transitions; in the proof of part (iii), closure of

{(P,¢.P") | 3P". P =% P" ~ P'} under ({5) is straightforward using the rules
(—6,); and then part (i) can be proved, using part (ii) and ({}5) to get closure
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under each rule (—6,). Armed with this lemma, the proof of the theorem goes
through just as for Theorem 24. O

5 Conclusions

We feel the results in this paper vindicate evaluation to committed form as
a promising approach to the topic of ‘weak’ equivalence in process calculi,
both in its own right and in the way it relates and sheds light on existing
approaches. In conclusion, we mention two topics which may bear further in-
vestigation. First, evaluation seems at a slightly higher level of abstraction
than labelled transition; moreover it places the emphasis upon composition
and restriction as fundamental operations (indeed in some cases as purely
structural ones—cf. Section 4.2). So maybe this approach can suggest new
avenues in the rather under-developed subject of denotational semantics for
communicating processes up to weak equivalence. Secondly, since evaluation
relations are already a convenient way to specify the structural operational se-
mantics of functional languages, our approach may aid in developing theories
of equivalence for languages integrating functional and process-theoretic fea-
tures. To that end, a comparison of an evaluation-based approach to CML [24]
with the transition-based theory developed by Ferreira et al in [3] will appear
in the second author’s thesis.
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