
New Foundations for Fixpoint Computations

Roy L. Crole* Andrew M. Pittst
Computer Laboratory, University of Cambridge CB2 3QG, England

Abstract

This paper introduces a new higher-order typed
constructive predicate logic for fixpoint compu-
tations, which exploits the categorical semantics
of computations introduced by Moggi [8] and
contains a strong version of Martin-Lof’s ‘iter-
ation type’ [ll]. The type system enforces a sep-
aration of computations from values. The logic
contains a novel form of fixpoint induction and
can express partial and total correctness state-
ments about evaluation of computations to val-
ues. The constructive nature of the logic is wit-
nessed by strong metalogical properties which
are proved using a category-theoretic version of
the ‘logical relations’ method.

1 Computation types

It is well known that primitive recursion at
higher types can be given a categorical character-
isation in terms of Lawvere’s concept of natural
number object [6]. We show that a similar char-
acterisation can be given for general recursion via
fixpoint operators of higher types, in terms of a
new concept-that of a fixpoint object in a suit-
ably structured category. This notion was partly
inspired by contemplation of Martin-Lof’s non-
standard ‘iteration type’ in his domain theoretic
interpretation of type theory [ll]. However, the
key ingredient which allows the formulation of
the concept of fixpoint object is the treatment of

*Research supported by a SERC Research

‘Research supported by the CLICS project (EEC ES-
Studentship.

PRIT BR nr 3003).

computations using monads introduced by Moggi
[SI, where there is a distinction between the ele-
ments of a type a and computations of elements
of that type-the latter being grouped into a
new type T (a) . Moggi’s computational meta-
language XMLT [lo], contains the following for-
mation rules:

a type

M E a
Val (M) E T (a)

Let x+-E.F(x) E T(P)

Note These rules, and the others which appear
in this paper, are presented in natural deduc-
tion style, with discharged hypotheses enclosed
in square brackets. Since there are several unfa-
miliar variable binding operations in the syntax,
we will also adopt Martin-Lof’s theory of expres-
sions and arities-a Pq-lambda calculus over a
single ground type of expressions with abstrac-
tion denoted (x) e , application denoted f (e) and
a multiple application such as (f (e)) (e ’) abbre-
viated to f (e ,e ’) ; see [la], for example. Finally,
it should be noted that our syntax is a slight
variant of Moggi’s.

Intuitively, Val (M) is the value M regarded as
a trivial computation which immediately eval-
uates to itself; and Let x e E . F (x) denotes the
computation which firstly tries to evaluate E to
some value x E a and then proceeds to evaluate

CH2897-7/90/0000/0489$01 .OO 0 1990 IEEE 4H9

F (x) . These intended meanings are captured by
three equational axioms:

Let x+Val(M).F(x) = F (M)
Letx+E.Val(x) = E

Let y+(Let x+E.F(x)).G(y) =
Let x-e E . Let y e F (z).G(y)

In addition, XMLT extends the simply typed
lambda calculus: there are function types a-+@
with lambda abstractions Xz E a.F(x) and ap-
plications (M N) satisfying the usual ,8 and 77
equalities. The system also contains product
types a x /? with (surjective) pairing (M , N) and
projections Fst(M), Snd(M); and it contains a
type unit with unique element () E unit.

The categorical counterpart of this basic meta-
language is the notion of a ‘Cartesian closed cat-
egory equipped with a strong monad T’ [8, sec-
tion 21. We shall refer to such structures as let
Cartesian closed categories, or just let-ccc ’s. Such
categories can be presented very simply using a
language of categorical combinators for XMLT,
extending Curien’s ccc combinators for the sim-
ply typed lambda calculus [2].

Definit ion 1.1 The let-categorical combinators
are defined by the following grammar:

A typing statement for these combinators takes
the form F : a + P ; an equality statement takes
the form F = F‘ : a + P. The rules for deduc-
ing these statements are those for ccc’s (see [6])
augmented by the following rules (where F x G
abbreviates (Fst; F, Snd; G)):

0 q : a + T (a) .

0 If F : a x P -+ T(y), then
Lift(F) : a x T(P) + T(y) (and
Lift(F) = Lift($’’) if F = F’).

(F x Id); Lift(G) = Lift((F x Id); G) :
0 If F : a i P and G : /3 x y -+ T(S) , then

a x T (7) -i T(S).
0 If F : a x p 3 T(y), then

(Id x 7); Lift(F) = F : a x /3 + T(y) .

0 Lift(Snd; 77) = Snd : a x T(P) -i T(P).
0 If F : a x ,B -+ T(y) and G : a x y --+ T(S) ,

then Lift((Fst,F); Lift(G)) =
(Fst, Lift(F)); Lift(G) : a x T(P) -+ T(S).

Propos i t i on 1.1 There are mutually inverse
translations between the above combinators, F :
a ---t P, and XMLpterms, G, satisfying G(z) E
P [x E al.

Combining this proposition with the fact that
equational XMLT theories correspond to let-ccc’s
[lo], one concludes that the categorical combina-
tors give a simple presentation of this variety of
category; in particular, the action of T on mor-
phisms, the monad multiplication and the monad
strength are all definable from the combinators.
In terms of the XMLT language, the action of T
on a morphism F : a -+ /3 yields

T(F) %f Xe E T(a).Letz-ee.Val(Fz)
: T (a) -+ T(P) .

Similarly, the monad multiplication is defined by

pff - Xe’ E T(Ta).Let e+e’.e dzf

: T y a) + T (a)

and the monad strength is defined by

dzf
tff$ -

Xz E a x TP.Let ycSnd(z).Val((Fst(z),y))

: cr x T(P) -+ T (a x P) .

A concept which is intimately bound up with
the correspondence between the metalanguage
XMLT and let-ccc’s is functional completeness,
as used by Lambek and Scott [6] in the con-
text of ordinary Cartesian closed categories. Here
one must consider polynomial categories over let-
ccc’s and show that they are functionally com-
plete in a suitable sense.

Definit ion 1.2 Let C be a let-ccc and let a be
an object of C. The polynomial category C [X] is
specified by the following data:

0 The objects of C [X] are just the objects of
C.

490

0 The morphisms of C[X] are equivalence
classes of the let-categorical combinators
generated by the morphisms of C , together
with an indeterminate global element X :
unit + a. The equivalence relation is that
generated by the equality rules in defini-
tion 1.1 and the existing identities in C-
so that there is a canonical inclusion of let-
categories i : C - C [X] .

Theorem 1.1 (Functional Completeness)
Let C[X] be as above. For every morphism
U : ,8 + y in C[X] there is a unique mor-
phism A (U) : a x ,B --+ y in C such that
((();X),ld);A(U) = U . (In particular, each
global element of y i n C[X] is of the form X ; F
for some unique morphism F : a ---f y in C .)

It is possible to prove the functional complete-
ness result simply by calculation with the cat-
egorical combinators. Then one may derive
the correspondence between the metalanguage
and the category theory using the recipe de-
scribed for Cartesian closed categories by Lam-
bek and Scott [6]. We make the comment that
when specifying the metalanguage terms gener-
ated by a given category, terms Letx+E.U in
the metalanguage are instances of morphisms
(Id, E) ; Lift((Snd, Fst); A (U)) . When construct-
ing the category from the metalanguage, all mor-
phisms in the category are formed in the way one
would expect.

2 The fixpoint type

Definition 2.1 In a let-ccc, a fixpoint object is
specified by the following data:

An initial algebra 0 : T(f ix) + f i x for the
functor T(-) . Thus for any F : T (a) +

Q there is a unique It,(F) : fix + a with

A global element w : unit -+ T(f i x) which
is the equalizer of a ; 7 and the identity on
T(f iz) . In other words w is the unique fixed
point of 0 ; ~ : T(f i x) -+ T(f ix) : for any F :
a + T (f i x) , F = F ; (a ; 71) if and only if F =

(0; It@)) = (T (l t a (F)) ; F) : T(fi2) -+ a.

0 ; w .

The usual category-theoretic considerations
imply that the structure fix, U , w is determined
uniquely up to isomorphism, within the given
let-ccc, by the above properties. One should
also note that U , being the structure morphism
for the intial algebra of an endofunctor, is it-
self an isomorphism. (This fact will be used
later in Proposition 3.1.) Using the relation be-
tween syntax and category theory discussed in
section 1, one can translate the definition of a
fixpoint object into a corresponding extension of
the metalanguage XMLT. This entails adding a
new type fix, together with the term-forming and
equality rules shown in Figure 1. The last rule
in this figure, which expresses the uniqueness of
It,(F), will be redundant in the full FIX logic of
section 3: it is derivable from the induction rule
for fix introduced in that section.

Fixpoint objects are so called because they en-
able one to define fixpoint combinators at all
types of the form a+T(P).'

Proposition 2.1 (Definability of fixpoint
combinators) I n the presence of a fixpoint ob-
ject, one may define a combinator

which satisfies (Ya,p F) = (F (Y,,p F)) for all
F E (a+TP)+a+TP. Indeed, defining

ya,p = (F)lta+Tp(F, u (w))

where F is (e) (X x E cr.Let f -+e .F(s , f)) , then

[f E a+TP,x E a]
F(f ,z) E TP

and

'In Moggi's computational semantics, a program of
type p with a parameter of type (Y has a term of type
a+T(,B) for its denotation; thus t o interpret recursively
defined programs, fixpoint combinators are only needed
at such types.

49 I

[x E T(Q:>l
E = V a l (a (E)) F(z) E Q: E E T(f i~)

w = Val(a(w)) E = w It,(F, .(E)) = F(Let neE.Val(l t ,(F, n)))

[x E T(4I [. E fix1 [e E T(fifiz)l
F (x) E a G(n) E cr G (a (e)) = F(Let n e e . V a l (G (n))) N E fix

G (N) = It,(F, N)

Figure 1: Rules for fix.

In order t o extend the correspondence between
category theory and metalanguage, discussed in
the previous section, to include fixpoint objects
and types, one needs the following result about
fixpoint objects in polynomial categories.

Proposition 2.2 Let C be a let-ccc with a fix-
point object. Then C [X] also has a fixpoint ob-
ject, given b y i @ ~) , where i : C - C [X] is the
canonical inclusion functor.

Proof The main idea for the proof is sketched.
Suppose that F : T(P) + /3 is a morphism in
the polynomial category. By the functional com-
pleteness result, the theorem will be true if we
can find a unique morphism I t (F) , which sat-
isfies R(a; It($‘)) = A(Lift(lt(F); q) ; F) , which
on expansion of the definitions yields (Id x
U) ; A (l t (F)) = (Fst, J ; Lift(1; A(lt(F)); 7)); A (F) ,
where 1 and J are certain canonical isomor-
phisms. This equality holds in C; using Cartesian
closedness and the fixpoint object, we obtain the
result.

0

Adding a fixpoint type, coproduct types Q: + p
and a natural number type nut to the metalang-
uage XMLT, we arrive at a system which extends
Godel’s system T [4, Chapter 71 but which also
admits sound translations of Plotliin’s PCF [14]

(with either a call-by-value or a call-by-name op-
erational semantics [9, section 51). A domain-
theoretic model of this system is provided by the
following category.

Definition 2.2 Let Cpo denote the ccc whose
objects are posets possessing joins of countably
infinite chains, and whose morphisms are Scott-
continuous functions, i.e. monotonic functions
preserving joins of countably infinite chains. The
objects of Cpo are not required to possess a least
element; we will refer t o them as bottomless cpos
in this paper.

The operation of adjoining a least element to
D E Cpo to give the lifted cpo DI = { [d] I d E
D} U {I} gives a strong monad on Cpo. In this
case Cpo possesses a fixpoint object, namely the
CPO

with a : R l -+ R the continuous function send-
ing I to 0, [n] to n + 1 and [TI t o T; and with
w = [TI E RI. In this case, the combinators Y,,p
defined above are indeed the usual least fixed
point operators.

R = (0 C 1 C . . . T},

3 The FIX logical system

The definition of an initial algebra a : T(R) -+ R
for a functor T (-) contains both an existence and

492

a uniqueness part. The uniqueness part amounts
to a form of induction principle, namely:

Initial 7’-algebra Induction Principle.
(Plotkin, Lehmann-Smyth [7, section 5.21.) To
show that a subobject i : S 4 R is the whole
of R, it suffices to show that the composition
T(i) ; U : T (S) + R factors through i : S 4 0.

When the functor is (-) + 1 on the category
of sets, the initial algebra is the natural num-
bers and the above statement is equivalent to
the usual principle of mathematical induction.
What about when the functor is lifting on Cpo?
Restricting attention to subobjects of domains
which are specified by inclusive subsets (those
subsets of a cpo which are closed under taking
joins of countable chains), we can use the fact
that whenever i : S 4 R is an inclusive subset
of the cpo R = (0 C 1 C . . . C T}, then (i) ~ :
SI + RI is just the inclusive subset of R I given
by {e E RI 1 Vd E R.[d] = e 3 d E S } . Then the
initiality property of R yields the following form
of the induction principle, with S R inclusive:

Ve E Rl.(Vn E R.[n] = e 3 d E S) 3 .(e) E S
Vn E R.n E S

Just as least fixed points are definable using the
universal property of the initial (-)*-algebra R,
so is Scott’s induction principle for least fixed
points [16] derivable from the above rule.

In order to formulate this induction principle
for a fixpoint object within the metalanguage,
we introduce a constructive logic, called FIX, of
properties of terms over the metalanguage. Thus
there are strong connections between FIX and
the traditional ‘axiomatic domain theory’ of LCF
[13] and to Plotkin’s approach to denotational se-
mantics using partial continuous functions [15].
However, our logic is inherently more construc-
tive, since it is based on the notion of evaluation
of a (possibly non-terminating) computation to
a value, rather than on non-termination and on
information ordering between (possibly partial)
computations.

Definition of the FIX logic: The FIX propo-
sitions form a fragment of first-order intuition-

istic predicate calculus [3] with equality, con-
junction and universal quantification (over ele-
ments of a given type), together with the follow-
ing predicate constructors which implicitly con-
tain forms of implication, disjunction and exis-
tential quantification.2

Given a proposition @(z) about z E a
and a term E E T (a) , there is a proposi-
tion Vx-+E.@(x) whose intended meaning
is ‘Vz E o.(Val(x) = E 3 @(x))’, together
with natural deduction rules which capture
this intended meaning.

Given a proposition @(z) about z E Q

and a term E E T (a) , there is a proposi-
tion 3z+E.@(2) whose intended meaning
is ‘3% E a.(Val(z) = E & @(z))’, together
with natural deduction rules which capture
this intended meaning.

Given propositions @(z) and Q(y) about
x E a and y E 0, and a term E E a+p, there
is a proposition (@ + @) (E) whose intended
meaning is ‘32 E a.(lnl(z) = E & a(.)) v
3y E P.(lnr(y) = E & @(y))’, together with
natural deduction rules which capture this
intended meaning. (In1 and Inr are the co-
product insertions.)

There are two further rules for the ‘bounded’
quantifiers which make them (first-order) exam-
ples of Moggi’s concept of a T-modal operator
[lo, Definition 4.81:

@(MI
Vz +Val(M) .@(z)

vz -+ E .Vy+F(z). Q [y)
and

Vy+ (Let z +E .F(2)) .@ (y) *

In fact, modulo the other rules, the first of the
above rules is equivalent to imposing Moggi’s
‘mono condition’ on the monad, i.e.

Val(M) = Val(M’)
M = M‘ 7

’The necessity of restricting implication, disjunction
and existential quantification is discussed in Remark 3.1.

49 3

[n E nut, @(.)I [e E T(f ix) ,Vn+e.@(n)]
@(O) @(Suc(n)) N E nut @(a(e>> N E f i x

@ (N I @ (N I

Figure 2: Rules for nut and fix induction.

and the second rule is equivalent to

(Let x e E . F (x)) = V a l (N)

The definition of the FIX logic is completed
by induction rules for the natural number type
nut and for the fixpoint type fix, as shown in
Figure 2.

Theorem 3.1 (Consistency)
Bottomless cpos, Scott-continuous functions and
inclusive predicates form a model of the FIX log-
ical system.

Remark 3.1 The induction rule for nut is just
the usual principle of mathematical induction.
The induction rule for fix can be rendered in-
formally as: to prove that a property @(.) holds
of all elements n in fix, it is suficient to prove
for all computations e of an element of fix that
@ (o (e)) holds i f whenever e evaluates to a vahe,
that value satisfies @. This principle is consis-
tent (by Theorem 3.1), but only because the
FIX propositions have limited forms. In fact, ex-
tending the FIX logic with unrestricted intuition-
istic negation, implication or existential quantifi-
cation renders it inconsistent. A proof of this can
be obtained by mimicking within our framework
the proof that inclusive subsets of cpos are not
in general closed under these operations. Here is
the proof for the case of intuitionistic implication
(and negation):

Proposition 3.1 Extending the FIX logic with
intuitionistic implication renders the system in-
consistent.

Proof Since FIX contains falsity (false), adding
implication (a 3 q) means that one also has

negation (l@ G (@ 2 false)). So consider the
proposition @ (n) ~ (a (w) = n) about n E fix.
(In the cpo model, the denotation of this propo-
sition would have to be the largest inclusive sub-
set of R not containing T-but no such subset
exists.)

Now this @ (n) satisfies the hypotheses of the
induction principle for fiz in Figure 2. For if
Vn+e. l (a(w) = n) holds then l (w = e) , since
otherwise we could deduce Vn+.w.i(a(w) = n),
which is false because Val(n) = w holds for n =
a(w) . However, as was noted after Definition 2.1,
(T is provably a bijection: so from i (w = e) we
deduce l (a (w) = a (e)) , i.e. @ (a (e)) , as required.

So the induction principle for fix entails that
@(n) holds of all n E fix, and in particular of
(~ (w) , which is a contradiction.

0

The above proof gives weight t o the feel-
ing that the FIX logic resembles a calculus of
‘formally inclusive’ predicates. We next state
metatheorems about our logic of fixpoint com-
putations which witness its constructive nature
and suggest its potential as a programming logic.

Theorem 3.2 (‘Existence Property’) If E
is a closed term of type T(cy), then 3 x e E . @ (x)
is provable in FIX if and only if there is a
closed term M of type cy for which @ (M) and
E = Val(M) are provable. (In other words, a for-
mal proof that E evaluates to a value satisfying
@ necessitates the existence of a term denoting
that value.)

Theorem 3.3 (‘Disjunction Property’) If
E is a closed term of coproduct type cy + p, @
and @ are properties of cy and ,D and (@ + Q) (E)
is provable in FIX, then either E = I n l (M) and
@ (M) are provable for some closed term M of

494

type a , or E = Inr(N) and @ (N) are provable
for some closed term N of type p.
The Existence Property enables one to produce
closed terms of type nut from a computation of
a number (i.e. a closed term of type T (nut)) to-
gether with a proof that the computation con-
verges. There remains the possibility that a
closed term of type nut is not a value, i.e. a stan-
dard numeral. In other words, the strong univer-
sal property of f i x looks as though it might create
‘non-standard’ natural numbers and hence mix
the ‘total’ world of primitive recursive functions
with the ‘partial’ world of unrestricted fixpoint
computations at T-types. However, this is not
so:

Theorem 3.4 (Standardness of nut)
Every closed term of type nat in the logic FIX is
provably equal to a standard numeral Sucn(0).

The method of proving these theorems is de-
scribed in the next section.

4 Glueizg and Logical Rela-
t ions

Before further discussion of the main issues of
this section, we shall describe briefly two results
which form a bridge between previous work and
new ideas involving logical relations.

Lemma 4.1 Let r : 2) 4 C be a functor pre-
serving finite products from a let-ccc to a ccc with
finite limits. Then the arrow category (C 1 r),
which is called the glued category and denoted
Gl(I’) , is also a let-ccc. Additionally, the second
projection functor Pz : G l (r) --+ D preserves the
let-ccc structure.

The objects of G l (r) are morphisms in C of the
form F : CY i I’(6); the strong monad struc-
ture on G l (r) is given on objects by sending
F : CY + I’(6) to F ; r(7) : CY -+ T(6) . Indeed, the
strong monad acts on the ‘second object coordi-
nate’ throughout the proof; details of the calcu-
lation are omitted. Using this lemma a.nd a suit-
able version of Freyd’s glueing argument (see [6,
p 2501 and [5]) , one obtains the following corol-
lary:

Corollary 4.1 Let C be a category, and FC the
freely generated let-ccc. Then the canonical func-
tor C --+ FC is full and faithful. Thus a closed
term of ground type in the XMLT metalanguage
(over some ground signature) always converts to
a ground term.

Our original aim was to consider proofs of Theo-
rems 3.2, 3.3 and 3.4 in the manner that, for ex-
ample, glueing may be used to prove disjunction
and explicit definability for intuitionistic pred-
icate logic. It soon became clear that such a
naive approach will not work in the presence of
a fixpoint type, and so the following method was
developed. We exploit the fact that FIX theories
correspond to the following categorical structure:

a A Cartesian closed category C, which has fi-
nite coproducts and a natural number ob-
ject. (The objects and morphisms of C are
used to model the FIX types and terms.)

0 A strong monad T on C whose unit com-
ponents 7, : CY --f T (a) are all monomor-
phisms, and for which a fixpoint object ex-
ists.

0 A C-indexed poset, ’Pc, which is used to
model the FIX propositions, and hence
which is closed under a certain number
of completeness and adjointness conditions
corresponding t o the FIX logical rules for
the propositional connectives and quantifier
forms. (For lack of space, these conditions
will not be given here; however, they are
fairly standard ones from categorical logic,
adapted to the particular forms of proposi-
tion occurring in the FIX logic.)

Call such a structure a FIX-hyperdoctrine; a mor-
phism of FIX-hyperdoctrines is specified by a
functor and an indexed monotone function, pre-
serving the structure mentioned above. The
pure FIX logic (regarded as the empty the-
ory, with no extra-logical axioms) corresponds
to such a FIX-hyperdoctrine (.F,’PF), which is
initial amongst all such. The category Cpo to-
gether with the Cpo-indexed poset assigning to
each cpo its poset of inclusive subsets, forms
a FIX-hyperdoctrine (Cpo , PT). Hence there is

495

a (unique) FIX-hyperdoctrine morphism 1-1 :
(F,P7) + (C p o ’ P z) , which assigns cpo mean-
ings to the FIX types, cpo morphisms to the
FIX terms and inclusive predicate meanings to
the FIX propositions.

Let I’ : F + C p o denote the functor which as-
signs to each object a E F its set r (a) of global
elements equipped with the discrete partial or-
der. We construct a new category L r (r) , by the
following ‘logical relations’ construction:

0 An object of Lr(I‘) is a triple (D , d , a) ,
where D E Cpo, a E 3 and _a is an inclusive
subset of D x r (a) .

e A morphism (D,g ,cx) -+ (D’,g’,a‘) in
Lcr(I’) is a pair (4 , F) , where 4 : D --f D’
in Cpo, F : Q +. a’ in 3) satisfying the fol-
lowing condition:

Vd E D, M E rcu.(d a M 3 4 (d) a ’ (M ; F)) .

There is a strong monad on L r (r) which sends
an object (D , g , a) to the object (Dl,g’,Tcu),
where for all e E Dl and E E r(Tcr), e _a’ E if
and only if Vd E D.[d] = e 3 3M E I‘(a).(d I?
M & M ; qa = E).The rest of the strong monad
structure is specified ‘componentwise’ from F
and Cpo. There is also a Lr(I’)-indexed poset
whose fibre over an object (D, a , a) consists of
triples (S , a‘, Q!) , with S an inclusive subset of
D, Q! E P F (~) and _a‘ an inclusive subset of
S x { M E r (a) 1 @ (M) is provable}. These
triples are ordered componentwise.

The above construction produces a new
FIX-hyperdoctrine (Lr(I’), P,r-(r)). It is
easy to see that there are FIX-hyperdoctrine
morphisms PI : (L r (I ’) , P q r)) -+ (Cpo,Pz) and
PZ : (Lr(I’) , P L ~ (~)) -+ (3, PF) given by first and
second projections. Then the initiality of
(F, PF) implies there is a FIX-hyperdoctrine
morphism 1 : (3 , p ~) ---f (Lr(I’),PLr(rl) whose
composition with P2 is the identity and whose
composition with Pl is the morphism [-I :
(F , P F) + (Cpo,Pz) mentioned above. Theo-
rems 3.2, 3.3 and 3.4 follow by examining the
particular form of the relations obtained when
I is applied to the natural number object, to

coproducts and to predicates formed using the
bounded existential quantifier.

Note that the functor I’ preserves almost
none of the structure of a FIX-hyperdoctrine
and yet magically (,Cr(I’))PL-(r)) is a FIX-
hyperdoctrine, allowing us to exploit the initial-
ity property of (F,P,). This is similar magic
to Freyd’s categorical glueing argument. Our
category-theoretic method is related to logical
relations in the same way that Freyd’s glueing
construction is related to realizability.

5 Concluding remarks and fur-
ther directions

(i) The Existence Property expresses a formal
adequacy of the FIX logic for the metalang-
uage. A corollary of the above proof is
the model-theoretic adequacy of C p o for the
metalanguage: given a closed term E of type
T (a) , it is provably equal to a value Val(M)
(M a closed term of type a) if and only if
its C p o interpretation [E] E [T(a)] = [al l
is not 1.

(ii) The predicate z e e [z E a , e E T(a)] of
evaluation is implicit in FIX, but is treated
in a very ‘extensional’ way as equivalent to
Val(z) = e. It is possible to envisage a
weaker logic than FIX (and a correspond-
ing kind of categorical structure) in which
z+e [x E a , e E T(a)] is an atomic predi-
cate satisfying

M e E N - + F (M)
M-+Val(M) N-+(Let z-+E.F(z))

and in which there are modified rules for the
bounded quantifiers.

(iii) FIX is not an ‘integrated’ logic-proofs of
propositions are external to the system. Un-
doubtedly something to aim for is a sys-
tem combining features of FIX with those
of the Calculus of Constructions [l], obtain-
ing both the ‘terms-as-computations’ and
‘terms-as-proofs’ paradigms in a single (con-
sistent!) system.

496

(iv) FIX establishes a novel approach to fixed
point equations at the level of functions.
We plan to investigate whether this ap-
proach extends to the practically important
level (for the semantics of programming lan-
guages) of fixed point equations for types.

References

[l] T.Coquand and G.Huet, The Calculus of
Constructions, Information and
Computation 76 (1988) 95-120.

[a] P.-L.Curien, Categorical Combinators,
Sequential Algorithms and Functional
Programming (Pitman, London, 1986).

[3] M.Dummett, Elements of Intuitionism
(Oxford University Press, 1977).

[4] J.-Y.Girard, Proofs and Types (Cambridge
University Press, 1989) (translated and
with appendices by P.Taylor and
Y.Lafont).

[5] Y .Lafont, Logiques, Cate'gories et
Machines, Ph.D. thesis, Univ. Paris VII,
1988.

[6] J.Lambek and P.J.Scott, Introduction to
Higher Order Categorical Logic, Cambridge
Studies in Advanced Mathematics 7
(Cambridge University Press, 1986).

[7] D.J.Lehmann and M.B.Smyth, Algebraic
Specification of Data Types: A Synthetic
Approach, Math. Systems Theory 14(1981)
97-139.

[81 E. Moggi , Compu t at ional la in bda- calcul us
and monads, Proc. 4th Annual Symposium
on Logic in Computer Science, Asilomar
CA (IEEE Computer Society Press,
Washington, 1989), pp 14-23.

[9] E.Moggi, Computational lanibda-calculus
and monads, LFCS Technical Report
88-66, University of Edinburgh, 1988.

[lo] E.Moggi, Notions of Computations and
Monads. memint. 1989.

111 P.Martin-Lof, Notes on the domain
 heo ore tic interpretation of type theory,
Proc. Workshop on Semantics of
Programming Languages, Chalmers Univ.
(1983).

121 B.Nordstrom, Mwtin-Lof 's Type Theory as
a Programming Logic, PMG Report 27,
Chalmers University, 1986.

[13] L.C.Paulson, Logic and Computation
(Cambridge University Press, 1987).

[14] G.D.Plotkin, LCF considered as a
programming language, Theoretical
Computer Science 5(1977) 223-255.

[15] G.D.Plotkin, Denotational semantics with
partial functions, unpublished lecture notes
from CSLI Summer School (1985).

[16] D.S.Scott, A type-theoretic alternative to
CUCH, ISWIM, 0 W H Y , unpublished
manuscript, University of Oxford, 1969.

497

