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Abstract

This paper establishes a new property of predomains recursively de�ned using

the cartesian product� disjoint union� partial function space and convex power�

domain constructors� We prove that the partial order on such a recursive pre�

domain D is the greatest �xed point of a certain monotone operator associated

to D� This provides a structurally de�ned family of proof principles for these

recursive predomains� to show that one element of D approximates another� it

su�ces to �nd a binary relation containing the two elements that is a post��xed

point for the associated monotone operator� The statement of the proof principles

is independent of any of the various methods available for explicit construction

of recursive predomains� Following Milner and Tofte ���	� the method of proof

is called co�induction� It closely resembles the way bisimulations are used in

concurrent process calculi �
	�

Two speci�c instances of the co�induction principle already occur in work of

Abramsky ��� �	 in the form of �internal full abstraction
 theorems for denota�

tional semantics of SCCS and the lazy lambda calculus� In the �rst case post�

�xed binary relations are precisely Abramsky
s partial bisimulations� whereas in

the second case they are his applicative bisimulations� The co�induction principle

also provides an apparently useful tool for reasoning about equality of elements

of recursively de�ned datatypes in �strict or lazy� higher order functional pro�

gramming languages�



� Introduction

Recursively de�ned domains play a key role in giving denotational semantics for

many programming language features� In particular� such domains arise naturally

in connection with the recursive datatypes of higher order functional program�

ming languages such as Standard ML ���	 or Haskell ��	� Elegant methods for

constructing recursive domains have been devised�such as via Scott
s �informa�

tion systems
 �see ���	�� Nevertheless� the structure of recursive domains can be

very complicated� especially for domain equations involving the �partial� function

space constructor� Ideally one would like to have proof principles which permit

reasoning about recursive domains without recourse to an explicit description of

their structure�

This paper introduces such a proof principle� which applies uniformly to all

predomains recursively de�ned using the cartesian product� disjoint union� par�

tial function space and convex powerdomain constructors� We show that the

partial order on such a recursive predomain D is the greatest �xed point of a

certain monotone operator associated to D� This provides a structurally de�ned

family of proof principles for these recursive predomains� to show that one ele�

ment of D approximates another� it su�ces to �nd a binary relation containing

the two elements that is a post��xed point for the associated monotone operator�

The statement of the proof principles is independent of any of the various meth�

ods available for explicit construction of recursive predomains �using colimits of

embedding�projection pairs ���	� or using information systems ���	� for example��

Following Milner and Tofte ���	� the method of proof is called co�induction� It

closely resembles the way bisimulations are used in concurrent process calculi �
	�

Two speci�c instances of the co�induction principle already occur in work of

Abramsky ��� �	� in the form of �internal full abstraction
 theorems for denota�

tional semantics of SCCS and the lazy lambda calculus� In the �rst case post�

�xed binary relations are precisely Abramsky
s partial bisimulations� whereas in
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the second case they are his applicative bisimulations �see also Howe ��	�� The

co�induction principle also provides an apparently useful tool for reasoning about

equality of elements of recursively de�ned datatypes in �strict or lazy� higher

order functional programming languages�

In the �rst part of the paper we restrict attention to the simple case of a single

domain equation involving products� disjoint unions� lifting and partial function

spaces� Simultaneous and parameterized domain equations are considered in

section �� The co�induction property for recursive domains involving the convex

�or Plotkin� powerdomain is established in section �� Finally� in section � we

show how to extend the co�induction principle to cope with the combination of

polymorphism and recursive datatype declarations to be found in �the functional

fragment of� Standard ML�

Throughout� we will work with predomains rather than with domains� In

other words� the existence of a least element in a semantic domain is not assumed�

Plotkin ��
	 uses partial continuous functions between predomains� Here we will

use total continuous functions to lifted predomains� This necessarily places an

emphasis upon the role of the lifting construct �adjoining a least element to a

predomain�� Although this has some drawbacks from the point of notational

complexity� it emphasises an important conceptual distinction in the semantics

of datatypes� namely that between values �or canonical expressions� and com�

putations of those values� Consider for example� the Standard ML datatype

declaration�

datatype nat � Zero � Suc of nat

and natlist � Nil � Cons of nat � natlist

Since Standard ML is a strict language� the values of type natlist are intended

to comprise the set N� of lists of natural numbers� A denotational semantics for

datatypes using predomains can respect this intention� since sets are particular

kinds of predomain�the discrete ones� in which the partial order coincides with
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equality� General expressions of type natlist �in a pure functional subset of

ML� say� do not denote values� but rather computations of values in natlist

and are assigned denotations in the lifted predomain �N���� �A similar separa�

tion of values from computations can be made for the denotational semantics of

lazy functional languages using predomains and lifting� although of course the

predomain for natlist would no longer be discrete��

As ��
	 shows� for languages involving higher order functions this distinction

between computations and values in their denotational semantics is important

to achieve a good �t between operational and denotational semantics at higher

types� It is also a key conceptual aspect of Moggi
s ���� ��	 modular approach to

denotational semantics using categorical monads� An interesting question that

we leave for future work is to what extent the lifting monad can be replaced

by other �computational
 monads in order to extend the co�induction principle

described here to cope with datatypes in �impure
 languages such as Standard

ML which mix imperative constructs with higher order functional programming�

� Simulations

We begin by �xing the notation for predomains that will be use here� When

we come to consider convex powerdomains in section � we will need to be more

restrictive� but for the present� by a predomain we just mean a set D equipped

with a partial order vD and possessing least upper bounds of all countable vD�

chains� Let D denote the collection of all predomains� We consider the following

constructions on D�E � D�

Cartesian product of D and E is the set of ordered pairs D � E � f�x� y� j

x � D � y � Eg� partially ordered componentwise� �x� y� vD�E �x�� y�� if

and only if x vD x� and y vE y��
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Disjoint union of D and E has underlying set D � E � finl�x� j x � Dg �

finr�y� j y � Eg� where x �� inl�x� and y �� inr�y� are injective functions

with disjoint images� The partial order on D�E is� z vD�E z� if and only

if either z � inl�x� and z� � inl�x�� for some x� x� � D with x vD x�� or

z � inr�y� and z� � inl�y�� for some y� y� � E with y vE y��

Lift of D has underlying set D� � f�x	 j x � Dg � f�g� where x �� �x	 is an

injective function whose image does not contain the element �� The partial

order on D� is� u vD� u� if and only if for all x � D� if u � �x	 then u� � �x�	

for some x� � D with x vD x��

Exponential of E by D has underlying set D�E containing all functions from

D to E that preserve least upper bounds of countable chains� These func�

tion are partially ordered pointwise from E� f vD�E f � if and only if for

all x � D� f�x� vE f ��x��

Partial exponential of E by D is de�ned to be the exponential of E� by D�

and is denoted D�E�

De�nition ��� By a predomain constructor we mean a formal expression � given

by the following grammar�

� ��� K constant

j � variable

j � � � product

j � � � disjoint union

j �� lift

j ��� partial exponential

where K ranges over D and � stands for a variable member of D� For the moment

we only consider domain constructors involving a single variable� Given such a �

and D � D� then ��D� will denote the predomain resulting from replacing � by

D in � and interpreting the constructors ���� ��� as above�
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The process by which vD� is obtained from vD is a particular case of the

following operation sending binary relations C on a predomain D to binary re�

lations C� on the lifted predomain D�� We de�ne C� by requiring u C� u� to

hold if and only if for all x � D� if u � �x	 then u� � �x�	 for some x� � D with

x C x��

Using this operation of lifting binary relations� we can give a similar operation

for each predomain constructor�

De�nition ��� Given D � D and a binary relation C on D�� for each predo�

main constructor � de�ne a binary relation ��C� on ��D�� by induction on the

structure of �� as follows�

Case � is K� ��C� is vK��

Case � is �� ��C� is C�

Case � is �� � ��� u ��C� u
� if and only if

for all �x�� x�� � ���D� � ���D�� if u � ��x�� x��	 then u� �

��x��� x
�

��	 for some �x��� x
�

�� � ���D� � ���D� with �x�	 ���C� �x
�

�	

and �x�	 ���C� �x
�

�	�

Case � is �� � ��� u ��C� u
� if and only if

� for all x� � ���D�� if u � �inl�x��	 then u� � �inl�x���	 for some x�� �

���D� with �x�	 ���C� �x
�

�	� and

� for all x� � ���D�� if u � �inr�x��	 then u� � �inr�x���	 for some x�� �

���D� with �x�	 ���C� �x
�

�	�

Case � is ������ ��C� is the lifted relation ����C����

Case � is ������ u ��C� u
� if and only if

for all f � ���D�����D�� if u � �f 	 then u� � �f �	 for some

f � � ���D�����D� with f�x�� ���C� f
��x�� for all x� � ���D��
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Recall that an isomorphism between predomains can be speci�ed by a bi�

jection between the underlying sets that both preserves and re�ects the partial

orders� We write D �� E when D and E are isomorphic� and write k � D �� E if

k is a particular isomorphism witnessing this fact�

A predomain D � D is an invariant for a predomain constructor if D �� ��D��

Since isomorphisms map least elements to least elements when they exist� clearly

D is an invariant if and only if D�
�� ��D��� Since in what follows we need

only deal with the isomorphism between the lifted predomains� we will say that

an invariant for a predomain constructor � is a pair �D� k� with D � D and

k � D�
�� ��D��� Standard results of domain theory �which we review in the next

section� guarantee that all of the predomain constructors of De�nition ��� possess

invariants� For those more familiar with solving domain equations rather than

predomain equations� it is perhaps worth pointing out why De�nition ��� does not

contain a clause for exponentials� ����� with unrestricted use of exponentials�

invariants may fail to exist� For example� there is no predomain D satisfying

D �� D��� where � is a two�element set regarded as a discrete predomain� �For

such a D must be discrete� since it is isomorphic to D�� which is always discrete

for any D� so D is a set� D�� is its powerset� and they are in bijection�an

impossibility� by the usual Cantor diagonal argument��

The following is the key notion of this paper�

De�nition ��� Let �D� k� be an invariant for �� A ��simulation� C� is a binary

relation on D� such that for all u� u� � D�� if u C u� then k�u� ��C� k�u���

Lemma ��� For any D � D� the binary relation ��vD�� is equal to v��D���

Hence the partial order relation vD� is always a ��simulation for any invariant

�D� k��

Proof The �rst sentence follows from De�nition ��� by induction on the structure

of �� The second sentence follows from the �rst� because k is order preserving��
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Let Re��D� denote the set of binary relations on the underlying set of D � D�

partially ordered by set�theoretic inclusion� The mapping C ����C� of De�ni�

tion ��� de�nes a monotone function from Re��D�� to Re����D���� Monotonic�

ity can be proved by induction on the structure of �� The interesting case is when

� is a partial exponential� ����� say� since the relevant clause of De�nition ���

has a positive occurrence of ���C� and no occurrence of ���C�� monotonicity of

the operation on binary relations is preserved� Thus given an invariant �D� k� for

�� the function

C �� f�u� u�� j k�u� ��C� k�u��g ���

determines a monotone operator on Re��D��� Let us write 	 for the greatest

�xed point of this operator� Since ��simulations for �D� k� are precisely the post�

�xed points for this monotone operator� Lemma ��� implies that vD� is contained

in 	� We will call the invariant �D� k� extensional if the reverse inclusion holds�

so that vD� is the greatest �xed point for ����

The main technical result of this paper is that recursively de�ned predomains

are extensional in the above sense� We will write rec��� for the predomain recur�

sively de�ned by the equation � � �� This predomain comes equipped with an

isomorphism k that not only makes �rec���� k� an invariant for �� but which is the

minimal such invariant in a suitable sense �such as being initial for embedding�

projection pairs�� In section � we will recall enough of the construction and

characteristic properties of such recursive predomains to prove�

Theorem ��� �Co	induction property
 Let � be a predomain constructor as

in De�nition ���� and let D � rec��� be the predomain recursively de�ned by the

equation � � �� For any u� u� � D�� u vD� u� holds if and only if there is some

��simulation C with u C u��

The force of the theorem is to provide a method for proving that one element

in �the lift of� a recursively de�ned predomain approximates another� one just

�



has to �nd a simulation relating the two elements� It is clear from the de�nition

of simulation that this property of recursive domains could be formalized in a

second order logic such as the ��calculus of Scott� de Bakker and Park ���	� Thus

the method can be used independently of any particular explicit description of

recursive domains within higher order logic �such as that used in the next sec�

tion to prove the theorem�� Note that in contrast to domain�theoretic induction

principles �such as Scott
s �xed point induction�� the co�induction principle does

not require us to restrict attention to chain�complete relations on a domain� In

practice we may not need to construct a very large simulation in order to estab�

lish an instance of the partial order relation� Here is an example involving lazy

lists�

Example ��� �Lazy lists
 The Standard ML ���	 datatype of �head�strict� lazy

integer lists �or �sequences
 ���� ����	� is

datatype seq � Nil � Cons of int��unit �� seq�

Consider the following ML declarations de�ning expressions sucq� from and natq

of types seq��seq� int��seq and unit��seq respectively�

fun sucq Nil � Nil

� sucq �Cons�n	s�� � Cons�n
� 	 fn����sucq�s��� ��

fun from n � Cons�n 	 fn����from�n
�� ��

fun natq�� � Cons�
 	 fn����sucq�natq�����

We will use Theorem ��� to prove that natq�� and from�
� have equal denota�

tions�

The datatype seq can be given a denotational semantics using the initial

solution I of the predomain equation � � ��Z���� with � � f�g a one�element

set and Z � f� � � �
�� �� �� � � �g the set of integers �both sets being regarded as
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predomains via the discrete partial ordering�� Closed ML expressions of type seq

receive denotations in the domain I��

Let us introduce the following notation in connection with the predomain I�

Write nil and n �� u for the elements of I corresponding under the canonical

isomorphism i � I �� � � Z� I� to inl��� and inr�n� u� respectively� Let k � I� ��

�� � Z� I��� denote the lifted isomorphism� i�� For u � I� and x � I� write

u � x if u � �x	�

Then from De�nition ��� we have that a �� � Z � ����simulation for the

invariant �I� k� is a binary relation C on I� such that for all u� u�� v � I� and all

n � Z

�a� if u C u� and u � nil � then u� � nil � and

�b� if u C u� and u � n �� v� then u� � n �� v� for some v� with v C v��

The denotation of sucq is of the form �s	 � �I�I��� where s is a �continuous�

function I � I� satisfying

s�nil� � �nil 	

s�n �� u� � ��n� �� �� s��u�	

with s� the strict function from I� to I� corresponding to s� i�e�

s��u� �

���
��

s�x� if u � �x	� some x � I

� if u � �

The denotation of from is of the form �f 	 � �Z�I��� where f is a �continuous�

function Z� I� satisfying

f�n� � �n �� f�n� ��	 ���

Then the denotation of from�
� is f��� � I�� whereas the denotation of natq��

is some element u � I� satisfying

u � �� �� s��u�	






So we have to prove that u � f����

By Theorem ���� it su�ces to exhibit binary relations C�C� on I� satisfying

conditions �a� and �b�� and such that u C f��� and f��� C� u� But it is not hard

to see that these requirements are met by

C � f��s��n�u�� f�n�� j n � �g

C
� � f�f�n�� �s��n�u�� j n � �g

where �s��n denotes the function s� applied n times� Since �s����u� � u� we

certainly have u C f��� and f��� C� u� To verify conditions �a� and �b�� �rst

note that by induction on n � �

�s��n�u� � �n �� �s��n���u�	 ���

By ��� and ���� for no n � � do we have �s��n�u� � nil or f�n� � nil � So C

and C� trivially satisfy �a�� For �b�� given the instance ��s��n�u�� f�n�� of C� if

�s��n�u� � m �� v� then by ��� m � n and v � �s��n���u�� So taking v� � f�n����

by ��� we have f�n� � m �� v� with v C v�� as required� Similarly� �b� for C�

follows from ��� and ��� by a symmetric argument�

Examining the above argument� it seems that we have proved u � f��� for

an arbitrary extensional invariant for � � Z � ��� and not just for the initial

one I� In fact for this predomain constructor it is the case that the co�induction

property of Theorem ��� su�ces to characterize the initial solution uniquely up

to isomorphism amongst all invariants� We will return to this point in section ��

It is instructive to compare the proof in Example ��� with proofs exploiting

speci�c properties of the datatype seq� For example� Bird and Wadler ��� page

���	 use the so�called �take�lemma
 to form �nite approximations to lazy lists�

and hence reduce the proof to a suitable induction over the natural numbers� As

we recall in the next section� a general recursively de�ned domain comes with a

notion of �nite approximation� by virtue of its construction as a colimit of a chain
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of embeddings� We exploit this to reduce the proof of the co�induction property

to an application of mathematical induction �see Proposition ����� So the co�

induction principle is in a sense just a repackaging of an inductive arguement

on �nite approximations� However� the induction is done once and for all in

establishing the general principle� allowing us to avoid consideration of such �nite

approximations in any particular application of the principle� This is a distinct

advantage when the particular notion of �nite approximation is complicated�as

is generally the case for datatypes involving the function type constructor� Here

is such an example�

Example ��� �Lazy lambda calculus
 Consider the recursive predomain D �

rec��� with � � ����� If k denotes the lift of the canonical isomorphism

D �� D��D� then k is an isomorphism between the domain L � D� and the

domain �L�L��� L is the canonical model of the lazy untyped lambda calculus

studied by Abramsky and Ong ��� �	�

For u � L and f � L�L� write u � f if k�u� � �f 	� Then from De�nition ���

we have that a ��simulation for �D� k� is a binary relation C on L satisfying

if u C u� and u � f � then u� � f � for some f � � L�L with f�v� C f ��v�

for all v � L�

This is the notion of applicative bisimulation used in ��	� The co�induction prop�

erty for this � is Abramsky
s �internal full abstraction
 result ���� Theorem ���	�

for the canonical model of the lazy lambda calculus �

Remark ��
 ��	bisimulations
 Clearly Theorem ��� can be applied to prove

that an equality holds by splitting the goal of proving u � u� into the two sub�

goals u v u� and u� v u� However� it is also possible to give a version of the

theorem which directly characterizes the equality relation on �rec����� as the

largest binary relation � satisfying

u � u� implies k�u� �h�i k�u��
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where � �� �h�i is obtained from De�nition ��� by �symmetrizing
 each clause

of the de�nition� For example� the symmetric version of the lift operation on

relations sends � to the relation �� 
 ���op���
op� i�e� the relation containing all

pairs �u� u�� satisfying

for all x� if u � �x	 then u� � �x�	 for some x� with x � x�� and

for all x�� if u� � �x�	 then u � �x	 for some x with x � x��

� Embeddings

In this section we will recall from ���	 enough of the theory of solving domain

equations using colimits of embedding�projection pairs to prove Theorem ����

Although loc� cit� uses domains rather than predomains� the theory is easily

adapted�

As usual� we call a function i � D � E between predomains continuous if it

preserves the least upper bound of any ��chain� Such a continuous function is an

embedding if there is a continuous function i� � E � D� satisfying

� for all x � D� �x	 � i��i�x��� and

� for all x � D and y � E� if �x	 v i��y� then i�x� v y�

It is not hard to see that such an i� is uniquely determined by i� We call i�

the partial projection associated to the embedding i� We will use the following

notation to indicate that i is an embedding�

i � D �� E

Embeddings compose� given i � D �� E and j � E �� F � the function composition

j � i � D � F is an embedding with associated partial projection given by

�j � i�� �

���
��

i��y� if j��z� � �y	� some y � E

� if j��z� � �
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Clearly the identity function on a predomain D is an embedding� with associated

partial projection the insertion x �� �x	 of D into D�� Thus predomains and

embeddings form a category� which we denote by De�

The operations on predomain considered in section � extend to ones on em�

beddings between predomains� as follows�

De�nition ��� Given an embedding i � D �� E� for each predomain constructor

� as in De�nition ���� de�ne an embedding ��i� � ��D� �� ��E� by induction on

the structure of �� as follows�

Case � is K� ��i� is the identity function on K� The associated partial projec�

tion is � 	 � K � K��

Case � is �� ��i� is i itself�

Case � is �� � ��� given �x�� x�� � ���D�� ���D�� de�ne

��i��x�� x�� � ����x��� ���x���

The associated partial projection sends �y�� y�� � ���E�� ���E� to

��i���y�� y�� �

���
��

��x�� x��	 if �j�i�
��yj� � �xj	 for some xj �j � �� ��

� otherwise

Case � is �� � ��� given z � ���D� � ���D�� de�ne

��i��z� �

���
��

inl����x��� if z � inl�x�� for some x�

inr����x��� if z � inr�x�� for some x�

The associated partial projection sends w � ���E� � ���E� to

��i���w� �

��������������
�������������

�inl�x��	 if w � inl�y�� for some y�� and

���i�
��y�� � �x�	 for some x�

�inr�x��	 if w � inr�y�� for some y�� and

���i�
��y�� � �x�	 for some x�

� otherwise

��



Case � is ������ given u � ���D��� de�ne

��i��u� �

���
��

����i��x�	 if u � �x	 for some x

� if u � �

The associated partial projection sends v � ���E�� to

��i���v� �

���
��

����i�
��y�	 if v � �y	 for some y

��	 if v � �

Case � is ������ given f � ���D�����D�� de�ne ��i��f� to be the function

���E�� ���E�� sending y� � ���E� to

��i��f��y�� �

�������
������

����i��x��	 if ���i�
��y�� � �x�	 for some x�� and

f�x�� � �x�	� for some x�

� otherwise

The associated partial projection sends g � ���E�����E� to �f 	 where

f � ���D�����D� is the function sending x� � ���D� to

f�x�� �

���
��

���i�
��y�� if g����i��x��� � �y�	 for some y�

� otherwise

The above action of a predomain constructor on embeddings preserves iden�

tities and composition� So each � determines a functor F � �� � � De � De�

By de�nition� the predomain rec��� recursively de�ned by the equation � � ��

is the initial algebra IF in De for this functor� Thus IF comes equipped with

an embedding iF � F �IF � �� IF such that for any other embedding of the form

j � F �D� �� D there is a unique embedding �� � IF �� D making the square of

embeddings

F �IF � �
iF

	 IF
� �

F ����

� �

��

F �D� �

j
	 D

��



commute� As is well known� this property of iF forces it to be an isomorphism�

The existence of such an iF � F �IF � �� IF follows from the fact that De has�

and each F � �� � preserves� colimits of ��chains� together with the fact that

De possesses an initial object �the empty predomain ��� These properties can be

deduced from the corresponding facts about domains in ���	 by observing that

De is isomorphic to the category of �embedding�projection pairs
 ����� De�nition

�	� between ��complete posets with least elements� Indeed� when the lift functor

� �� is applied to an embedding i � D �� E it yields the embedding half of an

embedding�projection pair� the projection part of which is the continuous function

i� � E� � D� given by�

i��v� �

���
��

i��y� if v � �y	

� if v � �
���

and every embedding�projection pair between lifted predomains arises uniquely

in this way�

We say that a functor F � De � De is ��continuous if it preserves colimits

of ��chains� Its initial algebra IF can be constructed as the colimit in De of the

chain of embeddings

�
i�
�� F ���

i�
�� � � �

in��
�� F n���

in
�� F n�����

in��

�� � � � ���

where i� is uniquely determined and� inductively� in�� � F �in�� The structure

morphism for the initial algebra� iF � F �IF � �� IF � is constructed as follows� Let

�kn � F n��� �� IF j n � N�

denote the colimiting cone for ���� Since F is ��continuous�

�F �kn� � F
n����� �� F �IF � j n � N� ���

is a colimiting cone for the ��chain

F ���
F �i��
�� F ����

F �i��
�� � � �

F �in���
�� F n�����

F �in�
�� F n�����

F �in���
�� � � �

��



Clearly �kn�� � F n����� �� IF j n � �� is a cone for this ��chain� Then iF �

F �IF � �� IF is the unique factorization of this cone through the colimiting cone

���� Thus for each n � N � the following square commutes�

F n����� �
F �kn�

	 F �IF �

k
k

�

k
k �

iF

F n����� �

kn��

	 IF

���

The only other fact we will need to use about colimits of ��chains in De

is that they can be constructed by forming the limit in the category of posets

and monotone functions of the corresponding �op�chain of projections �see ����

Theorem �	�� Hence in particular� with notation as in ���� we have

Lemma ��� The family of monotone functions �k�n � �IF �� � �F n����� j n � N�

is jointly order�re�ecting� that is� u v u� holds in �IF �� if for all n � N � k�n�u� v

k�n�u
�� holds in �F n������

As well as determining ��continuous functors De � De� we saw in section �

that predomain constructors come equipped with an action on binary relations�

So let us now suppose that we are given an ��continuous functor F � De � De

equipped with a function C � Re��D�� �� F �C� � Re���FD��� for each D � D�

Writing k � �IF �� �� �F �IF ��� for the lift of the inverse of the initial algebra

structure morphism iF � F �IF � �� IF �which as we noted above is necessarily an

isomorphism�� let us call a relation C � Re���IF ��� an F �simulation if u C u�

implies k�u� F �C� k�u��� for all u� u� � �IF ��� The following proposition gives

su�cient criteria for the initial algebra IF to satisfy a co�induction property like

that in Theorem ����

Proposition ��� With F as above� suppose that

�i� For each D � D� F �vD�� � v�FD���

��



�ii� Given i � D �� E in De and C� Re��E��� suppose that u C u� implies

i��u� v i��u��� for all u� u� � E�� Then v F �C� v� implies F �i���v� v

F �i���v��� for all v� v� � F �E��� 	The notation i� is de�ned in ����


Then for all u� u� � �IF ��� u v u� if and only if there is some F �simulation C

with u C u��

Proof Since �i� implies that v�IF �� is an F �simulation� the �only if
 direction is

immediate�

For the converse� suppose that C is an F �simulation� We have to show for all

u� u� � �IF �� that u C u� implies u v u�� By Lemma ��� it su�ces to prove for

all n � N that

for all u� u� � �IF ��� if u C u� then k�n�u� v k�n�u
�� ���

and we do this by induction on n� The base case n � � is trivial� since k�� has

codomain �F ������ � f�g and so is a constant function�

So suppose� inductively� that ��� holds� If u C u� in �IF �� then k�u� F �C�

k�u��� since C is an F �simulation� Then applying property �ii� with i � kn� we

have that F �kn�
��k�u�� v F �kn�

��k�u���� But this is exactly k�n���u� v k�n���u
���

since k is by de�nition �i��F �� and hence from ��� we have that F �kn�
� �k � k�n���

Thus ��� implies the same statement for n� �� as required� �

Lemma ��� Any functor F � �� � arising from a predomain constructor � sat�

is�es the hypotheses of Proposition ����

Proof Condition �i� of the proposition holds by Lemma ���� For condition �ii��

suppose that C � Re��E�� and that i � D �� E is an embedding such that u C u�

implies i��u� v i��u��� for all u� u� � E�� We have to prove that

for all v� v� � ��E��� if v ��C� v
� then ��i���v� v ��i���v�� �
�

��



and we do so by induction on the structure of �� We give the cases for lifting and

partial exponential� and omit the others� Note that in proving ��i���v� v ��i���v��

from v ��C� v� it su�ces to consider the case v �� �� since ��i����� � ��

Case � is ������ Suppose that v ��C� v
� in ��E��� and that v �� ��say v � �u	�

Then since ��C� is by de�nition the lifted relation ����C���� v � �u�	 for

some u� � ��E� satisfying u ���C� u
�� By induction hypothesis� �� satis�es

�
�� so ���i�
��u� v ���i�

��u��� From the de�nition of ��i�� in terms of ���i�
�

given in De�nition ���� it follows that ��i���u� v ��i���u��� But since v �

�u	� ��i���v� � ��i���u�� similarly for v� and u�� Thus ��i���v� v ��i���v���

as required�

Case � is ������ Suppose that v ��C� v
� in ��E��� and that v �� ��say v � �g	

with g � ���E�����E�� Then by de�nition of ��C�� v � �g�	 for some g�

satisfying g�y�� ���C� g
��y�� for all y� � ���E�� By induction hypothesis ��

satis�es �
�� so ���i�
��g�y��� v ���i�

��g��y���� for all y� � ���E�� So for any

x� � ���D�� taking y� � ���i��x�� we have

���i�
��g����i��x���� v ���i�

��g�����i��x����

So from the de�nition of ��i�� in terms of ���i�
� and ���i�

� given in De��

nition ���� it follows that ��i���g� v ��i���g��� Hence ��i���v� � ��i���g� v

��i���g�� � ��i���v��� as required�

�

With the above lemma� we obtain Theorem ��� as a direct corollary of Propo�

sition ���� Indeed� we can derive the following generalization of the theorem

which characterizes the partial order on a predomain built from a recursive one

using the predomain constructors�

Corollary ��� Suppose that � and 
 are predomain constructors as in De�ni�

tion ���� Then v v v� in 
�rec����� if and only if there is some ��simulation C

with v 
�C� v��

��



Proof If v v v�� we can take C to be v�rec������ We know that it is a ��

simulation� and 
�C� is the partial order on 
�rec����� because by Lemma ���

property �i� in Proposition ��� holds for 
� ��

For the converse� we apply property �ii� in Proposition ��� to 
� �� taking

i � D �� E to be id � rec��� �� rec���� The hypothesis in �ii� holds in this case

by Theorem ���� and the conclusion is the result required� �

� Simultaneous Domain Equations

Let ��� � � � � �n be predomain constructors built up using ���� ���� constants

ranging over D� and variables drawn from the set f��� � � � � �ng� Given an n�

tuple of predomains D � �D�� � � � � Dn� � Dn� let �i�D� � D denote the result of

interpreting each �j �j � �� � � � � n� as Dj in �i� and let ��D� � Dn denote the

n�tuple ����D�� � � � � �n�D��� Then D constitutes a solution to the simultaneous

equations �������
������

�� � ��
���

�n � �n

����

if there are isomorphism Di
�� �i�D� for each i � �� � � � � n� As before� to state the

co�induction property we need only consider the lift of such isomorphisms � so call

�D� k� an invariant for the n�tuple of predomain constructors � � ���� � � � � �n� if

k � �k�� � � � � kn� with ki � �Di�� �� �i�D�� for each i � �� � � � � n�

A ��simulation for such an invariant is an n�tuple of binary relations C �

�C�� � � � �Cn� with Ci � Re���Di��� and such that for all u� u� � �D��� � � � � �

�Dn��� if �i�ui Ci u
�

i� then �i�ki�ui� �i�C� ki�u
�

i��� Here we are using the natural

extension of De�nition ��� to predomain constructors � involving several variables

��� � � � � �n� in de�ning ��C� by induction on the structure of �i� one proceeds

just as in De�nition ���� but using the appropriate component Cj of C in case �

is a variable �j�

�




Let �De�n denote the n�fold product of the category of predomains and embed�

dings� �De�n inherits a terminal object and colimits of ��chains componentwise

from De� The action of a predomain constructor � of n variables on a morphism

i � D � E in �De�n to produce an embedding ��i� � ��D� �� ��E� can be de�

�ned by induction on the structure of � just as in De�nition ���� In this way the

assignment D �� ��D� extends to an ��continuous functor �� � � �De�n � De�

And given an n�tuple ��� � � � � �n of such predomain constructors� we get an ��

continuous functor h��� �� � � � � �n� �i � �D
e�n � �De�n� By de�nition� the n�tuple

of predomains recursively de�ned by 	��
 is the initial algebra for this functor�

Theorem ��� Let �D�� � � � � Dn� be the n�tuple of predomains recursively de�ned

by ����� Let �D � �D��� � � � � � �Dn��� For any u� u� � �D� u v �D u� holds if and

only if there is some ��simulation C with ui Ci u
�

i for each i � �� � � � � n�

Proof Let Fi be the functor �i� � � �De�n � De and let F � hF�� � � � � Fni �

�De�n � �De�n� Then each Di can be calculated as the colimit in De of the

��chain

F
���
i ���� �� F

���
i ���� �� F

���
i ���� �� � � �

where

F
���
i ���� � �

F
�m���
i ���� � Fi�F

�m�
� ����� � � � � F �m�

n �����

In particular� to prove u v �D u� it su�ces to prove that for each i andm the partial

order relation holds between the projections of ui and u�i to F
�m���
i ������ Thus

the technique used in the proof of Proposition ��� can be applied to deduce the

theorem from the following properties of the action of a predomain constructor

� of n variables on n�tuples of binary relations�

�i� For each D � �D�� � � � � Dn� � Dn� ��v�D���� � � � �v�Dn��� � v��D�� �

��



�ii� Given i � D � E in �De�n and C � �C�� � � � �Cn� with Cj � Re���Ej���

�j � �� � � � � n�� suppose that for all u� u� � �E��� � � � � � �En��� if �j�uj Cj

u�j� then �j�i�j�uj� v�Dj�� i�j�u
�

j��� Then for all v� v� � ��D��� if v ��C� v
�

then ��i���v� v ��i���v���

Properties �i� and �ii� can be proved by induction on the structure of �� just as

in Lemma ���� �

Remark ��� �Parameterized recursion
 What if in Theorem ��� we were

only interested in proving instances of the partial order in one of the Di� To avoid

constructing simulation relations for all the other components� we would have to

express the simultaneous recursion of ���� in terms of single recursive domains

rec
���
� �� � � ��� where �� � � � are free parameters � A coinduction principle can

be developed for such parameterized recursive types� The main step is to extend

De�nition ��� with a clause for the case that � is rec
����
� ��� one de�nes ��C�

to be the greatest �xed point of the monotone operator on Re���rec
����
�D����

given by

C
� �� f�u� u�� j kD�u� ���C

��C� kD�u
��g

where k� � �rec
����
� ���� �� ���rec
����
� ��� ��� is the �lift of the� canonical

isomorphism�

The proof that the co�induction principle does hold for parameterized recur�

sive types is best accomplished by interpreting them not inDe but in an associated

��chain complete category D�� The objects of D� are pairs �D�C� where D is a

predomain and C � Re��D��� A morphism �D�C� � �D��C�� is de�ned to be an

embedding i � D �� D� satisfying v C� v� implies i��v� C i��v��� for all v� v� � D�

�
�

Colimits of ��chains in D� involve forming colimits of ��chains of embeddings in

De and taking the greatest �xed point of a certain monotone operator on relations

to get the second component of the colimit� There is an ��continuous retraction

from D� to De� and the predomain constructors ������� can be lifted along

��



it to D��� These properties enable one to extract the co�induction property for

parameterized recursive predomains in De from an analysis of initial algebras

for ��continuous functors on D�� We leave the �eshing out of the details of this

to another occasion� �The category D� should be contrasted with the one in�

volving ��chain complete relations mentioned in ���� Section �� Example �	� for

co�induction �as opposed to induction� we are in the pleasant position of not

needing to impose chain completeness conditions��

� Co�induction with Powerdomains

We saw in Example ��� that the notion of �applicative bisimulation
 used by

Abramsky in his study of the lazy lambda calculus ��	 is a particular case of the

notion of simulation for a predomain constructor� The same is true for the notion

of �partial bisimulation
 in Abramsky
s denotational semantics of SCCS ��	� To

see this we must enrich our collection of predomain constructors to include the

convex� or Plotkin� powerdomain �or rather� the predomain version of it�� In

order to prove that the co�induction property continues to hold for predomains

recursively de�ned using this larger set of constructors� we will need to restrict

attention to the bi�nite predomains� for which there is a su�ciently concrete

description of the convex powerdomain construction�

We say that D � D is bi�nite if it is the colimit in De of an ��chain of �nite

predomains� Let B denote the collection of bi�nite predomains� and let Be denote

the full subcategory of De whose objects are in B� In section � we remarked that

De is isomorphic� via the lifting functor� to the category of �embedding�projection

pairs
 between ��complete posets with least elements� This isomorphism restricts

to one between Be and the usual category of bi�nite �or �SFP
 ���	� domains and

embedding�projection pairs� So given D � B� D� is a bi�nite domain and we have

�The author does not know whether the power�predomain constructor P considered in sec�

tion � can be so lifted�

��



from ���� Chapter �	 the following explicit description of the convex powerdomain

of D�� P
��D���

� The underlying set of P ��D�� consists of all non�empty� convex� Lawson�

closed subsets of D�� Recall that X � D� is convex if whenever x� v x v

x� with x�� x� � X� then x � X� A subset X of bi�nite D� is Lawson�closed

if X contains the limit of any convergent sequence �xn j n � N� contained in

X� �By de�nition� the sequence �xn j n � N� converges to a limit x if for all

compact elements c� if c v x �respectively c �v x� then c v xn �respectively

c �v xn� for all but �nitely many n��

� The partial order on P ��D�� is the Egli�Milner order� vEM � given X�X � �

P ��D��� X vEM X � is de�ned to hold if and only if

� for all x � X there is some x� � X � with x vD� x�� and

� for all x� � X � there is some x � X with x vD� x��

The convex powerdomain construction extends to a �locally continuous� func�

tor on the category of bi�nite domains and continuous functions� and hence to

an ��continuous functor on the category of bi�nite domains and embedding�

projection pairs� The action of P � on a continuous function p � B � A between

bi�nite domains produces the continuous function P ��p� � P ��B� � P ��A� map�

ping a non�empty� convex� Lawson�closed subset Y � B to the convex hull of

the Lawson closure of the image of Y along p �see ��� Section �	�� We record the

following facts that we need below and which can be obtained from ���� Chapter

�	�

Lemma ���

�i� Let Con�X� denote the convex hull of a subset X of a predomain D� thus

by de�nition Con�X� � fx � D j x� v x v x�� for some x�� x� � Xg� If

Y � D is convex� then Con�X� vEM Y if and only if X vEM Y �

��



�ii� For a bi�nite domain B� the least element of P ��B� is f�g�

�iii� Let p � B � A be the projection half of an embedding�projection pair between

bi�nite domains� 	In other words� p possesses a right�inverse�left�adjoint�


Then the image of a Lawson�closed subset of B along p is again Lawson�

closed� Hence P ��p� sends Y � P ��B� to

P ��p��Y � � Con�fp�y� j y � Y g�

Turning now to a predomain version of the convex powerdomain� we can

restrict P � along the isomorphism �given by lifting� of Be with the category

of bi�nite domains and embedding�projection pairs� to obtain an ��continuous

functor P � Be � Be� Thus the object part of this functor sends D � B to

the bi�nite predomain P �D� with the property that P �D�� � P ��D��� Given

an embedding i � D �� E in Be� then using Lemma ����iii�� the embedding

P �i� � P �D� �� P �E� has an associated partial projection P �i�� such that for all

V � P �E��

P �i���V � � Con�fi��v� j v � V g�

�where P �i�� is de�ned from P �i�� as in �����

We also have to give an action of this power�predomain constructor on binary

relations� Given D � B and C � Re��D��� de�ne P �C� � Re��P �D��� as

follows� for U� U � � P �D�� � P ��D��� we de�ne U P �C� U � to hold if and only

if�

� for all u � U there is some u� � U � with u C u�� and

� for all u � U � there is some u � U with u C u��

Lemma ���

�i� For each D � B� P �vD�� � vP �D���

��



�ii� Given i � D �� E in Be and C � Re��E��� suppose that v C v� implies

i��v� v i��v��� for all v� v� � E�� Then for all V� V � � P �E��� if V P �C� V �

then P �i���V � v P �i���V ���

Proof For �i�� just note that in the de�nition of P �C� if C is the partial order

vD� then P �C� is the Egli�Milner ordering� which we noted above is the partial

order for P �D�� � P ��D�� when D � B�

For �ii�� suppose that V P �C� V �� We have to show that P �i���V � v

P �i���V ��� i�e� that Con�fi��v� j v � V g� vEM Con�fi��v�� j v� � V �g�� By

Lemma ����i�� it is su�cient to show that fi��v� j v � V g vEM Con�fi��v�� j v� �

V �g�� By de�nition of the Egli�Milner order� this requires us to prove

�a� for all v � V � there is u � Con�fi��v�� j v� � V �g� with i��v� v u� and

�b� for all u � D� and v��� v
�

� � V �� if i��v��� v u v i��v���� then there is v � V

with i��v� v u�

For �a�� recalling the de�nition of P �C�� if v � V and V P �C� V � then there

is some v� � V � with v C v� and hence� by hypothesis on i� i��v� v i��v��� Since

i��v�� � Con�fi��v�� j v� � V �g� we are done�

For �b�� suppose i��v��� v u v i��v��� with v��� v
�

� � V �� Then since V P �C� V �

and v�� � V �� there is some v � V with v C v��� and hence i��v� v i��v��� v u as

required� �

Let us extend the notion of predomain constructor given in De�nition ��� by

permitting P to be used�

� ��� � � � j P ���

Interpreting the constants K that occur in such a � as ranging over B� each such

predomain constructor determines an ��continuous functor �� � � Be � Be and

an initial algebra rec��� � B� Using the de�nition of C �� P �C� given above�

��



we can extend De�nition ��� to give an action of such a predomain constructor

� on binary relations on predomains in B� In particular we have the notion of a

��simulation on rec���� just as in De�nition ���� By Lemma ���� the action on

binary relations satis�es the hypotheses of Proposition ���� So that proposition

yields the following extension of Theorem ����

Theorem ��� �Co	induction with Powerdomains
 Let � be a predomain con�

structor of a single variable � built up using ���� ���� P and constants ranging

over bi�nite predomains� Let D � rec��� be the bi�nite predomain recursively

de�ned by the equation � � �� For any u� u� � D�� u vD� u� holds if and only if

there is some ��simulation C with u C u��

Example ��� Abramsky
s domain for bisimulation in ��	 can be expressed with

predomain constructors as B � �rec����� with � � � � P �N � ���� Let k � B ��

���P �N�B��� be the associated lifted isomorphism� Then from the de�nitions

we have that a binary relation C on B is a ��simulation if and only if

� if u C u� and k�u� � �inl���	� then k�u�� � �inl���	� and

� if u C u� and k�u� � �inr�x�	 for some x � P �N � B� �so that �x	 �

P ���N �B����� then k�u�� � �inr�x��	 for some x� � P �N � B� satisfying

� for all v � �x	 there is v� � �x�	 with v C� v�� and

� for all v� � �x�	 there is v � �x	 with v C� v�

where C� � Re���N � B��� is constructed from C by de�ning v C� v� to

hold if and only if

for all n � N and u � B� if v � ��n� u�	 then v� � ��n� u��	 for some

u� � B with u C u��

The notion of ��simulation in this case can be simpli�ed� Following ��	� let us

introduce the following notation� where u� u� � B and n � N �

��



� Write u
n
� u� to mean that k�u� � �inr�x�	 for some x � P �N � B� with

��n� u��	 � �x	�

� Write u� to mean that either k�u� � �� or k�u� � �inr�x�	 for some x �

P �N � B� with � � �x	�

� Write u� to mean that u� does not hold�

Then it is straightforward �if somewhat tedious� to prove�

Proposition ��� With � and B as above� a binary relation C on B is a ��

simulation if and only if it is a partial bisimulation in the sense of Abramsky 
���

i�e� if and only if it satis�es�

�i� for all u� u�� v � B and n � N � if u C v and u
n
� u�� then v

n
� v� for some

v� � B with u� C v�� and

�ii� for all u� v � B� if u C v and u� then

v�� and

for all v� � B and n � N� if v
n
� v� then u

n
� u� for some u� with

u� C v��

Since partial bisimulations are exactly �� � P �N � �����simulations� Abram�

sky
s �internal full abstraction
 result ��� Proposition ����	 for B is a special case

of the co�induction property established in Theorem ����

� ML Polymorphism

In this section we show how the co�induction property can be extended to re�

cursively de�ned domain constructors� We will revert to using just ���� ����

although the convex powerdomain could be included without di�culty�

��



A well known feature of Standard ML is the ability it gives the programmer to

declare datatypes parameterized by type variables� The datatype of polymorphic

lists

datatype �list � Nil � Cons of � � �list

is the prototypical example in practice� However� the presence of ML�style poly�

morphism permits not only the declaration of such type�indexed families of recur�

sively de�ned types� but also recursively de�ned functions from types to types�

such as

datatype �ty � Nil � Cons of �� � �ty�ty ����

If one is using predomains to denote types� then the denotation of ty should be

a function F � D � D satisfying

F � �D � D � � � F �D � F �D�� ����

The mathematical framework of ���	 provides su�cient tools for establishing

the existence of �initial� solutions to functional equations such as ����� Recall

from section � that De denotes the category of predomains and embeddings�

Let Cts�De� denote the category whose objects are ��continuous functors De �

De and whose morphisms are natural transformations between such functors�

Cts�De� has colimits of ��chains� created pointwise from De� the colimit of

�� � �� � � � � ����

in Cts�De� is calculated by evaluating ���� at each D � D

���D� �� ���D� �� � � � ����

taking the colimit �D of this chain of embeddings� and using the universal prop�

erty of these colimits to extend D �� �D to a functor� which is necessarily

��continuous� Note in particular that the evaluation functor

Cts�De��De � De

�F�D� �� F �D�
����

��



is jointly ��continuous�

As well as possessing colimits of ��chains� Cts�De� has an initial object�

namely the constant functor with value �� It follows that an ��continuous func�

tors � � Cts�De� � Cts�De� possesses initial algebra I�� The right�hand side of

���� is the object part of a functor �� and by de�nition the predomain constructor

recursively de�ned by ���� is �the underlying object part of� the initial algebra

I� in Cts�De��

Turning from this speci�c example to the general case� let us extend the syntax

of predomain constructors given in De�nition ����

� ��� � � � j ���� ����

where � is a �unary� constructor symbol� For simplicity we will consider such

predomain constructors involving at most one such constructor symbol � and

at most one variable �� Given a function F � D � D mapping predomains

to predomains� and a predomain D � D� let ��F�D� � D denote the result of

replacing � by F and � by D in � �and interpreting �� �� �� � and constants

as usual��

In order to develop a notion of simulation for this kind of predomain con�

structor� we must give a suitable version of De�nition ����

De�nition ��� Given F � D � D and a D�indexed family of binary relations

C � �CD � Re��F �D��� j D � D�� for each � as in ���� de�ne a family of binary

relations

��C� � ���C�D � Re����F�D��� j D � D�

by induction on the structure of � as follows�

Case � is ������ ��C�D is C���F�D��

Case � is �� ��C�D is vD�� �Note that this is di�erent from the corresponding

clause in De�nition ���� in section � the variable � stood for a predomain

�




to be given a recursive de�nition� here that role is played by ����� whereas

� itself just acts as a parameter��

Case � is K� ������ or �� � �� �� � �����
� these cases are dealt with ex�

actly as in De�nition ����

By an invariant for � we mean a pair �F� k� where F � D � D and k is a

family of isomorphisms� k � �kD � F �D�� �� ��F�D�� j D � D��

De�nition ��� A ��simulation for the invariant �F� k� is a family of binary

relations C � �CD � Re��F �D��� j D � D� such that for all D � D and all

u� u� � F �D��� if u CD u� then k�D�u� ��C�D k�D�u
���

Example ��� The predomain constructor corresponding to the ML datatype

declaration ���� is � � � � ��� � ������ Suppose �F� k� is an invariant for this

�� For D � D and u � F �D��� write u � nil if kD�u� � �inl���	� and write u � x

if kD�u� � �inr�x�	 for some x � F �D� F �D��� Then a ��simulation for �F� k� is

a family of binary relations �CD � Re��F �D��� j D � D� satisfying�

� if u CD u� and u � nil� then u� � nil� and

� if u CD u� and u � x� then u� � x� for some x� with �x	 CF �D�F �D�� �x
�	�

Given � as in ����� say that an invariant �F� k� is extensional if it has the

following co�induction property� for all D � D and all u� u� � F �D��� u v u�

holds if and only if there is some ��simulation C with u CD u�� We aim to show

that the predomain constructor recursively de�ned by the equation ���� � � is

extensional� To do so we must extend the material on embeddings in section ��

De�nition ��� Let i � F � G be a natural transformation between ��continuous

functors De � De� and let j � D �� E be an embedding between predomains�

For each � as in ���� de�ne an embedding

��i� j� � ��F�D� �� ��G�E�

by induction on the structure of �� as follows�

��



Case � is ������ ��i� j� is the composition

F ����F�D��
i���F�D�

�� G����F�D��
G����i�j��
�� G����G�E��

�By naturality of i� this is equal to the composition i���G�E� � F ����i� j����

Case � is K� �� ������ or �� � �� �� � �����
� these cases are dealt with

exactly as in De�nition ����

Lemma ��� Suppose that � is a predomain constructor as in ����� G � D � D is

an ��continuous functor� and C � �CD � Re��G�D��� j D � D� is a D�indexed

family of binary relations�

�i� If C � �vG�D�� j D � D� then for each D � D� ��C�D is the partial order

on ��G�D���

�ii� Suppose i � F � G is a morphism in Cts�De� such that for all D � D

and all u� u� � G�D��� if u CD u� then i�D�u� v i�D�u
�� in F �D��� Then

for all D � D and all v� v� � ��G�D��� if v ��C�D v� then ��i� idD�
��v� v

��i� idD�
��v�� in ��F�D���

Proof These properties can be proved by induction on the structure of � using

De�nitions ��� and ��� together with the corresponding properties of �� �� � and

� established for the monomorphic case in Lemma ���� �

We noted above that the evaluation functor ���� is ��continuous� From this

and the ��continuity of the constructors ������� it follows that the assignment

�F�D� �� ��F�D� is the object part of an ��continuous functor Cts�De��De � De

whose action on morphisms is given by De�nition ���� Currying this functor� we

obtain an ��continuous functor � � Cts�De� � Cts�De�� By de�nition� the predo�

main constructor recursively de�ned by the equation ���� � � is the �underlying

object part of the� initial algebra I in Cts�De� for this functor� Thus I � De � De

is an ��continuous functor that comes equipped with a natural transformation

��



��I� � I making �I� i� initial amongst such data� As usual� initiality entails that

i is actually a natural isomorphism� Putting kD � �i��D ��� we get an invariant

�I� k� for � which is indeed extensional in the sense de�ned above�

Theorem ��� �Co	induction for recursively de�ned constructors
 Let �

be a predomain constructor possibly involving �� �� �� �� constants from D� a

single 	unary
 constructor symbol �� and a single variable �� Let I � D � D be

the predomain constructor recursively de�ned by the equation ���� � �� Then

for any D � D and any u� u � I�D��� u vI�D�� u� holds if and only if there is

some ��simulation C with u CD u��

Proof The �only if
 direction follows from Lemma ����i� since that result implies

that the family �vI�D�� j D � D� is a ��simulation�

For the converse� �rst note that since I is the inital algebra for the functor

� � Cts�De� � Cts�De� described above� it can be constructed as the colimit in

Cts�De� of the ��chain

���� i�� ���� i�� � � �

where

����� � � �

��n���� � � ����n�� �

Let �kn � ��n� � I j n � N� be the colimit cone for this chain� Since such colimits

in Cts�De� can be calculated pointwise from D� for each D � D �kn�D � ��n��D� ��

I�D� j n � N� is a colimit cone in De for the chain

�����D�
i��D
�� �����D�

i��D
�� � � �

In particular u v u� holds in I�D�� if and only if for each n� k�n�D�u� v k�n�D�u
��

holds in ��n��D��� So to prove the required result it su�ces to show for each

n � N that

��



for allD � D and all u� u� � I�D��� if u CD u� then k�n�D�u� v k�n�D�u
��

Just as for the monomorphic case in the proof of Proposition ���� this can be

proved by induction on n using Lemma ����ii�� �

Remark ��� Theorem ��� readily extends to give a co�induction property for

simultaneously de�ned recursive predomain constructors �along the lines of sec�

tion ��� Similarly� using the material in section �� the property continues to hold

when � involves the convex power�predomain construction�

� Conclusion

Recursively de�ned domains� in their full generality� have a deserved reputation

for being di�cult to analyse� The co�induction property given in this paper

appears to be a useful tool for working with them� It is particularly pleasing

that the property can be stated and used without recourse to any of the explicit

constructions of these domains that are available in the literature� However� to

con�rm this promising appearance more experience with applying the principle

is needed�especially in the area of lazy datatypes�

Although it may not be apparent� the results presented here arose from study�

ing Freyd
s work on algebraically compact categories ��	� A important aspect of

that work is the emphasis it puts on the fact that recursive datatypes arising

from functorial constructors should be modelled by objects that are simultane�

ously initial algebras and �nal coalgebras� A predomain constructor � is func�

torial if for example it contains no negative occurrences of �� For such a � our

co�induction property is in fact equivalent to the uniqueness part of the �nal coal�

gebra property�� In particular� in this restricted case the co�induction property

is su�cient to characterize rec��� uniquely up to isomorphism�

�The existence part of the coalgebra property follows from the existence of �least� �xed

points for continuous functions between domains�

��



When � does contain negative occurrences of � the situation is not so nice� For

example� consider � � ��N � It is not hard to see that for this � the monotone

operatorRe��D�� �Re��D�� associated with an invariant �D� k� as in section ��

is constant with valuevD�� Consequently any invariant is extensional in the sense

de�ned in that section� In particular� the co�induction property does not serve

to characterize rec��� amongst invariants in this case�

This weakness stems from the way De�nition ��� treats the partial function

constructor� by throwing away the relation in the negative part of ������ To

obtain a more re�ned action on relations� whilst still producing monotone opera�

tors� one can adapt another important idea from ��	� Type constructors contain�

ing both positive and negative occurrences of type variables are neither co� nor

contra�variant functors on a sutiable category C of types and functions� however�

they can be viewed as diagonalized versions of functors on Cop � C� Adapting

this idea to the concerns of this paper leads to an interesing proof principle for

recursive domains that contains both induction and co�induction principles si�

multaneously� this is described in ���	�
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List of Footnotes

�� The author does not know whether the power�predomain constructor P

considered in section � can be so lifted�
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