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Abstract. We present PacLang: an imperative, concurrent, linearly-
typed language designed for expressing packet processing applications.
PacLang’s linear type system ensures that no packet is referenced by
more than one thread, but allows multiple references to a packet within a
thread . We argue (i) that this property greatly simplifies compilation of
high-level programs to the distributed memory architectures of modern
Network Processors; and (ii) that PacLang’s type system captures that
style in which imperative packet processing programs are already written.
Claim (ii) is justified by means of a case-study: we describe a PacLang
implementation of the IPv4 unicast packet forwarding algorithm.
PacLang is formalised by means of an operational semantics and a
Unique Ownership theorem formalises its correctness with respect to
the type system.

1 Introduction

Network Processors (NPs) [1, 10, 17] are programmable, application-specific hard-
ware architectures designed to facilitate high-speed packet processing. NPs typ-
ically contain multiple processor cores (allowing multiple network packets to be
processed concurrently) and multiple memory banks. The majority of NPs are
based on what is known as a distributed memory architecture: not all memory
banks are accessible from all processor cores.

State-of-the-art programming techniques for NPs are invariably low-level,
requiring programmers to specify explicitly how data will be mapped to, and
dynamically moved between, complex arrays of available memory banks. This
results in design flows which are difficult to master, error prone and inextrica-
bly tied to one particular architecture. Our research attempts to address this
problem by developing higher-level languages and tools for programming NPs.

This paper formally defines an imperative language which provides an ar-
chitecturally neutral concurrent programming model—multiple parallel threads
accessing a shared heap—and considers the problem of compiling this language



to NP-based architectures. We argue that although, in general , the efficient
compilation of a high-level concurrent language to a diverse range of NP archi-
tectures is very difficult, in the domain of packet processing the problem is more
tractable. Our argument is based on the observation that a great deal of net-
work processing code is written in a restricted data-flow style, in which network
packets can be seen to “flow” through a packet processing system. We formalise
this restricted style of programming by means of a linear type system and state
a unique ownership property : if a program is typeable then at any given point
in its execution, each packet in the heap is referenced by exactly one thread. It
is this property that we argue simplifies the process of compiling for network
processors.

Contributions of this paper: (i) the formalisation of a concurrent, first-
order, imperative language which we argue is well suited for compiling to a
diverse range of NP architectures; (ii) a simple, intuitive linear type system in
which no packet is referenced by more than one thread but multiple references
to packets within a thread are allowed; and (iii) a case-study that demonstrates
both that the type system is applicable to the domain of packet processing (i.e.
not overly restrictive) and that the resulting code is comprehensible to C/C++
programmers.

Previous research [16] has shown that (i) locking is unnecessary for linearly
typed objects; and (ii) memory leaks can be detected statically as type errors.
Although these are not direct contributions of this paper, they are nevertheless
benefits enjoyed by PacLang programmers.

Structure of this paper: We outline the design of an NP-based platform and
explain how our unique ownership property helps us target such architectures
(Section 1.1). Section 2 gives formal syntax and types for PacLang and Section 3
defines its linear typing judgements along with more intuitive explanation. An
operational semantics for the language is presented and the unique ownership
property formalised (Section 4). To justify that our linear type system is not
overly restrictive in the domain of packet processing applications, we present
a case study which shows how PacLang can be used to implement an IPv4
packet forwarder (Section 5). Finally we consider related work (Section 6) and
conclude, giving directions for future research/development (Section 7).

1.1 Compiling for Network Processors

Figure 1 gives a concrete example of an NP-based system: the Intel IXDP2400 [9].
The platform consists of two Intel IXP2400 NPs [10] connected in a pipeline con-
figuration. Each NP contains 16 small RISC processors called micro-engines (la-
belled µE-1,. . .,µE-16), a single Intel X-Scale processor and some on-chip shared
RAM. Each micro-engine1 has its own local memory. The external SRAM and

1 Note that each micro-engine actually supports 8 hardware-level threads. This level
of detail is beyond the scope of the paper.



DRAMs can be accessed by all the cores on the NP to which they are connected.
Micro-engines are equipped with next neighbour registers. The next neighbour
registers of µE-i are accessible to µE-(i+1), forming a uni-directional datapath
between consecutive micro-engines.
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Fig. 1. Simplified diagram of IXDP2400 NP evaluation board

When programming for architectures such as this a great deal of low-level
knowledge is required to decide how packets should be represented in memory
and how packets should be transferred between different memory banks2. For
example, if a small amount of data needs to be transferred between two threads
running on µE-1 and µE-2, then the most efficient mechanism may well be to
move the data across the serial datapath connecting µE-1 and µE-2. Conversely,
if we have data already in DRAM that needs to be transferred between threads
running on µE-1 and the X-Scale core then leaving the data where it is and
passing a reference to it is the obvious choice. When passing data between the
two separate IXP2400s we must pass-by-value since the two processors have no
memories in common.

Clearly, if we are to succeed in our goal of designing a high-level language
that can be compiled to a variety of different NP architectures then a compiler
must be free to choose how data will be passed between threads (e.g. pass a
reference pointing to shared memory, or pass the data itself over a shared bus).
Unfortunately, conventional imperative languages (e.g. C/C++) are unsatisfac-
tory in this respect since they force the programmer to explicitly specify whether
data will be passed by value or passed by reference. Note that a compiler cannot
simply transform pass-by-value into pass-by-reference (or vice versa); sophis-
ticated alias analysis is required to determine whether this transformation is
semantics-preserving—an analysis that is undecidable in general.

2 Moving a packet between different memories as it “flows” through a packet processing
application is crucial to achieving efficient implementation on the IXP (and other
NPs). Data should be located “as close as possible” to the thread operating on it in
order to reduce memory latency.



In contrast, in the PacLang framework, the unique ownership property
(provided by our linear type system) gives us two key benefits: (i) a thread
can dynamically move an object it owns to a new location without worrying
about dangling references; and (ii) pass-by-value and pass-by-reference are se-
mantically indistinguishable when transferring data between threads. This gives
a PacLang compiler the freedom to make decisions regarding both the flow of
packets between available memory banks and the low-level mechanisms employed
to implement these transfers, on a per-architecture basis.

2 A Packet Processing Language

v ← i integer constant
| b boolean constant
| x variable

e ← if v then e1 else e2 conditional
| let (x1, . . . , xj) = f(v1, . . . , vk) in e (j, k ≥ 0) call
| return (v1, . . . , vk) (k ≥ 0) return

d ← (σ1, . . . , σj) f(ρ1 x1, . . . , ρk xk){e} (j, k ≥ 0) function definition
| packetQueue q; queue definition

p ← d1 . . . dn top-level program

ρ, σ, τ ← int | bool | packet | !packet types

Fig. 2. Syntax of PacLang, our simple first-order CBV language.

PacLang is a concurrent, first-order, imperative language with a linear type
system; its syntax is presented in Figure 2. Concurrency is supported by the
simple expedient of treating functions whose name is spelt main1, . . . , mainn, as
representing the entry points of n static threads (n ≥ 1)3. Such functions take
no arguments and return no results. Statically allocated, synchronous (blocking)
packet queues are provided to facilitate inter-thread communication.

Expressions, e, comprise conditionals, function calls and returns. Note that
PacLang syntax forces all function return values to be explicitly bound to
variables (cf. A-Normal Form [7]); this simplifies subsequent typing and semantic
rules. In addition to function names defined by function definitions we assume
some functions to be built-in, e.g. arithmetic and queue manipulation primitives
(see later); both forms may be called using the let construct. We use v to range
over simple expressions (constants and variables). A program, p, consists of a
sequence of function and queue definitions, d. Note that functions take multiple
arguments and return multiple results.

3 In practice a compiler may wish to transform a single programmer-specified thread
into several finer-grained threads for efficient implementation on certain NP archi-
tectures. Such automated partitioning is beyond the scope of this paper.



In contrast to most languages in the linear types literature, PacLang has
imperative features. Given a packet reference p, an integer offset i and a value
v, the built-in function update(p,i,v) updates p to contain v at offset i. The
packet read function read(p,i) returns the value stored at offset i in packet p.

Global queues also provide side-effecting enqueue and dequeue operations.
To simplify the presentation we assume built-in enq and deq functions repli-
cated over queue names. We write q.enq(p) to enqueue a packet p in the queue
declared with name q. Similarly, q.deq() returns a packet dequeued from q. The
semantics of queues are formalised in Section 4.

We also provide built-in functions new(i) which given an integer size i, cre-
ates a new packet buffer of size i, returning its associated packet reference; and
kill(p), which takes a packet reference p, consumes it, deallocates the associ-
ated packet and returns nothing. In PacLang packets are simply dynamically
created arrays. As well as representing network packets, they can also be used
as containers for arbitrary (non-pointer) data within a PacLang program.

Syntactic sugaring is employed to increase readability for those familiar with
C. We write “f(v1, . . . , vk); e” to abbreviate “let () = f(v1, . . . , vk) in e”. We
allow nested function calls to be written directly, assuming a left-to-right eval-
uation order. For example, the expression “let x = f(g(x), h(y)) in e”, be-
comes “let z1 = g(x) in let z2 = h(y) in let x = f(z1, z2) in e” where
z1, z2 /∈ fv(e). We add types to the variables following let (corresponding to
the return type of the called function) as usual in C, and also drop the let

keyword and parentheses entirely. We write void in place of () in the signa-
ture of functions that return an empty tuple of values and adopt the convention
that an expression without an explicit return implicitly returns a value of type
void. We also introduce a switch/case construct which is translated into nested
ifs in the usual way. We write update(p,a,v) using C-like syntax, p[a] = v,
and use array subscript notation, p[a], for read(p,a). To avoid the extra syn-
tax required for explicit while-loops, we use recursion to model iteration in this
presentation. (Of course, a PacLang compiler would implement tail-call opti-
misation to ensure the generated code is as efficient as if it had been written
with while-loops.)

3 Linear Type System

An industrial NP programming textbook [11] observes: “In most designs pro-
cessing of a packet by multiple threads simultaneously is rare, but using multiple
threads to process packets at different points in the packet’s lifetime is common.”
This quote summarises the philosophy behind PacLang’s linear type system: we
(i) guarantee that, in a well typed program, a packet, p, cannot be accessed by
multiple threads simultaneously; whilst (ii) allowing p to be transferred between
threads as it flows through an application. Unlike many linear type systems, we
allow p to be referenced multiple times (aliasing). However, we require that all
references to p reside in the same thread. Allowing intra-thread aliasing is crucial
to the readability of PacLang code. It is this property that allows PacLang



programmers to write in the familiar imperative (pass-by-reference) style—see
Section 5. In many ways, PacLang’s type system is inspired by Kobayashi’s
work on Quasi-Linear Types [12].

We start by defining some terminology. A variable, x, that holds a reference
to a packet p, will either be of type packet or !packet :

– If x has type packet then, at any point where x is in scope, there are no other
references to p. We say that x is an owning variable and holds an owning
reference for p. If one has an owning reference to p then one can safely move
p to another thread without creating dangling references.

– If x has type !packet then other references to p may exist, but they must be
on the same thread as x. We say that x is an alias for p. An alias cannot
escape from its enclosing scope.

Value types, int and bool, are non-linear and behave as is normal.
Our type rules use arrow-notation for vectors. We write ~τ to represent a vector

of types and similarly ~x and ~v for vectors of variables and values respectively. We
let ρ, σ, τ range over types. Function types are written ρ1×. . .×ρk → σ1×. . .×σj
or more briefly as ~ρ→ ~σ. Given a function name f , F(f) gives its type signature.
For user-defined functions this comes from the textual definition; the types of
built-in functions are given in Figure 4.

Typing judgements for expressions (`e) take the form Γ `e e : ~τ where Γ
is a typing environment, e is an expression (generally returning a tuple) and
~τ is the return type (generally a tuple type). Γ can be regarded as the set of
capabilities that e requires during its execution. Each capability in Γ takes the
form x : ρ specifying that x is used as ρ in e. We adopt the usual notation of
writing Γ, x :τ to represent Γ extended to include the capability x :τ (note that
scope shadowing is problematic in linear type systems so we will simply presume
that all variable names are distinct).

The typing rules for PacLang, rely on two partial binary operators, “+”
and “;” which operate on type environments. An expression which requires ca-
pabilities in Γ1 and then subsequently the capabilities in Γ2, can equivalently
be said to require the capabilities in environment Γ1;Γ2. Similarly, if an expres-
sion requires capabilities in both Γ1 and Γ2 in an unordered fashion, it requires
Γ1 + Γ2. We first define, “+” and “;” over types:

int + int = int
bool + bool = bool

!packet + !packet = !packet

int ; int = int
bool ; bool = bool

!packet ; !packet = !packet
!packet ; packet = packet

If no rule is given then that signifies a type error. Note that “;” is a strict
superset of “+”. We extend these operators to type environments by the following
definitions (here ⊗ ranges over “+” and “;”):

Γ1 ⊗ Γ2
def
= {x : τ | x : τ ∈ Γ1 ∧ x /∈ dom Γ2} ∪
{x : τ | x : τ ∈ Γ2 ∧ x /∈ dom Γ1} ∪
{x : τ1 ⊗ τ2 | x : τ1 ∈ Γ1 ∧ x : τ2 ∈ Γ2}



(var)
{x : τ} `v x : τ

(int)
∅ `v i : int

(i ∈ Z) (bool)
∅ `v b : bool

(i ∈ B)

Γ1 `v v1 : ρ1 . . . Γk `v vk : ρk Γ0, x1 :σ1, . . . , xj :σj `e e : ~τ
(apseq)

(Γ1 + . . .+ Γk);Γ0 `e let (x1, . . . , xj) = f(v1, . . . , vk) in e : ~τ

provided F(f) = (ρ1 × . . .× ρk)→ (σ1 × . . .× σj)

Γ1 `v v1 : τ1 . . . Γj `v vj : τj
(ret)

Γ1 + . . .+ Γj `e return (v1, . . . , vj) : τ1 × . . .× τj
provided no τj is !packet

Γ1 `v v : bool Γ2 `e e1 : ~τ Γ2 `e e2 : ~τ
(if )

Γ1;Γ2 `e if v then e1 else e2 : ~τ

Γ `e e : ~τ
(weak)

Γ, x : ρ `e e : ~τ
provided ρ is not packet

{x1 :ρ1, . . . , xk :ρk} `e e : σ1 × . . .× σj
(fundef )

`d (σ1, . . . , σj) f(ρ1 x1, . . . , ρk xk){e}
(qdef )

`d packetQueue q;

`d d1 . . . `d dn
(prog)

`p d1 . . . dn

Fig. 3. Linear typing rules

Figure 3 presents the linear type rules. Typing rules for definitions (`d),
programs (`p) and simple expressions (`v) are self-explanatory, although note
that, in contrast to non-linear type systems, the (var) rule only holds if the
environment contains the single assumption, x :τ .

The typing rules for expressions (`e) deserve more detailed explanation. Es-
sentially they ensure (i) that an owning variable x for a packet p goes out of
scope for the lifetime of any aliases to p; and (ii) that an owning variable x may
no longer be used if its owning reference is passed to another owning variable.

For a variable x to be of type !packet , x must be bound as a formal parameter
of its enclosing function definition. When calling a function, f , the (apseq) rule
allows aliases to be created from an owning variable provided that the owning
variable goes out of scope4 during the call, and that the alias dies before the
function returns. It is the use of the environment sequencing operator “;” in the
consequent of the (apseq) rule that facilitates the creation of aliases from an
owning variable. (Recall that !packet ; packet = packet).

The (ret) rule types its subexpressions in environments Γ1, . . . , Γj respec-
tively, and uses the “+” operator to combine these environments in the an-
tecedent. The “+” operator is used in this context to prevent owning references

4 In PacLang this is ensured by the absence of nested function definitions and the
absence of global packet variables.



being duplicated. We prevent values of type !packet being returned because the
enclosing scope may contain the corresponding owning variable.

int 〈arith-op〉 (int x, int y); bool 〈bool-op〉 (bool x, bool y);

bool 〈rel-op〉 (int x, int y);

packet new(int size); void kill(packet p);

packet q.deq(); void q.enq(packet p);

int read(!packet p, int offset);

void update(!packet p, int offset, int value);

Fig. 4. Type signatures of the built-in functions expressed in C-like syntax

The type signatures of built-in functions are given in Figure 4. Note that
inter-thread communication primitives, q.enq and q.deq , enqueue and dequeue
values of type packet (i.e. owning references). Thus when transferring a packet
between threads, the packet can be physically relocated.

We assume the existence of special queues, receive and transmit which
represent the external network interface. receive.deq() reads a packet from
the network; transmit.enq(p) schedules packet p for transmission. In reality a
network appliance would typically contain multiple network interfaces and one
would expect a variety of more sophisticated range of read/write calls. However,
since this does not affect the fundamental concepts expressed in PacLang, we
stick to the simple interface above for the purposes of this paper.

The following two examples (in de-sugared form) help to illustrate PacLang’s
linear type system. First consider the following valid PacLang expression:

let packet x = new(10) in

let () = update(x,0,5) in

let () = update(x,1,10) in

let () = transmit.enq(x) in return ()

This code will type check successfully as, although x is accessed multiple times,
update only requires a local alias to x (!packet) and so does not prevent x being
passed as type packet to transmit.enq.

Conversely, consider the following invalid PacLang expression:

let packet x = new(10) in

let () = kill(x) in

let () = transmit.enq(x) in return ()

The type system rejects this program since x is passed twice as type packet : once
to the kill function and then again to the transmit.enq function. Once x has
been passed as type packet , it effectively disappears and cannot be used again.



4 Operational Semantics

In this section we define the language formally by means of a small-step op-
erational semantics modelled on the Chemical Abstract Machine [2]. States of
the machine are a chemical solution of reacting molecules. We let W range over
machine states. The “|” operator separates molecules in the multiset solution
(cf. parallel composition). Molecules take the following forms:

M ← [({~x}e)]f (function definition)

| 〈〈Q〉〉q (queue)

| 〈H〉 (shared heap)
| (|e,Σ|) (thread: expression and its stack frames)

We let α range over an infinite set of heap-bound packet reference values5.
We extend the syntactic category, v, allowing values also to be packet references,
α, in addition to integer and boolean constants.

A function molecule, [({~x}e)]f , corresponds to a source-level function defini-
tion for f , with formal parameters, ~x, and body e. Function molecules themselves
do not perform computation, they exist merely to provide their bodies to callers.

A queue molecule, 〈〈Q〉〉q has name q and contents Q, where Q takes the
form of a list of elements separated by the associative operator •. An empty
queue is written ε. In the semantics presented here, queues are unbounded with
synchronous (blocking) behaviour.

A heap molecule, 〈H〉, maps packet references, α, onto packets, p. A packet,
p, is a finite mapping from integer offsets, i, to integer values, p(i)6. We define
emptyk as the empty packet of size k: emptyk = {0 7→ 0, . . . , (k−1) 7→ 0}. We
write 〈H\α〉 for the heap which is as 〈H〉 but no longer contains an entry for
α. The heap, which is as 〈H〉 but maps α to p, is written 〈H[α 7→ p]〉. Thus,
updating the ith element of the packet referenced by α to value 42 is written
〈H[α 7→ H(α)[i 7→ 42]]〉. The reader should note that the heap molecule need
not be implemented as a single shared memory. The central result of this paper
is that, due to PacLang’s unique ownership property, a compiler is free to
map the packets in 〈H〉 to the multiple memory banks of a distributed memory
architecture.

A thread molecule, (|e,Σ|), corresponds to one of the main-functions (see
Section 2) where e is an evaluation state and Σ is a stack of (function-return)
continuations as in Landin’s SECD machine. As with queue molecules, we use
the associative operator, •, to separate elements on the stack and write ε for
the empty stack. The syntax of evaluation states, e, is essentially the same as
the syntax of expressions given in Figure 2, save that as noted above unbound
variables do not occur but values may also be packet references, α. We write
“{~x}e” for the continuation that binds variables ~x and continues as evaluation
state e.

5 There is no syntactic (compile-time) form of such values.
6 If the offset is outside the domain of the packet the result is undefined.



Core language primitives:

[({~x}e1)]f | (|let ~y = f(~v) in e2, Σ|)  [({~x}e1)]f | (|e1{~v/~x}, ({~y}e2) •Σ|) (user-call)

(|let x = v1 op v2 in e,Σ|)  (|e{v/x}, Σ|) where v = v1 op v2 (basic-op)
(|return ~v, ({~x}e) •Σ|)  (|e{~v/~x}, Σ|) (ret)

(|if true then e1 else e2, Σ|)  (|e1, Σ|) (if 1)
(|if false then e1 else e2, Σ|)  (|e2, Σ|) (if 2)

Packet manipulation:

〈H〉 | (|let x = new(i) in e,Σ|)  〈H[α 7→ empty i]〉 | (|e{α/x}, Σ|) (new)
where α is a fresh name

〈H〉 | (|let () = kill(α) in e,Σ|)  〈H\α〉 | (|e,Σ|) (kill)
〈H〉 | (|let x = read(α, i) in e,Σ|)  〈H〉 | (|e{H(α)(i)/x}, Σ|) (read)

〈H〉 | (|let () = update(α, i, v) in e,Σ|)  〈H[α 7→ H(α)[i 7→ v]]〉 | (|e,Σ|) (update)

Queues:

〈〈α •Q〉〉q | (|let x = q.deq() in e,Σ|)  〈〈Q〉〉q | (|e{α/x}, Σ|) (deq)

〈〈Q〉〉q | (|let () = q.enq(α) in e,Σ|)  〈〈Q • α〉〉q | (|e,Σ|) (enq)

Fig. 5. Operational Semantics for PacLang

We write init(P ) to denote the initial state for program P . It consists of a
function molecule, [({~x}e)]f , for each function definition, f(~x){e}, in P ; a thread
molecule, (|ej , ε|), for each definition mainj(){ej} in P ; an empty queue molecule
〈〈ε〉〉q for each queue definition in P ; and an empty heap 〈 〉.

The semantics is given as a transition relation, →, on states (multisets of
molecules). For convenience, we define → in terms of an operator,  , which
operates on only a subset of the molecules in a complete state:

M1 | . . . |Mn  M ′1 | . . . |M ′n
( )

∆1 | . . . | ∆k |M1 | . . . |Mn → ∆1 | . . . | ∆k |M ′1 | . . . |M ′n

where∆1, . . . ,∆k are molecules that form part of the state, but are not of interest
to the  -transition. Figure 5 gives transition rules for PacLang. Capture-free
substitution of values ~v for variables ~x in expression e is written e{~v/~x}.

The outside world interacts with the program by placing network packets on
the receive queue and removing network packets from the transmit queue. In
reality these queues would be filled and emptied by hardware. However, to avoid
extra semantic rules to express this, we can model a generic network interface
as if it were two system-provided threads, one of which dequeues packets from
transmit and frees them; the other of which constructs and allocates appropriate
packets and enqueues them on receive.



4.1 Unique Ownership

Recall from Section 1 that the primary motivation for our type-system is to
ensure that every packet in the heap is referenced by exactly one thread. We
have argued that this unique ownership property makes practical the mapping
of a high-level program to a variety of diverse hardware architectures (see Sec-
tion 1.1). In this section we define unique ownership formally.

Let, pr(M), be the set of packet references, α, that occur in molecule M .
(This is empty for function molecules, but generally non-empty for thread and
queue molecules; pr(·) is not applied to the heap molecule.) We write S1 ]S2 to
be the union of sets S1 and S2 under the condition that the elements of S1 and
S2 are disjoint (S1 ∩ S2 = ∅).
Definition 1 (Unique Ownership).

UniqueOwn(M1 | . . . |Mn | 〈H〉) ⇐⇒ pr(M1) ] . . . ] pr(Mn) = dom H

Theorem 1 (Preservation of Unique Ownership). If a program, P , types
then any state, W , resulting from execution of P satisfies unique ownership:

`pP ∧ init(P )
∗→W ⇒ UniqueOwn(W )

A proof of this theorem is presented in an accompanying technical report [6].

5 Case Study: An IPv4 Packet Forwarder

In this section we outline the PacLang implementation of the IP (version 4)
uni-cast packet forwarding algorithm. The precise details of IP packet forwarding
are not the focus of this section and, indeed, due to space constraints are not
described here (the interested reader is referred to the IETF standards [13, 14]).
Instead, the purpose of the example is to outline the implementation of a realistic
application, demonstrating that (i) packets are indeed treated as linear objects
in real-life applications; and (ii) that the PacLang type-system is intuitive and
easy to use.

Figure 6 shows the top-level structure of our PacLang IPv4 packet for-
warder; we omit many of the function bodies, giving only their signatures. Func-
tion eth readAndClassify() reads ethernet packets from the network interface
and classifies them according to their type. Function ip lookup performs a route
lookup (on an externally defined routing table) returning both the next hop IP
address and the network interface on which to forward the packet. (Note that
since the external routing table component only contains ints, we do not have
to worry about it breaking unique ownership.)

The program is divided into two separate threads (main1 and main2). The
main1 thread sits in a tight loop, repeatedly calling the read/classify function.
Packets which require ICMP processing are written to the icmpQ queue. The
main2 thread reads packets from icmpQ and performs the ICMP processing. The
details of this thread are omitted. An example of a side-effecting function that



int eth_type(!packet p); // read type-field of ethernet frame

void eth_gen_arp_response(packet p); // generate response to ARP query

void eth_proc_arp_response(packet p); // process ARP response packet

void ip_local_packet(packet p); // send packet to local network stack

void ip_process_options(!packet p); // process IP options

void ip_transmit(packet p, int tx_interface, int ip_nexthop);

// do MAC-level processing, get MAC address of next hop and transmit

int eth_rx_iface(!packet p); // which interface was packet from?

packetQueue icmpQ; // queue for packets which require ICMP processing

(int, int) ip_lookup(int dest_ip_addr);

// lookup IP address and network interface for next-hop in route

void eth_readAndClassify() {

packet p = receive.deq();

switch (eth_type(p)) of {

case ARP_QUERY: eth_gen_arp_response(p);

case ARP_RES: eth_proc_arp_response(p);

case IP: ip_forward(p);

default: kill(p); }}

void ip_forward(packet p) {

if (ip_packet_for_localhost(p)) ip_local_packet(p);

else {

(int nexthop, int iface) = ip_lookup(eth_ip_dest_addr(p));

if (nexthop == 0) icmpQ.enq(p);

else { if (iface==eth_rx_iface(p)) icmpQ.enq(p);

else ip_forward_packet(p,iface,nexthop); }}}

void ip_forward_packet(Packet p, int iface, int nexthop) {

if (ip_dec_ttl(p)) icmpQ.enq(p);

else { ip_process_options(p);

ip_transmit(p,tx_iface,ip_nexthop); }}}

bool ip_dec_ttl(!packet p) {

if (p[ip_ttl]==0) return true;

else { p[ip_ttl] = p[ip_ttl]-1; return false; }}

// thread 1 -- read, process, transmit loop:

void main1() { eth_readAndClassify(); main1(); }

// thread 2 -- process icmp packets:

void main2() { packet p = icmpQ.deq(); ... ICMP processing ...; main2(); }

Fig. 6. Top-level structure of an IPv4-over-ethernet packet forwarding engine



manipulates packets is given by the ip dec ttl function which decrements the
IP Time-To-Live field.

The PacLang code given here demonstrates that our linear type system
naturally models the way packets flow through the system as a whole. Note
particularly that aliases (!packet types) allow us to express imperative operations
on packets without requiring a packet’s owning reference to be tediously threaded
through all imperative operations (cf. the Clean language [8]).

Let us now consider compiling the PacLang IPv4 packet forwarder to the
architecture shown in Figure 1.1. Due to PacLang’s unique ownership property
a compiler is free to choose between either (say) implementing both threads on
a single IXP2400, implementing the queue using a shared memory; or placing
main1 on the first IXP2400, and main2 on the second, passing packets by value
between the two. In the latter case the queue itself could be located on either the
first or second network processor and, further, as soon as a packet is transmitted
from the first to the second IXP it can be immediately deallocated from the
memory of the first. Although PacLang makes these tradeoffs very easy to
reason about, recall that this is not the case in the framework of traditional
imperative languages (e.g. C/C++)—see Section 1.1.

6 Related Work

There has been a great deal of work in the area of linear types. Of this, our
research is most closely related to Kobayashi’s quasi-linear type system [12].
Aliases in our work (!packet) correspond to δ-uses in the quasi-linear framework.
Similarly, owning references (of type packet) correspond to 1-use types. There
are three major differences between our work and Kobayashi’s. Firstly, we do not
deal with higher-order functions: these add much of the perceived complication of
linear types; hence this makes our type system much simpler and, we argue, more
accessible to industrial software engineers. Secondly, we work with a concurrent
language. Thirdly, whereas Kobayashi is primarily concerned with eliminating
garbage collection, we use linear types to assist in the mapping of high-level
specifications to distributed memory architectures.

Clarke et al. have proposed ownership types [5, 4] for object-oriented lan-
guages. Each ownership type is annotated with a context declaration. The type
system ensures that types with different declared contexts cannot alias. Owner-
ship types have been applied to the detection of data races and deadlocks [3].

The auto ptr template in the C++ standard library [15] exploits the notion
of “unique ownership” dynamically . Suppose p1 and p2 are of type auto ptr,
then the assignment p2 = p1 copies p1 to p2 as usual but also nulls p1 so it
cannot be used again. Similarly, if an auto ptr is passed to a function it is
also nulled. In this framework violation of the unique ownership constraint is
only detected at run-time by a null pointer check. However, the widespread use
of auto ptrs in practical C++ programming suggests that working software
engineers find the notion of object ownership intuitive and useful.



Further discussion of related work, including a comparison with region-based
memory management approaches, is included in an associated technical re-
port [6].

7 Conclusions and Future Work

We have formally defined the PacLang language and claimed, with reference
to a case-study, that it is capable of specifying realistic packet processing ap-
plications. Our linear type system enforces a unique ownership property whilst
allowing software engineers to program in a familiar style. We have argued that
unique ownership greatly simplifies the compilation of a high-level program to a
diverse range of NP architectures.

There are a number of ways in which PacLang must be extended if it is to
be used on an industrial-scale. For example, the type system needs to be able
to differentiate between different types of packet (e.g. IP packets, UDP packets
etc.); support for structured types (such as records and tuples) and a module
system are also required. However, much of this work amounts to engineering
rather than research effort. We believe that PacLang, as presented in this paper,
captures the essence of packet-processing, providing a solid foundation for the
development of an industrial-scale packet processing framework.

Our current work focuses on the implementation of a PacLang compiler
which targets a variety of platforms, including Network Processors. This imple-
mentation effort will provide insights that can be fed back into the PacLang
language design.

We hope that the ideas presented in this paper can be applied to the auto-
matic partitioning of high-level code across multi-core architectures more gen-
erally (i.e. not just Network Processors). Since industrial trends suggest that
such architectures will become more prevalent (as silicon densities continue to
increase) we believe that this is an important topic for future research.
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