Nominal Sets

Names and Symmetry in Computer Science

Errata

Andrew M. Pitts

Thursday, 27 March 2014

Page 18, line 15: 'The does give' \rightarrow 'This does give'.
Page 21, line -8: ‘Theorem 1.9' \rightarrow 'Proposition 1.9'.
Page 91: Because Exercise 9.4 is incorrect, the last sentence of Remark 5.26 should be deleted.
Page 166, lines -15, -16: ' $\left(x, A^{\prime}\right)^{\prime} \rightarrow{ }^{\prime}\left(x^{\prime}, A^{\prime}\right)$ ' (twice).
Page 175: Exercise 9.4 is incorrect as stated. For example, when $X=\mathbb{A}$ and $a \in \mathbb{A}$, then the element $a \backslash_{\emptyset} \in \operatorname{Frs} \mathbb{A}$ is by definition the \sim_{v} equivalence class of (a, \emptyset), which is

$$
\left\{(a, A) \mid A \in \mathrm{P}_{\mathrm{f}} \mathbb{A} \wedge a \notin A\right\}
$$

and this is not an orbit-finite subset of $\mathbb{A} \times \mathrm{P}_{\mathrm{f}} \mathbb{A}$ (because (a, A) and $\left(a, A^{\prime}\right)$ are in different orbits if B and B^{\prime} have different cardinalities).

However, one can change the representation of $\operatorname{Frs} X$ up to isomorphism as in (9.46) in Remark 9.17 to make its elements orbit-finite subsets, since from (5.28) we have $\langle A\rangle x=\operatorname{hull}_{\text {supp } x-A}\{(A, x)\}$ when $A \subseteq \operatorname{supp} x$.
Page 226, line -1: 'Ndom' \rightarrow 'Udcppo'.
Page 262, line -23: ‘Chain complete p.o. sets' \rightarrow 'Chain complete posets'.

