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Abstract. This paper is concerned with the form of typed name binding used by the
FreshML family of languages. Its characteristic feature is that a name binding is repre-
sented by an abstract (name,value)-pair that may only be deconstructed via the generation
of fresh bound names. The paper proves a new result about what operations on names can
co-exist with this construct. In FreshML the only observation one can make of names is
to test whether or not they are equal. This restricted amount of observation was thought
necessary to ensure that there is no observable difference between alpha-equivalent name
binders. Yet from an algorithmic point of view it would be desirable to allow other oper-
ations and relations on names, such as a total ordering. This paper shows that, contrary
to expectations, one may add not just ordering, but almost any relation or numerical
function on names without disturbing the fundamental correctness result about this form
of typed name binding (that object-level alpha-equivalence precisely corresponds to con-
textual equivalence at the programming meta-level), so long as one takes the state of
dynamically created names into account.

1. Introduction

FreshML and the language systems that it has inspired provide some user-friendly
facilities within the context of strongly typed functional programming for computing with
syntactical data structures involving names and name binding. The underlying theory
was presented in [PG00, SPG03] and has been realised in the Fresh patch of Objective
Caml [Shi05b]. FreshML has also inspired Pottier’s Cαml tool [Pot05] for Objective Caml
and Cheney’s FreshLib library [Che05] for Haskell. The approach taken to binding in all
these works is “nominal” in that the user is given access to the names of bound entities
and can write syntax manipulating programs that follow the informal practice of referring
to α-equivalence classes of terms via representatives. However, in FreshML the means of
access to bound names is carefully controlled by the type system. It has been shown [Shi05a,
SP05b] that its static and dynamic properties combine to guarantee a certain “correctness
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type atm
type α bnd
val fresh : unit → atm
val bind : atm ∗ α → α bnd
val unbind : α bnd → atm ∗ α
val (=) : atm → atm → bool

Figure 1: A signature for name binding.

of representation” property: data structures representing α-equivalent syntactical terms
(that is, ones differing only in the names of bound entities) always behave the same in any
program. So even though programs can name names, as it were, α-equivalence of name
bindings is taken care of automatically by the programming language design.

Of course such a correctness of representation property depends rather delicately upon
which operations on bound names are allowed. At the heart of this approach to binding
is an operation that we call generative unbinding. To explain what it involves, consider a
simplified version of Fresh Objective Caml with a single type atm of bindable names and
a parametric family of types α bnd classifying abstractions of single names over values of
type α. To explain: both atm and α bnd are abstract types that come with the signature
of operations shown in Figure 1. The closed values of type atm are drawn from a countably
infinite set A of symbols that we call atoms. Programs only get access to atoms by evaluating
the expression fresh() to get a fresh one; and hence program execution depends upon a state
recording the atoms that have been created so far. Given a type τ , closed values of type τ bnd
are called atom bindings and are given by pairs «a»v consisting of an atom a : atm and a
closed value v : τ . Atom bindings are constructed by evaluating bind(a,v). Fresh Objective
Caml provides a very convenient form of generative pattern-matching for deconstructing
atom bindings. To keep things simple, here we will avoid the use of pattern-matching and
consider an equivalent mechanism for deconstructing atom binding via an unbind function
carrying out generative unbinding: unbind«a»v evaluates by first evaluating fresh() to
obtain a fresh atom a′ and then returning the pair (a′ , v{a′/a}), where in general v{a′/a}
denotes the value obtained from v by renaming all occurrences of a to be a′. The instance
of renaming that arises when evaluating unbind«a»v is special: the fresh atom a′ does
not occur in v and so v{a′/a} is equivalent to the result of applying to v the semantically
better behaved operation of swapping a and a′. Although implementing such an atom
swapping operation on all types of values is the main extension that the Fresh patch makes
to Objective Caml, we have not included a swap : atm → atm → α → α operation in the
signature of Figure 1. This is because it is possible for users to define atom swapping
themselves for specific types on a case-by-case basis. Although this approach has some
limitations, is enough for our purposes here. (The approach is more useful in the presence
of Haskell-style type classes—see [Che05].)

The type αbnd is used in data type declarations in the argument type of value construc-
tors representing binders. To take a familiar example, the terms of the untyped λ-calculus
(all terms, whether open or closed, with variables given by atoms a ∈ A)

t ::= a | λa.t | t t
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can be represented by closed values of the type term given by the declaration

type term = V of atm
| L of term bnd
| A of term ∗ term .

(1.1)

The value ptq : term representing a λ-term t is defined by

paq , V a

pλa.tq , L «a»ptq

pt1 t2q , A(pt1q , pt2q)

(1.2)

and satisfies:

Correctness of Representation: two λ-terms are α-equivalent, t1 =α t2,
iff pt1q and pt2q are contextually equivalent closed values of type term,
i.e. can be used interchangeably in any well-typed Fresh Objective Caml pro-
gram without affecting the observable results of program execution.

Since it is also the case that every closed value of type term is of the form ptq for some
λ-term t, it follows that there is a bĳection between α-equivalence classes of λ-terms and
contextual equivalence classes of closed values of type term. The Correctness of Representa-
tion property is not easy to prove because of the nature of contextual equivalence, with its
quantification over all possible program contexts. It was established in [Shi05a, SP05b] us-
ing denotational methods that take permutations of atoms into account. The same methods
can be used to generalise from the example of λ-terms to terms over any nominal signature
in the sense of [UPG04].

Contribution of this paper. For the signature in Figure 1, the only operation on atoms
apart from bind is a test for equality: a=a′ evaluates to true if a and a′ are the same atom
and to false otherwise. Adding extra operations and relations for atoms may well change
which program phrases are contextually equivalent. Is it possible to have some relations
or operations on atoms in addition to equality without invalidating the above Correctness
of Representation property? For example it would be very useful to have a linear order
(<) : atm → atm → bool, so that values of type atm could be used as keys in efficient data
structures for finite maps and the like. We show that this is possible, and more. This is a
rather unexpected result, for the following reason.

The proof of the Correctness of Representation property given in [Shi05a, SP05b] relies
upon equivariant properties of the semantics, in other words ones whose truth is invariant
under permuting atoms. Atom equality is equivariant: since a permutation is in particular
bĳective, it preserves and reflects the value of a = a′. At first it seems that a linear order
on atoms cannot be equivariant, since if a < a′ is true, then applying the permutation
swapping a and a′ we get a′ < a, which is false. However, equivariance is a global property:
when considering invariance of the truth of a property under permutations, it is crucial to
take into account all the parameters upon which the property depends. Here there is a
hidden parameter: the current state of dynamically created atoms. So we should permute
the atoms in this state as well as the arguments of the relation. We shall see that it is
perfectly possible to have a state-dependent equivariant ordering for the type atm without
invalidating the Correctness of Representation property. Indeed we prove that one can
add any n-ary function from atm to numbers (or to booleans, for that matter) whose
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semantics is reasonable (we explain what is reasonable in Section 3), without invalidating
the Correctness of Representation property for any nominal signature.

We have to work quite hard to get this result, which generalises the one announced in
[SPG03] (with a flawed proof sketch) and finally proved in [SP05b, Shi05a]; but whereas
those works uses denotational techniques, here we use an arguably more direct approach
based on the operational semantics of the language. We obtain the correctness result (Theo-
rem 5.3) as a corollary of more general result (Propositions 5.7 and 5.10) showing that, up to
contextual equivalence, the type τ bnd behaves like the atom-abstraction construct of [GP01,
Sect. 5]. Along the way to these results we prove a Mason-Talcott-style “CIU” [MT91] char-
acterisation of contextual equivalence for our language (Theorem 4.4). This is proved using
Howe’s method [How96] applied to a formulation of the operational semantics with Felleisen-
style evaluation contexts [FH92], via an abstract machine with frame stacks [Pit02]. The
proof technique underlying our work is rule-based induction, but with the novel twist that
we exploit semantic properties of freshness of names that are based on the use of name
permutations and that were introduced in [GP01] and developed in [Pit03, UN05, Pit06].

2. Generative Unbinding

We use a version of FreshML that provides the signature in Figure 1 in the presence
of higher order recursively defined functions on user declared data structures. Its syntax is
given in Figure 2.

Variable binding. The syntax of expressions and frame stacks in Figure 2 involves some
variable-binding constructs. Specifically:

• free occurrences of f and x in e are bound in fun(f x = e);
• free occurrences of x in e are bound in let x = e′ in e;
• for i = 1..n, free occurrences of xi in ei are bound in match v with (C x1 → e1 | · · · |

C xn → en);
• free occurrences of x in e are bound in S ◦ (x.e).

As usual, we identify expressions and frame stacks up to renaming of bound variables. We
write fv(e) for the finite set of free variables of an expression e (and similarly for frame
stacks); and we write

e[v, . . . /x, . . .] (2.1)

for the simultaneous, capture avoiding substitution of values v, . . . for all free occurrences
of the corresponding variables x, . . . in the expression e (well-defined up to α-equivalence of
bound variables).

Reduced form. The expressions in Figure 2 are given in a “reduced” form (also called
“A-normal” form [FSDF93]), in which the order of evaluation is made explicit through
let-expressions. This is not essential: the use of reduced form makes the development
of properties of the language’s dynamics more succinct and that is mostly what we are
concerned with here. However, when giving example expressions it is convenient to use the
“unreduced” forms given in Figure 3.
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Variables f, x ∈ V countably infinite set (fixed)
Atoms a ∈ A countably infinite set (fixed)
Data types δ ∈ D finite set (variable)
Constructors C ∈ C finite set (variable)
Observations obs ∈ O finite set (variable)

Values v ∈ Val ::=
variable x

unit ()
pair (v , v)

recursive function fun(f x = e)
data construction C v

atom a
atom binding «v»v

Expressions e ∈ Exp ::=
value v

sequencing letx = e in e
first projection fst v

second projection snd v
function application v v
data deconstruction match v with (C x → e | · · · )

fresh atom fresh()
generative unbinding unbind v

atom observation obs v · · · v

Frame stacks S ∈ Stk ::=
empty Id

non-empty S ◦ (x.e)

States ~a ∈ State , finite lists of distinct atoms
Machine configurations 〈~a, S, e〉

Types τ ∈ Typ ::=
unit unit

pairs τ ∗ τ
functions τ → τ
data type δ

atoms atm
atom bindings τ bnd

Typing environments Γ∈ V
fin
→ Typ

Typing judgements
expressions & values Γ ⊢ e : τ

frame stacks Γ ⊢ S : τ → τ ′

Initial basis
natural numbers nat ∈ D

zero (Zero : unit → nat) ∈ C
successor (Succ : nat → nat) ∈ C

atom equality eq ∈ O (arity = 2)

Figure 2: Language syntax.
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(e, e′) , letx = e in letx′ = e′ in (x, x′) (x /∈ fv(e′), x′ 6= x)

λx. e , fun(f x = e) (f /∈ fv(e), f 6= x)

k e , letx = e in k x (k = C, fst, snd)

«e»e′ , letx = e in letx′ = e′ in «x»x′ (x /∈ fv(e′), x′ 6= x)

e e′ , letx = e in letx′ = e′ in xx′ (x /∈ fv(e′), x′ 6= x)

match e with (· · · ) , letx = e in match x with (· · · ) (x /∈ fv(· · · ))

if e then e′ else e′′ , match e with
(Zero() → e′ | Succ x → e′′)

(x /∈ fv(e′′)

fresh x in e , letx = fresh() in e

let «x1»x2 = e in e′ , letx = e in
letx′ = unbindx in
letx1 = fstx′ in
letx2 = sndx′ in e′

(x, x′ /∈ fv(e′)
x′ 6= x, x1 6= x2)

obs e1 · · · en , letx1 = e1 in
· · ·
letxn = en in obsx1 · · ·xn

(x1, . . . , xn /∈ fv(e1, . . . , en)
x1, . . . , xn distinct).

Figure 3: Some “unreduced” forms of expression.

Remark 2.1 (Object-level binding). As well as variables (standing for unknown values),
the language’s expressions and frame stacks may contain atoms drawn from a fixed, count-
ably infinite set A. As discussed in the introduction, atoms are used to represent names
in the object-level languages that are being represented as data in this programming meta-
language. In particular a value of the form «a»v is used to represent the object-level binding
of a name a in the value v. However, note that there are no atom-binding constructs at the
programming meta-level. The reader (especially one used to using lambda-abstraction to
represent all forms of statically-scoped binding) may well ask why? Why cannot we factor
out by « »-bound atoms and thereby trivialise (one half of) the Correctness of Representa-
tion result referred to in the Introduction? The reason is that it does not make semantic
sense to try to regard «a»(−) as a form of meta-level binding and identify all expressions up
to an α-equivalence involving renaming « »-bound atoms. For example, if a and a′ are two
different atoms, such an α-equivalence would identify fun(f x=«a»x) with fun(f x=«a′»x).
However, these are two semantically different values: they are not contextually equivalent
in the sense discussed in Section 4. For example, the operational semantics described below
gives observably different results (0 and 1 respectively) when we place the two expressions
in the context

let «x1»x2 = [−] a in eq x1 x2

(where eq ∈ O is the observation for atom-equality that we always assume is present—see
Remark 3). The reason for this behaviour is that variables in FreshML-like languages stand
for unknown values that may well involve atoms free at the object level. We may get capture
of such atoms within the scope of an atom-binding «a»(−) during evaluation. In the exam-
ple, we replaced the hole in [−] a with fun(f x = «a»x) and fun(f x = «a′»x) respectively,
yielding expressions that evaluate to «a»a and «a′»a—the first involving capture and the
second not; and such capturing substitution does not respect naive α-equivalence. So the
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Γ(x) = τ

Γ ⊢ x : τ Γ ⊢ () : unit

Γ ⊢ v1 : τ1 Γ ⊢ v2 : τ2

Γ ⊢ (v1 , v2) : τ1 ∗ τ2

Γ, f : τ → τ ′, x : τ ⊢ e : τ ′

Γ ⊢ fun(f x = e) : τ → τ ′

C : τ → δ Γ ⊢ v : τ

Γ ⊢ C v : δ

a ∈ A

Γ ⊢ a : atm

Γ ⊢ v1 : atm Γ ⊢ v2 : τ

Γ ⊢ «v1»v2 : τ bnd

Γ ⊢ e : τ Γ, x : τ ⊢ e′ : τ ′

Γ ⊢ let x = e in e′ : τ ′

Γ ⊢ v : τ1 ∗ τ2

Γ ⊢ fst v : τ1

Γ ⊢ v : τ1 ∗ τ2

Γ ⊢ snd v : τ2

Γ ⊢ v1 : τ → τ ′ Γ ⊢ v2 : τ

Γ ⊢ v1 v2 : τ ′

δ = C1 of τ1 | · · · | Cn of τn Γ ⊢ v : δ Γ, x1 : τ1 ⊢ e1 : τ · · · Γ, xn : τn ⊢ en : τ

Γ ⊢ match v with (C1 x1 → e1 | · · · | Cn xn → en) : τ

Γ ⊢ fresh() : atm

Γ ⊢ v : τ bnd

Γ ⊢ unbind v : atm ∗ τ

arity(obs) = k Γ ⊢ v1 : atm · · · Γ ⊢ vk : atm

Γ ⊢ obs v1 . . . vk : nat

Γ ⊢ Id : τ → τ

Γ, x : τ ⊢ e : τ ′ Γ ⊢ S : τ ′ → τ ′′

Γ ⊢ S ◦ (x.e) : τ → τ ′′

Notation:

• Γ, x : τ indicates the typing environment obtained by extending the finite partial function
Γ by mapping a variable x to the type τ (we always assume that x /∈ dom(Γ)).

• In the typing rule for match-expressions, the hypothesis “δ = C1 of τ1 | · · · | Cn of τn” refers
to the top-level data type declaration (2.2); in other words, the only constructors whose
result type is δ are C1, . . . , Cn and τi is the argument type of Ci (for i = 1..n).

Figure 4: Typing relation.

relation of contextual equivalence that we define in Section 4 does not contain this naive
α-equivalence that identifies all (open or closed) expressions up to renaming of « »-bound
atoms.1 However, we will show (Theorem 5.3) that when we restrict to closed expressions
representing object-level languages, then contextual equivalence does contain (indeed, co-
incides with) this form of α-equivalence: this is the correctness of representation result
referred to in the Introduction.

Data types and observations. The language defined in Figure 1 is parameterised by the
choice of a finite set O of function symbols that we call observations on atoms and whose
role is discussed in Section 3, by a finite set D of data type symbols, and by a finite set C of
constructor symbols. Each constructor C ∈ C is assumed to come with a type, C : τ → δ,
where τ ∈ Typ and δ ∈ D. The choice of D, C and this typing information constitutes an

1Since the problematic possibly-capturing substitution is part of the dynamics of FreshML, there remains
the possibility that the end results in the dynamics of expression evaluation can be made more abstract
by identifying them up to renaming bound atoms: see Remark 2.5. There are also less naive versions
of object-level α-equivalence that respect possibly-capturing substitution, such as the one developed in
[UPG04] involving hypothetical judgements about freshness of atoms for variables; contextual equivalence
and “contextual freshness” should form a model of this notion, but we do not pursue this here.
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ML-style top-level declaration of some (possibly mutually recursive) data types:

type δ1 = C1,1 of τ1,1 | · · · | C1,n1
of τ1,n1

...
and δm = Cm,1 of τm,1 | · · · | Cm,nm

of τm,nm
.

(2.2)

Here δi (for i = 1..m) are the distinct elements of the set D of data type symbols and
Ci,j (for i = 1..m and j = 1..ni) are the distinct elements of the set C of constructor
symbols. The above declaration just records the typing information C : τ → δ that comes
with each constructor, grouped by result types: δi appears as the result type of precisely
the constructors Ci,1, . . . ,Ci,ni

and their argument types are τi,1, . . . , τi,ni
. For the moment

we place no restriction on these types τi,j: they can be any element of the set Typ whose
grammar is given in Figure 2. However, when we consider representation of object-level
languages up to α-equivalence in Section 5, we will restrict attention to top-level data type
declarations where the types τi,j do not involve function types.

We consider observations on atoms that return natural numbers. (The effect of admit-
ting some other types of operation on atoms is discussed in Section 6.2.) So we assume
D always contains a distinguished data type nat for the type of natural numbers and that
correspondingly C contains constructors Zero : unit→nat and Succ : nat→nat for zero and
successor. Each obs ∈ O denotes a numerical function on atoms. We assume it comes with
an arity, specifying the number of arguments it takes: so if arity(obs) = k and (v1, . . . , vk)
is a k-tuple of values of type atm, then obs v1 . . . vk is an expression of type nat. The typing
of the language’s values, expressions and frame stacks takes place in the presence of typing
environments, Γ, each assigning types to finitely many variables. The rules in Figure 4 for
the inductively defined typing relation are entirely standard, given that we are following
the signature in Fig 1.

As well as an arity, we assume that each obs ∈ O comes with a specified interpretation:
the form this takes is discussed in Section 3.

Example 2.2 (Swapping atoms). Examples of programming in FreshML using its char-
acteristic feature of generatively unbinding atom-binding values may be found in [SPG03,
SP05a]. Another feature of FreshML, the operation of swapping atoms, has been left out of
the grammar in Figure 2. However, as we mentioned in the introduction, there is a type-
directed definition of swapping, swapτ : atm→atm→τ →τ , for this language. For example,
when τ is the type atm of atoms we can make use of the observation eq ∈ O for atom-
equality that we always assume is present (see Remark 3) together with the abbreviations
in Figure 3 and define

swapatm , λx.λy.λz. if eq z x then y else if eq z y then x else z. (2.3)

At unit, product, function and atom-binding types we can make use of standard definitions
of permutation action for these types of data (see [Pit06, Section 3], for example):

swapunit , λx.λy.λz. z (2.4)

swapτ1∗τ2
, λx.λy.λz. (swapτ1

x y (fst z), swapτ2
x y (snd z)) (2.5)

swapτ1→τ2
, λx.λy.λz.λx1. swapτ2

x y (z (swapτ1
x y x1)) (2.6)

swapτ bnd , λx.λy.λz. let z = «z1»z2 in «swapatmx y z1»(swapτx y z2). (2.7)

At data types we have to make recursive definitions corresponding to the inductive nature
of the data types. For example, if we assume that in addition to the data type nat for
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〈~a, S, e〉 −→ 〈~a′, S′, e′〉

(1) 〈~a, S ◦ (x.e), v〉 −→ 〈~a, S, e[v/x]〉
(2) 〈~a, S, letx = e1 in e2〉 −→ 〈~a, S ◦ (x.e2), e1〉
(3) 〈~a, S, match C v with (· · · | C x → e | · · · )〉 −→ 〈~a, S, e[v/x]〉
(4) 〈~a, S, fst(v1 , v2)〉 −→ 〈~a, S, v1〉
(5) 〈~a, S, snd(v1 , v2)〉 −→ 〈~a, S, v2〉
(6) 〈~a, S, v1 v2〉 −→ 〈~a, S, e[v1, v2/f, x]〉 if v1 = fun(f x = e)
(7) 〈~a, S, fresh()〉 −→ 〈~a < a′, S, a′〉 if a′ /∈ atom(~a)
(8) 〈~a, S, unbind «a»v〉 −→ 〈~a < a′, S, (a′ , v{a′/a})〉 if a′ /∈ atom(~a)
(9) 〈~a, S, obs a1 . . . ak〉 −→ 〈~a, S, pmq〉 if arity(obs) = k, (a1, . . . , ak) ∈ atom(~a)k and

JobsK~a(a1, . . . , ak) = m

Notation:

• v{a′/a} is the result of replacing all occurrences of an atom a by an atom a′ in the value v;
• atom(_) is the finite set of all atoms occurring in _ ;
• ~a<a′ is the state obtained by appending an atom a′ not in atom(~a) to the right of the finite

list of distinct atoms ~a;
• pmq is the the closed value of type nat corresponding to m ∈ N: p0q , Zero() and pm+1q ,

Succ pmq;
• JobsK is the meaning of obs: see Section 3.

Figure 5: Transition relation.

natural numbers we just have a data type term as in (1.1), then we can define

swapnat , λx.λy.fun(f z = match z with (Zero() → Zero() | Succ z1 → Succ(f z1))) (2.8)

swapterm , λx.λy.fun(f z = match z with (V z1 → V(swapatmx y z1)
|L z1 → let «z2»z3 = z1 in

L(«swapatmx y z2»(f z3))
|A z1 → A(f(fst z1), f(snd z1)) )).

(2.9)

(The fact that values of type nat do not involve atoms means that the above systematic
definition of swapnat is in fact contextually equivalent to λx.λy.λz. z.)

Operational semantics. The abstract machine that we use to define the language’s dy-
namics has configurations of the form 〈~a, S, e〉. Here e is the expression to be evaluated, S is
a stack of evaluation frames and ~a is a finite list of distinct atoms that have been allocated
so far. Figure 5 defines the transition relation between configurations that we use to give
the language’s operational semantics. The first six types of transition are all quite stan-
dard. Transition 7 defines the dynamic allocation of a fresh atom and transition 8 defines
generative unbinding using a freshly created atom; we discuss transition 9 for observations
on atoms in the next section. For the atom a′ in 7 to really be fresh, we need to know that
it does not occur in S; similarly, in 8 we need to know that a′ does not occur in (S, a, v).
These requirements are met if configurations 〈~a, S, e〉 satisfy that all the atoms occurring
in the frame stack S or the expression e occur in the list ~a. Using the notation atom(−)
mentioned in Figure 5, we write this condition as

atom(S, e) ⊆ atom(~a). (2.10)
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Theorem 2.4 shows that this property of configurations is invariant under transitions, as is
well-typedness. Before stating this theorem we introduce some useful terminology.

Definition 2.3 (Worlds). A (possible) world w is just a finite subset of the the fixed set
A of atoms. We write World for the set of all worlds.

In what follows we will index various relations associated with the language we are
considering by worlds w ∈ World that make explicit the atoms involved in the relation.
Sometimes (as in the following theorem) this is merely a matter of notational convenience;
world-indexing will be more crucial when we consider program equivalence: see Remark 4.7
below.

Theorem 2.4 (Type Safety). Write ⊢w 〈~a, S, e〉 : τ to mean that atom(S, e) ⊆ atom(~a) =
w and that there is some type τ ′ with ∅ ⊢ S : τ ′ → τ and ∅ ⊢ e : τ ′. The type system has the
following properties.

Preservation: if ⊢w 〈~a, S, e〉 : τ and 〈~a, S, e〉 −→ 〈~a′, S′, e′〉, with atom(~a′) = w′ say,
then w ⊆ w′ and ⊢w′ 〈~a′, S′, e′〉 : τ .

Progress: if ⊢w 〈~a, S, e〉 : τ , then either S = Id and e ∈ Val, or 〈~a, S, e〉 −→ 〈~a′, S′, e′〉
holds for some ~a′, S′ and e′.

Proof. The proof of these properties is routine and is omitted.

Remark 2.5 (Alternative operational semantics). It is worth remarking that there
are alternative approaches to representing object-level binding of a name a in a value v
in FreshML-like languages. In the original paper on FreshML [PG00], the authors make
a distinction between non-canonical expressions a.v for atom-binding and the “semantic
values” abs(a, val) to which they evaluate. That paper gives an operational semantics in
the style of the Definition of Standard ML [MTHM97] in which programming language ex-
pressions are separate from semantic values. It is possible to identify such semantic values
up to α-equivalence of abs(a,−)-bound atoms without the kind of inconsistency illustrated
in Remark 2.1. (Such semantic values in which abs(a,−) is a binder are used by Pot-
tier [Pot07], albeit for first-order values.) However, this does not help to simplify the type
of Correctness of Representation result in which we are interested here, because programs
are written using expressions, not semantic values. For example, identifying semantic values
in this way, abs(a, a) and abs(a′, a′) are identical and hence trivially contextually equiva-
lent; however the expressions a.a and a′.a′ (that here we write as «a»a and «a′»a′) are not
equal and there is something to be done to prove that they are contextually equivalent.
In the operational semantics of [PG00] these expressions evaluate to the same semantic
value up to α-equivalence; so one would need to prove that contextual equivalence for that
language contains “Kleene equivalence”—for example by proving a “CIU” theorem like our
Theorem 4.4 below. So it is probably possible to develop the results of this paper using
this slightly more abstract style of operational semantics with semantic values identified up
to α-equivalence of bound atoms. However our experience is that the style of operational
semantics we use here, in which semantic values are identified with certain canonical ex-
pressions (but necessarily not identified up α-equivalence of bound atoms, for the reasons
discussed in Remark 2.1) leads to a simpler technical development overall.
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〈~a, S, e〉↓n 〈~a, S, e〉↓

〈~a, Id, v〉↓0

〈~a, S, e〉 −→ 〈~a′, S′, e′〉 〈~a′, S′, e′〉↓n

〈~a, S, e〉↓n+1

〈~a, S, e〉↓n

〈~a, S, e〉↓

Figure 6: Termination relations.

3. Observations on Atoms

The language we are considering is parameterised by a choice of a finite set O of
numerical functions on atoms. We assume that each obs ∈ O comes with a specified
meaning JobsK. As mentioned in the introduction, we should allow these meanings to be
dependent on the current state (the list of distinct atoms that have been created so far).
So if arity(obs) = k, for each ~a ∈ State we assume given a function JobsK~a : atom(~a)k → N

mapping k-tuples of atoms occurring in the state ~a to natural numbers. These functions
are used in the transitions of type 9 in Figure 5. Not every such family (JobsK~a | ~a ∈
State) of functions is acceptable as an observation on atoms: we require that the family be
equivariant. To explain what this means we need the following definition.

Definition 3.1 (Permutations). A finite permutation of atoms is a bĳection π from the

set A of atoms onto itself such that supp(π) , {a ∈ A | π(a) 6= a} is a finite set. We write
P for the set of all such permutations. If π ∈ P and ~a ∈ State, then π · ~a denotes the finite
list of distinct atoms obtained by mapping π over the list ~a; if e is an expression, then π · e
denotes the expression obtained from it by applying π to the atoms in e; and similarly for
other syntactical structures involving finitely many atoms, such as values and frame stacks.

We require the functions (JobsK~a | ~a ∈ State) associated with each obs ∈ O to satisfy
an equivariance property: for all π ∈ P, ~a ∈ State and (a1, . . . , ak) ∈ atom(~a)k (where k is
the arity of obs)

JobsK~a(a1, . . . , ak) = JobsKπ·~a(π(a1), . . . , π(ak)) . (3.1)

We impose condition (3.1) for the following reason. In Figure 5, the side conditions on
transitions of types 7 and 8 do not specify which of the infinitely many atoms in A−atom(~a)
should be chosen as the fresh atom a′. Any particular implementation of the language will
make such choices in some specific way, for example by implementing atoms as numbers
and incrementing a global counter to get the next fresh atom. We wish to work at a
level of abstraction that is independent of such implementation details. We can do so by
ensuring that we only use properties of machine configurations 〈~a, S, e〉 that depend on the
relative positions of atoms in the list ~a, rather than upon their identities. So properties of
configurations should be equivariant: if 〈~a, S, e〉 has the property, then so should 〈π · ~a, π ·
S, π · e〉 for any π ∈ P. The main property of configurations we need is termination, defined
in Figure 6, since as we see in the next section this determines contextual equivalence of
expressions. With condition (3.1) we have:

Lemma 3.2. If 〈~a, S, e〉↓n, then 〈π · ~a, π · S, π · e〉↓n for any π ∈ P.

Proof. In view of the definition of termination in Figure 6, it suffices to show that the
transition relation is equivariant:

〈~a, S, e〉 −→ 〈~a′, S′, e′〉 ⇒ 〈π · ~a, π · S, π · e〉 −→ 〈π · ~a′, π · S′, π · e′〉 .
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Equality, eq (arity = 2):

JeqK~a(a, a′) ,

{
0 if a = a′,

1 otherwise.

Linear order, lt (arity = 2):

JltK~a(a, a′) ,

{
0 if a occurs to the left of a′ in the list ~a,

1 otherwise.

Ordinal, ord (arity = 1):

JordK~a(a) , n, if a is the nth element of the list ~a.

State size, card (arity = 0):

JcardK~a() , length of the list ~a.

Figure 7: Examples of observations on atoms.

This can be proved by cases from the definition of −→ in Fig 5. Cases 1–8 follow from
general properties of the action of permutations on syntactical structures (such as the fact
that π · (e[v/x]) equals (π · e)[π · v/x]); case 9 uses property (3.1).

As a corollary we find that termination is indeed independent of the choice of fresh
atom in transitions of the form 7 or 8.

Corollary 3.3. If 〈~a, S, fresh〉↓n+1 with atom(S) ⊆ atom(~a), then for all a′ /∈ atom(~a), it
is the case that 〈~a < a′, S, a′〉↓n. Similarly, if 〈~a, S,unbind «a»v〉↓n+1 with atom(S, a, v) ⊆
atom(~a), then for all a′ /∈ atom(~a), it is the case that 〈~a < a′, S, (a′ , v{a′/a})〉↓n.

There are observations on atoms that are not equivariant, that is, whose value on some
atoms in a particular state does not depend just upon the relative position of those atoms
in the state. For example, if we fix some enumeration of the set of atoms, α : N ∼= A, it
is easy to see that the unary observation given by JobsK~a(a) = α−1(a) fails to satisfy (3.1).
Nevertheless, there is a wide range of functions that do have this property. Figure 7 gives
some examples.

Remark 3.4 (Atom-equality test). The first observation on atoms given in Figure 7,
eq, combined with the usual arithmetic operations for nat that are already definable in the
language, gives us the effect of the function (=) : atm → atm → bool from the signature in
Figure 1; so we assume that the set O of observations on atoms always contains eq.

Remark 3.5 (Fresh Atoms Largest). Note that in the operational semantics of Figure 5
we have chosen to make “fresh atoms largest”, in the sense that the fresh atom a′ in
transitions 7 and 8 is added to the right-hand end of the list ~a representing the current
state. In the presence of observations on atoms other than equality, such a choice may
well affect the properties of the notion of program equivalence that we explore in the next
section. Other choices are possible, but to insist that program equivalence is independent
of any such choice would rule out many useful observations on atoms (such as lt or ord in
Figure 7).



GENERATIVE UNBINDING OF NAMES 13

4. Contextual Equivalence

We wish to prove that the language we have described satisfies Correctness of Rep-
resentation properties of the kind mentioned in the introduction. To do so, we first have
to be more precise about what it means for two expressions to be contextually equivalent,
that is, to be interchangeable in any program without affecting the observable results of
executing that program. What is a program, what does it mean to execute it, and what
results of execution do we observe? The answers we take to these questions are: programs
are closed well-typed expressions; execution means carrying out a sequence of transitions of
the abstract machine from an initial machine configuration consisting of a state (that is, a
list of atoms containing those mentioned in the program), the empty frame stack and the
program; and we observe whether execution reaches a terminal configuration, that is, one
of the form 〈~a, Id, v〉. We need only observe termination because of the language’s strict
evaluation strategy: observing any (reasonable) properties of the final value v results in
the same notion of contextual equivalence. Also, it is technically convenient to be a bit
more liberal about what constitutes an initial configuration by allowing the starting frame
stack to be non-empty: this does not change the notion of contextual equivalence because
of the correspondence between frame stacks and “evaluation” contexts—see the remarks
after Definition 4.5 below. So we can say that e and e′ are contextually equivalent if for
all program contexts C[−], the programs C[e] and C[e′] are operationally equivalent in the
following sense.

Definition 4.1 (Operational Equivalence of Closed Expressions). ⊢w e ∼= e′ : τ is
defined to hold if

• atom(e, e′) ⊆ w;
• ∅ ⊢ e : τ and ∅ ⊢ e′ : τ ; and
• for all ~a, S and τ ′ with w ∪ atom(S) ⊆ atom(~a) and ∅ ⊢ S : τ → τ ′, it is the case

that 〈~a, S, e〉↓ ⇔ 〈~a, S, e′〉↓.

However, for the reasons given in [Pit05, Section 7.5], we prefer not to phrase the formal
definition of contextual equivalence in terms of the inconveniently concrete operation of
possibly capturing substitution of open expressions for the hole “−” in program contexts
C[−]. Instead we take the more abstract relational approach originally advocated by Gordon
[Gor98] and Lassen [Las98] that focuses upon the key features of contextual equivalence,
namely that it is the largest congruence relation for well-typed expressions that contains the
relation of operational equivalence of Definition 4.1. A congruence relation is an expression
relation that is an equivalence, compatible and substitutive, in the following sense.

Definition 4.2 (Expression Relations). An expression relation E is a set of tuples
(Γ, w, e, e′, τ) (made up of a typing context, a world, two expressions and a type) satis-
fying atom(e, e′) ⊆ w, Γ ⊢ e : τ and Γ ⊢ e′ : τ . We write Γ ⊢w e E e′ : τ to indicate
that (Γ, w, e, e′, τ) is a member of E . We use the following terminology in connection with
expression relations.

• E is an equivalence if it is reflexive (atom(e) ⊆ w ∧ Γ ⊢ e : τ ⇒ Γ ⊢w e E e : τ),
symmetric (Γ ⊢w e E e′ : τ ⇒ Γ ⊢w e′ E e : τ) and transitive (Γ ⊢w e E e′ :
τ ∧ Γ ⊢w e′ E e′′ : τ ⇒ Γ ⊢w e E e′′ : τ).

• E is compatible if Ê ⊆ E , where Ê is the compatible refinement of E , defined in
Figure 8.
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Γ(x) = τ

Γ ⊢w x Ê x : τ Γ ⊢w () Ê () : unit

Γ ⊢w v1 E v′1 : τ1 Γ ⊢w v2 E v′2 : τ2

Γ ⊢w (v1 , v2) Ê (v′1 , v′2) : τ1 ∗ τ2

Γ, f : τ → τ ′, x : τ ⊢w e E e′ : τ ′

Γ ⊢w fun(f x = e) Ê fun(f x = e′) : τ → τ ′

C : τ → δ Γ ⊢w v E v′ : τ

Γ ⊢w C v Ê C v′ : δ

a ∈ w

Γ ⊢w a Ê a : atm

Γ ⊢w v1 E v′1 : atm Γ ⊢w v2 E v′2 : τ

Γ ⊢w «v1»v2 Ê «v′1»v′2 : τ bnd

Γ ⊢w e1 E e′1 : τ Γ, x : τ ⊢w e2 E e′2 : τ ′

Γ ⊢w let x = e1 in e2 Ê let x = e′1 in e′2 : τ ′

Γ ⊢w v E v′ : τ1 ∗ τ2

Γ ⊢w fst v Ê fst v′ : τ1

Γ ⊢w v E v′ : τ1 ∗ τ2

Γ ⊢w snd v Ê snd v′ : τ2

Γ ⊢w v1 E v′1 : τ → τ ′ Γ ⊢w v2 E v′2 : τ

Γ ⊢w v1 v2 Ê v′1 v′2 : τ ′

δ = C1 of τ1 | · · · | Cn of τn

Γ ⊢w v E v′ : δ Γ, x1 : τ1 ⊢w e1 E e′1 : τ · · · Γ, xn : τn ⊢w en E e′n : τ

Γ ⊢w match v with (C1 x1 → e1 | · · · | Cn xn → en) Ê match v′ with (C1 x1 → e′1 | · · · | Cn xn → e′n) : τ

Γ ⊢w fresh() Ê fresh() : atm

Γ ⊢w v E v′ : τ bnd

Γ ⊢w unbind v Ê unbind v′ : atm ∗ τ

arity(obs) = k Γ ⊢w v1 E v′1 : atm · · · Γ ⊢w vk E v′k : atm

Γ ⊢w obs v1 . . . vk Ê obs v′1 . . . v′k : nat

Γ ⊢w Id Ê Id : τ → τ

Γ, x : τ ⊢w e E e′ : τ ′ Γ ⊢w S Ê S′ : τ ′ → τ ′′

Γ ⊢w S ◦ (x.e) Ê S′ ◦ (x.e′) : τ → τ ′′

Figure 8: Compatible refinement Ê of an expression relation E .

• E is substitutive if Γ ⊢w v E v′ : τ ∧ Γ, x : τ ⊢w e E e′ : τ ′ ⇒ Γ ⊢w e[v/x] E
e′[v′/x] : τ ′.

• E is equivariant if Γ ⊢w e E e′ : τ ⇒ Γ ⊢π·w π · e E π · e′ : τ .
• E is adequate if ∅ ⊢w e E e′ : τ ⇒ ⊢w e ∼= e′ : τ .

We extend operational equivalence (Definition 4.1) to an expression relation, Γ ⊢w e ∼=◦

e′ : τ , by instantiating free variables with closed values:

Definition 4.3 (∼=◦). Supposing Γ = {x1 : τ1, . . . , xn : τn}, we define Γ ⊢w e ∼=◦ e′ : τ to
hold if

• atom(e, e′) ⊆ w;
• Γ ⊢ e : τ and Γ ⊢ e′ : τ ; and
• for all w′ ⊇ w and all closed values vi with atom(vi) ⊆ w′ and ∅ ⊢ vi : τi (for

i = 1..n), it is the case that ⊢w′ e[~v/~x] ∼= e′[~v/~x] : τ .

Note that for closed expressions, that is, in the case that Γ = ∅, the relation ∼=◦ agrees with
∼=:

∅ ⊢w e ∼=◦ e′ : τ ⇔ ⊢w e ∼= e′ : τ . (4.1)
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Theorem 4.4 (CIU). Operational equivalence of possibly open expressions, ∼=◦, is a com-
patible, substitutive and adequate equivalence. It is the largest such expression relation. It
is also equivariant.

Proof. The fact that ∼=◦ is equivariant follows from Lemma 3.2. The fact that it is an
equivalence and adequate is immediate from its definition; as is the fact that it contains
any expression relation that is adequate, substitutive and reflexive. So the main difficulty is
to show that it is compatible and substitutive. One can do this by adapting a construction
due to Howe [How96]; see Appendix A.

Definition 4.5 (Contextual Equivalence). In view of the discussion at the beginning of
this section, Theorem 4.4 tells us that ∼=◦ coincides with a conventional notion of contextual
equivalence defined using program contexts: so from now on we refer to ∼=◦ as contextual
equivalence.

Remark 4.6 (Uses of closed instantiations). We labelled the above theorem “CIU”
because it is analogous to a theorem of that name due to Mason and Talcott [MT91]. CIU,
after permutation, stands for “Uses of Closed Instantiations”; and the theorem tells us
that to test open expressions for contextual equivalence it suffices to first close them by
substituting closed values for free variables and then test the resulting closed expressions
for termination when they are used in any evaluation context [FH92]. This follows from
the definition of ∼=◦ and the fact that termination in evaluation contexts corresponds to
termination of machine configurations via the easily verified property

〈~a, S, e〉↓ ⇔ 〈~a, Id, S[e]〉↓ (4.2)

where the expression S[e] is defined by recursion on the length of the stack S by:

Id[e] , e

S ◦ (x.e′)[e] , S[let x = e in e′] .
(4.3)

Theorem 4.4 serves to establish some basic properties of contextual equivalence, such
as the fact that the state-independent transitions in Figure 5 (types 1–6 and 9) give rise to
contextual equivalences. For example, Γ ⊢w let x = v in e ∼=◦ e[v/x] : τ ′ holds if Γ ⊢w v : τ
and Γ, x : τ ⊢w e : τ ′. However, we have to work a bit harder to understand the consequences
of transitions of types 7 and 8 for contextual equivalence at atom binding types, τ bnd. We
address this in the next section.

Remark 4.7 (Possible Worlds). It is immediate from the definition of ∼=◦ that it satisfies
a weakening property:

Γ ⊢w e ∼=◦ e′ : τ ∧ w ⊆ w′ ⇒ Γ ⊢w′ e ∼=◦ e′ : τ . (4.4)

If it also satisfied a strengthening property

Γ ⊢w′ e ∼=◦ e′ : τ ∧ atom(e, e′) ⊆ w ⊆ w′ ⇒ Γ ⊢w e ∼=◦ e′ : τ (4.5)

then we could make the indexing of contextual equivalence by “possible worlds” w implicit
by taking w = atom(e, e′). When O just contains eq, property (4.5) does hold; this is why
there is no need for indexing by possible worlds in [Shi05a, SP05b]. However, it is not
hard to see that the presence of some observations on atoms, such as the function card in
Figure 7, can cause (4.5) to fail. It is for this reason that we have built indexing by possible
worlds into expression relations (Definition 4.2).
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⊢w () =α () : unit

⊢w v1 =α v′1 : σ1 ⊢w v2 =α v′2 : σ2

⊢w (v1 , v2) =α (v′1 , v′2) : σ1 ∗ σ2

C : σ → δ ⊢w v =α v′ : σ

⊢w C v =α C v′ : δ

a ∈ w

⊢w a =α a : atm

a′′ /∈ w ⊇ atom(a, v, a′, v′) ⊢w∪{a′′} v{a′′/a} =α v′{a′′/a′} : σ

⊢w «a»v =α «a′»v′ : σ bnd

Figure 9: α-Equivalence.

5. Correctness of Representation

Recall from Section 2 that the language we are considering is parameterised by a top-
level declaration of some (possibly mutually recursive) data types:

type δ1 = C1,1 of τ1,1 | · · · | C1,n1
of τ1,n1

...
and δm = Cm,1 of τm,1 | · · · | Cm,nm

of τm,nm
.

(5.1)

If we restrict attention to declarations in which the argument types τi,j of the constructors
Ci,j are just finite products of the declared data types δ1 . . . , δm, then the above declaration
corresponds to a many-sorted algebraic signature; furthermore, in this case the language’s
values at each data type are just the abstract syntax trees of terms of the corresponding
sort in the signature. By allowing atoms and atom bindings in addition to products in the
argument types τi,j, one arrives at the notion of “nominal signature”, introduced in [UPG04]
and more fully developed in [Pit06]. It extends the notion of many-sorted algebraic signature
with names (of possibly many kinds) and information about name binding in constructors.
Here, for simplicity, we are restricting to a single kind of name, represented by the type
atm of atoms; but our results extend easily to the case of many kinds of name.

Definition 5.1 (Nominal Signatures). The subset Arity ⊆ Typ is given by the grammar

σ ∈ Arity ::= unit | σ ∗ σ | δ | atm | σ bnd (5.2)

where δ ranges over the finite set D of data type symbols. (In other words Arity consists of
those types of our language that do not involve any use of the function type construction,
→.) The elements of the set Arity are called nominal arities. (The notation 〈〈atm〉〉σ is used
in [UPG04, Pit06] for what we here write as σ bnd.) A nominal signature with a single sort
of atoms, atm, is specified by a data type declaration (5.1) in which the argument types τi,j

of the constructors Ci,j are all nominal arities.

The occurrences of σ bnd in a nominal signature (5.1) indicate arguments with bound
atoms. In particular, we can associate with each such signature a notion of α-equivalence,
=α, that identifies closed values of nominal arity up to renaming bound atoms. The induc-
tive definition of =α is given in Figure 9. It generalises to an arbitrary nominal signature the
syntax-directed characterisation of α-equivalence of λ-terms given in [Gun92, p. 36]. The
definition in Figure 9 is essentially that given in [Pit06], except that we have included an
indexing by possible worlds w, to chime with our form of judgement for contextual equiv-
alence; without that indexing, the condition “a′′ /∈ w ⊇ atom(a, v, a′, v′)” in the rule for
α-equivalence of values of atom binding type would be replaced by “a′′ /∈ atom(a, v, a′, v′)”.

Remark 5.2 (The role of closed values). For each σ ∈ Arity, the closed values (that
is, ones with no free variables) of that type, ∅ ⊢w v : σ, correspond precisely to the ground
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terms (with arity σ and atoms in w) over the given nominal signature, as defined in [UPG04].
For example, the declaration (1.1) corresponds to the nominal signature for λ-calculus; and
closed values of type term correspond as in (1.2) to the abstract syntax trees for λ-terms—
open or closed ones, with λ-calculus variables represented by atoms. For other examples of
nominal signatures, with more complicated patterns of binding, see [Pit06, Section 2.2].

Note that the definition of =α in Figure 9 cannot be extended naively to open val-
ues with free variables, for the reasons discussed in Remark 2.1. Free variables stand for
unknown values that may well involve atoms that get captured by « »-binders upon substi-
tution. So as we saw in that remark, it does not make semantic sense to say, for example,
that «a»x and «a»x are α-equivalent without putting some restrictions on the kind of value
x stands for. In [UPG04], Urban et al consider such restrictions consisting of assumptions
about the freshness of atoms for variables; they generalise Figure 9 to a hypothetical no-
tion of α-equivalence between open values2, with hypotheses consisting of such freshness
assumptions. It may be possible to relate the validity of this general form of α-equivalence
to contextual equivalence, but here we content ourselves with the following result about the
straightforward notion of α-equivalence on closed values given by Figure 9.

Theorem 5.3 (Correctness of Representation). Suppose that all the observations on
atoms obs in O satisfy the equivariance property (3.1). For each nominal signature, two
closed values v, v′ of the same nominal arity σ (with atoms contained in the finite set w,
say) are α-equivalent if and only if they are contextually equivalent:

⊢w v =α v′ : σ ⇔ ⊢w v ∼= v′ : σ . (5.3)

The rest of this section is devoted to the proof of the bi-implication in (5.3). Before
commencing the proof we make some remarks about the relative difficulty of each half of
the bi-implication and about alternative approaches to the proof than the one we take.

Remark 5.4 ( ⊢w v =α v′ : σ ⇒ ⊢w v ∼= v′ : σ). At first sight it might seem that this
implication is trivial: since we identify expressions up to α-equivalence of bound variables,
contextual equivalence automatically contains that notion of equivalence. However, =α

is not that meta-level α-equivalence, it is α-equivalence at the object-level for « »-bound
atoms. As we noted in Remark 2.1, identifying all (open or closed) expressions up to
renaming « »-bound atoms is incompatible with contextual equivalence: so we cannot
trivialise the left-to-right implication in (5.3) by factoring out in this way. Note that the
restriction to nominal arities in Figure 9 means that we do not have to consider =α for
values of the form fun(f x = e) and hence for open expressions e where the naive definition
of =α would encounter the semantic problems discussed in Remarks 2.1 and 5.2.

So there really is something to do to establish the left-to-right implication in (5.3).
However, we will see that we have already done most of the heavy lifting for this half of the
theorem by establishing the CIU Theorem 4.4.

Remark 5.5 ( ⊢w v ∼= v′ : σ ⇒ ⊢w v =α v′ : σ). This is equivalent to showing
that if two closed values v and v′ of nominal arity σ are not α-equivalent, then they are
not contextually equivalent. Proving contextual inequivalence is much easier than proving
contextual equivalence, since one just has to construct a context in which the two values have
different operational behaviour. In this case it would suffice to exhibit a closed expression
aeqσ : σ → σ → nat correctly implementing =α, in the sense that for all v and v′

2This is a slight over-simplification, since their “nominal terms” are not just the open values considered
here: they involved explicit atom-permutations as well.
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⊢w v =α v′ : σ ⇒ ∀~a. w ⊆ atom(~a) ⇒ ∃~a′. 〈~a, Id, aeqσv v′〉 −→∗ 〈~a′, Id,Zero()〉

⊢w v 6=α v′ : σ ⇒ ∀~a. w ⊆ atom(~a) ⇒ ∃~a′. 〈~a, Id, aeqσv v′〉 −→∗ 〈~a′, Id,Succ(Zero())〉.

It is indeed possible to construct such an expression aeqσ by induction on the structure of σ,
by a definition that mimics the rules in Figure 9, using the definition of atom-swapping from
Example 2.2 in the case of an atom-binding arity and using recursively defined functions
at data types. The proof of the above properties of aeqσ is relatively straightforward if
tedious; one first has to prove suitable correctness properties for the swapping expressions
swapσ from Example 2.2.

This is not the route to the right-to-left implication in (5.3) that we take. Instead
we deduce it from a general “extensionality” property of atom-binding types τ bind that
holds for all types τ , including ones that are not nominal arities, that is, ones involving
function types. This property (Propositions 5.7 and 5.10) shows that, up to contextual
equivalence, the type τ bnd behaves like the atom-abstraction construct of [GP01, Sect. 5].
It seems interesting in its own right. We are able to prove this property of general atom-
binding types τ bind only under a restriction on observations on atoms over and above the
equivariance property (3.1) that we always assume they possess. This is the “affineness”
property given in Definition 5.8 below. The equality test eq (Figure 7) is affine and we will
see that this fact is enough to prove Theorem 5.3 as stated, that is, without any restriction
on the observations present other than equivariance.

We now begin the proof of Theorem 5.3.

Proposition 5.6.

(i) ⊢w () ∼= () : unit.
(ii) For all types τ1, τ2 ∈ Typ, ⊢w (v1 , v2) ∼= (v′1 , v′2) : τ1 ∗ τ2 iff ⊢w v1

∼= v′1 : τ1 and
⊢w v2

∼= v′2 : τ2.
(iii) For each data type δi in the declaration (5.1), ⊢w Ci,j v ∼= Ci,j′ v

′ : δi iff j = j′ and
⊢w v ∼= v′ : τi,j.

(iv) ⊢w a ∼= a′ : atm iff a = a′ ∈ w.

Proof. Part (i) and the “if” directions of (ii)–(iv) are consequences of the fact (Theorem 4.4)
that ∼=◦ is a compatible equivalence. For the “only if” directions of (ii) and (iii) we apply
suitably chosen destructors. Thus for part (ii) we use the operational equivalences ⊢w

fst(v1 , v2) ∼= v1 : τ1 and ⊢w snd(v1 , v2) ∼= v2 : τ2 that are consequences of the definitions
of ∼= and the termination relation. Similarly, part (iii) follows from the easily established
operational (in)equivalences

⊢w diverge 6∼= v : τ

⊢w proji,j (Ci,j v) ∼= v : τi,j

⊢w proji,j (Ci,j′ v) ∼= diverge : τi,j if j 6= j′

which make use of the following expressions

diverge , fun(f x = f x)()

proji,j v , match v with (Ci,1x1 → dj,1 | · · · | Ci,ni
xni

→ dj,ni
)
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where

dj,j′ ,

{
xj if j = j′,

diverge if j 6= j′.

Finally, for the “only if” direction of part (iv) we make use of the fact that O always contains
the atom equality function eq from Figure 7: see Lemma A.4(i) in Appendix A.

This proposition tells us that ∼= has properties mirroring those of α-equivalence given
by the first four rules in Figure 9. To complete the proof of the correctness theorem, we
need to prove a property of ∼= at atom binding arities σ bnd that mirrors the fifth rule in
that figure. We split this into two parts, Propositions 5.7 and 5.10.

Proposition 5.7. For any type τ ∈ Typ, suppose we are given closed, well-typed atom
binding values ∅ ⊢w «a»v : τ bnd and ∅ ⊢w «a′»v′ : τ bnd. If for some atom a′′ /∈ w we have

⊢w∪{a′′} v{a′′/a} ∼= v′{a′′/a′} : τ (5.4)

then
⊢w «a»v ∼= «a′»v′ : τ bnd . (5.5)

Proof. Unlike the previous proposition, this result is not just a simple consequence of the
congruence properties of operational equivalence. It can be proved via an induction over
the rules defining termination: see Appendix B.

Next we need to prove the converse of the above proposition, namely that (5.5) implies
(5.4) for any a′′ /∈ w. The difficulty is that in verifying (5.4) we have to consider the
termination behaviour of v{a′′/a} and v′{a′′/a′} in all states ~a with atom(~a) ⊇ w ∪ {a′′}.
The atom a′′ may occur at any position in ~a and not necessarily at its right-hand end;
whereas in assuming (5.5), all we appear to know about the termination behaviour of
v{a′′/a} and v′{a′′/a′} is what happens when a fresh atom a′′ is placed at the end of the
state via generative unbinding (cf. Remark 3.5). In fact we are able to combine bind and
unbind operations to rearrange atoms sufficiently to prove the result we want, but only
in the presence of observations on atoms that are insensitive to atoms being added at the
left-hand (that is, least) end of the state. The following definition makes this property of
observations precise. It uses the notation a′ < ~a for the state obtained from ~a ∈ State by
appending an atom a′ not in atom(~a) to the left of the finite list of distinct atoms ~a (cf. ~a<a′

defined in Figure 5).

Definition 5.8 (Affine Observations). An observation on atoms, obs ∈ O, is affine if it
is equivariant (3.1) and satisfies: for all ~a ∈ State, all a′ /∈ atom(~a) and all (a1, . . . , ak) ∈
atom(~a)k (where k is the arity of obs)

JobsKa′<~a(a1, . . . , ak) = JobsK~a(a1, . . . , ak) . (5.6)

For example, of the observations defined in Figure 7, eq and lt are affine, whereas ord and
card are not.

The following property of termination follows from its definition in Figures 5 and 6,
using Corollary 3.3.

Lemma 5.9. Given a frame stack S and an expression e, suppose that only affine ob-
servations on atoms occur in them. Then for all ~a with atom(S, e) ⊆ atom(~a) and all
a′ /∈ atom(~a), 〈a < ~a, S, e〉↓n ⇔ 〈~a, S, e〉↓n.
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We now give a converse of Proposition 5.7, under the assumption that only affine
observations are used. The proof is the technically most involved result in the paper.

Proposition 5.10. Suppose that O only contains affine observations. For any type τ ∈
Typ, suppose we are given closed, well-typed atom binding values ∅ ⊢w «a»v : τ bnd and
∅ ⊢w «a′»v′ : τ bnd. Then for all atoms a′′ /∈ w we have

⊢w «a»v ∼= «a′»v′ : τ bnd (5.7)

implies
⊢w∪{a′′} v{a′′/a} ∼= v′{a′′/a′} : τ . (5.8)

Proof. Suppose (5.7) holds and that a′′ /∈ w. To prove (5.8) we have to show for any
w′ ∈ World, ~a ∈ State and τ ′ ∈ Typ with atom(~a) = w′ ⊇ w ∪ {a′′} and ∅ ⊢w′ S : τ → τ ′

that
〈~a, S, v{a′′/a}〉↓ ⇔ 〈~a, S, v′{a′′/a′}〉↓ . (5.9)

Since a′′ ∈ atom(~a), we have

~a = ~a′ < a′′ < a0 < · · · < an−1 (5.10)

for some state ~a′ and atoms a0, . . . , an−1 (n ≥ 0). Choose distinct atoms b0, . . . , bn−1 not
occurring in w′ and consider the frame stack

S′ , Id ◦ (z. let «x»y0 = z in
let «x0»y1 = «b0»y0 in
...
let «xn−1»yn = «bn−1»yn−1 in
S{x, x0, . . . , xn−1/a

′′, a0 . . . , an−1}[yn])

(5.11)

where z, x, x0, . . . , xn−1, y0, . . . , yn are distinct variables not occurring in S. Here we have
used the notation “let «x1»x2 = e in e′” from Figure 3, the notation “S[e]” from (4.3) and
the operation (−){x/a} of replacing an atom a by a variable x.

Since atom(S) ⊆ w′ = atom(~a), by definition of S′ and from (5.10) we have atom(S′) ⊆

atom(~b′) where
~b′ , b0 < · · · < bn−1 < ~a′ . (5.12)

Let π ∈ P be the permutation swapping each ai with bi (for i = 0..n − 1). Since a′′ /∈ w ⊇

atom(a, v), by definition of ~b′ we have atom(π · «a»v) ⊆ atom(~b′). Therefore the configura-

tion 〈~b′, S′, π · «a»v〉 satisfies the well-formedness condition needed to apply Corollary 3.3.
Noting that π · («a»v) = «π(a)»(π · v) and that π · (v{a′′/a}) = (π · v){π(a′′)/π(a)} =
(π · v){a′′/π(a)}, from that corollary, property (4.2) and the definition of S′ we get:

〈~b′, S′, π · («a»v)〉↓ ⇔

〈~b′ < a′′ < a0 < · · · < an−1, S, (π · (v{a′′/a})){a0, . . . , an−1/b0, . . . , bn−1}〉↓ .

Note that by definition of π

(π · (v{a′′/a})){a0, . . . , an−1/b0, . . . , bn−1}

= ((v{a′′/a}){b0, . . . , bn−1/a0, . . . , an−1}){a0, . . . , an−1/b0, . . . , bn−1}

= v{a′′/a} ;
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and ~b′ < a′′ < a0 < · · · < an−1 = b0 < · · · < bn−1 < ~a by (5.10) and (5.12). So altogether we
have

〈~b′, S′, π · «a»v〉↓ ⇔ 〈b0 < · · · < bn−1 < ~a, S, v{a′′/a}〉↓ . (5.13)

A similar argument gives

〈~b′, S′, π · «a′»v′〉↓ ⇔ 〈b0 < · · · < bn−1 < ~a, S, v′{a′′/a′}〉↓ . (5.14)

We noted in Theorem 4.4 that operational equivalence is equivariant. So from (5.7) we have
⊢atom(~b′) π · «a»v ∼= π · «a′»v′ : τbnd. Since ∅ ⊢atom(~b′) S′ : τ bnd → τ ′, this operational

equivalence gives

〈~b′, S′, π · «a»v〉↓ ⇔ 〈~b′, S′, π · «a′»v′〉↓ .

Combining this with (5.13) and (5.14) yields

〈b0 < · · · < bn−1 < ~a, S, v{a′′/a}〉↓ ⇔ 〈b0 < · · · < bn−1 < ~a, S, v′{a′′/a′}〉↓ . (5.15)

Since b0, . . . , bn−1 /∈ w′ = atom(~a) ⊇ atom(S, a′′, v, v′) and O only contains affine observa-
tions, we can now apply Lemma 5.9 to (5.15) to get (5.9), as required.

Example 5.11. We conjecture that Proposition 5.10 fails to hold if we drop the requirement
that observations are affine (but still require them to be equivariant). For example consider
the equivariant but non-affine observation ord in Figure 7 and the values

v , fun(f x = f x)

v′ , fun(f x = match orda with (Zero → () | Succ y → v()))

where a is some atom. We claim that

⊢{a} «a»v ∼= «a»v′ : (unit → unit)bnd (5.16)

but that for any a′ 6= a

⊢{a,a′} v{a′/a} 6∼= v′{a′/a} : unit→ unit . (5.17)

The operational inequivalence (5.17) is witnessed by the state ~a , [a′, a] and the frame

stack S , Id ◦ (x. xunit), for which one has 〈~a, S, v′{a′/a}〉↓, but not 〈~a, S, v{a′/a}〉↓. At
the moment we lack a formal proof of the operational equivalence (5.16), but the intuitive
justification for it is as follows. For any state ~a containing a and any frame stack S, we
claim that in any sequence of transitions from 〈~a, S, «a»v′〉 the occurrence of orda in v′ can
only be renamed to orda′ for atoms a′ at positions strictly greater than 0 in the current
state; and hence 〈~a, S, «a»v′〉 has the same termination properties as 〈~a, S, «a»v〉.

Proof of Theorem 5.3. One proves that ⊢w v =α v′ : σ implies ⊢w v ∼= v′ : σ by induction
on the the rules defining α-equivalence in Figure 9, using Propositions 5.6 and 5.7.

To prove the converse implication, first note that if ∅ ⊢ v : σ, then v contains no
instances of observations obs ∈ O. The proof of this is by induction on the structure
of the nominal arity σ; the only way observations on atoms can appear in values of the
language is via function values, fun(f x = e), and the definition of “nominal arity” excludes
function types. It follows from the definition of operational equivalence in Definition 4.1
that if ⊢w v ∼= v′ : σ holds for a language with observation set O, it also holds for the
sub-language with minimal observation set {eq}. Thus it suffices to prove the implication
⊢w v ∼= v′ : σ ⇒ ⊢w v =α v′ : σ for this minimal sub-language; and this can be done by

induction on the structure of σ using Propositions 5.6 and 5.10 (the latter applies because
eq is affine).
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6. Related and Further Work

6.1. Correctness of Representation. It is instructive to compare the Correctness of
Representation property of FreshML (Theorem 5.3) with adequacy results for type-theoretic
logical frameworks [Pfe01]. Both are concerned with the representation of expressions of
some object-language in a meta-language. For logical frameworks the main issue is surjec-
tivity: one wants every expression at the meta-level to be convertible to a normal form and
for every normal form at certain types to be the representation of some object-level expres-
sion. The fact that α-equivalence of object-level expressions is preserved and reflected by
the representation is a simple matter, because equivalence in the logical framework is taken
to be αβη-conversion, which specialises on normal forms to just α-equivalence. Contrast
this with the situation for FreshML where surjectivity of the representation is straightfor-
ward, because values of the relevant FreshML data types are just first order abstract syntax
trees; whereas the fact that α-equivalence of object-level expressions is preserved and re-
flected by the representation in FreshML is a non-trivial property. This is because we take
equivalence of FreshML expressions to be contextual equivalence. This is the natural notion
of equivalence from a programming point of view, but its properties are hard won.

One aspect of adequacy results for logical frameworks highlighted in [Pfe01] is com-
positionality of representations. Although important, this issue is somewhat orthogonal
to our concerns here. It refers to the question of whether substitution of expressions for
variables at the object-level is represented by β-conversion at the meta-level. From the
point of view of nominal signatures [Pit06], variables are just one kind of name. Properties
of α-conversion of all kinds of names are treated by the theory; but if one wants notions
of substitution and β-conversion for a particular kind of name, one has to give a defini-
tion (an “α-structural” recursive definition [Pit06]). For example in FreshML, using the
data type (1.1) for λ-terms one can give an appealingly simple declaration for a function
subst : term → atm → term → term for capture-avoiding substitution; see [SPG03, p. 264].
Compositionality of the representation t 7→ ptq given in the introduction then becomes
the contextual equivalence ⊢w pt1[t2/a]q ∼= subst pt2q a pt1q : term. The CIU theorem
(Theorem 4.4) provides the basis for proving such contextual equivalences. (We believe
this particular equivalence is valid when O = {eq, lt}, but not when O = {eq, card}; see
Section 7.)

6.2. Concrete Semantics. We have explored some of the consequences of adding integer-
valued “observations on atoms” to FreshML over and above the usual test for equality. Such
functions allow more efficient data structures to be used for algorithms involving atoms as
keys. For example, binary search trees making use of the comparison function lt from
Figure 7 could be used instead of association lists.

What about adding functions from numbers to atoms? An implementation of the
language may well represent atoms by numbers, via some fixed enumeration of the set of
atoms, α : N ∼= A. Can we give the programmer access to this bĳection? Less radically,
can we allow operations on atoms that make use of arithmetic properties of the underlying
representation? Not without breaking the invariant atom(S, e) ⊆ atom(~a) of configurations
〈~a, S, e〉—the property of our operational semantics that ensures that an atom’s freshness
with respect to the current state really does mean that it is different from all other atoms
in the current context. For example, suppose we add to the language an operation suc :



GENERATIVE UNBINDING OF NAMES 23

atm→atm whose meaning is “successor function on atoms”, with transitions 〈~a, S, suc a〉 −→
〈~a, S, a′〉 whenever a = α(n) and a′ = α(n + 1) for some n ∈ N. Then it may well be the
case that a′ /∈ atom(~a) even though a ∈ atom(~a).

So exposing the numerical representation of atoms involves giving up the invariant prop-
erties of the abstract semantics we have used here. Perhaps a more interesting alternative to
actually exposing numerical representations of atoms would be to prove contextual equiva-
lence of efficient and naive implementations of the abstract semantics extended with types
of finite maps on atoms. Such abstract types form an addition to the signature in Figure 1
different from the kind we have considered here, but certainly one worthy of investigation.

6.3. Mechanising Meta-Theory. The techniques we used here to prove the Correctness
of Representation property are operationally based, in contrast to the denotational tech-
niques used in [Shi05a, SP05b]. The advantage of working directly with the syntax and
operational semantics of the language is that there are lower mathematical “overheads”—
various kinds of induction being the main techniques involved. The disadvantage is that
to deploy such inductive techniques often involves great ingenuity choosing inductive hy-
potheses and much error prone tedium checking induction steps. Furthermore, with these
methods it seems harder to predict the effect that a slight change in language or formalisa-
tion may have on a proof. Although ingenuity in choosing inductive hypotheses may always
be the preserve of humans, machine assistance of the kind envisaged by the “POPLmark
challenge” [ABF+05] seems a very good idea for the other aspects of the operationally
based approach. The main results presented here are still a challenging target for fully
formalised and machine checked proofs. We have taken some care with the formalisation
(using a “relational” approach to contextual equivalence, for example); but results con-
cerning coinductive equivalences, like the CIU theorem (Theorem 4.4), are quite complex
logically speaking, compared with the kind of type safety results (like Theorem 2.4) that
POPLMark has focused on so far. Systems like Isabelle/HOL [NPW02] that develop proofs
in full classical higher order logic seem appropriate to the task, in principle. But there is a
gap between what is possible in principle for an expert of any particular system and what
is currently practicable for a casual user. Urban and Berghofer [UB06] are developing a
Nominal Data Type Package for Isabelle/HOL that may be very useful for narrowing this
gap. The fact that FreshML and the Urban-Berghofer package both have to do with the
same mathematical universe of “nominal sets” [Pit06] is perhaps slightly confusing: their
Nominal Data Type Package is useful for fully formalising proofs about names and name-
binding in operational semantics whether or not those proofs have to do with the particular
mechanism of generative unbinding that is the focus of this paper.

7. Conclusion

The FreshML [SPG03, Shi05b] approach to functional programming with binders com-
bines abstract types for names and name binding with an unbinding operation that involves
generation of fresh names. In this paper we have studied some theoretical properties of this
design to do with data correctness. We showed that the addition of integer valued ob-
servations on names does not break FreshML’s fundamental Correctness of Representation
property that α-equivalence classes of abstract syntax trees (for any nominal signature)
coincide with contextual equivalence classes of user declared data values. In particular, it
is possible to give programmers access to a linear order on names without breaking the “up
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to α-equivalence” representation of syntax. The simple insight behind this possibly sur-
prising result has to do with the fact that FreshML is impure—program execution mutates
the state of dynamically created names. If the state is taken into account when giving the
meaning of observations on names, then the permutation invariance properties that underly
the correctness property can be retained. The original version of FreshML [PG00] was pure
by dint of the “freshness inference” included in its type system. Subsequent experience
with the language showed that the form of freshness inference that was used there was
overly restrictive from a programming point of view. So freshness inference was dropped in
[SPG03]. However, Pottier [Pot07] has recently regained purity in a FreshML-like language
through the use of user-provided assertions. We have not investigated whether results like
those presented in this paper also apply to Pottier’s language.

This paper has been concerned with data correctness, but what about general results
on program correctness? The only restriction we placed on observations on atoms is that,
as functions of both the state and the names they operate upon, they should be invariant
under permuting names. We have seen that the Correctness of Representation property
(Theorem 5.3) remains valid in the presence of any such observation. However, we are
certainly not advocating that arbitrary equivariant observations be added to FreshML.
This is because some forms of observation may radically affect the general programming
laws that contextual equivalence satisfies. We saw one example of this here: only for
“affine” observations (which are insensitive to how many names have been created before
the arguments to which they are applied) were we able to combine Propositions 5.7 and 5.10
to get an “extensionality” result explaining contextual equivalence at type τ bnd in terms
of contextual equivalence at τ , for arbitrary higher types τ .

More investigation of program correctness properties in the presence of particular ob-
servations on atoms is needed before one can advocate adding them to the FreshML design.
The techniques we used in this paper could form the basis for such an investigation. They
combine the usual engine of structural operational semantics—namely syntax-directed, rule
based induction—with the approach to freshness of names based on name permutations
that was introduced in [GP01] and developed in [Pit03, UN05, Pit06].
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Appendix A. Proof of Theorem 4.4

We wish to show that the expression relation ∼=◦ of Definition 4.3 is compatible and
substitutive (see Definition 4.2). We use an adaptation of “Howe’s method” [How96] to do
so. Let the expression relation ∼=∗ be inductively defined from ∼=◦ by the rule

Γ ⊢w e ∼̂=∗ e′ : τ Γ ⊢w e′ ∼=◦ e′′ : τ

Γ ⊢w e ∼=∗ e′′ : τ
. (A.1)

In making this inductive definition, we are implicitly relying upon the easily proved fact

that compatible refinement, E 7→ Ê , is a monotone operation on expression relations, that

is, E1 ⊆ E2 ⇒ Ê1 ⊆ Ê2.

Lemma A.1.

(i) Γ ⊢w e ∼=∗ e′ : τ ∧ Γ ⊢w e′ ∼=◦ e′′ : τ ⇒ Γ ⊢w e ∼=∗ e′′ : τ .
(ii) ∼=∗ is compatible and substitutive.
(iii) atom(e) ⊆ w ∧ Γ ⊢ e : τ ⇒ Γ ⊢w e ∼=∗ e : τ .

(iv) atom(S) ⊆ w ∧ Γ ⊢ S : τ → τ ′ ⇒ Γ ⊢w S ∼̂=∗ S : τ → τ ′.
(v) Γ ⊢w v ∼=∗ e′ : τ ⇒ ∃v′. Γ ⊢w v ∼=∗ v′ : τ ∧ Γ ⊢w v′ ∼=◦ e′ : τ .

Proof. These properties of ∼=∗ are simple consequences of its definition and the definition
of the extension of compatible refinement to a relation between frame stacks given by the
last two rules in Figure 8.

Lemma A.2.

(i) ∼=∗ is equivariant.
(ii) Γ ⊢w e ∼=∗ e′ : τ ∧ w ⊆ w′ ⇒ Γ ⊢w′ e ∼=∗ e′ : τ .

(iii) Γ ⊢w S ∼̂=∗ S′ : τ → τ ′ ∧ w ⊆ w′ ⇒ Γ ⊢w′ S ∼̂=∗ S′ : τ → τ ′.

Proof. Part (i) follows from the fact that ∼=◦ is equivariant, which in turn is a consequence
of Lemma 3.2. Parts (ii) and (iii) are consequences of the fact that world weakening is built
into the definition of operational equivalence in Definition 4.1.

Lemma A.3. Γ ⊢w e ∼=◦ e′ : τ ⇒ Γ ⊢w e ∼=∗ e′ : τ .

Proof. If Γ ⊢w e ∼=◦ e′ : τ , then in particular atom(e) ⊆ w and Γ ⊢ e : τ , so that by
Lemma A.1(iii) we have Γ ⊢w e ∼=∗ e : τ ; so from part (i) of that lemma we get Γ ⊢w e ∼=∗

e′ : τ .
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We wish to show that ∼=∗ coincides with ∼=◦. In view of the previous lemma, it just
remains to show that ∼=∗ ⊆ ∼=◦. Lemma A.5 provides the key to this. Before stating that
lemma we give some simple properties of ∼= that are needed to prove it.

Lemma A.4.

(i) ⊢w a ∼= a′ : atm ⇒ a = a′.
(ii) ⊢w v ∼= v′ : τ bnd ⇒ ⊢w unbind v ∼= unbind v′ : atm ∗ τ .
(iii) If ⊢w v ∼= v′ : τ1 → τ2, then for any world w′ ⊇ w and value v1 with atom(v1) ⊆ w′

and ⊢ v1 : τ1, it is the case that ⊢w′ v v1
∼= v′ v1 : τ2.

Proof. For part (i) we make use of the fact that O always contains the atom equality function
eq from Figure 7. Consider the frame stack

Sa , Id ◦ (x. let y = eq x a in
match y with (Zero → () | Succ z → diverge)) .

If a 6= a′ are distinct elements of w, then choosing some ~a ∈ State with atom(~a) = w, it is not
hard to see that 〈~a, Sa, a〉↓ holds whereas 〈~a, Sa, a

′〉↓ does not hold. So if ⊢w a ∼= a′ : atm
it cannot be the case that a 6= a′.

For part (ii), given any ~a, S and τ ′ with w ∪ atom(S) ⊆ atom(~a) and ∅ ⊢ S : τ → τ ′,
then

〈~a, S,unbind v〉↓ ⇔ 〈~a, S ◦ (x.unbind x), v〉↓ by definition of ↓

⇔ 〈~a, S ◦ (x.unbind x), v′〉↓ since ⊢w v ∼= v′ : τ bnd

⇔ 〈~a, S,unbind v′〉↓ by definition of ↓

and thus ⊢w unbind v ∼= unbind v′ : atm ∗ τ .
The proof of part (iii) is similar to that for (ii), using the frame (x. x v1) in place of

(x.unbindx).

Lemma A.5. For all n ≥ 0 and all w,S, S′, τ, τ ′, e, e′,~a

∅ ⊢w S ∼̂=∗ S′ : τ → τ ′ ∧ ∅ ⊢w e ∼=∗ e′ : τ ∧ atom(~a) = w ∧ 〈~a, S, e〉↓n

⇒ 〈~a, S′, e′〉↓ . (A.2)

Proof. The lemma is proved by induction on n. The base case n = 0 follows from the

definition of −̂ (which implies that ∅ ⊢w Id ∼̂=∗ S′ : τ → τ ′ can only hold when S′ = Id),
combined with Lemma A.1(v) and the definition of ∼=◦. For the induction step, assume
(A.2) holds and that

∅ ⊢w S ∼̂=∗ S′ : τ → τ ′ (A.3)

∅ ⊢w e ∼=∗ e′ : τ (A.4)

atom(~a) = w (A.5)

〈~a, S, e〉 −→ 〈~a1, S1, e1〉 (A.6)

〈~a1, S1, e1〉↓
n (A.7)

We have to prove 〈~a, S′, e′〉↓ and do so by an analysis of (A.6) against the possible cases
1–9 in the definition of the transition relation in Figure 5.
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Case 1. In this case S = S1 ◦ (x. e2), e = v ∈ Val, ~a1 = ~a, and e1 = e2[v/x], for some e2

and v. For (A.3) to hold, by definition of ∼̂=∗ it must be the case that S′ = S′
1 ◦ (x. e′2) for

some S′
1 and e′2 with

{x : τ} ⊢w e2
∼=∗ e′2 : τ2 (A.8)

∅ ⊢w S1
∼̂=∗ S′

1 : τ2 → τ ′ (A.9)

for some type τ2. Since e = v is a value, applying Lemma A.1(v) to (A.4) we get

∅ ⊢w v ∼=∗ v′ : τ (A.10)

⊢w v′ ∼= e′ : τ (A.11)

for some v′ ∈ Val. Since ∼=∗ is substitutive (Lemma A.1(ii)), from (A.8) and (A.10) we get

∅ ⊢w e2[v/x] ∼=∗ e′2[v
′/x] : τ2 . (A.12)

Applying the induction hypothesis (A.2) to (A.9), (A.12), (A.5) and to (A.7), we get
〈~a, S′

1, e
′
2[v

′/x]〉↓; hence 〈~a, S′
1 ◦ (x.e′2), v

′〉↓, that is, 〈~a, S′, v′〉↓; and therefore by (A.11)
we also have 〈~a, S′, e′〉↓, as required.

Case 2. In this case we have e = let x = e1 in e2, ~a1 = ~a and S1 = S ◦ (x. e2) for some e2.
Since (A.4) holds, by definition of ∼=∗, there must exist some e′1, e′2 and τ1 with

∅ ⊢w e1
∼=∗ e′1 : τ1 (A.13)

{x : τ1} ⊢w e2
∼=∗ e′2 : τ (A.14)

⊢w (let x = e′1 in e′2)
∼= e′ : τ (A.15)

and then from (A.3) and (A.14) we get

∅ ⊢w S ◦ (x. e2) ∼̂=∗ S′ ◦ (x. e′2) : τ1 → τ ′ . (A.16)

The induction hypothesis (A.2) applied to (A.16), (A.13) and (A.5) gives 〈~a, S′◦(x. e′2), e
′
1〉↓

and hence 〈~a, S′, let x = e′1 in e′2〉↓. This and (A.15) then give 〈~a, S′, e′〉↓, as required.

Case 3. This follows from the definition of ∼=∗ using its substitutivity property, much as
for case 1.

Case 4. In this case τ = τ1 ∗ τ2, e = (v1 , v2), ~a1 = ~a and e1 = v1, for some τ1, τ2 ∈ Typ

and v1, v2 ∈ Val. By definition of ∼̂=∗, for (A.4) to hold it must be the case that

∅ ⊢w vi
∼=∗ v′i : τi (for i = 1, 2) (A.17)

⊢w (v′1 , v′2)
∼= e′ : τ1 ∗ τ2 (A.18)

for some v′1 and v′2. By the induction hypothesis (A.2) applied to (A.3), (A.17), (A.5)
and (A.7), we get 〈~a, S′, v′1〉↓ and hence also 〈~a, S′, fst(v′1 , v′2)〉↓. Hence by (A.18) we have
〈~a, S′, e′〉↓, as required.

Case 5. This is similar to the previous case.
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Case 6. In this case e = v1 v2, ~a1 = ~a, S1 = S and e1 = e2[v1, v2/f, x] for some v1 =
fun(f x = e2) and v2. Since (A.4) holds, by definition of ∼=∗ together with Lemma A.4(iii),
there must exist some e′2, v′2 and τ1 with

{f : τ1 → τ, x : τ1} ⊢w e2
∼=∗ e′2 : τ (A.19)

∅ ⊢w v2
∼=∗ v′2 : τ1 (A.20)

⊢w fun(f x = e′2) v′2
∼= e′ : τ1 → τ . (A.21)

Since ∼=∗ is compatible (Lemma A.1(ii)), from (A.19) we get ∅ ⊢w v1
∼=∗ fun(f x = e′2) :

τ1 → τ ; and since ∼=∗ is also substitutive, this together with (A.19) and (A.20) gives ∅ ⊢w

e2[v1, v2/f, x] ∼=∗ e′2[fun(f x = e′2), v
′
2/f, x] : τ . Therefore by the induction hypothesis (A.2)

applied to (A.3), this, (A.5) and (A.7), we get 〈~a, S′, e′2[fun(f x = e′2), v
′
2/f, x]〉↓. Hence

〈~a, S′, fun(f x = e′2) v′2〉↓ and thus by (A.21), 〈~a, S′, e′〉↓ as required.

Case 7. In this case τ = atm, e = fresh(), ~a1 = ~a < a, S1 = S and e1 = a, for some
a /∈ atom(~a) = w. Since (A.4) holds, by definition of ∼=∗ we have

⊢w fresh() ∼= e′ : atm . (A.22)

By Lemma A.2(iii) applied to (A.3), we have ∅ ⊢w∪{a} S ∼̂=∗ S′ : atm → τ ′; and by
Lemma A.1(iii) we also have ∅ ⊢w∪{a} a ∼=∗ a : atm. So by the induction hypothesis

(A.2) applied to these, atom(~a < a) = w ∪ {a} and (A.7), we get 〈~a < a, S′, a〉↓. Hence
〈~a, S′, fresh〉↓ and hence from (A.22) we also have 〈~a, S′, e′〉↓, as required.

Case 8. In this case τ = atm ∗ τ1, e = unbind«a»v, ~a1 = ~a < a1, S1 = S, and e1 =
(a1 , v{a1/a}), for some τ1, a, v and a1 with a1 /∈ atom(~a) = w. Since (A.4) holds, by
definition of ∼=∗ together with parts (i) and (ii) of Lemma A.4, there must exist some v′

with

∅ ⊢w v ∼=∗ v′ : τ1 (A.23)

⊢w unbind«a»v′ ∼= e′ : atm ∗ τ1 . (A.24)

We now appeal to the easily verified fact that since a1 /∈ w ⊇ atom(v, v′), the renamed
values v{a1/a} and v′{a1/a} are respectively equal to the permuted values (a a1) · v and
(a a1) · v

′ (where (a a1) denotes the permutation swapping a and a′). Therefore by parts (i)
and (ii) of Lemma A.2 applied to (A.23) and by parts (ii) and (iii) of Lemma A.1, we have

∅ ⊢w∪{a1} (a1 , v{a1/a}) ∼=
∗ (a1 , v′{a1/a}) : atm ∗ τ1 . (A.25)

By applying Lemma A.2(iii) to (A.3) we also have

∅ ⊢w∪{a1} S ∼̂=∗ S′ : atm ∗ τ1 → τ ′ .

Then applying the induction hypothesis (A.2) to this, (A.25), atom(~a < a1) = w ∪ {a1}
and (A.7) yields 〈~a < a1, S

′, (a1 , v′{a1/a})〉↓. Therefore 〈~a, S′,unbind «a»v′〉↓; and hence
by (A.24), we also have 〈~a, S′, e′〉↓, as required.
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Case 9. In this case τ = nat, e = obs a1 . . . ak for some a1, . . . , ak ∈ w, ~a1 = ~a, S1 = S,
and e1 = pmq where m = JobsK~a(a1, . . . , ak). Since (A.4) holds, by definition of ∼=∗ together
with Lemma A.4(i), we must have

⊢w obs a1 . . . ak
∼= e′ : nat . (A.26)

Note that by Lemma A.1(iii) we also have ∅ ⊢w pmq ∼=∗ pmq : nat. So by the induction
hypothesis (A.2) applied to this, (A.3), (A.5) and (A.7) we get 〈~a, S′, pmq〉↓. Since m =
JobsK~a(a1, . . . , ak), this implies that 〈~a, S′, obs a1 . . . ak〉↓; and hence from (A.26) we have
that 〈~a, S′, e′〉↓ holds, as required.

This completes the proof of Lemma A.5.

Lemma A.6. Let (∼=∗)+ denote the transitive closure of ∼=∗. Then

Γ ⊢w e ∼=∗ e′ : τ ⇒ Γ ⊢w e′ (∼=∗)+ e : τ .

Proof. This can be proved by induction on the derivation of Γ ⊢w e ∼=∗ e′ : τ from the
rule in (A.1) and the rules for compatible refinement in Figure 8, using the fact that ∼=◦ is
symmetric and using Lemmas A.3 and A.1(iii).

We can now complete the proof of Theorem 4.4 by showing that ∼=◦ is compatible and
substitutive (Definition 4.2). Since ∼=∗ has those properties by Lemma A.1(ii), it suffices
to show that ∼=◦ coincides with ∼=∗. We already noted in Lemma A.3 that ∼=◦ is contained
in ∼=∗. For the reverse inclusion, since ∼=∗ is substitutive and reflexive (Lemma A.1), it is
closed under substituting values for variables; so by Definition 4.3, it suffices to show that

∅ ⊢w e ∼=∗ e′ : τ ⇒ ⊢w e ∼= e′ : τ . (A.27)

To see this, note that by Lemma A.5 (together with Lemmas A.1(iv) and A.2(ii)) we have:

∅ ⊢w e ∼=∗ e′ : τ ⇒ ∀~a, S, τ ′. w ∪ atom(S) ⊆ atom(~a) ∧ ∅ ⊢ S : τ → τ ′ ∧ 〈~a, S, e〉↓

⇒ 〈~a, S, e′〉↓ . (A.28)

Since the right-hand side of the implication in (A.28) is a transitive relation between ex-
pressions e, e′, we also have

∅ ⊢w e ∼=∗+ e′ : τ ⇒ ∀~a, S, τ ′. w ∪ atom(S) ⊆ atom(~a) ∧ ∅ ⊢ S : τ → τ ′ ∧ 〈~a, S, e〉↓

⇒ 〈~a, S, e′〉↓

and therefore Lemma A.6 gives

{} ⊢w e ∼=∗ e′ : τ ⇒ ∀~a, S, τ ′. (w ∪ atom(S) ⊆ atom(~a) ∧ ∅ ⊢ S : τ → τ ′ ∧ 〈~a, S, e′〉↓

⇒ 〈~a, S, e〉↓ . (A.29)

Combining (A.28) and (A.29) gives (A.27).
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Appendix B. Proof of Proposition 5.7

Let E be the closure under compatible refinement (Figure 8) of the pairs of closed atom
binding values that we wish to show are operationally equivalent. In other words E is the
expression relation inductively defined by the following two rules.

a′′ /∈ w ⊆ atom(a, v, a′, v′) ⊢w∪{a′′} v{a′′/a} ∼= v′{a′′/a′} : τ

∅ ⊢w «a»v E «a′»v′ : τ bnd

Γ ⊢w e Ê e′ : τ

Γ ⊢w e E e′ : τ
(B.1)

Lemma B.1.

(i) E is compatible and substitutive.
(ii) atom(e) ⊆ w ∧ Γ ⊢ e : τ ⇒ Γ ⊢w e E e : τ .

(iii) atom(S) ⊆ w ∧ Γ ⊢ S : τ → τ ′ ⇒ Γ ⊢w S Ê S : τ → τ ′.
(iv) Γ ⊢w v E e′ : τ ⇒ e′ ∈ Val.

Proof. These properties of E are simple consequences of its definition in (B.1), the definition
of compatible refinement in Figure 8, and the definition of its extension to a relation between
frame stacks given by the last two rules in that figure.

Lemma B.2.

(i) E is equivariant.
(ii) Γ ⊢w e E e′ : τ ∧ w ⊆ w′ ⇒ Γ ⊢w′ e E e′ : τ .

(iii) Γ ⊢w S Ê S′ : τ → τ ′ ∧ w ⊆ w′ ⇒ Γ ⊢w′ S E S′ : τ → τ ′.

Proof. This is the analogue of Lemma A.2 for E , and is proved in the same way as that
lemma.

Lemma B.3. For all n ≥ 0 and all w,S, S′, τ, τ ′, e, e′,~a

∅ ⊢w S Ê S′ : τ → τ ′ ∧ ∅ ⊢w e E e′ : τ ∧ atom(~a) = w ∧ 〈~a, S, e〉↓n ⇒ 〈~a, S′, e′〉↓ . (B.2)

Proof. The lemma is proved by induction on n. The base case n = 0 follows directly from

Lemma B.1(iii) and the definition of Ê (which implies that {} ⊢w Id Ê S′ : τ → τ ′ can only
hold when S′ = Id). For the induction step, assume (B.2) holds and that

∅ ⊢w S Ê S′ : τ → τ ′ (B.3)

∅ ⊢w e E e′ : τ (B.4)

atom(~a) = w (B.5)

〈~a, S, e〉 −→ 〈~a1, S1, e1〉 (B.6)

〈~a1, S1, e1〉↓
n (B.7)

We have to prove 〈~a, S′, e′〉↓ and do so by an analysis of (B.6) against the possible cases
1–9 in the definition of the transition relation in Figure 5. Cases 1, 3 and 6 follow from
the definition of E and its substitutivity property; we give the details for the first one and
omit the other two. Cases 4, 5 and 9 also follow easily from the definition of E (using
Lemma B.1(ii) in the third case). So we give the proofs just for cases 1, 2, 7 and 8.
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Case 1. In this case S = S1 ◦ (x. e2), e = v ∈ Val, ~a1 = ~a, and e1 = e2[v/x], for some e2

and v. For (B.3) to hold, by definition of Ê it must be the case that S′ = S′
1 ◦ (x. e′2) for

some S′
1 and e′2 with

{x : τ} ⊢w e2 E e′2 : τ2 (B.8)

∅ ⊢w S1 Ê S′
1 : τ2 → τ ′ (B.9)

for some type τ2. Since e = v is a value, applying Lemma B.1(iv) to (B.4) we get e′ = v′

for some v′ ∈ Val. So since Ê is substitutive (Lemma B.1(i)), from (B.4) and (B.8) we get

∅ ⊢w e2[v/x] E e′2[v
′/x] : τ2 . (B.10)

Applying the induction hypothesis (B.2) to (B.9), (B.10), (B.5) and to (B.7), we get
〈~a, S′

1, e
′
2[v

′/x]〉↓; hence 〈~a, S′
1 ◦ (x.e′2), v

′〉↓, that is, 〈~a, S′, e′〉↓, as required.

Case 2. In this case e = let x = e1 in e2, ~a1 = ~a and S1 = S ◦ (x. e2) for some e2. For (B.4)

to hold, by definition of Ê it must be the case that e′ = let x = e′1 in e′2 for some e′1, e
′
2 and

τ1 with

{} ⊢w e1 E e′1 : τ1 (B.11)

{x : τ1} ⊢w e2 E e′2 : τ . (B.12)

From (B.3) and (B.12) we get ∅ ⊢w S ◦ (x. e2) Ê S′ ◦ (x. e′2) : τ → τ ′; and the induction
hypothesis (B.2) applied to this, (B.11), (B.5) and (B.7) gives 〈~a, S′ ◦ (x. e′2), e

′
1〉↓. Hence

〈~a, S′, let x = e′1 in e′2〉↓, that is, 〈~a, S′, e′〉↓, as required.

Case 7. In this case τ = atm, e = fresh(), ~a1 = ~a < a, S1 = S and e1 = a, for some
atom a /∈ w. For (B.4) to hold, by definition of E it must be the case that e′ = fresh().

Now Lemma B.2(iii) applied to (B.3) gives ∅ ⊢w∪{a} S Ê S′ : τ → τ ′; and Lemma B.1(ii)
gives ∅ ⊢w∪{a} a E a : atm. Applying the induction hypothesis (B.2) to these two facts,
atom(~a < a) = w ∪ {a} and (B.7) gives 〈~a < a, S′, a〉↓. Hence 〈~a, S′, fresh()〉↓, that is,
〈~a, S′, e′〉↓, as required.

Case 8. In this case τ = atm ∗ τ1, e = unbind«a»v, ~a1 = ~a < a1, S1 = S, and e1 =
(a1 , v{a1/a}), for some τ1, a, v and a1 with a1 /∈ w. For (B.4) to hold, by definition of E it
must be the case that e′ = unbind«a′»v′ with

either (a): a = a′ ∧ ∅ ⊢w v E v′ : τ1

or (b): ∃a′′ /∈ w. ⊢w∪{a′′} v{a′′/a} ∼= v′{a′′/a} : τ1
(B.13)

If (B.13)(a) holds, then as in the proof of Lemma A.5 we now appeal to the easily
verified fact that since a1 /∈ w ⊇ atom(v, v′), the renamed values v{a1/a} and v′{a1/a} are
respectively equal to the permuted values (a a1) · v and (a a1) · v

′ (where (a a1) denotes
the permutation swapping a and a′). Therefore from the fact that ∅ ⊢w v E v′ : τ1 holds,
from parts (i) and (ii) of Lemma B.2 we get ∅ ⊢w∪{a1} v{a1/a} E v′{a1/a} : τ1. Then since
a = a′, by Lemma B.1(ii) we have ∅ ⊢w∪{a1} (a1 , v{a1/a}) E (a1 , v′{a1/a

′}) : atm ∗ τ1.
Applying the induction hypothesis (B.2) to this, (B.3) (weakened using Lemma B.2(iii)),
atom(~a < a1) = w ∪ {a1} and (B.7) yields 〈~a < a1, S

′, (a1 , v′{a1/a})〉↓ with a1 /∈ atom(~a).
Therefore by definition of ↓, we also have 〈~a, S′,unbind «a′»v′〉↓.
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If (B.13)(b) holds, then by Theorem 4.4, so does

⊢w∪{a′′} (a′′ , v{a′′/a}) ∼= (a′′ , v′{a′′/a}) : atm ∗ τ1 (B.14)

Lemma 3.2 applied to (B.7) with π = (a1 a′′) gives 〈~a< a′′, S, (a′′ , v{a′′/a})〉↓n. Combining
this with (B.3) (weakened using Lemma B.2(iii)), ∅ ⊢w∪{a′′} (a′′ , v{a′′/a}) E (a′′ , v{a′′/a}) :

atm ∗ τ1 (by Lemma B.1(ii)), atom(~a < a′′) = w ∪ {a′′} and the induction hypothesis (B.2),
we get 〈~a < a′′, S′, (a′′ , v{a′′/a})〉↓. Then by definition of ∼=, from this and (B.14) we get
〈~a < a′′, S′, (a′′ , v′{a′′/a})〉↓ with a′′ /∈ ~a. Therefore as before, by definition of ↓, we also
have 〈~a, S′,unbind«a′»v′〉↓.

So in either case in (B.13), since e′ = unbind«a′»v′, we get 〈~a, S′, e′〉↓, as required.

This completes the proof of Lemma B.3.

We can now complete the proof of Proposition 5.7. For any type τ ∈ Typ, suppose we
are given closed, well-typed atom binding values ∅ ⊢ «a»v : τ bnd and ∅ ⊢ «a′»v′ : τ bnd
with atom(a, v, a′, v′) ⊆ w and satisfying

⊢w∪{a′′} v{a′′/a} ∼= v′{a′′/a′} : τ (B.15)

for some atom a′′ /∈ w. By definition of E this implies

∅ ⊢w «a»v E «a′»v′ : τ bnd . (B.16)

For any w′, ~a, S, and τ ′ with atom(~a) = w′ ⊇ w ∪ atom(S) and ∅ ⊢ S : τ → τ ′, we have

∅ ⊢w′ S Ê S : τ → τ ′ (B.17)

by Lemma B.1(iii) and
∅ ⊢w′ «a»v E «a′»v′ : τ bnd (B.18)

by Lemma B.2(ii) applied to (B.16). So Lemma B.3 applied to (B.17), (B.18) and atom(~a) =
w′, we have

〈~a, S, «a»v〉↓ ⇒ 〈~a, S, «a′»v′〉↓ .

Since ∼= is symmetric, the same argument shows that (B.15) implies

〈~a, S, «a′»v′〉↓ ⇒ 〈~a, S, «a»v〉↓ .

Thus (B.15) implies that «a»v and «a′»v′ are operationally equivalent, as required.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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