Nominal Sets

Names and Symmetry in Computer Science

Errata

Andrew M. Pitts

Thursday, 27 March 2014

Page 18, line 15: 'The does give' \rightarrow 'This does give'.

Page 21, line -8: 'Theorem $1.9' \rightarrow$ 'Proposition 1.9'.

Page 91: Because Exercise 9.4 is incorrect, the last sentence of Remark 5.26 should be deleted.

Page 166, lines -15, -16: $(x, A')' \rightarrow (x', A')'$ (twice).

Page 175: Exercise 9.4 is incorrect as stated. For example, when $X = \mathbb{A}$ and $a \in \mathbb{A}$, then the element $a \mid_{\emptyset} \in \operatorname{Frs} \mathbb{A}$ is by definition the \sim_{ν} equivalence class of (a, \emptyset) , which is

$$\{(a, A) \mid A \in P_f \mathbb{A} \land a \notin A\}$$

and this is not an orbit-finite subset of $\mathbb{A} \times P_f \mathbb{A}$ (because (a, A) and (a, A') are in different orbits if *B* and *B'* have different cardinalities).

However, one can change the representation of Frs X up to isomorphism as in (9.46) in Remark 9.17 to make its elements orbit-finite subsets, since from (5.28) we have $\langle A \rangle x = \text{hull}_{\text{supp } x-A}\{(A, x)\}$ when $A \subseteq \text{supp } x$.

Page 226, line -1: 'Ndom' \rightarrow 'Udcppo'.

Page 262, line -23: 'Chain complete p.o. sets' \rightarrow 'Chain complete posets'.