
Software Thread-Level Speculation –
An Optimistic Library Implementation

Cosmin E. Oancea
∗

Computer Laboratory, Cambridge University, UK
Cosmin.Oancea@cl.cam.ac.uk

Alan Mycroft
Computer Laboratory, Cambridge University, UK

Alan.Mycroft@cl.cam.ac.uk

ABSTRACT
Software thread level speculation (tls) solutions tend to
mirror the hardware ones, in the sense that they employ one,

exact dependency-tracking mechanism. Our perspective is
that software-flexibility is, perhaps, better exploited by a
family of lighter, if less precise speculative models that can
be combined together in an effective configuration, which
takes advantage of the application’s code-patterns.

This paper reports on two main contributions. First, it
introduces splsc: a software tls model that trades the
potential for false-positive violations for a small memory
overhead and efficient implementation. Second, it presents
PolyLibTLS: a library that encapsulates several lightweight
models and enables their composition. In this context, we
report on the template meta-programming techniques that
we used to achieve performance and safety, while preserving
library’s modularity, extensibility and usability properties.

Furthermore, we demonstrate that the user-framework in-
teraction is straightforward and present parallelization tim-
ing results that validate our high-level perspective.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming;
D.2.2 [Software Engineering]: Software Libraries

General Terms
Performance, Languages, Design, Algorithms

Keywords
Thread-Level Speculation (TLS), Template-Metaprogramming

1. INTRODUCTION
Static techniques for automatic program parallelization

have yielded good results for Fortran-like, scientific applica-
tions [1] running on smps. Non-numerical applications how-
ever, tend to exhibit complex control flow, irregular data-

∗Supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWMSE’08,May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-031-9/08/05 ...$5.00.

structure access, and dynamic loop limits. Moreover, han-
dling inter-procedural/modular analysis and object/pointer
aliasing in mainstream implementation languages, such as
C++ and Java, further complicates the static dependence
analysis to the point of yielding very “pessimistic” results.

Thread-level speculation (tls) architectures address these
hindrances by resolving at run-time the unknown dependen-
cies that would otherwise prevent program parallelization.
One of their main shortcomings, the high inter-thread com-
munication cost, has been alleviated to some degree by the
emergence of the commercial chip-multiprocessors (cmp).
Hardware-centric tls proposals [5, 11, 22, 15, 21] are in
general more effective than the software ones, but involve
complex and expensive changes to the basic cache-protocol.
In addition, the potential for speculative storage overflow re-
stricts these frameworks to exploiting finer-grain parallelism
than that naturally available [14]. As a result, commercial
cmps do not yet offer tls support.

Consequently, software tls solutions are still worth inves-
tigating. One trend in the software-centric tls design has
been to mirror the modified cache-coherence protocol that
enables the hardware-centric solutions [20]. This has led to
frameworks that are very precise in all cases, but feature a
high memory/time overhead.

We take the orthogonal perspective of constructing a fam-
ily of lightweight, if more imprecise, tls models that can be
easily composed to parallelize an application. A variable-
based memory partitioning can be performed first, and static
access-pattern hints and profiling information can determine
the most effective model to be employed for each partition.

One contribution of this paper is splsc: one such model
that, while being safe and detecting all violations, trades
false-positives, which may cause unnecessary iteration re-
executions (rollbacks), against the space and time overhead.

For best performance, software-tls solutions should ul-
timately be encapsulated into the repertoire of a dynamic
optimizing compiler. However, being in an early experi-
mentation stage, we decided to integrate our tls models
in a library. We named the latter PolyLibTLS, to underline
our polymorphic view for supporting software-tls. This ap-
proach has several additional advantages:

• Availability: existing models can be more readily tested
under any C++ compiler and pthread implementation.
Alternatively, the library can be easily integrated in
the repertoire of a dynamic compiler.

• Extensibility: new models can be easily plugged-in.
• Composibility: we can test the effectiveness of combin-

ing various models. The results may indicate an “op-
timal” strategy or the necessity of developing a new
model based on different trade-off properties.

• Comparability: tls models share now the same envi-
ronment; their strength and weaknesses can be better
tested against each other.

This paper presents PolyLibTLS’s structure and design.
At high-level, our library encapsulates components from three
main domains: speculative models, thread models, and thread
managers. The first specifies the data-dependence track-
ing schemes, the second implements the parallel code, while
the third “manages” the thread life and handles the po-
tential mis-speculations. Our design is, in spirit, similar
to the one of stl [9] (C++’s Standard Template Library),
as we use domain orthogonality to enforce modularity, us-
ability, and extensibility. In our case, the orthogonality is
achieved through the use of uspm: a recursive templated
class which provides (i) a single unified interface encapsulat-
ing the tls models to the threads/thread manager, and (ii)
a non-redundant way of specifying the parallelization strat-
egy to the user. Using templates this way to define uspm en-
ables independent replacement of all three of: dependency-
checking schemes, thread-scheduling models, and the appli-
cation itself.

From a software engineering perspective, the paper’s main
contribution resides in showing how to preserve the desired
properties without compromising performance and safety:

Performance: At a high-level, the tls instance oper-
ations replace the original read/write accesses; this low-
granularity requires a highly-tuned implementation.

One problem is that the association between the to-be-
accessed address and the tls instance protecting it is not
known until run-time. We employ a mechanism in which the
compiler/user “guesses” the tls instance. The guessed path
enables (static) aggressive optimizations, and hence efficient
implementation. An incorrect guess defaults to the slower,
unoptimized, run-time dispatch.

Each speculative model provides buffers (one per thread,
owned by the thread) for speculative storage. Best perfor-
mance is achieved when the latter are implemented in the
thread domain, to eliminate the book-keeping overhead. An-

other problem, however, is that an naive implementation se-
riously impacts the system’s ease-of-use. Instead, we employ
C++ functors for specifying inheritance, to make this associ-
ation transparent to the user.

Safety: We have developed a family of functors that stat-
ically enforce certain invariants that cannot be expressed
under F-bounded polymorphism [3] (the one in Java).

The reasons for developing PolyLibTLS under C++ are
twofold: First, C++’s partial template specialization, and
in general its template meta-programming capabilities, are
instrumental in achieving the above mentioned properties.
Second, C++’s explicit pointer-use allows us to implement
the tls solution globally, at the address level, with the result
that the speculative support is effectively decoupled from the
data-structure to which it is applied.

The rest of the paper is structured as follows: Section 2
briefly surveys the software-tls area, presents our tls model
and motivates our design trade-offs. Section 3 presents a
library-use example, argues that the transformation is straight-
forward, and introduces the main library components. Sec-
tion 4 explains the design choices, based on template meta-
programming techniques, that enables the desired software
engineering properties. Finally, Section 5 shows performance
results that validate our tls combinatoric approach and Sec-
tion 6 concludes the paper.

2. SOFTWARE TLS MODELS
For the rest of the paper we use the following notations:

N is the size of the data-structure that requires speculative
support, M is the loop’s number of iterations, C is the maxi-
mal number of threads executing concurrently, and W is the
maximal number of write operations per iteration.

2.1 Background
Thread-level speculation is an aggressive parallelization

technique that is applied to regions of code that, although
contain a good amount of parallelism, cannot be statically
proven to preserve the sequential semantics under parallel
execution. (For simplicity we discuss loop-level paralleliza-
tion, although the same techniques apply for any thread-
partitioning consistent with the control-flow total order.)

With tls, threads concurrently execute iteration of a loop
out of sequential order even when these may contain a true
dependency. They use software/hardware structures, re-
ferred as speculative storage, to record the necessary infor-
mation to track the inter-threads dependencies and to revert
to a safe point and restart the computation upon the oc-
currence of a dependency violation (rollback recovery). The
thread assigned to the lowest numbered iteration of all is
referred to as the master thread since it encapsulates both
the correct sequential state and control-flow; the others are
speculative threads since they may consume “dirty” values.

To guarantee correct execution, threads merge their changes
into the global non-speculative storage only when it is deter-
mined that the locations it read-from and wrote-to do not
generate a dependency-violation. The usual implementation
is to have the threads buffer their writes and commit them
(serially) when they become master. Hardware approaches
employ a modified cache coherency protocol to detect the
occurrence of inter-thread data dependencies and initiate a
rollback. In servicing a rollback the speculative state needs
to be cleared and the threads affected by the violation are
restarted to carry out the canceled iterations.

The rest of this section briefly reviews several software
tls solutions. Papadimitriou and Mowry use the memory
paging hardware to implement the tls dependency tracking
mechanism [19]. Although the implementation is efficient,
their results are pessimistic because the high access tracking
granularity (page level) generates too many rollbacks.

Rundberg and Stenstrom propose the s-tls framework [20]
where read/writes to (speculative) locations that cannot be
statically disambiguated are replaced with high-level calls to
functions that simulate the data-dependency checking of a
speculative cache-protocol. (Assigning value y to variable x

corresponds to the call specST(&x,specLD(&y,i),i), where
i is the iteration number.) The approach strengths are that
it employs a parallel commit phase (scalable) and that is very
precise, as it minimizes the potential for false-dependencies
and identifies violations at the write instruction level. The
downfalls are a huge memory overhead (O(M×N)) and a non-
constant speculative operation overhead that can be pro-
hibitively high for certain access patterns.

Cintra and Llanos’s [6] and Dang, Yu and Rauchwerger’s [8]
approaches improve on the latter by decreasing the mem-
ory overhead to O(N × C) and the speculative instruction
overhead (through a more refined data-structure). This is
achieved through a sliding-window mechanism that employs
a serial commit phase, and hence trades-off scalability.

For completeness we enumerate several other tls-related
solutions that rely heavily on compiler support. Kazi and

10 S−1
W = max number of

 writes per iteration

0

P−1
0 1 W−1...

ShBuff

{addr, val}

.........................

Load Vector (LdVct)

hashFct

S = cardinal(hashFct)

P=number of processors

Memory

Figure 1: Speculative Storage Structure

Lilja propose a multi-thread pipelining framework [13] in
which consecutive thread’s stages compute the addresses of
the write and read operations, respectively, and light syn-
chronization is applied on the locations that fall in the in-
tersection. Zilles and Sohi reduce communication overhead
via a master slave model [25], in which the master executes
an optimized (fast) approximation of the code, while the
slaves verify its correctness. Finally, Chen and Olukotune’s
framework [4] exploits method level parallelism in Java.

2.2 Lightweight TLS Models
Our family of speculative models is designed to trade-

off dependency-tracking precision for small memory over-
head and performant, near-constant overhead of the specu-
lative instruction (modulo memory-hierarchy effects). Fur-
thermore, while other approaches implement the specula-
tive support at the data-structure level, our design keeps
them well-separated. The consequences are that switching
between speculative (parallel) and sequential execution does
not impose any overhead on the latter, and that aliasing is
effectively handled.

2.2.1 Read Only Model (SpRO)
SpRO is the simplest, and most imprecise tls model: the

load operation returns the content of the to-be-read-address,
while the write signals that the executing iteration is in er-
ror. spro’s memory/read operation overhead is 0. Although
very conservative, when combined with other models, spro

is very effective when employed on variables that are only
read, but that cannot be statically disambiguated by the
compiler due to potential (improbable) aliasing relations.

2.2.2 Leightweight, Serial Commit Model (SpLSC)
splsc’s design takes the perspective that if the current

execution window is dependency-free then the threads can
run in parallel and the violation-tracking scheme can be em-
ployed at the iteration’s end. The speculative storage struc-
ture is depicted in Figure 1. For the moment assume that
the map hashFct between memory locations and the depen-
dency tracking vector (LdVct) is one-to-one. An LdVct entry
stores the highest iteration number, corresponding to the se-
quential program order, that has read its associated address.
The speculative write operation saves the (address,value)

tuple in a buffer owned by each thread: ShBuff[i]. The
implementation is straightforward and not shown here.

The speculative load operation (specLD) is presented in
Figure 2. SpecLD receives as parameters the to-be-read ad-
dress and the number of the iteration and the thread that
performs the read.

The call to markLD, in line 2, implements the invariant
that at any point, the maximal iteration number that has
read an address should be inscribed in its associated LdVct

entry. Two efficient, synchronization-free implementations

template<class T, class TH> | //markLD is shorthand for:

T specLD(volatile T* addr, | atomic{ if(LdVct[ind]<itNr)
int itNr, TH* th) | LdVct[ind]=itNr; }

{ | //or, in lock-free form:
1 int ind = hashFct(addr); | do{ tmp = LdVct[ind];
2 markLD(ind, itNr); | if(tmp<itNr) {

3 if(!th->HasWritten(itNr, addr))| LdVct[ind]=itNr;
4 return *addr; | if(syncR[ind]>itNr)

5 else | throw Dep_Exc(itNr-1);
6 return | syncR[ind] = itNr;

7 th->getInternalWrite(addr); | tmp = itNr;
} | } } while(LdVct[ind]!=tmp);

Figure 2: SpSC: Speculative Load

of markLD are shown on the right-side of Figure 2. (While
the lock-free variant may in principle cause a rollback, this
almost never happens in practice.)

The if expression (lines 3-7) handles iteration indepen-
dent raw dependencies. HasWritten is a light, conservative
test that if unsuccessful guarantees that no same-iteration
raw dependencies exist. If so, the non-speculative mem-
ory is dereferenced and the value is returned. Otherwise
the current thread may have written the needed value and
its internal buffer is searched to return the proper value
(getInternalWrite). This design choice is motivated by
the fact that, in most cases, the compiler/user can eliminate
such dependencies: a[i]=x;...y=a[i]; → a[i]=x;...y=x;

Although various lighter heuristics are available, a general
solution for implementing HasWritten is to maintain a per-
iteration write map against which the test is performed.

Before starting a new iteration a thread waits until it be-
comes master and then commits its internal buffer to mem-
ory (the writes are serialized). For each {addr,val} tuple to
be committed, lastLoad = LdVct[hashFct(addr)] is read.
If for all such tuples, lastLoad is less than the master it-
eration number, then it is guaranteed that no raw depen-
dencies have occurred (no successor thread has missed one
of the master’s updates). The current thread receives a new
iteration to execute, and another thread becomes master
and starts its commit phase. Otherwise, a raw dependency
may have occurred and the rollback procedure is started to
annul the incorrect iterations, as detailed in Section 3.2.3.
(The serial commit phase transparently satisfies the waw

and war dependencies.)
It should be easy to observe that even if hashFct is not

one-to-one (and maps different locations to the same entry),
the dependency tracking is still safe since it conservatively
regards a read from address a as a read from all locations
in hashFct−1(hashFct(a)). The memory overhead depends
on the number of writes per iteration (ShBuff size) and on
the range of addresses ([amin..amax]) read during C consec-
utive iterations (LdVct size). As demonstrated in the next
section, the latter ensures that hashFct introduces very few
false-positive violations. It follows that, as opposed to the
reviewed approaches, in many cases the model’s memory
overhead is a small fraction of the original program data.

We conclude this section by discussing Welc, Jagannathan
and Hosking approach [24] of integrating safe futures in Java.
Their design is similar to ours in the sense that dependen-
cies are tracked at the iteration level and a serial commit-
phase is employed, resulting in a memory overhead com-
parable with ours. Their implementation differs in several
ways: First, whenever an item of shared state is written,
the thread stack is scanned and any reference to the original

// assume N%U==0 & U=2^t | SpRO spA(A,M*N); SpSC spB(B,N);

for(int i=0,id=0; i<N; id++){ | USpM<SpRO,&spA,SpSC,&spB> spU;
for(int k=0; k<U; k++) { | //sum += A[i][j];

sum = 0.0; | sum += spU.specLD<SpRO,&spA>(
for (j=0; j<M; j++) | &A[i][j], id);

sum += A[i][j]; | //B[i] += sum;

sum = 1.0/(1.0+exp(-sum)); | spU.specST<SpSC,&spB>(&B[i],
B[i] += sum; i++; | spU.specLD<SpSC,&spB>(&B[i],id)

} } | + sum, id);

Figure 3: (A)Loop Example (B)Applying TLS Diffs.

object is patched to refer to the copy instead. Compared
with our scheme this solves the same-iteration raw problem
at a rather high overhead cost: the write has O(W) com-
plexity. Second, to track down dependencies, each thread
maintains private read/write maps that register the shared
data access. This provides better cache-behavior, but with
the disadvantage that the serial commit phase needs to scan
and reset all (S) vector’s entries. (Our approach accesses
LdVct exactly once per write, and needs not reset it.)

2.3 Motivating Example and Discussion
Consider the loop in Figure 3.A, where U = 2t and the

sizes of arrays A and B are N*M and N, respectively. The vari-
able names and the loop access patterns hint that the arrays
A and B are disjoint and that A is read-accessed only. (Pro-
filing techniques, currently under investigation, can also be
used to strengthen these hints.) Assume however that alias-
ing prevents the compiler to prove it and hence static par-
allelization cannot be employed. We target the speculative
parallelization of the outer loop. The s-tls model would use
a speculative storage size of order O(N2

×M2), and thus yield
poor performance (since it ignores these hints).

We achieve better speed-up and a small memory overhead
by employing spro for A (spA) and splsc for B (spB). To com-
pose them, each model instance is associated with a memory
range and a check is done to ensure that these intervals are
disjoint. By default, spro protects the remaining locations.
(For example, if (start of) B<A, spB is applied on addresses
in [B, A), and spA on the rest.)

A unified speculative model (spU of type uspm) can ag-
gregate these instances and dispatch the load/store accesses
that cannot be statically disambiguated by the compiler to
the appropriate tls instance. Figure 3.B shows the neces-
sary modifications, and hints at optimistic meta-programming:
the programmer “guesses” the correct interval; if unsuccess-
ful uspm recovers by searching all active models for the one
dealing with the given address. A variant of this approach
(uspm-var), instead merely causes a full rollback when the
guess is incorrect. As shown in Section 5.1, with uspm-var
the compiler optimizes the library code better (quite effi-
cient when all guesses are correct); however, the rollback’s
cost is of the magnitude of thousands of instructions.

Note that, even if the static/dynamic hints are inexact,
soundness is still preserved: For example, even if B spans
over the beginning of A (aliasing), the accesses through B

that fall in the range of spA are handled by the latter, read-
only model (even if the programmer has wrongly “guessed”
spB). These accesses may result in false-positive violations,
and may impact on performance, but not on correctness.

Let us examine now the memory overhead of the uspm

model. spro is weightless. For spB, the ShBuff size is
O(U) (the number of writes per iteration). We denote by
C the number of concurrent threads. Suppose C consecutive

/** 1. Constants and Speculative Model Instances **/

const int UROLL=16, SZ=8, TH_NR=4, SHIFT=4;
HashPow2 hash(SZ, SHIFT); /* LdVct size is 2^SZ */

typedef SpSCcore<HashPow2> SCcore; SCcore core(hash);
typedef SpSC<HashPow2,&core,double> SC; typedef SpRO<double> RO;
SC spB(B,B+N); RO spA(A,A+N*M);

/** 2. Create the Unified Speculative Model (USpM) **/

typedef USpM<RO, &spA, 0, USpM<SC,&spB,IndRAW_HA,USSpMfp> > UM;

/** 3. Thread Manager and Thread instances **/
class ThManager : public TM_INH<UM,UROLL,NORMALIZED_IT,SC> { };
class InstTh : public TH_INH<InstTh,ThManager,SIMPLE> {

private: int i, N;
public:

int end_condition() const { return (i>=N); }
void set_IndVars() { i = (this->id-1)*UNROLL; }
int iteration_body() {

double sum = 0.0;
for (j=0; j<M; j++) sum+=this->specLD<RO,&spA>(&A[i][j]);

sum = 1.0/(1.0+exp(-sum));
specST<SC,&spB>(&B[i], specLD<SC,&spB>(&B[i])+sum); i++;

} };
int main() { /** 4. Main **/

ThManager tm;

for(int k=0; k<TH_NR; k++) tm.registerSpecThread(new InstTh());
tm.speculate();

}

Figure 4: Library Use. (See also Section 3.2.2.)

(outer) iterations access addresses in the range [amin..amax)
belonging to array B (this is discoverable by profiling). A
good value for S is amax − amin; in the case of Figure 3
where accesses are disjoint we have S=C×U. Choosing hash-

Fct(x) = (x-B)modS, where B denotes the start address of
array B, results in a LdVct of size S, and guarantees that two
distinct addresses accessed in the same execution window are
mapped into different LdVct indexes, and hence do not in-
troduce false-positives (see Figure 1 and Section 2.2.2). The
memory overhead of uspm is thus O(U× C) (where typically
U × C ≪ N). Furthermore, the ratio of operations serviced
by splsc/spro per iteration is 1/M, and since spro is the
lightest tls model we achieve near optimal speed-up.

We conclude this section by noting that the application of
tls model composition, described in this paper, relies only
on (approximate) profiling techniques and not on (exact)
alias/inter-modular analysis. As demonstrated in Section 5,
if the former are accurate enough, the low memory overhead
and efficient implementation lead to good performance, even
when suffering an occasional false-positive violation.

3. THE LIBRARY AT A HIGH LEVEL
The previous section has advocated the usefulness of light-

weight tls models composition. While tls should ulti-
mately be integrated in a compiler repertoire, the library
solution is more suitable for this experimentation stage: par-
allelization can be tested over various optimizing compilers,
the implementation is more readily available and extensible,
and does not require time-consuming recompilations.

We named our library PolyLibTLS, from polymorphic tls

library. Section 3.1 demonstrates the user-library interac-
tion, and Section 3.2 introduces at a high-level PolyLibTLS’s
main components and the relations between them.

3.1 PolyLibTLS: Use-Example
Figure 4 shows the tls code that parallelizes the loop in

Figure 3. First, the speculative models instances are created
(spA, spB), and the start/end addresses that determine their

associated memory-partition are specified. Second, uspm is
constructed (UM). uspm is a recursive templated class that en-
capsulates the speculative parallelization strategy. The third
generic type, IndRAW_HA for example, indicates how to han-
dle loop-independent raw dependencies (see Section 2.2.2).
In our case we choose a lightweight mechanism in which
each thread maintains the highest address written so far by
a given splsc instance. If the address to be read is higher
than the latter, it is guaranteed that the address has not
been written by the current iteration. USpMfp is the fixed
point that terminates the recursion.

Third, the thread manager and thread classes are imple-
mented. The“inheritance”functors accomplish an easy user-
library interaction, and statically validate the composition
of the three components. Deriving from TM_INH says: “Here
is the uspm model and the granularity of the thread itera-
tion. I need a thread manager that assigns each thread to
execute UROLL consecutive iterations as one expanded itera-
tion” (NORMALIZED_IT). The inheritance functor for threads
is similar; the SIMPLE attribute specifies that the thread is
managed directly by the thread manager and is not super-
vising other (slave) threads. Next, the user writes the specu-
lative code for the original loop iteration (iteration_body),
and specifies the loop end condition, and how to update
the loop induction variable for each “expanded” iteration
(set_IndVars). Finally, the main function creates and reg-
isters the speculative threads with the thread manager, and
the speculative execution commences (tm.speculate()).

At first sight, the difference between Figures 3 and 4,
in terms of number of lines of code (LoC) may question
the framework’s ease-of-use. We argue against such a view:
First, as the loop’s body LoC increases, the LoC difference
gets smaller, and the loop’s body modifications are straight-
forward: read/writes are replaced with specLD/specST calls.
Second, except for the tls model creation, applying our
framework is no more difficult than what the programmer
has to do in Java, for example. The additional advantage is
that the user does not need to understand the whole program
and ensure the parallelization’s soundness; the tls safety-
net allows him to work based on his intuitions of the “local”
code. Third, Figure 4 can be seen as the intermediate repre-
sentation of a more simpler, loop annotation-based interface.
Finally, although our approach may require a learning curve,
it is fairly straightforward: it took us about 3 hours to write
the tls version for the benchmark tested in Section 5.

3.2 PolyLibTLS: Main Components
PolyLibTLS comprises three major kinds of orthogonal

components: threads, thread managers, and speculation mod-
els. The unified speculative model (uspm) is the high-level
inter-component glue: it aggregates different instances of
speculative models, and exports a unified interface to the
threads/thread managers. It also simplifies the library use.

3.2.1 Speculative Models
At the moment, the library supports three speculative

models. We have already introduced two of them: spro

and splsc. The third one, named splip, is a lightweight
model that executes its updates in-place, and hence is scal-
able (since it does not employ a serial commit phase). Its
design and performance are analyzed elsewhere [17].

Figure 5 shows part of the interface of the splsc model.
The implementation is split into two classes: SpSCcore han-

template<class HashFct> class SpSCcore {

volatile WORD* LdVct; HashFct hashFct;
SpSCcore(HashFct obj) { ... }

WORD getIndex(WORD addr) { return hashFct(addr); }
void markLD(WORD ind, WORD itNr){ /*already presented*/ }

};

template<class HashF,SpSCcore<HashF>* core,class T> class SpSC {
T *addr_beg, *addr_end; /* interval */ typedef T ElemType;

WORD addr_diff; /*=addr_end-addr_beg;*/
WORD checkBounds(T* address) {

WORD diff = (WORD)(address-addr_beg);
if(diff<addr_diff) return core->getIndex(diff);
else return WORD_MAX;

}
template<class TH> T specLD

(volatile T* addr,WORD itNr,TH* th,WORD ind){ ... }
};

Figure 5: splsc Interface

dles the LdVct access. If the code read-access pattern for
two variables is identical, it is desirable that they share the
same LdVct for the obvious reasons. Therefore we allow
different instances of SpSC to share the same “core” (the sec-
ond template argument). SpSC holds the memory address
range to which this instance provides speculative support.
checkBounds returns either the address’ corresponding in-
dex in LdVct or the WORD_MAX value if the address is out
of its scope. (specLD has already been discussed in Sec-
tion 2.2.2.) Although not shown, T is restricted to be one of
the basic types or a pointer type. Accessing more complex
data-structure need to be broken down in terms of these
components; otherwise the system’s soundness is violated.

3.2.2 Threads
Figure 6.A presents the thread’s interface and indicates

its life cycle. SpecThread receives two type-parameters. TM

is the type of thread manager that “supervises” the thread.
(The unified tls model, USpM, is statically known via TM.)
SELF is the self-type: the user’s implementation class that is
derived from SpecThread. Its use allows the user-implemented
methods (those prefixed with me->) to elide the overhead as-
sociated with virtual function calls, which can be significant.
(In the C++ literature, this construct is known as “the curi-
ously recurring template pattern” [7]).

The thread spends its life executing the while(true) loop.
The acquireResources call in line 4 returns only when the
thread is ready to start a new iteration. This implies that
the former iteration (splsc) writes have been committed,
and the resources needed to start a new iteration are avail-
able. The latter include for example a new iteration number
(id), and a serial computation/prediction of (scalar) vari-
ables which if executed in parallel would generate frequent
rollbacks (execSynchCode call in line 7, Figure 6.B). The
mechanism is similar to Zilles and Sohi approach [25]. The
thread then updates the induction variables that can be de-
termined solely from the iteration number (line 5).

Empirical data indicate that tls is best applied on iter-
ations comprising hundreds-to-thousands instructions. The
for loop (lines 6−10) expands the original iteration to achieve
the desired granularity. The iteration_body call executes
the original iteration code, augmented with speculative sup-
port for the variables that cannot be statically disambiguated.

The catch block (lines 11−17) is entered when one of
three types of events occur: the current thread detects a
dependency-violation, or satisfies the end of the loop condi-

template<class SELF,class TM> |template<class UM, class ATTR>

class SpecThread : public |class ThreadManager_SC
ThBuffComp<SELF,TM::USpM> { | :public ATTR { typedef UM USpM;

WORD UNROLL; TM* tm; |
void run() { | template<class TH> void

1 SELF* me = | acquireResources(TH* th) {

static_cast<SELF*>(this); |1 WORD old_id = th->getID();
2 while(true) { |2 this->ATTR::nextBigIterId(th);

3 try { |
4 tm->acquireResources(me); |3 /** wait to become master **/

5 me->set_IndVars(); |4 while(master != old_id) ;
6 for(int i=0;i<UNROLL;i++){ |5
7 if(me->end_condition()) |6 UM::serial_commit(th);

throw Exc(); |7 th->execSynchCode();
8 me->iteration_body(); |8 master=ATTR::nextMasterID();

9 tm->setNextID(me); | }
10 } |
11 }catch(AnyExceptOrError e){ | template<class TH> int

12 wait_to_become_master(); | rollbackProc(WORD safeId,TH*th){
13 tm->rollbackProc | //kill all other spec threads;

(getSafeId(e),me); | //request each TLS model to:
14 if(dependence_except(e)) | // roll back its mem partition

15 tm->respawnThreads(); | // to a safe point and
16 else if(end_condition()) | // reset their spec. storage

return; | // (ShBuff, LdVct, etc)

17 else throw e; | //execute several iters sequent
} } } ... }; |}};

Figure 6: A: Thread. B: Thread Manager

tion (line 7), or yields an exception/error. The treatment is
similar. The current thread waits to become master. (The
master trivially preserves both the data and control flow
correctness.)

If so, it follows that the exception/end-of-the-loop are not
mis-speculation artifacts. The thread manager is invoked
(rollbackProc on line 13) to kill the other threads and
to undo the successor thread’s updates. In the case of a
dependency-violation it also resets the speculative storage
and executes one iteration sequentially to ensure the sys-
tems makes progress. Finally, speculation either continues
(dependency-violation), or ends (exception/end-of-loop).

Otherwise, the event originated in a mis-speculation, and
the current thread is eventually killed by the master thread
who discovers it. (This mechanism also solves the case when
a thread enters an infinite loop due to a “dirty” read.)

We have seen that splsc requires the thread to have buffer-
ing capabilities. This is achieved through the use of meta-
programming in the definition of the ThBuffComp<SELF,UM>

class. Ultimately, for each splsc instance in UM, SpecThread
extends an appropriate buffering component (see Section 4.2).

Following Bhowmik and Franklin work [2] on multi-thread
partitioning, an useful extension would be to classify the
threads into leaders and slaves, where a slave can be spawn
by a leader from anywhere inside his iteration. (The spawn-
ing is delayed until certain dependencies get resolved.)

3.2.3 Thread Managers
The thread manager has two main functions: First, it

assigns new iterations and the associated resources to the
threads it supervises while enforcing the necessary invari-
ants.1 For example, if a splsc instance is used, a thread
may commit its writes only when he becomes master. Sec-
ond, it implements the rollback recovery procedure.

The library supports two main types of thread managers:
one that assigns a new iteration to a thread only after it has
become master (ThreadManager_SC), and another one that

1Spawning new threads for each iteration carries a signifi-
cant overhead, therefore we chose to re-use them.

allows threads to be more loose, as long as the distance be-
tween the highest and lowest concurrent executing iteration
is less than a certain threshold. (The latter obviously cannot
work with splsc instances.)

Figure 6.B presents part of the thread manager’s inter-
face. It receives two template parameters: the unified spec-
ulative model, and a trait [16, 18] component, IT_ATTR,
that specifies the iteration policy. This can be normal-

ized or interleaved. With the former, th1 executes iterations
{0,1,..,U}, th2 ∈ {U,..,2*U-1}. With the latter, th1 ∈

{0,4,8...}, th2 ∈ {1,5,9...} and so on. Note that, when
splsc is used, the interleaved option is inappropriate, since
the serial commit operation would incur too much overhead.

The acquire_resources’s implementation waits for the
executing thread to become master (line 4) prior to commit-
ting his writes to non-speculative storage (line 6). The latter
may throw a dependency-exception, which is caught in the
thread’s run function, and the rollback-recovery mechanism
(rollbackProc) has already been discussed. Otherwise, the
thread starts a new iteration and the master iteration is ad-
vanced (line 8). Note that our design is decentralized: the
thread manager is not a thread but a piece of code that is
executed by all speculative threads.

4. TEMPLATE META-PROGRAMMING:
EASE OF USE AND PERFORMANCE

We start this section by comparing the stl’s design with
ours, in Section 4.1, and then Sections 4.2 and 4.3 present
the template meta-programming techniques we have used to
improve the framework’s ease of use and performance.

4.1 PolyLibTLS - STL
In spirit, the PolyLibTLS design resembles the one of the

C++ Standard Template Library (stl) [9]. To achieve a high
level of modularity, usability, and extensibility to its com-
ponents, without impacting the code’s efficiency, stl com-
ponents are designed to be orthogonal. This is in contrast
with traditional approaches where, for example, algorithms

are implemented as methods inside container classes. In
stl, the orthogonality of the former domains is achieved,
through the use of iterators: the algorithms are specified in
terms of iterators that are exported by the containers.

PolyLibTLS adheres to the same design principles:
Modularity and Extensibility: To develop and experiment
new parallelization strategies, easy component-plug-in is a
must. Moreover, library-use implicitly means to extend it:
the thread must be at least provided with the iteration code.
Performance: At a high level, the library replaces mem-
ory location accesses to function calls that in addition track
down dependencies. Working at such a low granularity re-
quires a performant implementation to obtain any speed-up.
Safety: debugging multi-threaded applications is notoriously
difficult, therefore it is important to have some static guar-
antees that the components are properly combined. F-bounded
parametric polymorphism [3] is not enough in achieving this:
some relations can be statically validated only with the use
of meta-programming. (Eg: if uspm contains an splsc in-
stance, then do not use an interleaved thread manager.)
Ease of use: it should be straightforward for the program-
mer to use the library, and it should also be easy to integrate
the library in the repertoire of a dynamic compiler.

It comes then, as a natural consequence, that PolyLibTLS’s

components are also designed to be orthogonal. The or-

thogonality between the threads/thread manager and the
tls model instances is achieved through the use of the uni-
fied tls model (uspm). In contrast to stl’s iterators, the
latter is not a run-time object but a recursive-templated
class that contains only static members. On the one hand,
uspm presents to the other components the simplified view of
one speculative model, and carries out the obvious software-
engineering benefits. More important, it allows static val-
idation of component’s composition and it generates faster
code than the alternative run-time-oriented solutions.

On the other hand, this allows the user to separate con-
cerns. Constructing uspm defines the parallelization strat-
egy, as the program variables are mapped to customized
speculative model instances. The next, orthogonal step, the
thread implementation, is an “automatic” process of replac-
ing variables reads/writes with calls to the specLD/specST
functions. There is no redundancy in the user’s work.

4.2 Meta-Programming: Ease of Use
C++ templates and partial specialization allows the com-

piler to perform static computations, encouraging a style
known as template meta-programming [23]. Known to be
Turing-complete, these techniques have been used in princi-
ple to provide static type checking to traditionally unchecked
operations, or to achieve a better degree of optimization.

Boost mpl [10], one of the most well known library for
meta-programming provides a high-level framework of compile-
time algorithms, sequences and meta-functions. In our im-
plementation we use the mpl’s enable_if/disable_if con-
structs [12] developed by Jarvi, Willcock and Lumsdaine.
enable_if takes two class parameters, the second with the
default value void. The first type parameter has a static
value member. If the latter evaluates statically to true,
enable_if exports the second type-parameter through the
name type. Otherwise it does not. The disable_if tem-
plate has the reverse functionality. They are used as ad-
ditional default parameter to control which functions to be
considered for overload resolution and which not.

Figure 7 presents the definition of the uspm recursive tem-
plate, and shows how different template-functors are used to
statically guarantee safety and to ease the user-library inter-
action. The validSpM functor takes as parameter a specu-
lation model, one of its instances, and a thread attribute
and determines whether the combination is valid. We enu-
merate the valid compositions via partial specialization: the
value static member is set to true and the corresponding
thread bufferable component is exported via the type mem-
ber. Otherwise no type member is defined and value is
false. The is_same_type is “true” if the type parameters
are the same and false otherwise.

uspm is either a recursive template in which the first three
parameters form up a valid composition, as specified by the
validSpM functor, or is the fixpoint type that ends the recur-
sion (USpMfp). Note that otherwise the compiler will signal
an error: either Cont parameter is not an uspm instance
or the combination is not legal (at the definition of V1 and
V2 respectively). The implementation also ensures that the
user may instantiate the uspm’s default parameter only with
a valid type, otherwise type-checking fails (is_same_type).

Finally, the TH_INH0 functor “returns”a type that inherits
from all the bufferable thread components associated with
the speculative model instances in the definition of uspm. Its
use, in the ThBuffComp is transparent to the programmer.

/******* Functor: (SpecModel) -> BufferableThComponent ********/

template<class M, M* m, const WORD TH_ATTR> struct validSpM
{ static const int value=false; };

template<class T, SpRO<T>* m> struct validSpM<SpRO<T>,m,RO_ATR>{
typedef Buff_RO<T,SpRO<T>,m> type;
static const bool value=true; };

template<class H,SpSCcore<H>* c,class T,SpSC<H,c,T>* m>
struct validSpM< SpSC<H,c,T>, m, IndRAW_HA_ATR > {

typedef BuffThSC< T, SpSC<H,c,T>, m, IndRAW_HA > type;
static const bool value = true; };

/****************** is_same_type conditional ******************/
template<class T1, class T2> struct is_same_type

{ static const bool value = false; };
template<class T > struct is_same_type<T, T>

{ static const bool value = true; };

/**************************** USpM ****************************/
template< class M, M* m, const int ATTR, class Cont,

class BuffThComp = validSpM<M,m,ATTR>::type >
class USpM :public BaseUSpM< M::ElemType,M,m,BuffThComp,Cont > {

private:
typedef enable_if< is_USpM_inst<Cont> >::type V1;
typedef enable_if<

is_same_type< validSpM<M,m,ATTR>::type, BuffThComp >
>::type V2;

};

struct Dummy{}; Dummy dummy;

template<> class USpM<Dummy, &dummy, 0, void*, int>
: public USpMnever<Dummy, &dummy, 0> {};

typedef USpM<Dummy, &dummy, 0, void*, int> USpMfp;

/*********** Functor: extends all BuffarableThComps ***********/
template<class UM> struct TH_INH0 {};
template<> struct TH_INH0<USpMfp> {};

template<class M, M* m, const int ATTR, class Cont>
struct TH_INH0< USpM<M, m, ATTR, Cont> > :

public validSpM< USpM<M, m, ATTR, Cont>, M, m >::type,
public TH_INH0<Cont> {};

/* SpecThread<SELF,TM> is subtype of ThBuffComp<SELF, TM:USp> */
template<class SELF, class UM>

class ThBuffComp : public TH_INH0<UM> { ... };

Figure 7: Template Meta-Programming 1

Figure 8 presents the functor that, for user’s convenience,
creates the thread manager class (see Figure 4). If the it-
eration policy is interleaved, the implementation statically
checks that uspm does not contain any splsc instances. The
isSCin functor answers this question. Note that this check
cannot be performed with F-bounded polymorphism.

4.3 Meta-Programming: Performance
Figure 9 shows the implementation of the uspm specLD

operation that will dispatch the call to the appropriate spec-
ulative model instance. The user hints that it is most likely
that the template parameter m1 is the right instance. The
implementation checks this by calling checkBounds. If the
test fails, the execution takes the slower path of checking
the model instances in order for the proper address range
(specLDslow). If no suitable range is found the default is
a spro-type behavior – conservative approach. If the test
succeeds (index<WORD_MAX) then specLDrec is called.

Static overloading resolution will find out that exactly one
of the two specLDrec functions matches. This is because
only one of the third, default parameter type is well formed
(the enable_if, disable_if are called on the same argu-
ment, and hence cannot be both correct or wrong). The
is_same_object “condition” is true iff m1 and m are identi-
cal. Note that an optimistic specLD call on a model instance

/************ isSCin: is any SpSC instance in UM? *************/

template<class UM>struct isSCin{static const bool value=false;};
template<>struct isSCin<USpMfp>{static const bool value=false;};

template<class M, M* m, const int ATTR, class Cont>
struct isSCin< USpM<M,m,ATTR,Cont> > : public isSCin<Cont> { };

template<class H,SpSCcore<H>* c, class T,SpSC<H,c,T>* m, int A>
struct isSCin<SpSC<H,c,T>,m,A> {static const bool value=true;};

/********* Thread Manager Inheritance Functor TM_INH **********/

template<class UM, int UROLL, int IT_POLICY> struct TM_INH { };
template<class UM,int U> struct TM_INH<UM,U,INTERLEAVED_IT,SC> :

public ThreadManager_SC<UM,UROLL,InterleavedChunks<UROLL> >

{ typedef disable_if< isSCin<UM> >::type V; };

Figure 8: Template Meta-Programming 2

template<class T, class M, M* m, class Buff, class Cont>
class BaseUSpM {

template< class TH > static void serial_commit(TH* th) {
m->serial_commit(static_cast<Buff*>(th), th->getID());

Cont::serial_commit(th); }

template< class M1, M1* m1, class T1, class TH >

static T1 specLD(volatile T1* addr, TH* th) {
WORD index = m->checkBounds((T1*)addr);

if(index<WORD_MAX)
return specLDrec <M1, m1>(addr, th, index);

else return specLDslow<T1, TH>(addr, th); }

template< class M1, M1* m1, class T1, class TH >

static T1 specLDrec (
volatile T1* addr, TH* th, const WORD index,

disable_if< is_same_obj<M1, M, m1, m> >::type*=NULL
) { return Cont::specLDrec<M1,m1, T1, TH>(addr,th,index); }

template< class M1, M1* m1, class T1, class TH >
static T specLDrec (

volatile T* addr, TH* th, const WORD ind,
enable_if< is_same_obj<M1, M, m1, m> >::type* =NULL

) { return m->specLD(addr,th->getID(),(Buff*)th,ind); } };

Figure 9: Optimistic (Static) Dispatch for specLD

that is not aggregated in the uspm will be statically faulted.
The overloading resolution also fails if the types T and T1 are
not identical when m1 and m are. When no unsafe casts exists
in the user code, we can thus allow two models to service
non-disjoint memory partitions, as long as their basic-types
are different (now we can handle typedef struct{int i;

float f;} arr[N]). Otherwise, tls instances are applied
at WORD level on disjoint intervals.

Finally, the hinted speculative instance is tracked down
at compile time, while the unnecessary recursive calls to
specLDrec are completely compiled away (the timming dif-
ferences with the hand-optimized code are inconclusive).
The thread implements a similar policy, hence the user may
conveniently call the tls operations on either uspm or thread.

5. PERFORMANCE RESULTS
All the tests referred to in this section were performed

on a four-Opteron-processor sun smp machine running Fe-

dora Core 6. We used the gcc-3.4.4 compiler with -O2 opti-
mization level and the pthread library. Section 5.1 evaluates
the speculative overhead on loops with trivial bodies (gcc’s
profile-directed optimizations are used). Section 5.2 presents
speed-up result for loop kernels from real benchmarks.

5.1 Load/Store Overhead on Null Benchmark
Table 1 shows the speculation overhead, computed as the

inverse-ratio between the (sequential) timings of the code

Model size=103 size=104 size=105

LoopRO spro 2.06/1.46 2.22/1.66 1.17/1.09
LoopRO splsc 4.33/4.10 4.36/4.08 2.05/1.93
LoopWO splsc 6.44/5.60 5.48/4.87 2.72/2.49
LoopRW splsc 11.2/11.1 6.58/6.52 2.81/2.69
Figure 3 Both 9.83/8.67 4.95/4.47 2.19/2.00

Table 1: Read/Write (Sequential) Overheads.

/**LoopRO**/ for(int i=0; i<N; i++) { sum += C[i] + D[i]; }

/**LoopWO**/ for(int i=0; i<N; i++) { A[i] = i; B[i] = i; }
/**LoopRW**/ for(int i=0; i<N; i++)

{ d1=A[i]; d2=B[i]; A[i]=d1+d2; B[i]=d1-d2; }

Figure 10: Null Benchmark for Overhead Evaluation

as written and with read and writes re-expressed as calls to
specLD and specST, for four simple programs. Table entries
are of the form x/y corresponding to the implementation
approaches uspm/uspm-var introduced in Section 2.3.

Our mini benchmark contains four programs. The first
three are presented in Figure 10, while the fourth is our in-
troductory example (Figure 3). In all programs, all array
accesses have been protected with speculative support. The
first three applications use a single model: either splsc or
spro. The fourth uses two, as depicted in Figure 3. We used
a hash function of cardinality 26 and a thread buffer of size
100. The size of the arrays was varied between 103 to 105.
Since the speculative memory overhead is fixed (does not
depend on the original-data size), increasing the array sizes
will accentuate the memory-hierarchy related overheads of
the original read/write operations, with the result that the
(relative) speculative overhead decreases. With one excep-
tion, the figures seem to indicate just that. Note also that a
speculative write is significantly more expensive than a read,
due to value-buffering.

We have also observed that the overhead decreases faster
for LoopRW than for LoopRO or LoopWO, even if these pro-
grams use the same data. Our guess is that, perhaps, the
instruction-level cache is the issue here, as LoopRW uses both
load/store speculative instruction while the other two use
either load or store. The uspm-var approach overheads (2nd

number in each entry) are much reduced in several cases; if
the interval prediction is very accurate, this technique may
pay off (otherwise use uspm since a full-rollback cost is in
the range of thousands of instructions).

Finally, we note that when the arrays’ size reaches 105

elements, the speculation overhead is less than three, and
hence we have potential speed-up on a four processor ma-
chine, even when all accesses require speculative support.
The figures obtained for the loops involving store opera-
tions are deceptive: splsc is not scalable. Hence the ratio
between the whole iteration cost and the cost of the writes
per iteration is in effect a bound on the number of proces-
sors that may contribute to speed-up. We expect splsc to
perform well when this ratio is high.

5.2 Speed-Ups on Non-Trivial Benchmarks
Table 2 shows the parallelization speed-ups, computed

as the ratio between the sequential and parallel execution
timings, obtained on several loops from the bytemark and
SciMark benchmarks. We assumed that only privatisable
variables are statically disambiguated, all global variables

Seq/Spec Hand Par splsc +spro + 1% RR
IDEA Cipher 3.91 2.25 3.22 3.19
IDEA DeKey 3.89 1.85 3.09 3.00
SparMatMult 2.11 1.25 2.00 1.95
NeuralNetFW 2.04 1.19 1.90 1.86
NeuralNetBW 1.52 0.75 1.26 1.21

FFTtransf 1.99 0.83 0.83 0.80

Table 2: Parallelization Speed-ups on Loops from
SciMark & BYTEmark Benchmarks (4 Processors)

(arrays) and parameters are protected with tls support.
The second column presents the optimal speed-up, where
the program is hand-parallelized without speculative sup-
port. The third column shows the results obtained when
splsc was employed alone. The fourth column refers to the
case when the spro model was used for the variables that
are very rarely written. The fourth column shows the ob-
tained speed-up when we artificially introduce a 1% rollback
ratio (w.r.t. the number of executed iterations). The spec-
ulative storage size for all applications is well under 1% of
the original data size. Note that speculative-model composi-
tion attains between 80–93% of the optimal speed-up, while
splsc in isolation reaches only the 47–60% level.

Finally, we observe that FFTtransf is not suitable for
splsc, since it features an equal number of read and writes,
little independent computation and a code-fragment that re-
quires serial execution. In this case, the speed-up from splsc

saturates at only two processors due to the non-serial com-
mit phase (see Section 5.1 end). In comparison, the scalable
splip [17] model yields a healthy 1.83 speed-up.

6. CONCLUSIONS
The shortcomings of software-level solutions have moti-

vated us to develop PolyLibTLS, a library that encapsulates
several lightweight tls models. It promotes flexibility: the
most suited model is associated, based on code properties,
with each variable, while a unified speculative model com-
bines the various model instances.

This paper has presented one such tls model and the
high-level library structure. Since debugging multi-threading
applications is notoriously difficult, we have shown how to
use template meta-programming to statically verify certain
invariants that cannot be expressed via F-bounded polymor-
phism. Furthermore, we have shown how to use inheritance-
functors to make certain associations transparent from the
user, thus significantly simplifying the framework’s use.

A usable software-tls framework must not compromise
efficiency to achieve a modular and extensible design, es-
pecially not when the mapped operation granularity is a
read/write instruction. We have presented an optimistic dis-
patching technique, well suited for a tls solution, that, while
being safe, reduces to a static and hence efficient dispatch
when the guess is correct. The desired properties are thus
preserved. Finally, we have shown results that demonstrate
that our strategy of composing lightweight speculative mod-
els to parallelize an application is effective.

Acknowledgements
The first author would like to thank Stephen Watt for in-
sightful discussions on this topic and the ORCCA lab at
Western Ontario for providing access to its parallel machine.

7. REFERENCES

[1] V. S. Adve. An Integrated Compilation and Performance
Analysis Environment for Data Parallel Programs. SC’95.

[2] A. Bhowmik and M. Franklin. A General Compiler
Framework for Speculative Multithreading. In SPAA’02.

[3] P. Canning, W. Cook, W. Hill, and W. Olthoff. F-Bounded
Polymorphism for Object Oriented Programming. In
FPCA’89, pages 273–280.

[4] M. K. Chen and K. Olukotun. Exploiting Method Level
Parallelism in Single Threaded Java Programs. In
PACT’98.

[5] M. K. Chen and K. Olukotun. The Jrpm System for
Dynamically Parallelizing Java Programs. In ISCA-30,
June 2003.

[6] M. Cintra and D. R. Llanos. Toward Efficient and Robust
Software Speculative Parallelization on Multiprocessors. In
PPoPP, June 2003.

[7] J. O. Coplien. Curiously Recurring Template Patterns. In
C++ Report, pages 24–27, 1995, February.

[8] F. Dang, H. Yu, and L. Rauchwerger. The R-LRPD Test:
Speculative Parallelization of Partially Parallel Loops. In
IPDPS, 2002.

[9] A. S. David R. Musser, Gillmer J. Derge. STL Tutorial and
Reference Guide, Second Edition. Addison-Wesley (ISBN
0-201-37923-6), 2001.

[10] A. Gurtovoy and D. Abrahams. The Boost MPL Library,
http://www.boost.org/libs/mpl/doc/index.html.

[11] L. Hammond, M. Willey, and K. Olukotun. Data
Speculation Support for Chip Multiprocessor. In
ASPLOS’98.

[12] J. Jarvi, J. Willcock, and A. Lumsdaine.
Concept-Controlled Polymorphism. In Generative
Programming and Component Engineering, volume 2830 of
LNCS, pages 228–244. Springer Verlag, September 2003.

[13] I. H. Kazi and D. J. Lilja. Coarsed-Grained Thread
Pipelining: A Speculative Parallel Execution Model for
Shared-Memory Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 12(9), September 2001.

[14] S. W. Kim, R. E. Chong-Liang Ooi, B. Falsafi, and T. N.
Vijaykumar. Reference Idempotency Analysis: A
Framework for Optimizing Speculative Execution. In
PPOPP’01

[15] Sun Microsystems. MAJC architecture tutorial. In White
Paper, 1999.

[16] N. C. Myers. Traits: a New and Useful Template
Technique. In C++ Report, June 1995.

[17] C. E. Oancea and A. Mycroft. A Lightweight In-Place
Model for Software Thread-Level Speculation. In
preparation.

[18] M. Odersky and M. Zenger. Scalable Component
Abstractions. In OOPSLA, pages 41–57, 2005.

[19] P. Papadimitriou and T. Mowry. Exploring Thread-Level
Speculation in Software: The Effects of Memory Access
Tracking Granularity. Technical report, CMU, 2001.

[20] P. Rundberg and P. Stenstrom. An All-Software
Thread-Level Data Dependence Speculation System for
Multiprocessors. The Journal of Instruction-Level
Parallelism, 1999.

[21] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In ISCA-22, pages 414–425, June 1995.

[22] J. G. Steffan, C. G. Colohan, A. Zhai, and T. Mowry. A
Scalable Approach for Thread Level Speculation. In
ISCA-27, 2000.

[23] T. Veldhuizen. Using C++ Template Metaprograms. In
C++ Report, Vol 7, No.4, pages 36–43, 1995, May.

[24] A. Welc, S. Jagannathan, and A. Hosking. Safe Futures for
Java. In OOPSLA, pages 439–453, 2006.

[25] C. Zilles and G. Sohi. Master/Slave Speculative
Parallelization. In Micro-35 Proceedings. 2002.

