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Abstract

This paper studies the notion of “freshness” that often occurs in the meta-theory of computer science
languages involving various kinds of names. Nominal Equational Logic is an extension of ordinary equational
logic with assertions about the freshness of names. It is shown to be both sound and complete for the support
interpretation of freshness and equality provided by the Gabbay-Pitts nominal sets model of names, binding
and α-conversion.
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1 Introduction

Language constructs involving names are a major concern in computer science—

much more so than in related disciplines that also use formal languages, such as

mathematics and logic. For example, witness the issues surrounding substitution

of expressions for identifiers, the sharing of structures through aliasing, and local

scoping of definitions—all of which involve properties of names. In this paper we

focus on the property of “freshness” of names and present an extension of equational

logic that takes it into account. Figure 1 gives three examples of increasing subtlety

to illustrate what we mean by freshness.

The first example is drawn from the π-calculus [21]. The notion of freshness

here is “a /∈ fn(Q)”, meaning that the channel name a does not occur free in the

process expression Q. Since Q is just a particular kind of finite tree and its set of

free names fn(Q) is defined by recursion over the tree’s structure, this notion of

freshness is very straightforward.
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Scope extrusion in the π-calculus [21]:

(νa P )|Q = νa (P |Q) if a /∈ fn(Q).

Capture-avoiding simultaneous substitution [32]:

(λa. M)[σ] = λa. M [σ] if a /∈
⋃

{{b} ∪ fv(σ b) | σ b 6= b}.

Normalisation-by-evaluation [3]:

↓τ→τ ′ (f) = λa. ↓τ ′ (f(↑τ a)) if “a is fresh for the

function f ∈ JτK→Jτ ′K.” (??)

Fig. 1. Three Examples of Freshness in the Wild

The second example is a property of simultaneous substitution for λ-terms

(see [32], for example). The freshness condition “a /∈
⋃

{{b} ∪ fv(σ b) | σ b 6= b}”
(where fv(−) returns the finite set of free variables of a λ-term) ensures the binder

λa. (−) does not capture free variables in the substitution σ. Here σ is not a fi-

nite tree, but rather an infinite mathematical object—namely a function from the

countably infinite set of variables {a, b, . . .} to the set of λ-terms [2]. However, we

impose a finiteness condition on substitutions, namely that σ b 6= b only holds for

finitely many variables b. Consequently
⋃

{{b}∪ fv(σ b) | σ b 6= b} is just a finite set

of variables and the notion of freshness in this example is not much more complex

than in the first example.

The third example is a property of the reification (↓τ ) and reflection (↑τ ) func-

tions used to compute βη-long normal forms of simply typed λ-terms via a functional

semantics [3]. Here the semantics JτK of a simple type is an infinite set of objects,

defined by recursion on the structure of the type expression τ . For example the

semantics of a function type τ → τ ′ is a set JτK→Jτ ′K of functions from JτK to Jτ ′K.

Reification produces typed λ-terms from elements of the semantics; whereas reflec-

tion maps typed λ-terms back to semantic elements. The formula for ↓τ→τ ′ (f)

given in the figure only makes sense if the variable a is chosen to be “fresh” for the

mathematical function f . Since f may well involve all variables in its graph, it is

not at all clear what this should mean. Several mechanisms have been proposed

to explain precisely what is meant by this problematic freshness condition—see [7]

and [25, Section 6].

In fact all three examples given in the figure are instances of the mathemat-

ical notion of freshness provided by the nominal sets model of names. This was

introduced by Gabbay and Pitts [17] 3 and has subsequently been developed and

3 There it was called the “FM-sets” model because the presentation was phrased in terms of the classic



applied in a number of ways: see [30,24,13,14,1,34,6,5,8,29,10,22,33] for example.

The effectiveness of nominal sets rests upon two observations. First, properties

of names to do with freshness, binding and α-conversion can all be expressed in

terms of the primitive operation of swapping names; and secondly, this operation

of name-swapping makes sense (and has very convenient properties) not only for

finite syntactic objects, but also for infinite mathematical objects, like sets and

functions. In this setting the fundamental notion is support : One says that a fi-

nite set of names supports an object x if x is invariant under swapping any pair

of names not in the set. If there is such a finite set of names, then it turns out

that there is a smallest such, called the support of x. For such x, it makes good

sense to say that a is fresh for x if a is not in its support. It does make good sense

because this language-independent relation has useful properties and coincides with

ad hoc notions of freshness in particular cases, such as those in Figure 1. For a

recent account of nominal sets, see [25] (section 6 of which deals with the third,

normalisation-by-evaluation example in Figure 1).

Writing a # x to indicate that a name a is not in the support of a finitely

supported object x, note that all three of the examples in Figure 1 take the form of

equations conditioned by freshness assumptions:

a # Q ⇒ (νa P )|Q = νa (P |Q)

a # σ ⇒ (λa. M)[σ] = λa. M [σ]

a # f ⇒ ↓τ→τ ′ (f) = λa. ↓τ ′ (f(↑τ a)) .

It seems that many properties of names can be axiomatised using such conditional

equations: The work of Gabbay and Mathijssen gives several interesting examples

[16,15]. However, as well as equations, assertions about freshness also arise natu-

rally, sometimes with freshness conditions, such as

b # Q ⇒ b # νa Q

and sometimes unconditionally, such as

⇒ a # νa Q .

So in this paper we study the properties of “equations and freshnesses conditioned

by finitely many (possibly zero) freshness assumptions”:

a1 # x1 ∧ · · · ∧ an # xn ⇒ t = t′ (1)

a1 # x1 ∧ · · · ∧ an # xn ⇒ a # t . (2)

We use a simple extension of the usual language of algebraic terms t that adds names

and the kind of explicit name-permutations introduced in [34]. The language has

a natural interpretation in nominal sets. The main contribution of this paper is to

extend the usual (many-sorted) equational logic to a logic for deriving judgements

Fraenkel-Mostowski permutation model of set theory with atoms.



of the form (1) and (2). We call it nominal equational logic and we prove it is both

sound and complete for the intended interpretation of the judgements in nominal

sets, where freshness means “not in the support of”.

Contents of the paper

In Section 2 we briefly recall the facts that we need about nominal sets. Sec-

tions 3–5 describe the algebraic language we use and its interpretation in nominal

sets. Sections 6 and 7 introduce the notion of a theory in nominal equational logic

(NEL) and its algebras in nominal sets; we give a sound axiomatisation of satisfac-

tion of judgements in an algebra (Theorem 7.4). Section 8 develops some conse-

quences of our formulation of NEL to do with invariance under permuting names.

Section 9 describes a term-algebra construction using ground terms (that is, ones

with no variables); and this is used in Section 10 to prove that NEL is complete

for its intended interpretation in nominal sets (Theorem 10.10). This completeness

result is harder to establish than is the case for ordinary equational logic, because

the relationship between variables and indeterminates (new constants) is more sub-

tle for NEL. Variables in our setting stand for elements of nominal sets that may

depend, via the notion of support, on names; thus the dependency of a variable x

on names is implicit. Whereas a constant in NEL stands for a fixed element of a

nominal set and has an explicitly given support. To prove the completeness the-

orem we show that the validity of judgements involving variables can be reduced

to the validity of ones involving ground terms, via the substitution for variables of

constants with suitably fresh supports. Such a reduction was sketched by Gabbay

in connection with his “fresh logic” [13, Theorem 9.3]. For NEL we found that

the main technical result needed for the reduction (Proposition 10.4) depends quite

delicately upon the formulation of the language of terms and the NEL rules for

freshness; we prove it via a non-trivial operation on terms for replacing constants

by variables (see Figure 6). Finally, Section 11 discusses related work and draws

some conclusions.
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2 Atoms, Permutations and Nominal Sets

In the Introduction we discussed some aspects of computer science languages involv-

ing names. From now on, in keeping with the origins of nominal sets in models of

Zermelo-Fraenkel set theory with atoms, we will use the elements of a fixed set Atom

as our names and refer to them as atoms. We assume Atom is countably infinite and

that it is partitioned into countably infinitely many different sorts of atom: There



is a countably infinite set AtomSort and a function sort : Atom −→ AtomSort with

the property that for each sort of atom α ∈ AtomSort, the following set is countably

infinite.

Atomα , {a ∈ Atom | sort(a) = α} . (3)

The set Perm of (finite, sort-respecting) permutations of atoms consists of all

bijections π : Atom −→ Atom such that

dom(π) , {a ∈ Atom | π(a) 6= a} (4)

is finite and sort(π(a)) = sort(a) for all a ∈ Atom. We give Perm the structure

of a group by taking the group multiplication to be composition of bijections: If

π, π′ ∈ Perm, then their composition π′π, mapping a ∈ Atom to π′(π(a)), is again

in Perm. The group unit is given by the identity function on Atom, written ι; and

the inverse of π ∈ Perm is the bijection π−1 mapping a to a′ if π(a′) = a. We take

for granted the fact that Perm is generated by transpositions (a a′) (where a and

a′ are atoms of the same sort) mapping a to a′, a′ to a and leaving all other atoms

fixed.

As usual, an action of Perm on a set X is a function (π, x) 7→ π ·x from Perm×X

to X satisfying:

ι · x = x (5)

π′ · (π · x) = π′π · x . (6)

Given such an action and an element x ∈ X, we say that a finite subset a ⊆ Atom

supports x if for all atoms a, a′ of the same sort

a, a′ /∈ a ⇒ (a a′) · x = x . (7)

Then a nominal set is simply a set X equipped with an action of Perm such that

for each x ∈ X there exists some finite subset a ⊆ Atom supporting x.

Definition 2.1 (Freshness Relation) Given a nominal set X, if a ∈ Atom and

x ∈ X, we write a # x and say a is fresh for x if there is some finite subset

a ⊆ Atom supporting x with a /∈ a. More generally, if a is a finite set of atoms we

write

a # x (8)

to mean that a # x holds for each a ∈ a. In fact (8) is equivalent to saying that a is

disjoint from some single finite set of atoms supporting x. This is because support

sets are closed under intersection: see [25, Section 3.1]. For this reason we have the

following fundamental property of the freshness relation.

Lemma 2.2 Suppose x is an element of a nominal set X. If a and a′ are atoms

(of the same sort) satisfying a # x and a′ # x, then (a a′) · x = x. 2

We make nominal sets into a category, called Nom, by taking morphisms f :

X −→ Y to be equivariant functions, that is, functions f ∈ Y X satisfying

π · (f x) = f(π · x) (9)



for all π ∈ Perm and x ∈ X. Composition and identities in Nom are as in the cate-

gory of sets and functions. Properties of this category are developed in [11,17,4,25].

In the rest of this section we recall those that we need in this paper.

Definition 2.3 (Nominal Sets of Atoms) Each set Atomα of atoms of a particular

sort α is a nominal set once we give it the action:

π · a , π(a) . (10)

The freshness relation for this nominal set turns out to be inequality: a # a′ iff

a 6= a′.

Definition 2.4 (Nominal Set of Finite Sets of Atoms) The set Pfin(Atom) of finite

subsets a ⊆ Atom is a nominal set once we give it the action:

π · a , {π(a) | a ∈ a} . (11)

The freshness relation for this nominal set turns out to be: a # a iff a /∈ a.

Definition 2.5 (Nominal Set of Permutations) In this paper we will need to con-

sider two different actions of Perm on itself:

left multiplication: (π, π′) 7→ ππ′ (12)

conjugation: (π, π′) 7→ ππ′π−1 . (13)

Note that for any pair of distinct atoms a and a′ of the same sort it is the case that

(a a′) 6= ι. Therefore (a a′)π 6= π, for any π ∈ Perm. Consequently no permutation

π has a finite support set with respect to the left multiplication action; so Perm is

not a nominal set with respect to this action. However, it is a nominal set with

respect to the conjugation action, since it is not hard to see that the finite set

of atoms dom(π), defined in (4), supports π with respect to this action. Indeed

dom(π) is the smallest support set for π and so in this nominal set we have a # π

iff π(a) = a.

Lemma 2.6 (Finite Products of Nominal Sets) The terminal object in Nom is

given by a one-element set, 1 = {()} say, with the unique permutation action. In

this case a # () holds for all a. The categorical product of nominal sets X and Y is

given by their Cartesian product X×Y = {(x, y) | x ∈ X∧y ∈ Y } with permutation

action:

π · (x, y) , (π · x, π · y) . (14)

In this case one can calculate that a # (x, y) iff a # x and a # y.

Proof. See for example [25, Section 3.2]. 2

Lemma 2.7 (Exponentials of Nominal Sets) The category Nom is Cartesian

closed. Given nominal sets X and Y , the exponential X →fs Y has underlying

set given by the set of functions f from X to Y that are finitely supported with



respect to the permutation action given by

(π · f)(x) , π · (f(π−1 · x)) (π ∈ Perm, f ∈ Y X , x ∈ X). (15)

The evaluation morphism ev : (X →fs Y )×X −→ Y is given by function application

ev(f, x) = f(x) (16)

which is indeed equivariant

π · (f(x)) = (π · f)(π · x) (17)

because of (15). Given a morphism f : Z × X −→ Y , the unique morphism f :

Z −→ (X →fs Y ) satisfying ev ◦ (f × id) = f is given by Currying:

f(z)(x) = f(z, x) (z ∈ Z, x ∈ X).

Proof. See for example [25, Section 3.2]. 2

Remark 2.8 (Global Elements of Nominal Sets) It is worth remarking that al-

though Nom is very rich in structure, 4 unlike the category of sets it is not well-

pointed. In other words, a pair of morphisms f, g : X −→ Y may well be unequal

even though they have equal compositions with all global elements of X, that is,

with all morphisms 1 −→ X. This is because morphisms 1 −→ X in Nom cor-

respond not to arbitrary elements x ∈ X, but to ones that are supported by the

empty set of atoms. To see this, first note that equivariant functions f : 1 −→ X

correspond to elements x = f() ∈ X satisfying π · x = x for all π ∈ Perm. Since

Perm is generated as a group by the transpositions, this is equivalent to requiring

(a a′) · x = x , for all atoms a, a′ (of equal sort); and by definition of support sets,

this is equivalent to saying that ∅ supports x.

In particular, the elements of the exponential X →fs Y with empty support

correspond to global elements; and as for any Cartesian closed category, these in

turn correspond to morphisms X −→ Y in Nom. More concretely, this amounts to

the easily verified fact that a function f ∈ Y X is equivariant (9) if and only if it has

empty support with respect to the permutation action given by (15).

Lemma 2.9 (Finite Coproducts of Nominal Sets) The initial object in Nom is

given by the empty set, ∅, with the unique permutation action. The coproduct of

nominal sets X and Y is given by their disjoint union X + Y = {(0, x) | x ∈
X} ∪ {(1, y) | y ∈ Y } with permutation action:

π · (0, x) , (0, π · x) π · (1, y) , (1, π · y) . (18)

In this case one can calculate that a # (0, x) iff a # x in X and that a # (1, y) iff

a # y in Y . 2

4 Nom is an atomic topos, being equivalent to a topos of continuous G-sets [19, III.9] for a suitable choice
of topology on G = Perm.



3 Signatures and Structures

We are going to consider a simple generalisation of the usual notion of many-sorted

algebraic signature [20, Sec. 3.1] in which the operation symbols are drawn from a

nominal set rather than a set, and hence may have non-empty support. A NEL-

signature Σ is specified by

• a set SortΣ, whose elements are called the sorts of Σ;

• a nominal set OpΣ, whose elements are called the operation symbols of Σ; and

• an equivariant function that assigns to each op ∈ OpΣ a type consisting of a

finite (possibly empty) list ~s of sorts of Σ and a sort s of Σ. As usual, the list
~s = [s1, . . . , sn] indicates the number and sort of arguments that op accepts and s

indicates the sort of result it returns. We write

op :~s → s (19)

to indicate this typing information and say that op has arity n if ~s is a list of

length n. Equivariance of the typing function means that for all π ∈ Perm, if (19)

holds, then so does π · op : ~s → s. Thus for all possible types ~s → s, we can split

OpΣ into smaller nominal sets

OpΣ(~s, s) , {op ∈ OpΣ | op :~s → s} (20)

of operation symbols with that type.

Example 3.1 (λ-Calculus) Here is a NEL-signature for the untyped λ-calculus [2].

Fixing a sort of atoms ν ∈ AtomSort to represent names of variables, the theory’s

signature has a single sort tm (representing λ-terms) and nominal set of operation

symbols

{Va | a ∈ Atomν} ∪ {La | a ∈ Atomν} ∪ {A}

with Perm-action

π · Va , Vπ(a)

π · La , Lπ(a)

π · A , A .

The type of these operation symbols is defined to be

Va : [] → tm, La : [tm] → tm, and A : [tm, tm] → tm .

In other words, the nominal set OpΣ is isomorphic to the coproduct Atomν+Atomν+

1, where Atomν is the nominal set of atoms of sort ν (Definition 2.3) and 1 is the

terminal nominal set (Lemma 2.6).

Remark 3.2 (Nominal Signatures) The reader familiar with the notion of nominal

signature [34] should compare the above example with a nominal signature for λ-

calculus, for example that given in [25, Example 2.1]. Compared with nominal



signatures, NEL-signatures avoid the use of both sorts of atoms and atom-binding

sorts in arities, at the expense of having more operation symbols (typically, whole

families of operation symbols parameterised by atoms) and specification of binding

properties at the level of axioms rather than syntax. This is discussed more fully

at the end of the paper in Section 11.

Given a NEL-signature Σ, a Σ-structure M in the category Nom is specified by

• a nominal set MJsK for each sort s of Σ; and

• for each type ~s → s of Σ, an equivariant function

MJ−K : OpΣ(~s, s) −→ (MJ~sK →fs MJsK)

op 7→ MJopK

(21)

where if ~s = [s1, . . . , sn], then MJ~sK , MJs1K× · · · ×MJsnK is a finite product of

nominal sets.

Note that because →fs is the exponential in the category Nom (see Lemma 2.7),

specifying an equivariant function as in (21) is equivalent to giving an equivariant

function OpΣ(~s, s) × MJ~sK −→ MJsK.

4 Terms and Values

The terms over a conventional algebraic signature are built up from variables by ap-

plying operation symbols. Given a structure in the category of sets for the signature

and a valuation of the variables as elements of the structure, each term denotes an

element of the structure. We wish to extend this to NEL-signatures and structures

for them in the category Nom of nominal sets. Doing so involves an extension of the

usual notion of algebraic term to take account of the atom-permutation action that

is part of the notion of nominal set. Since operations in a NEL-signature denote

finitely supported functions (21), the action of a permutation on a compound term

can distribute through the term to act on the operator and on its arguments, as

in (17). Thus the only trace of the permutation action on terms that it is really

necessary to incorporate into their structure is in the case that a permutation acts

on a variable. So as in [34], we use suspensions π x consisting of a permutation π

waiting to be applied once more is known about the unknown element of a nominal

set represented by the variable x. 5 Fixing a countably infinite set Var of variables,

the grammar of terms over a NEL-signature Σ is given in Figure 2.

Notation 4.1 Note that all occurrences of variables x in terms are preceded by a

suspended permutation π. However, when π is the identity permutation ι, we shall

very often abbreviate the term ι x just to x.

Definition 4.2 (Nominal Sets of Well-Sorted Terms) A sorting environment over

a NEL-signature Σ is a partial function Γ from a finite subset dom(Γ) ⊆ Var of

5 The term “moderated variable” is also used for what we call suspensions: see [8,16].



Variables x ∈ Var

Permutations π ∈ Perm

Operation symbols op ∈ OpΣ

Terms t ::= π x | op t · · · t

Fig. 2. Terms over a NEL-signature, Σ

variables to the set SortΣ of sorts of the signature. The sets Σs(Γ) of terms of sort

s ∈ SortΣ in a sorting environment Γ are inductively defined by:

• if π ∈ Perm, x ∈ dom(Γ) and Γ(x) = s, then π x ∈ Σs(Γ);

• if op ∈ OpΣ has type [s1, . . . , sn] → s and ti ∈ Σsi
(Γ) for i = 1..n, then

op t1 · · · tn ∈ Σs(Γ). (In case n = 0, op : [] → s is usually called a constant

of sort s, and we get op ∈ Σs(Γ).)

We make each Σs(Γ) into a nominal set as follows. The action (π, t) 7→ π · t of atom-

permutations on well-sorted terms is inherited from the given action on operators

and the conjugation action on permutations (13):

π · (π′ x) , ππ′π−1 x

π · (op t1 · · · tn) , (π · op) (π · t1) · · · (π · tn) .
(22)

As noted in Definition 2.5, permutations are finitely supported with respect to the

conjugation action; and operators are finitely supported because they are elements

of the given nominal set OpΣ. It follows that with the above action, Σs(Γ) is a

nominal set and that its freshness relation a # t is given by:

a # π x ⇔ a /∈ dom(π)

a # (op t1 · · · tn) ⇔ a # op ∧ a # t1 ∧ · · · ∧ a # tn .
(23)

Example 4.3 (λ-Calculus) For the NEL-signature in Example 3.1 it is not hard to

see that when Γ = ∅ is the empty sorting environment, the nominal set Σtm(∅) is iso-

morphic to the usual set of abstract syntax trees for λ-terms (with variables ranging

over Atomν) with Perm-action that applies a permutation to the atoms occurring in

the leaves of a syntax tree. For example, the λ-term λa. λb. a b corresponds to the

element La(Lb(AVa Vb)) ∈ Σtm(∅). However, for non-empty sorting environments

we get generalised λ-terms, such as La(Lb(A ((a b)x)Vb)) ∈ Σtm([x : tm]), with

meta-level variables x standing for unknown λ-terms and suspended permutations

(a b) of object-level variables a and b (cf. [34]).

Next we describe the intended interpretation of terms as elements of nominal

sets.



(op t1 · · · tn){σ} , op t1{σ} · · · tn{σ}

(π x){σ} , π ∗ σ(x)

where (π, t) 7→ π ∗ t is defined by

π ∗ (π′ x) , ππ′ x

π ∗ (op t1 · · · tn) , (π · op) (π ∗ t1) · · · (π ∗ tn) .

Fig. 3. Term substitution

Definition 4.4 (Valuations) Given a NEL-signature Σ, let M be a Σ-structure in

Nom as in Section 3 and let Γ be a sorting environment over Σ. The finite product

in Nom of the nominal sets MJΓ(x)K as x ranges over dom(Γ) will be written MJΓK.

We call the elements of this nominal set Γ-valuations in M . They are functions ρ

defined on the finite set of variables dom(Γ) and mapping each x ∈ dom(Γ) to an

element ρ(x) of the nominal set MJΓ(x)K. Since MJΓK is given by a finite product

of nominal sets, the action of a permutation π ∈ Perm on ρ ∈ MJΓK is given by:

(π · ρ)(x) = π · ρ(x) (x ∈ dom(Γ)) (24)

and (hence) a # ρ holds iff ∀x ∈ dom(ρ). a # ρ(x).

The value MJtKρ of a well-sorted term t ∈ Σs(Γ) with respect to a valuation

ρ ∈ MJΓK is an element of the nominal set MJsK. Values are defined by recursion

on the structure of terms:

MJπ xKρ , π · ρ(x)

MJop t1 · · · tnKρ , MJopK(MJt1Kρ, . . . , MJtnKρ) .
(25)

Combining (22), (24) and (25) with the fact (21) that MJ−K is an equivariant

function, we get:

π · (MJtKρ) = MJπ · tK(π · ρ) . (26)

So (t, ρ) 7→ MJtKρ is an equivariant function Σs(Γ) × MJΓK −→ MJsK.

5 Substitution

Given a NEL-signature Σ and sorting environments Γ = [x1 : s1, . . . , xn : sn] and Γ′

over Σ, the set Σ(Γ, Γ′) of substitutions from Γ to Γ′ consists of functions σ mapping

each variable xi in dom(Γ) to a term σ(xi) ∈ Σsi
(Γ′). Given a term t ∈ Σs(Γ) and a

substitution σ ∈ Σ(Γ, Γ′), we get a term t{σ} ∈ Σs(Γ
′), defined as in Figure 3. The

following standard properties of a notion of substitution are easily verified for the

definition in the figure (by induction on the structure of terms):

t{id} = t (27)



where id ∈ Σ(Γ, Γ) is the identity substitution, x 7→ ι x; and

(t{σ}){σ′} = t{σ; σ′} (28)

where σ; σ′ ∈ Σ(Γ, Γ′′) is the composition of σ ∈ Σ(Γ, Γ′) and σ′ ∈ Σ(Γ′, Γ′′), given

by

(σ; σ′)(x) , σ(x){σ′} . (29)

The proof of (28) involves first proving:

(π ∗ t){σ} = π ∗ (t{σ}) (30)

by induction on the structure of t.

In the case t = π x is a suspension, t{σ} is the term π ∗ σ(x) obtained by

distributing π through the structure of the term σ(x) as in the second part of the

Figure 3 (cf. [34, Fig. 1]). In forming π ∗ t from π and t, when π meets a sub-term of

t that is another suspension, π′ x′ say, the left multiplication action (12) is used and

ππ′ x′ is formed. This, rather than the conjugation action (13), is needed here in

order to ensure that the function (t, ρ) 7→ MJtKρ is compositional, in the following

sense.

Lemma 5.1 Given a NEL-signature Σ, sorting environments Γ, Γ′ and a Σ-

structure M , then for all t ∈ Σs(Γ), σ ∈ Σ(Γ, Γ′) and ρ ∈ MJΓ′K

MJt{σ}Kρ = MJtK(MJσKρ) (31)

where by definition MJσKρ ∈ MJΓK is the valuation mapping each x ∈ dom(Γ) to

MJσ(x)Kρ.

Proof. Using the definition of π ∗ (−) from the second part of Figure 3, along with

(24), (25) and the fact that op 7→ MJopK is equivariant, it follows by induction on

the structure of t that

MJπ ∗ tKρ = π · (MJtKρ) (32)

and from this we get (31), again by induction on the structure of t. 2

Property (32) shows that the (π, t) 7→ π ∗ t action of permutations on terms

denotes in nominal equational logic the built-in Perm-action of the nominal sets

that interpret the sorts. Gabbay and Mathijssen [16] call this the “object-level”

action of π on t. By contrast, the “meta-level” action (π, t) 7→ π · t, defined in

(22), is the one appropriate to terms as functions of their variables via substitution.

Recalling from (15) the action of atom-permutations on functions, we have the

following result expressing the (π, t) 7→ π · t action in terms of the (π, t) 7→ π ∗ t

action (cf. Gabbay and Mathijssen [16, Lemma 2.3]).



Lemma 5.2 Given a NEL-signature Σ, a substitution σ ∈ Σ(Γ, Γ′) and a term

t ∈ Σs(Γ), for any π ∈ Perm

(π · t){σ} = (π ∗ t){π−1 ∗ σ} .

where by definition, π−1 ∗σ ∈ Σ(Γ, Γ′) is the substitution mapping each x ∈ dom(Γ)

to π−1 ∗ σ(x).

Proof. This can be proved by induction on the structure of t. In the base case that

t = π′ x is a suspension, we have (π · t){σ} = (π · (π′ x)){σ} , (ππ′π−1 x){σ} ,

ππ′π−1 ∗ σ(x) and also

(π ∗ t){π−1 ∗ σ} = (π ∗ (π′x)){π−1 ∗ σ} , (ππ′ x){π−1 ∗ σ}

, ππ′ ∗ (π−1 ∗ σ)(x)

, ππ′ ∗ (π−1 ∗ σ(x))

= ππ′π−1 ∗ σ(x)

where in the last step we use the easily verified fact that ∗ is a Perm-action on

terms. 2

As a corollary of this we have that (t, σ) 7→ t{σ} is equivariant:

Corollary 5.3 Given a NEL-signature Σ, a substitution σ ∈ Σ(Γ, Γ′) and a term

t ∈ Σs(Γ), for any π ∈ Perm

π · (t{σ}) = (π · t){π · σ}

where by definition, π · σ ∈ Σ(Γ, Γ′) is the substitution mapping each x ∈ dom(Γ)

to π · σ(x).

Proof. By induction on the structure of t, using the special case of Lemma 5.2

when σ = id in the base case that t is a suspension, along with (27) and Figure 3.2

Note that under the action (π, σ) 7→ π · σ, each set of substitutions Σ(Γ, Γ′) is

a nominal set: σ is supported by any finite set of atoms that supports all of the

finitely many terms σ(x) as x ranges over dom(Γ).

6 Theories and Algebras

Ordinary equational logic formalises reasoning about equations between algebraic

terms. As explained in the Introduction, we wish to formalise reasoning both about

equality and about the freshness relation of Definition 2.1. In the formal system

we will use the symbols “≈” and “≈�” for the equality and freshness relations, and

continue to use “=” and “#” for their interpretation in nominal sets as the actual

equality and “not-in-the-support-of” relations.

As also discussed in the Introduction, it is natural to allow assertions about

equality and freshness to be conditioned by assumptions about which atoms are



fresh for particular elements. Rather than use separate judgements for equality and

freshness, it is convenient to roll both into a single judgement form. So we define a

NEL-theory T to consist of a NEL-signature Σ together with a collection of axioms

of the form

∇ ` a ≈� t ≈ t′ : s (33)

where

• ∇ is a freshness environment, which by definition is partial function defined on

a finite subset dom(∇) ⊆ Var of variables and mapping each xi ∈ dom(∇) to a

pair ∇(xi) = (si, ai) ∈ SortΣ × Pfin(Atom) of a sort and a finite set of atoms;

• a ∈ Pfin(Atom); and

• t, t′ ∈ Σs(∇:) are terms of the same sort s ∈ SortΣ in the sorting environment ∇:

obtained from ∇ by composing with first projection.

If dom(∇) consists of the distinct variables x1, . . . , xn and ∇(xi) = (si, ai) for i =

1..n, then we write ∇ as

∇ = [a1 ≈� x1 : s1, . . . , an ≈� xn : sn] (34)

in which case the associated sorting environment is

∇: = [x1 : s1, . . . , xn : sn] . (35)

We let Perm act on freshness environments (34) as follows, using the action of

permutations on finite sets of atoms from Definition 2.4:

π · ∇ , [π · a1 ≈� x1 : s1, . . . , π · an ≈� xn : sn] . (36)

This action makes the collection of all freshness environments into a nominal set for

which the freshness relation is:

a # ∇ ⇔ a /∈ a1 ∪ · · · ∪ an . (37)

Notation 6.1 Although the single form of judgement (33) combining equality and

freshness is useful for stating the general rules of nominal equational logic, in par-

ticular cases it is clearer to use the following abbreviations.

• t ≈ t′ : s means ∅ ≈� t ≈ t′ : s; similarly, x : s in a freshness environment means

∅ ≈� x : s.

• a ≈� t : s means a ≈� t ≈ t : s.

• a ≈� t ≈ t′ : s means {a} ≈� t ≈ t′ : s; similarly, a ≈� x : s in a freshness environment

means {a} ≈� x : s.

Example 6.2 (λ-Terms Modulo αβη-Equivalence) Figure 4 gives a NEL-theory

over the signature from Example 3.1 for αβη-equivalence of untyped λ-terms [2].

The theory has seven axioms, making use of variables x, x′, x1, x2 ∈ Var and atoms



x : tm ` a ≈� La x : tm (α)

a ≈� x : tm, x′ : tm ` A (La x) x′ ≈ x : tm (β-1)

x′ : tm ` A (La Va) x′ ≈ x′ : tm (β-2)

x : tm, a′ ≈� x′ : tm ` A (La (La′ x)) x′ ≈ La′ (A (La x) x′) : tm (β-3)

x1 : tm, x2 : tm, x′ : tm ` A (La (Ax1 x2)) x′ ≈

A (A (La x1) x′) (A (La x2) x′) : tm (β-4)

a′ ≈� x : t ` A (La x)Va′ ≈ (a a′) x : tm (β-5)

a ≈� x : tm ` x ≈ La (AxVa) : tm (η)

Fig. 4. A NEL-theory for αβη-equivalence

a, a′ ∈ Atomν .
6 Although (α) is an axiom about freshness, we will see below (Ex-

ample 7.5) that it gives the effect of α-equivalence modulo the rules of nominal

equational logic. For β-equivalence we adapt the Gabbay-Mathijssen nominal al-

gebra for capture-avoiding substitution [16, Fig. 4]. Axioms (β-1)–(β-4) unwind

the capture-avoiding substitution in a conventional β-conversion, according to the

structure of t in a β-redex A (La t) t′. The axiom (ren 7→) in [16, Fig. 4] connecting

capture-avoiding substitution with name-permutation becomes (β-5). Finally, for

η-equivalence we use the axiom (η). The relationship between this NEL-theory and

the classical notion of αβη-equivalence of syntax trees for λ-terms (and the associ-

ated freshness relation “not a free variable of”) will be explored in Example 9.5.

Turning to the interpretation of NEL-theories in Nom, first note that the in-

tended meaning of the freshness environment (34) is to assert not only that each

variable xi has sort si, but also that it stands for an element of the corresponding

nominal set whose support is disjoint from ai. Accordingly, we take the meaning

of ∇ in a Σ-structure M to be the subset MJ∇K ⊆ MJ∇:K of the nominal set of

valuations (Definition 4.4) given by

MJ∇K , {ρ ∈ MJ∇:K | a1 # ρ(x1) ∧ · · · ∧ an # ρ(xn)} (38)

where # is the freshness relation (Definition 2.1) for each nominal set MJsiK and

∇: is the sorting environment associated with ∇ as in (35).

Definition 6.3 (Satisfaction) Let Σ be a NEL-signature. A Σ-structure M satisfies

a judgement ∇ ` a ≈� t ≈ t′ : s if for all ρ ∈ MJ∇K it is the case both that MJtKρ and

MJt′Kρ are equal elements of the nominal set MJsK and that the freshness relation

a # MJtKρ holds in MJsK.

Given a NEL-theory T, a T-algebra in Nom is a structure for the signature of

T that satisfies all its axioms. Given a judgement ∇ ` a ≈� t ≈ t′ : s, the semantic

6 We make use of the abbreviations from Notation 4.1 and 6.1 to state the axioms; for example, (α) written
out in full is: ∅ ≈� x : tm ` {a} ≈� La (ι x) ≈ La (ι x) : tm.



(refl)
∇ ` t ≈ t : s

t ∈ Σs(∇:) (symm)
∇ ` a ≈� t ≈ t′ : s

∇ ` a ≈� t′ ≈ t : s

(trans)
∇ ` a1 ≈� t ≈ t′ : s ∇ ` a2 ≈� t′ ≈ t′′ : s

∇ ` (a1 ∪ a2) ≈� t ≈ t′′ : s

(subst)
∇′ ` σ ≈ σ′ : ∇ ∇ ` a ≈� t ≈ t′ : s

∇′ ` a ≈� t{σ} ≈ t′{σ′} : s
σ, σ′ ∈ Σ(∇:, (∇′):)

(weak)
∇ ` a ≈� t ≈ t′ : s

∇′ ` a ≈� t ≈ t′ : s
∇ ≤ ∇′ (atm-intro)

∇ ` a ≈� t ≈ t′ : s

∇≈�a ` a ∪ {a} ≈� t ≈ t′ : s
a # (a, t, t′)

(atm-elim)
∇≈�a ` a ≈� t ≈ t′ : s

∇ ` a ≈� t ≈ t′ : s
a # (∇, a, t, t′) (≈�-equivar)

a ≈� x : s ` π · a ≈� π x : s

(susp)
{a | π(a) 6= π′(a)} ≈� x : s ` π x ≈ π′ x : s

Fig. 5. The Rules of Nominal Equational Logic

consequence relation

∇ �T a ≈� t ≈ t′ : s (39)

is defined to hold if all T-algebras in Nom satisfy the judgement.

7 Nominal Equational Logic

Figure 5 gives a collection of rule schemes for inductively generating judgements

of the form ∇ ` a ≈� t ≈ t′ : s. The rules preserve the well-formedness condition

we placed on judgements at the beginning of Section 6, namely that the equated

terms both have the given sort in the sorting environment associated with the given

freshness environment.

Notation 7.1 Figure 5 makes use of the following notation.

• Rules (refl), (≈�-equivar) and (susp) make use of the abbreviations for judgements

introduced in Notation 6.1.

• In rule (refl), ∇: denotes the sorting environment associated with a freshness

environment ∇ as in (35).

• In rule (subst), σ, σ′ ∈ Σ(∇:, (∇′):) are substitutions (Section 5) and

∇′ ` σ ≈ σ′ : ∇ (40)

stands for the finite number of hypotheses ∇′ ` ai ≈� σ(xi) ≈ σ′(xi) : si for



i = 1..n, assuming ∇ = [a1 ≈� x1 : s1, . . . , an ≈� xn : sn]. The operation of

substitution, t{σ}, used in the rule was defined in Figure 3.

• The relation

∇ ≤ ∇′ (41)

of weakening between freshness environments used as a side-condition in rule

(weak) is defined to hold if dom(∇) ⊆ dom(∇′) and for all x ∈ dom(∇), if

∇(x) = (s, a), then ∇′(x) = (s, a′) for some a′ ⊇ a.

• In rules (atm-intro) and (atm-elim), if ∇ = [a1 ≈� x1 : s1, . . . , an ≈� xn : sn], then

∇≈�a , [a1 ∪ {a} ≈� x1 : s1, . . . , an ∪ {a} ≈� xn : sn] . (42)

• In rule (atm-intro) the side-condition “a # (a, t, t′)” refers to the semantic freshness

relation (Definition 2.1) in the product nominal set Pfin(Atom)×Σs(∇
:)×Σs(∇

:).

In other words the condition is that a /∈ a holds and that the relations a # t and

a # t′ hold as defined in (23). Similarly the side-condition “a # (∇, a, t, t′)” to

rule (atm-elim) means that these properties hold, together with a # ∇, as in (37).

Definition 7.2 (Logical Consequence) The set of theorems of a NEL-theory T is

the least set of judgements containing the axioms of T and closed under the rules

in Figure 5. We write

∇ `T a ≈� t ≈ t′ : s (43)

to indicate that the judgement is a theorem of T and call (43) the logical consequence

relation.

We are going to show that the rules in Figure 5 are both sound and complete

for the interpretation of judgements in Nom. In other words, we will show that

the logical consequence relation coincides with the semantic consequence relation

of Definition 6.3. Completeness will eventually be proved in Section 10. For the

moment we concentrate on the simpler property of soundness.

The rules of nominal equational logic combine the usual properties of equality

(that it is an equivalence relation and is preserved under substituting equal terms)

with some properties of the nominal sets notion of freshness (Definition 2.1) that

have been identified in the literature [24,14,34,13,16] and which are listed in the

following lemma.

Lemma 7.3 Let x be an element of a nominal set X.

(i) For each sort of atoms α ∈ AtomSort, there is some a ∈ Atomα with a # x.

(ii) If f : X −→ Y is a morphism in Nom and a # x, then a # f(x).

(iii) If π ∈ Perm and a # x, then π(a) # π · x.

(iv) If π, π′ ∈ Perm and {a ∈ Atom | π(a) 6= π′(a)} # x, then π · x = π′ · x.

Proof. Part (i) holds because support sets are finite, whereas the set Atomα is

infinite. For part (ii), just note that since f is equivariant, if a ∈ Pfin(Atom) supports

x in X, then a supports f(x) in Y . For the proof of part (iii), see [25, Lemma 3.7].



For part (iv), since {a | π(a) 6= π′(a)} = {a | π−1π′(a) 6= a} = dom(π−1π′), it

suffices to prove a more general version of Lemma 2.2:

∀π ∈ Perm. dom(π) # x ⇒ π · x = x . (44)

This can be done by induction on the size of the finite set dom(π) (for all π simul-

taneously). In the base case dom(π) = ∅, π(a) = a for all a, so π = ι and thus

π · x = ι · x = x by definition of action. For the induction step, suppose dom(π)

is non-empty and dom(π) # x, that is, a # x holds for all a with π(a) 6= a. Pick-

ing some a ∈ dom(π), we first show that that dom((π(a) a)π) ⊆ dom(π) − {a}.
Take some b ∈ dom((π(a) a)π), that is ((π(a) a)π)(b) 6= b. If π(b) = π(a) then

a = ((π(a) a)π)(b) 6= b; but this contradicts the bijectivity of π, so π(b) 6= π(a), so

b 6= a. Then

either π(b) = a

or π(b) 6= a, so π(b) = ((π(a) a)π)(b) 6= b.

In each case π(b) 6= b 6= a, that is, b ∈ dom(π) − {a}.

Since dom(π) − {a} has strictly fewer elements than dom(π), so does

dom((π(a) a)π) and so by the induction hypothesis (π(a) a)π · x = x. So

π ·x = (a π(a)) ·x and we just have to see that (a π(a)) ·x = x. Since a ∈ dom(π) it

is also the case that π(a) ∈ dom(π); but dom(π) # x and thus a # x and π(a) # x;

therefore by Lemma 2.2, (a π(a)) · x = x. 2

Theorem 7.4 (Soundness) If a judgement ∇ ` a ≈� t ≈ t′ : s is a theorem of a

NEL-theory T, then it is satisfied by any T-algebra in Nom:

∇ `T a ≈� t ≈ t′ : s ⇒ ∇ �T a ≈� t ≈ t′ : s .

Proof. Let M be a T-algebra. We have to show that the collection of judgements

satisfied by M (Definition 6.3) is closed under each of the rules in Figure 5.

Closure of satisfaction under rules (refl), (symm) and (trans) is immediate from

Definition 6.3. Closure under rule (subst) follows from the compositionality prop-

erty (31) of the function (t, ρ) 7→ MJtKρ. It is easy to see from the definition of

that function in (25) that the value MJtKρ of any term t only depends on the val-

ues of ρ at variables that actually occur in the term; closure of satisfaction under

rule (weak) follows easily from this observation. Closure under rules (≈�-equivar) and

(susp) follows directly from the corresponding properties (iii) and (iv) of freshness

in Lemma 7.3. The only two remaining cases are for rules (atm-intro) and (atm-elim),

and they are worth giving in detail.

For rule (atm-intro), if ρ ∈ MJ∇≈�aK, then ∀x ∈ dom(ρ). a # ρ(x) and hence as

noted in Definition 4.4, a # ρ. If we also have a # (t, t′), then by Lemma 7.3(ii)

applied to the function (t, ρ) 7→ MJtKρ (which we noted in (26) is equivariant),

we have a # MJtKρ. Hence if M satisfies ∇ ` a ≈� t ≈ t′ : s, it also satisfies

∇≈�a ` a ∪ {a} ≈� t ≈ t′ : s for any a with a # (t, t′). 7

7 Rule (atm-intro) also includes the inessential side-condition a /∈ a, since without it the rule becomes an



For the rule (atm-elim), suppose a # (∇, a, t, t′). If ρ ∈ MJ∇K, then we can use

Lemma 7.3(i) to find an atom a′ (of the same sort as a) with a′ # (ρ,∇, a, t, t′). Note

that since a # ∇ and a′ # ∇, we have (a a′) ·ρ ∈ MJ∇K. In fact (a a′) ·ρ ∈ MJ∇≈�aK

since a # (a a′) · ρ (by Lemma 7.3(iii) applied to a′ # ρ). So if M satisfies

∇≈�a ` a ∪ {a} ≈� t ≈ t′ : s, then

a # MJtK((a a′) · ρ) = MJt′K((a a′) · ρ) ∈ MJsK . (45)

Since the function (t, ρ) 7→ MJtKρ is equivariant, we can apply (a a′) · (−) to (45)

and use Lemma 7.3(iii) to get

(a a′) · a # MJ(a a′) · tK((a a′)(a a′) · ρ) = MJ(a a′) · t′K((a a′)(a a′) · ρ) ∈ MJsK .

But (a a′)(a a′) = ι and since {a, a′} # (a, t, t′), by Lemma 2.2 we also have

(a a′) · a = a, (a a′) · t = t and (a a′) · t′ = t′; so a # MJtKρ = MJt′Kρ ∈ MJsK.

Therefore M also satisfies ∇ ` a ≈� t ≈ t′ : s. 2

We end this section with an example of nominal equational reasoning.

Example 7.5 (α-Equivalence) Let Tα be the NEL-theory with signature as in Ex-

ample 3.1 and whose single axiom is the judgement (α) from Figure 4. To illustrate

nominal equational reasoning, we show that α-equivalent λ-abstractions are prov-

ably equal, in the sense that if a 6= a′ are unequal elements of Atomν , then

a′ ≈� x : tm ` La x ≈ La′ (a a′)x : tm (46)

is a theorem of Tα. 8 To see this, first note that by (refl) and (atm-intro) we have

a′ ≈� x : tm `Tα
a′ ≈� La x : tm (47)

and by (weak) applied to (α) we also have

a′ ≈� x : tm `Tα
a ≈� La x : tm . (48)

Applying (trans) to (47) and (48) yields

a′ ≈� x : tm `Tα
{a, a′} ≈� La x : tm . (49)

Thus taking ∇ = [{a, a′} ≈� x : tm], ∇′ = [a′ ≈� x : tm] and σ ∈ Σ(∇:, (∇′):) to be

the substitution x 7→ La x, (49) gives us

∇′ `Tα
σ ≈ σ : ∇ . (50)

An instance of (susp) with π = ι (the identity permutation) and π′ = (a a′) is

{a, a′} ≈� x : tm `Tα
ι x ≈ (a a′)x : tm . (51)

instance of (weak) in the case that a ∈ a.
8 Here we are using the formulation of α-equivalence in terms of swapping with a fresh name: cf. [17,
Proposition 2.2].



Since ι x{σ} = ι ∗ σ(x) = ι ∗ (La x) = La x and ((a a′)x){σ} = (a a′) ∗ σ(x) =

(a a′) ∗ (La x) = La′((a a′)x), we can apply (subst) to (50) and (51) to get (46) as a

theorem of Tα, as required.

8 Equivariance

In ordinary equational logic we are used to the idea that a single axiom involving

variables stands for a whole family of facts, obtained by substituting particular terms

for the variables. In nominal equational logic, axioms involve not just variables, but

also names, represented by atoms. For example the axiom

x : tm ` a ≈� L a x : tm (α)

from the NEL-theory in Figure 4 involves a particular atom a ∈ Atomν as well as the

variable x ∈ Var. Just as for ordinary equational logic, we can use rule (subst) from

Figure 5 to replace x by particular terms. But what about replacing a by a different

atom a′? If a′ 6= a, then the judgement x : tm ` a′ ≈� L a′ x : tm is not an axiom of

the theory in Figure 4, by definition. Nevertheless it is a theorem of that theory.

This is because the logical consequence relation (43) for any NEL-theory T turns

out to be invariant under permuting atoms, even though we make no assumption

that the set of axioms of T is closed under the permutation action.

Theorem 8.1 (Equivariance of Logical Consequence) For any NEL-theory T, if

∇ `T a ≈� t ≈ t′ : s, then for all π ∈ Perm, π · ∇ `T π · a ≈� π · t ≈ π · t′ : s.

The theorem is a corollary of Lemma 5.2 and the following result.

Lemma 8.2 For any NEL-theory T, if

∇ `T a ≈� t ≈ t′ : s (52)

then for all π ∈ Perm

∇ `T π · a ≈� π ∗ t ≈ π ∗ t′ : s . (53)

Proof. If (52) holds, then we have ∇ ` σ ≈ σ′ : [a ≈� x : s], where σ and σ′ are

the substitutions mapping x to t and t′ respectively. Applying (subst) to this and

(≈�-equivar) gives (53). 2

Proof of Theorem 8.1. Suppose that ∇ = [a1 ≈� x1 : s1, . . . , an ≈� xn : sn]. Given

π ∈ Perm, consider the substitution π−1 ∗ id defined as in Lemma 5.2. It maps each

xi to π−1xi (i = 1..n) and is an element of Σ((π · ∇):,∇:). By (refl) (for t = xi),

(atm-intro) (applied repeatedly for each of the atoms in π · ai), (weak) (with respect

to [π · ai ≈� xi : si] ≤ π · ∇), and (≈�-equivar) (for the permutation π−1), we have

π · ∇ `T ai ≈� π−1xi ≈ π−1xi : si (i = 1..n)

and hence

π · ∇ `T π−1 ∗ id ≈ π−1 ∗ id : ∇ . (54)



So if (52) holds, then by Lemma 8.2 so does (53) and we can apply (subst) to this

and (54) to deduce π ·∇ `T π ·a ≈� (π∗t){π−1∗id} ≈ (π∗t′){π−1∗id} : s. Lemma 5.2

gives us (π ∗ t){π−1 ∗ id} = (π · t){id}; and the latter is π · t, by (27). Similarly,

(π ∗ t′){π−1 ∗ id} = π · t′. Therefore we have π · ∇ `T π · a ≈� π · t ≈ π · t′ : s, as

required. 2

Remark 8.3 (Theorems of T form a Nominal Set) Note that the set of judgements

of the form (33) over a NEL-signature Σ, once equipped with the atom-permutation

action

π · (∇ ` a ≈� t ≈ t′ : s) , (π · ∇ ` π · a ≈� π · t ≈ π · t′ : s) (55)

forms a nominal set. The freshness relation in this nominal set is

a # (∇ ` a ≈� t ≈ t′ : s) ⇔ a # ∇∧ a /∈ a ∧ a # t ∧ a # t′ (56)

using the freshness relation for terms (23) and for freshness environments (37).

Given a NEL-theory T over Σ, Theorem 8.1 says that its set of theorems is closed

under the permutation action (55). Therefore it too is a nominal set, with freshness

relation as in (56).

9 Ground Term Algebras

In this section we show how to form a T-algebra in Nom from the terms of a NEL-

theory T that do not involve any variables. The construction provides a stepping

stone towards the completeness result of the next section.

Definition 9.1 (Ground Terms) Let Σ be a NEL-signature. The set of ground

terms of sort s ∈ SortΣ over Σ is defined to be Σs(∅), that is, the set of terms

that are well-sorted of sort s in the empty sorting environment, ∅. Note from

Definition 4.2 that if t is a ground term it cannot involve any sub-terms that are

suspensions, π x.

Now let T be a NEL-theory with signature Σ. By virtue of the rules (refl),

(symm) and (trans) in Figure 5, the logical consequence relation of Definition 7.2

gives rise to an equivalence relation on Σs(∅) that relates t and t′ if ∅ `T t ≈ t′ : s.

Let MTJsK denote the quotient of Σs(∅) by this equivalence relation. We write the

equivalence class of t as [t].

Recall from Section 4 that each set of terms Σs(Γ) is a nominal set once we

endow it with the Perm-action (π, t) 7→ π · t of (22). In the case of ground terms,

when Γ = ∅, Lemma 5.2 implies that this action coincides with the one associated

with substitution in Figure 3:

∀t ∈ Σs(∅). π · t = π ∗ t . (57)

Note that by Theorem 8.1, this Perm-action on Σs(∅) preserves the equivalence

relation ∅ `T t ≈ t′ : s. Hence we get a well-defined action on the quotient set

MTJsK, defined by

π · [t] , [π · t] = [π ∗ t] . (58)



It is a fact about quotients in Nom in general that with this action MTJsK is a

nominal set. For if a finite set a ∈ Pfin(Atom) supports t in Σs(∅), then it also

supports [t] in MTJsK, because for any a, a′ /∈ a (of the same sort) (a a′) · [t] =

[(a a′) · t] = [t]. Thus

a # t ⇒ a # [t] . (59)

However, we can be more precise about the freshness relation for the nominal set

MTJsK. As the following lemma shows, the semantic notion of freshness (Defini-

tion 2.1) coincides with the logical one determined by the rules in Figure 5 when

one restricts to ground terms.

Lemma 9.2 (Semantic Freshness = Ground Logical Freshness) For all t ∈ Σs(∅)
and a ∈ Atom

a # [t] ∈ MTJsK ⇔ ∅ `T a ≈� t : s . (60)

Proof. Given t ∈ Σs(∅) and an atom a, of sort α say, by Lemma 7.3(i) applied to

the nominal set Atomα ×Σs(∅), there is some a′ ∈ Atomα with a′ # (a, t). By (refl)

and (atm-intro) we have

∅ `T a′ ≈� t : s (61)

and hence by (≈�-equivar) and (subst)

∅ `T a ≈� (a a′) ∗ t : s . (62)

Note that since a′ # t, by (59) we also have

a′ # [t] . (63)

Suppose a # [t] holds. Then by Lemma 2.2, (a a′) · [t] = [t]. Therefore by (57),

[(a a′) ∗ t] = [(a a′) · t] = (a a′) · [t] = [t] and hence ∅ `T (a a′) ∗ t ≈ t : s. Applying

(trans) and (symm) to this and (62) yields ∅ `T a ≈� t : s.

Conversely, if ∅ `T a ≈� t : s holds, then by (61) and (trans) we have ∅ `T

{a, a′} ≈� t : s; and hence by (susp) and (subst), ∅ `T (a a′) ∗ t ≈ t : s. In other words

[(a a′) ∗ t] = [t] and thus as above, (a a′) · [t] = [t]. Then by Lemma 7.3(iii) on (63)

we get a # (a a′) · [t] = [t]. 2

To make MT into a structure for the signature Σ underlying T, we have to give

for each type ~s → s of Σ an equivariant function

MTJ K : OpΣ(~s, s) −→ (MTJ~sK →fs MTJsK) . (64)

Let this be the function mapping each op ∈ OpΣ(~s, s) to

MTJopK , ([t1], . . . , [tn]) 7→ [op t1 · · · tn] . (65)

The fact that the function in (65) is well-defined (that is, [op t1 · · · tn] only depends

upon the equivalence classes of t1, . . . , tn) is an application of rule (subst); and by



virtue of (22), the function is supported by any finite set of atoms that supports op

in OpΣ. Finally, the same property (22) entails that the function MTJ K in (64) is

equivariant.

Lemma 9.3 Given a term t ∈ Σs(Γ) and a valuation ρ ∈ MTJΓK, let σ ∈ Σ(Γ, ∅) be

a substitution that represents ρ in the sense that ρ(x) = [σ(x)], for all x ∈ dom(Γ).

Then

MTJtKρ = [t{σ}] . (66)

Proof. By induction on the structure of t. In the base case, when t = π x is a

suspension, using (57) we have MTJtKρ = MTJπ xKρ , π · ρ(x) = π · [σ(x)] =

[π · σ(x)] = [π ∗ σ(x)] , [(π x){σ}] = [t{σ}]. The induction step, when t is of

the form op t1 · · · tn follows from (65). 2

Theorem 9.4 (Ground Completeness) MT is a T-algebra, that is, it satisfies all

the axioms of T (and hence by the Soundness Theorem 7.4, all the theorems of T).

Furthermore, for ground terms, a judgement ∅ ` a ≈� t ≈ t′ : s is satisfied by MT

only if it is a theorem of T.

Proof. Suppose ∇ ` a ≈� t ≈ t′ : s is an axiom of T with ∇ = [a1 ≈� x1 :

s1, . . . , an ≈� xn : sn] say. Given any valuation ρ ∈ MTJ∇K, for each i = 1..n we have

a # ρ(xi) ∈ MTJsiK. Choosing a representative term ti for each equivalence class

ρ(xi), by Lemma 9.2 we have ∅ `T ai ≈� ti : si. Therefore the function σ mapping

each xi to ti (i = 1..n) is a substitution in Σ(∅,∇:) that satisfies ∅ `T σ ≈ σ : ∇.

Applying (subst) to this and ∇ `T a ≈� t ≈ t′ : s gives ∅ `T a ≈� t{σ} ≈ t′{σ} : s

and hence a # [t{σ}] = [t′{σ}] ∈ MTJsK by Lemma 9.2 again. Lemma 9.3 and

the definition of σ gives a # MTJtKρ = MTJt′Kρ. Since this holds for any valuation

ρ ∈ MTJ∇K, we have that MT satisfies ∇ ` a ≈� t ≈ t′ : s.

So MT is a T-algebra and it just remains to check that it satisfies a ground

judgement ∅ ` a ≈� t ≈ t′ : s only if that judgement is a theorem of T. If it satisfies

the judgement ∅ ` a ≈� t ≈ t′ : s, then a # MTJtKρ = MTJt′Kρ holds for the unique

valuation ρ in MTJ∅K. By Lemma 9.3 this means a # [t{σ}] = [t′{σ}] ∈ MTJsK for σ

the unique substitution in Σ(∅, ∅). Since this is necessarily the identity substitution

for the empty sorting environment, from (27) we get a # [t] = [t′] ∈ MTJsK. Thus

by Lemma 9.2, ∅ `T a ≈� t ≈ t′ : s holds. 2

Example 9.5 (λ-Terms Modulo αβη-Equivalence) If T is the NEL-theory of Ex-

ample 6.2, then MTJtmK is the usual nominal set of untyped λ-terms modulo αβη-

equivalence, for which the freshness relation coincides with the “not a free variable

of” relation. To see this, first recall from Example 4.3 that Σtm(∅) is the set of

syntax trees for λ-terms with variables Va corresponding to atoms a ∈ Atomν , with

λ-abstraction terms written La t and with application terms written A t t′. By virtue

of the rules in Figure 5, the equivalence relation ∅ `T t ≈ t′ : tm, by which Σtm(∅)
is quotiented to get MTJtmK, is a congruence for λ-abstraction and application. It

contains the relation of α-equivalence because (46) is a theorem of T; and it contains



η-equivalence because of axiom (η) in Figure 4. It also contains β-equivalence

[A (La t) t′] = [t]([t′]/a]) ∈ MTJtmK (67)

where ([t], [t′]) 7→ [t]([t′]/a]) is the usual notion of capture-avoiding substitution

for λ-terms. Property (67) follows from axioms (β-1)–(β-4) 9 by examining the

structure of t; this is most easily proved as an application of the α-structural induc-

tion principle given in [25, Sect. 5.1], using the α-structurally recursive definition

of capture-avoiding substitution given there. Altogether we have that if t and t′

are αβη-equivalent syntax trees, then [t] = [t′] ∈ MTJtmK. Furthermore, one can

show by induction on the structure of t that if a is not free in it, then a # [t] in

MTJtmK—the key point being that by virtue of axiom (α) and Lemma 9.2, we have

a # [La t].

Conversely, one can show by induction on the derivation of a theorem ∇ `T a ≈�
t ≈ t′ : s from the rules in Figure 5 that for any ground substitution ∅ `T σ ≈ σ : ∇
it is the case that the ground terms t{σ} and t′{σ} are αβη-equivalent syntax trees

not containing a in their set of free variables. The proof relies upon the fact that all

ground instances of the axioms in Figure 4 have this property; we omit the details.

In particular, if a # [t] = [t′] ∈ MTJtmK, then (taking σ to be the identity) we get

that t and t′ are indeed αβη-equivalent syntax trees whose free variables are disjoint

from a.

10 Completeness

In this section we prove the main result of the paper, namely that for any NEL-

theory the logical consequence relation (Definition 7.2) and the semantic conse-

quence relation (Definition 6.3) coincide. For conventional algebra, completeness of

equational logic for the usual interpretation of terms in algebras in the category of

sets is a simple result: Given an equational theory, the collection of terms is quo-

tiented by provable equality to get an algebra for which satisfaction coincides with

theorem-hood. The role of variables in this term-algebra construction is to act as

indeterminates—constants that do not occur in the signature of the original theory.

Indeed, instead of working with all terms, it comes to the same thing if one extends

the signature with countably many new constants and forms the term-algebra from

ground-terms, as in the previous section. This interchangeability of variables and

fresh constants in conventional equational logic is not so straightforward for nominal

equational logic. In the interpretation of our language of terms in Nom, variables

stand for indeterminate elements of nominal sets that therefore have indeterminate

finite support; whereas constants (which, as usual, we identify with operation sym-

bols of arity 0) have fixed finite supports. To prove the completeness theorem, we

have to show that provability of a judgement involving variables can be recovered

from provability of ground instantiations of the judgement, where the variables are

9 Axiom (β-5) is not needed here since its ground instances are derivable from the other axioms.



replaced by constants with suitably fresh supports. To do so, first we introduce

some notation for tuples of distinct atoms and their transpositions.

Definition 10.1 Given a tuple ~α = α1, . . . , αm of sorts of atoms, define:

Atom
(∗)
~α ,







(a1, . . . , am) ∈ Atomα1
× · · · × Atomαm

∣

∣

∣

∣

∣

∣

∧

1≤i<j≤m

ai 6= aj







. (68)

Permutations act on this set as for products of nominal sets of atoms (since permu-

tation preserves distinctness of atoms):

(a1, . . . , am) ∈ Atom
(∗)
~α ⇒ π · (a1, . . . , am) , (π(a1), . . . , π(am)) ∈ Atom

(∗)
~α .

With this Perm-action Atom
(∗)
~α is a nominal set, since clearly each (a1, . . . , am) ∈

Atom
(∗)
~α is supported by {a1, . . . , am}; indeed this is the smallest such set of atoms,

so that

a # (a1, . . . , am) ⇔ a1 /∈ a ∧ · · · ∧ am /∈ a . (69)

Lemma 10.2 (Generalised Transposition) For each tuple ~α = α1, . . . , αm of sorts

of atoms there is a morphism in Nom

τ : Atom
(∗)
~α × Atom

(∗)
~α −→ Perm

(~a,~a′) 7→ τ~a,~a′

(70)

satisfying for each ~a = [a1, . . . , am] and ~a′ = [a′1, . . . , a
′
m] in Atom

(∗)
~α

(i) τ~a,~a′(ai) = a′i for i = 1..m;

(ii) τ~a,~a′(a) = a, if a /∈ {a1, . . . , am, a′1, . . . , a
′
m}.

(iii) If ~a and ~a′ are disjoint lists, then τ~a′,~a = τ−1
~a,~a′ .

Proof. Given that we want (i) and (ii) to hold, to define τ~a,~a′ we just have to say

how it acts on atoms in ~a′ that are not in ~a, ensuring that we get a permutation.

For each sort of atoms α, there is a sub-list b1, . . . , bk of members of ~a of sort α

not in ~a′ and a sub-list b′1, . . . , b
′
k′ of members of ~a′ of the same sort that are not

in ~a. Since ~a,~a′ ∈ Atom
(∗)
~α it follows that k = k′. (Both equal the number of

occurrences of α in ~α minus the number of common members of ~a and ~a′ of sort

α.) So we can define τ~a,~a′ to map each b′i to the corresponding bi. In this way we

get an element τ~a,~a′ ∈ Perm satisfying (i)–(iii); and it is not hard to see that the

assignment (~a,~a′) 7→ τ~a,~a′ satisfies

πτ~a,~a′π−1 = τπ·~a,π·~a′ (π ∈ Perm, ~a,~a′ ∈ Atom
(∗)
~α ). (71)

Recall from Definition 2.5 that Perm regarded as a nominal set has Perm-action

given by conjugation (13). Thus property (71) says that the function (~a,~a′) 7→ τ~a,~a′

is equivariant and hence is a morphism in Nom. 2



Definition 10.3 (Atom-Parameterised Constants) Given a tuple ~α = α1, . . . , αm

of sorts of atoms and a sort s ∈ SortΣ of a NEL-signature Σ, let Σ[c~α : s] denote

the NEL-signature obtained from Σ by adding new operation symbols c~a : [] → s

as ~a ranges over Atom
(∗)
~α . Thus Σ[c~α : s] has the same set of sorts as Σ and has

nominal set of operators given by the coproduct (Definition 2.9) OpΣ + Atom
(∗)
~α ,

represented concretely as a union OpΣ ∪ {c~a | ~a ∈ Atom
(∗)
~α }, where we assume each

operation symbol c~a is not already an element of OpΣ. So the Perm-action on the

new operation symbols satisfies π · c~a = cπ·~a; and the type of each c~a is [] → s.

If T is a NEL-theory with underlying signature Σ, then T[c~α : s] denotes the

theory with signature Σ[c~α : s] and the same axioms as T. 10

We will use atom-parameterised constants ca1,...,am
as indeterminates in the proof

of the completeness theorem given below. Of course ca1,...,am
is not as indeterminate

as is a variable x: The former represents an element of a nominal set for which a

support set is known, namely {a1, . . . , am}; whereas the latter represents an element

whose support only has to avoid at most finitely many atoms a, supposing an

assumption a ≈� x : s occurs in the current freshness context. Nevertheless, as

the following proposition shows, one can recover a T-theorem involving a variable

from an instance of it obtained by substituting a new atom-parameterised constant

for the variable. The proposition makes use of single term substitution: The term

t{t′/x′} is defined by recursion on the structure of t by:

(op t1 · · · tn){t′/x′} , op t1{t
′/x′} · · · tn{t

′/x′}

(π x){t′/x′} ,

{

π x if x 6= x′

π ∗ t′ if x = x′

(72)

where π ∗ t′ is as in Figure 3. This is a special case of the kind of simultaneous

substitution t 7→ t{σ} considered in Section 5, in the sense that if t ∈ Σs(Γ, x′ : s′)

(with x′ /∈ dom(Γ)) and t′ ∈ Σs′(Γ), then t{t′/x′} = t{σ} ∈ Σs(Γ) where σ ∈
Σ((Γ, x′ : s′), Γ) is the substitution mapping x′ to t′ and mapping each x ∈ dom(Γ)

to itself.

Proposition 10.4 Suppose ∇, a1 ≈� x1 : s1 ` a ≈� t ≈ t′ : s is a well-formed

judgement (with x1 /∈ dom(∇)) over the signature Σ of a NEL-theory T. Given any

finite set of atoms a′ supporting the judgement, that is, supporting (∇, a1, a, t, t′), let

~a′ = a′1, . . . , a
′
m be a list of the distinct atoms in a′ − a1 and suppose a′i has sort αi

for i = 1..m. Let T[c~α : s1] be the NEL-theory obtained from T as in Definition 10.3.

Then

∇ `T[c~α:s1] a ≈� t{c~a′/x1} ≈ t′{c~a′/x1} : s ⇒ ∇, a1 ≈� x1 : s1 `T a ≈� t ≈ t′ : s . (73)

To prove this proposition, we use an operation on terms that replaces atom-

parametrised constants by variables: Given t ∈ Σ[c~α : s1]s(∇
:), Figure 6 defines a

10Strictly speaking, we are relying upon the easily verified fact that Σs′(Γ) ⊆ Σ[c~α : s]s′ (Γ)—so that
well-formed judgements over Σ are also well-formed judgements over Σ[c~α : s].



(π x){c~a′ := x1} , π x

(op t1 · · · tn){c~a′ := x1} ,

{

τ~a′,~a x1 if op = c~a

op (t1{c~a′ := x1}) · · · (tn{c~a′ := x1}) otherwise

Fig. 6. Replacing Atom-Parameterised Constants by Variables

term t{c~a′ := x1} ∈ Σs(∇
:, x1 : s1), obtained by replacing each c~a by the suspension

τ~a′,~a x1, where τ~a′,~a is the generalised transposition from Lemma 10.2. The following

lemmas give the properties of the operation in Figure 6 that we need.

Lemma 10.5 (i) If t does not contain any of the operation symbols in {c~a | ~a ∈

Atom
(∗)
~α }, then t{c~a′ := x1} = t.

(ii) If x1 and x′
1 do not occur in t and if σ is the substitution that swaps x1 and

x′
1, then t{c~a′ := x1}{σ} = t{c~a′ := x′

1}.

(iii) π · (t{c~a′ := x1}) = (π · t){cπ·~a′ := x1}.

(iv) If a # (t,~a′), then a # t{c~a′ := x1}.

Proof. Parts (i) and (ii) follow easily by induction on the structure of t. The same

is true for part (iii), using (71). Part (iv) follows from part (iii) by Lemma 7.3(ii).2

Lemma 10.6 Suppose T is a NEL-theory, with underlying signature Σ say, and

that T[c~α : s1] is the theory obtained from it as in Definition 10.3. If ∇ is a

freshness environment, a is a finite set of atoms, t, t′ ∈ Σ[c~α : s1]s(∇
:) and a1

supports (∇, a, t, t′), then

∀x1 ∈ Var. ∀~a′ ∈ Atom
(∗)
~α . x1 /∈ dom(∇) ∧ a1 # ~a′ ⇒

∇, a1 ≈� x1 : s `T a ≈� t{c~a′ := x1} ≈ t′{c~a′ := x1} : s
(74)

iff

∃x1 ∈ Var. ∃~a′ ∈ Atom
(∗)
~α . x1 /∈ dom(∇) ∧ a1 # ~a′ ∧

∇, a1 ≈� x1 : s `T a ≈� t{c~a′ := x1} ≈ t′{c~a′ := x1} : s .
(75)

Proof. This is an example of a “some/any” property of freshness in nominal sets—

see [25, Lemma A.4(2)]. It is clear that (74) implies (75). For the converse, first note

that the variable x1 can be changed to any other x′
1 /∈ dom(∇) using (subst) and

Lemma 10.5(ii). Similarly, ~a′ ∈ Atom
(∗)
~α can be changed to any other ~a′′ ∈ Atom

(∗)
~α by

using part (iii) of that lemma together with the equivariance of logical consequence

(Theorem 8.1) applied to the permutation τ~a′,~a′′ from Lemma 10.2. 2

Lemma 10.7 Let T[c~α : s1] be as in the previous lemma.

(i) Given a freshness environment ∇, if x1 /∈ dom(∇), π ∈ Perm, t ∈ Σ[c~α :



s1]s(∇
:, x1 : s1), a1 supports (∇, π, t) and ~a′ ∈ Atom

(∗)
~α with a1 # ~a′, then

∇, a1 ≈� x1 : s1 `T (π ∗ t){c~a′ := x1} ≈ π ∗ (t{c~a′ := x1}) : s .

(ii) Given freshness environments ∇1,∇2, if σ ∈ Σ[c~α : s1]((∇1)
:, (∇2)

:), x1 /∈
dom(∇1) ∪ dom(∇2), t ∈ Σ[c~α : s1]s((∇1)

:, x1 : s1), a1 supports (∇1,∇2, σ, t)

and ~a′ ∈ Atom
(∗)
~α with a1 # ~a′, then

∇2, a1 ≈� x1 : s1 `T t{σ}{c~a′ := x1} ≈ t{c~a′ := x1}{σ{c~a′ := x1}} : s

where σ{c~a′ := x1} ∈ Σ(((∇1)
:, x1 : s1), ((∇2)

:, x1 : s1)) is the substitution

mapping each x ∈ dom(∇1) to σ(x){c~a′ := x1} and mapping x1 to itself.

Proof. Both parts are proved by induction on the structure of t. For (i) when

t = c~a, one uses ∇, a1 ≈� x1 : s1 `T τ~a′,π·~a x1 ≈ πτ~a′,~a x1 : s1. This holds by (susp)

and (weak) using

a1 ⊇ {a | π−1(a) 6= a} (since dom(π−1) = dom(π) ⊆ a1)

= {a | πτ~a′,~aπ
−1(a) 6= πτ~a′,~a(a)}

= {a | τπ·~a′,π·~a(a) 6= πτ~a′,~a(a)} (by (71))

= {a | τ~a′,π·~a(a) 6= πτ~a′,~a(a)} (since dom(π) ⊆ a1 # ~a′).

For (ii) when t is a suspension, one uses part (i). 2

Lemma 10.8 Let T[c~α : s1] be as in Lemma 10.6. If ∇ `T[c~α:s1] a ≈� t ≈ t′ : s

and a1 supports (∇, a, t, t′), then for any x1 /∈ dom(∇) and any ~a′ ∈ Atom
(∗)
~α with

a1 # ~a′, it is the case that ∇, a1 ≈� x1 : s `T a ≈� t{c~a′ := x1} ≈ t′{c~a′ := x1} : s.

Proof. This is proved by induction on the derivation of ∇ `T[c~α:s1] a ≈� t ≈ t′ : s.

Let IH be the set of well-formed judgements

∇ ` a ≈� t ≈ t′ : s (76)

over the signature of T[c~α : s1] such that for all a1 supporting (∇, a, t, t′), (74) holds.

Note that if (76) is an axiom of T[c~α : s1], it is by definition an axiom of T and hence

does not contain any occurrences of the operation symbols c~a. So by Lemma 10.5(i),

∇, a1 ≈� x1 : s `T a ≈� t{c~a′ := x1} ≈ t′{c~a′ := x1} : s is ∇, a1 ≈� x1 : s `T a ≈�
t ≈ t′ : s, which is a theorem of T by applying (weak) to the axiom (76). So IH

contains the axioms of T[c~α : s1] and to prove the lemma we just have to show that

it is closed under each of the rules in Figure 5. Closure under rules (refl), (symm),

(weak), (atm-intro), (≈�-equivar) and (susp) is straightforward. Closure under (trans),

(subst) and (atm-elim), where the support of the hypotheses of each rule is possibly

bigger than that of its conclusion, requires some work. We give the argument for

(trans). The proof for the other two rules is similar, using Lemma 10.7(ii) for the

case of (subst).



To prove closure under (trans), suppose

(∇ ` a ≈� t ≈ t′ : s), (∇ ` a′ ≈� t′ ≈ t′′ : s) ∈ IH . (77)

To see that (∇ ` a ∪ a′ ≈� t ≈ t′′ : s) ∈ IH , for any a1 supporting (∇, a ∪ a′, t, t′′),

by Lemma 10.6 it suffices to find some x1 /∈ dom(∇) and some ~a′ ∈ Atom
(∗)
~α with

a1 # ~a′ and

∇, a1 ≈� x1 : s `T a ∪ a′ ≈� t{c~a′ := x1} ≈ t′′{c~a′ := x1} : s . (78)

Pick some x1 /∈ dom(∇), some a2 ∈ Pfin(Atom) supporting (a1, t
′) and some ~a′ ∈

Atom
(∗)
~α disjoint from a2 and hence also satisfying a1 # ~a′. From (77) we get ∇, a2 ≈�

x1 : s1 `T a ≈� t{c~a′ := x1} ≈ t′{c~a′ := x1} : s and ∇, a2 ≈� x1 : s1 `T a ≈� t{c~a′ :=

x1} ≈ t′{c~a′ := x1} : s. Noting that (∇, a2 ≈� x1 : s1) ≤ (∇, a1 ≈� x1 : s1)
≈�(a2−a1), by

(trans) and (weak)

(∇, a1 ≈� x1 : s1)
≈�(a2−a1) `T a ∪ a′ ≈� t{c~a′ := x1} ≈ t′′{c~a′ := x1} : s . (79)

But a ∪ a′ ⊆ a1, so (a2 − a1) # a ∪ a′; and a1 supports ∇, so (a2 − a1) # ∇.

Also, since (a2 − a1) # (~a′, t, t′′), by Lemma 10.5(iv) we have (a2 − a1) # (t{c~a′ :=

x1}, t
′′{c~a′ := x1}). Therefore we can apply (atm-elim) to (79), obtaining (78), as

required. 2

Proof of Proposition 10.4. First note that since substitution is equivariant

(Corollary 5.3), by Lemma 7.3(ii) we have that a′ supports t{c~a′/x1} and t′{c~a′/x1}.

Therefore, picking any x′
1 /∈ dom(∇) ∪ {x1} and ~a′′ ∈ Atom

(∗)
~α with a′ # ~a′′, by

Lemma 10.8 if ∇ `T[c~α:s1] a ≈� t{c~a′/x1} ≈ t′{c~a′/x1} : s holds, then so does

∇, a′ ≈� x′
1 : s1 `T a ≈� t{c~a′/x1}{c~a′′ := x′

1} ≈ t′{c~a′/x1}{c~a′′ := x′
1} : s .

From this, using Lemma 10.7(ii), Lemma 10.5(i) and the definition in Figure 6, we

get

∇, a′ ≈� x′
1 : s1 `T a ≈� t{τ~a′′,~a′ x′

1/x1} ≈ t′{τ~a′′,~a′ x′
1/x1} : s . (80)

Note that from Lemma 10.2, τ~a′′,~a′ fixes the atoms in a1 and maps ~a′′ onto ~a′.

Therefore, writing a′′ for the union of a1 with the atoms in ~a′′, by (≈�-equivar) and

(weak) we have

∇, a′′ ≈� x1 : s1 `T a′ ≈� τ~a′′,~a′ x1 : s1 . (81)

Since ~a′ and ~a′′ are disjoint, by Lemma 10.2(iii) we have τ~a′,~a′′τ~a′,~a′′ = ι. So by

(subst), (80) and (81) we get

∇, a′′ ≈� x′
1 : s1 `T a ≈� t ≈ t′ : s .

Since (∇, a′′ ≈� x′
1 : s1) ≤ (∇, a1 ≈� x1 : s1)

≈�(a′′−a1), we can apply (weak) to this to

get

(∇, a1 ≈� x1 : s1)
≈�(a′′−a1) `T a ≈� t ≈ t′ : s . (82)



By definition of a′′, the set a′′ − a1 consists of the atoms in ~a′′; and we chose these

to be disjoint from the set a′ supporting (∇, a1, a, t, t′). So we can apply (atm-elim)

to (82) to get ∇, a1 ≈� x1 : s1 `T a ≈� t ≈ t′ : s, as required. 2

Proposition 10.9 With the same assumptions as in the statement of Proposi-

tion 10.4, it is the case that

∇, a1 ≈� x1 : s1 �T a ≈� t ≈ t′ : s ⇒ ∇ �T[c~α:s1] a ≈� t{c~a′/x1} ≈ t′{c~a′/x1} : s . (83)

Proof. First note that for any two NEL-theories T and T
′, if the signature and

axioms of T are contained in those of T
′, then the judgements over the signature of

T that are theorems of T
′ contain the axioms of T and are closed under the rules in

Figure 5. Therefore

∇ `T a ≈� t ≈ t′ : s ⇒ ∇ `T′ a ≈� t ≈ t′ : s . (84)

In particular, every T[c~α : s1]-algebra M is a T-algebra when we forget the finitely

supported functions assigned by the structure M to the operation symbols c~a.

Now suppose

∇, a1 ≈� x1 : s1 �T a ≈� t ≈ t′ : s (85)

holds. To prove (83) we have to show for each T[c~α : s1]-algebra M and valuation

ρ ∈ MJ∇K that

a # MJt{c~a′/x1}Kρ = MJt′{c~a′/x1}Kρ ∈ MJsK (86)

holds. As noted in (69), we have a1 # ~a′, since ~a′ is disjoint from a1. Hence by

Lemma 7.3(ii) applied to the equivariant function MJ−K, we have a1 # MJc~a′K ∈
MJs1K. Therefore the extended valuation ρ[x1 7→ MJc~a′K] lies in MJ∇, a1 ≈� x1 : s1K.

So regarding M as a T-algebra as above, from (85) we get

a1 # MJtK(ρ[x1 7→ MJc~a′K]) = MJt′K(ρ[x1 7→ MJc~a′K]) ∈ MJsK .

Now we can apply the compositionality property (31) of substitutions to obtain

(86), as required for property (83). 2

Using Propositions 10.4 and 10.9, we can now prove the desired completeness

result.

Theorem 10.10 (Completeness) A judgement ∇ ` a ≈� t ≈ t′ : s is a theorem of a

NEL-theory T if it is satisfied by any T-algebra in Nom:

∇ �T a ≈� t ≈ t′ : s ⇒ ∇ `T a ≈� t ≈ t′ : s . (87)

Proof. We prove (87) by induction on the length of the freshness environment ∇,

for all T, a, t, t′ and s simultaneously. The base case when the length is zero is a

consequence of the Ground Completeness Theorem 9.4. For the induction step, if

∇, a1 ≈� x1 : s1 �T a ≈� t ≈ t′ : s (with x1 /∈ dom(∇)), then by (83) we get

∇ �T[c~α:s1] a ≈� t{c~a′/x1} ≈ t′{c~a′/x1} : s



and hence by induction hypothesis

∇ `T[c~α:s1] a ≈� t{c~a′/x1} ≈ t′{c~a′/x1} : s .

Now we can apply (73) to deduce ∇, a1 ≈� x1 : s1 `T a ≈� t ≈ t′ : s, as required. 2

11 Related Work

The first logical analyses of the permutative treatment of names, binding and α-

equivalence were in terms of set theory [17] and higher-order logic [12]. They concen-

trated upon the logical properties of “support” (see Section 2). The complimentary

“not-in-the-support-of” relation that we call freshness, turns out to be more relevant

for the intended applications of the theory—such as structurally recursive/inductive

properties of syntactical data modulo α-equivalence [25]. Indeed a large part of the

theory depends on some simple, first order properties of freshness that were iden-

tified in [24]. The “nominal logic” introduced in that paper treats atoms like any

other sort of data in many-sorted first-order logic; and thus statements about atoms

are phrased in terms of variables ranging over a sort of atoms. An alternative is to

include concrete atoms in the syntax of the logic. Since atoms are indeed atomic,

that is, there are no compound expressions of atom sort, there may seem to be little

difference between a concrete atom and a variable of sort atom. But there is an

important difference: Two different variables x and y may, upon substitution, get

replaced by the same entity; whereas two different atoms a and b, upon permuta-

tion, always remain distinct relative to each other. The perspective of the presheaf

models of names and binding introduced by Fiore, Plotkin and Turi [9] is helpful

here: Variables obey a renaming discipline involving all functions between finite

sets, whereas atoms obey one involving only injective functions. In any case, the

use of concrete atoms enabled Cheney and Gabbay to develop a Gentzen-style ver-

sion of nominal logic with much better proof-theoretic properties than the original

version—see [13,14,5]. A careful use of concrete atoms is also an important feature

of the work on nominal unification [34] and logic programming [4,6]. For example,

restricting “swapping terms” (t t′) · t′′ to just be of the form (a a′) · t′′ where a and

a′ are concrete atoms, allows one to restrict the syntactic occurrence of swapping

to just the variables-with-suspended-permutations, π x, that were first introduced

in the work on nominal unification [34] and that play an important role here.

The work most closely related to the results presented here is that on nominal

algebra by Gabbay and Mathijssen [16,15]. This takes the notion of nominal sig-

nature and the language of nominal terms from [34,8] and develops an extension of

equational logic closely related to the one presented here. The main difference is

that their theory of nominal algebra treats freshness as a subsidiary notion: Their

nominal algebraic theories can contain equational axioms (conditioned by freshness

assumptions about variables), but not freshness axioms. Thus in the system of [15]

freshness respects only definitional equality, but not logical equality. In other words,



the rule

∇ ` a ≈� t : s ∇ ` t ≈ t′ : s

∇ ` a ≈� t′ : s

is not valid for Gabbay and Mathijssen’s nominal algebra, whereas it is derivable

in our nominal equational logic (from rule (trans) in Figure 5, bearing in mind that

we regard “a ≈� t : s” as an abbreviation for “{a} ≈� t ≈ t : s”, and “t ≈ t′ : s” as an

abbreviation for “∅ ≈� t ≈ t′ : s”). So, unlike here, nominal algebra does not provide

a complete axiomatisation of the semantic notion of freshness within nominal sets.

On the other hand, in the Gabbay-Mathijssen approach, their intentional notion of

freshness remains a simple, decidable property that is used as a side condition on

equations. This seems quite natural from the point of view of term-rewriting; and

Gabbay and Mathijssen give several interesting examples to support the claim that,

from the point of view of logical theories, giving equality priority over freshness in

this way is sufficiently expressive. Partly this expressivity is due to the fact that

they make use of the atom-abstraction arities ([α]s) and terms ([a]t) that are part

of the notion of nominal signature [34, Definitions 2.1 and 2.3].

One consequence of our willingness to consider logical rather than just defini-

tional freshness is that we are able to avoid the need for special syntax for atom-

abstractions and can use arities and terms that are remarkably close to those of

ordinary equational logic. For example, consider the NEL-theory for λ-calculus

from Example 6.2, where the fact that λ-abstraction is a binder is axiomatised with

a family of operation symbols La of type tm → tm (with a ranging over the set Atomν

of atoms of sort ν) together with the freshness axiom (α). Whereas in nominal al-

gebra, this is accomplished with a single operation symbol L of type [ν]tm → tm

and no axiom is needed (because of the logical properties of the atom-abstraction

arity [ν]tm). Here, as well as wanting to completely axiomatise semantic freshness,

we have striven for simplicity: The sorts, terms and rules of Nominal Equational

Logic are as close to those of ordinary equational logic as we can make them. We

believe this is a reasonable starting point for the study of “nominal universal al-

gebra”. However, atom-abstraction arities could be added to NEL and probably

should be, since making binding information part of a signature rather than part

of a theory’s axioms is a good idea. Indeed, it would be interesting to try to add

more complicated notions of binding specification, such as the one used by Pottier

in his Cαml system [26].

A second way in which the NEL-signatures introduced in this paper differ from

the nominal signatures of [34,8] is that we have avoided the use of sorts of atom in

arities. So for example in a nominal signature for λ-calculus, object-level variables

are introduced via a single operation symbol V : ν → tm that is applied to nom-

inal terms of atom sort ν (which may be atoms or variable suspensions); whereas

in the corresponding NEL-signature (Example 3.1) one has a family of operation

symbols Va : [] → tm indexed by atoms a ∈ Atomν . Not regarding sorts of atom

to be “data” sorts simplifies the notion of arity at the expense of increasing the

number of operation symbols. Thus the notion of finitely presented NEL-signature

is more complicated than the corresponding notion for nominal signatures; we do



not study this notion here. NEL’s simple notion of arity also means that we avoid

the use of variables ranging over sorts of atoms; it remains to be seen whether this

simplification really restricts expressive power.

Nominal equational logic is intended to capture the algebraic properties of fresh-

ness of names in general. From this perspective the running example of λ-calculus

that we have used in this paper is rather special, since it concerns the use of named

object-level variables and axioms for properties of substitution of terms for vari-

ables. This particular use of names is much studied in the literature, including from

an algebraic perspective. For example Pigozzi and Salibra have studied a notion of

lambda abstraction algebra [23,28] that should be compared with the NEL-theory

of Example 6.2.

This paper is a first step towards developing a “nominal” version of universal

algebra. We believe that the results presented here, and the work of Gabbay and

Mathijssen mentioned above, show that the equational properties of freshness are

a potentially useful tool for studying computer science languages involving names.

However, much remains to be understood. In particular, the category of nominal

sets has a “freshness tensor product”

X ⊗ Y , {(x, y) ∈ X × Y | x and y have disjoint support}

that is clearly relevant to the algebraic properties of freshness (cf. [29]). The form

of generalised algebra that uses finitary enriched monads [18,27] has already been

applied to presheaf categories [31] and nominal sets [10] to study algebraic proper-

ties of binding, name-restriction and renaming. The connection between our quite

syntactic approach and this form of generalised algebra, and categorical algebra in

general, needs to be addressed.
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