
Does Metaphor Increase Visual Language Usability?

A.F. Blackwell
Computer Laboratory

University of Cambridge
Cambridge CB2 3QG, UK

Alan.Blackwell@cl.cam.ac.uk

T.R.G. Green
Computer Based Learning Unit

University of Leeds
Leeds LS2 9JT, UK

Thomas.Green@ndirect.co.uk

Abstract

Previous research suggests that graphical metaphor
should increase the usability of visual programming
languages (VPLs) by providing an instructional aid when
learning to use the language. This paper describes three
experiments which manipulated the degree of metaphor in
VPLs. In the first, an implicit pictorial metaphor was
added to a dataflow language, while in the second and
third an explicit explanatory metaphor was provided for
diagrams showing computational concepts. In both cases,
the performance of novices was compared to that of expert
programmers, in order to judge the improvement in
usability that might result from this instructional device.
The resulting benefits of metaphor were smaller than
expected, especially relative to the advantage of
experience. This suggests that metaphor may not be an
essential component in the usability of VPLs.

1. Introduction

Do visual languages provide special usability benefits
for novices learning how to write programs? It seems clear
that they enable instructional techniques that would not be
available with textual languages [3][4]. One of these
opportunities for improved usability is the capability to
incorporate an instructional metaphor into the visual
representation. This is widely believed to be a critical
factor in improving usability of other graphical user
interfaces, even outside the domain of programming. For
example, Microsoft’s Windows Interface Guidelines for
Software Design states “Familiar metaphors provide a
direct and intuitive interface to user tasks. By allowing
users to transfer their knowledge and experience,
metaphors make it easier to predict and learn the behaviors
of software-based representations.” [22].

Metaphorical instruction has long been proposed as a
means of making conventional programming languages
easier to master. In 1975 Mayer [19] demonstrated the
advantages of using an instructional metaphor when
teaching the FORTRAN language. This metaphor was

essentially a cover story (involving paper work in an
office) for the behaviour of the “virtual machine”
constituted by the FORTRAN compiler and runtime
environment. A metaphorical cover story of this type gives
the learner a framework in which to understand the effects
of their actions. Chee [9] has suggested that the quality of
such a metaphor can be formally evaluated in terms of the
quality of the analogical structure mapping from the
metaphor domain to the programming language domain.

1.1. Metaphor and mental models

If learners are not given an explicit cover story of this
type, they still construct their own mental model of the
machine, as has been observed by Young with pocket
calculators [44] and Tauber with operating systems [36].
Unfortunately if novice programmers are not given a
model of a virtual machine, they may invent an
inappropriate explanation [6][13][14], working from
sources of information such as observing a debugger [7]
extrapolating from tutorial code examples [24], or
imagining the behavior of the machine from the viewpoint
of an internal agent [40]. It seems reasonable that teachers
should anticipate this by providing some explicit story of
what is happening inside the virtual machine – what du
Boulay, O’Shea & Monk [11] called “the black box inside
the glass box”.

How can visual languages help to achieve this goal? It
has been suggested (e.g. by Esteban, Chatty & Palanque
[15]) that the visual representation should make the virtual
machine more explicit by depicting its behaviour
pictorially. This might be an illustration of a metaphorical
cover story like the FORTRAN one created by Mayer [19].
Kahn’s ToonTalk [18], for example, presents a pictorial
metaphor of cartoon characters acting in a computational
town of function houses and message-carrying birds. A
more conventional approach than ToonTalk is to depict the
virtual machine as if it were a physical machine [16] which
can be understood by analogy from the user’s experience
of real world machines [36][39]. Once again, the
importance of this approach is supported by the fact that
when an explicit metaphor is not provided, novice



programmers create their own metaphors to explain the
behavior of the language [17].

1.2. Metaphor and paradigm

A visual programming language constructed according
to these principles must serve a dual purpose: a notation
for solving a problem in some problem domain, as well as
the representation of some virtual machine [37][2]. Its
effectiveness will depend on how well information can be
mapped from the problem domain to the notation, and
from the notation to the virtual machine [31][26]. The
structure of the virtual machine, and the nature of the
mapping, combine to form the programming paradigm – a
family of languages that support the same programming
techniques. Overly complex mappings can easily
compromise performance [23], so one of the main
challenges in improving programming language usability
is providing metaphors (and hence paradigms) that are
appropriate for the user [8][28][27], allowing them to learn
the behaviour of the language but also to achieve useful
tasks in their problem domain. Ideally, a visual
programming language for novices should completely
integrate the programming paradigm and the user interface
metaphor.

2. Experiment A: Pictorial metaphor

This experiment was designed to test the efficacy of a
visual programming language designed with an explicit
pictorial metaphor that depicts a virtual machine. The
language was a dataflow language, of the type commonly
used in commercial VPLs such as LabVIEW or VEE.
However it was simplified substantially, so that it could be
taught to novice programmers within a two hour
experimental session, including time for evaluation of
learning. It included 11 basic dataflow elements (selectors,
distributors, guards and accumulators), along with data
sources and sinks, and data stream management.

We created two versions of the pictorial presentation of
this language – one represented the dataflow paradigm
using the metaphor of balls rolling through a physical
machine. The syntax elements of the language were
represented by cartoon-like pictures of balls rolling
through mechanisms for selection, distribution etc.,
although these mechanisms were not intended to be
realistic – subjects were told to imagine that the
components worked by magic. Components were
connected together by tracks showing balls rolling along
them.

In the second version of the language, syntax elements
were represented by purely geometric symbols, and
components were connected by unadorned lines. This is
more typical of commercial dataflow languages, where the
metaphor is described in instructional material (LabVIEW
uses the metaphor of electrical wiring), but not presented

pictorially. Figure 1 shows two versions of a selection
component, in the versions with and without the rolling
ball metaphor.

Figure 1. Selection with and without metaphor

The component nodes and connections between them
were given to subjects in the form of paper cut-outs, whose
profiles were identical in each version. Subjects arranged
these cut-outs on a tabletop by matching the right and left
hand sides of the nodes. The table top was arranged in a
way that resembled typical VPL environments. Divided
trays containing piles of each component were placed at
the left hand side of the work surface, made to resemble a
software “palette”. The behavior of each component was
described on individual printed pages as if in a language
manual or on-line help. These descriptions, and all
instructions given by the experimenter, were identical in
both experimental conditions – neither referred to the
metaphor.

2.1. Method

Twelve experimental subjects were recruited from
volunteers registered with the Subject Panel of the MRC
Applied Psychology Unit in Cambridge, and from among
staff at the Unit. They were divided into two groups on the
basis of their prior experience of computer programming.
Four subjects had previously worked as professional
programmers (“experts”); eight had never written a
computer program (“novices”). The novices were broadly
matched in educational achievement and intelligence to the
experts (educated to degree level, and IQ scores between
120 and 140). The novice group were then divided into
four who were given the metaphorical version of the
language, and four given the non-metaphorical version.
The design compared the expert group to these two
training groups. (Of the four experts, two used the
metaphor version and two did not. This simply establishes



a mean for comparison, however – we did not expect the
metaphor to provide training effects for experts).

The experiment involved four programming tasks, each
related to the processing of bank statements, in the course
of which subjects also learned all the elements the
language. In the first task, the experimenter demonstrated
the creation of a program to add total credits and debits,
describing the operation of the program as each component
was added. This description was identical in the two
versions of the language. After the program was complete,
the experimenter shuffled the paper components, and asked
the subject to reassemble to program while thinking aloud
– this verbalisation was recorded and transcribed.

In the second task, the experimenter showed a
completed program to the subject, who was told that it was
designed to find missing check numbers in a sequence. He
then asked the subject to explain how it worked. The
program contained an error (it compared each number to
itself rather than to the previous one in the sequence), and
the subject was asked to find this error and suggest a way
of fixing it. In the third task, the subject was given a
description of a program that would check the locations of
cash withdrawals, and display any that had been made
outside Cambridge. He or she was then asked to create a
program that would carry out this function. In the final
task, the subject was asked to implement a program that
would find a check paid to a particular recipient, and
automatically write another check for the same amount.

2.2. Results

This experiment tested the hypotheses that the provision
of a diagrammatic metaphor will make it easier for novices
to learn to write computer programs, and that this
assistance will reduce the differences in performance that
would normally be expected between novices and expert
programmers.

Performance was assessed using two dependent
variables. The first was the total time that the subject took
to complete each of the four activities described below.
The second was the degree of elaboration that the subject
produced in the two program construction tasks. The
program specification that they were given allowed several
different solutions, but complete solutions had similar
degrees of complexity, while incomplete solutions omitted
some of the required components. The relative quality of
the solutions might be subject to interpretation, but the
degree of completeness could be estimated by the simple
measure of the number of nodes included.

The four expert subjects showed little variation
resulting from use of the metaphor. This is as expected,
given that experienced programmers have knowledge
about programming that is independent of the
representation being used [20], and that they apply
consistent strategies for code comprehension even when
using a language that does not explicitly reveal their

preferred structures [5]. The main analysis therefore
compared the performance of the four novices given the
pictorial metaphor to that of experts, and to that of novices
given no metaphor. The value of the metaphor can be
determined by the extent to which their performance is
raised toward the expert level. Figure 2 shows time and
elaboration for the three groups.

0

5

10

15

20

25

E
la

bo
ra

tio
n 

(n
 c

om
po

ne
nt

s)

0
10

00
30

00
50

00

experts novices

(no metaphor)

novices
(metaphor)

T
im

e 
to

 c
om

pl
et

e 
fo

ur
 ta

sk
s 

(s
)

experts novices

(no metaphor)

novices
(metaphor)

Figure 2. Implicit metaphor versus expertise

There were significant differences between novices and
experts both in time to complete the task, F(1,10)=6.07,
p<.05 and in elaboration, F(1,10)=19.66, p<.01. This
demonstrates that the performance measures are successful
in measuring relative expertise. Nevertheless, there is no
significant difference as a result of improved learning
between the two novice groups, either in time or
elaboration (F(1,6)=0.33, p=.586 and F(1,6)=0.57, p=.477
respectively).

1.0

10.0

100.0

1000.0

A
rithm

etic

D
ecision

M
ental

M
otion

O
bservation

O
w

nership

P
ropulsion

R
equirem

ent

S
tate change

no metaphor
with metaphor

O
cc

ur
re

nc
es

 p
er

 1
00

0 
ve

rb
s

Figure 3. Verb categories in protocol transcripts

This experiment assumed that providing a pictorial
metaphor would be beneficial to novices, whether or not it
was explicitly explained (the same assumption that is made
in many graphical user interfaces). In order to test the
extent to which novices used the metaphor, we compared
the vocabulary used in the verbal transcripts. Noun phrases
were divided into references to the virtual machine,
references to the metaphor, and references to the problem.
We found that none of the participants in the metaphor



group ever referred to the implicit metaphor while thinking
aloud. We also compared verb phrases, counting the verbs
of motion that might be used when reasoning
metaphorically about dataflow, and comparing them to
other ways of describing computation. As shown in figure
3, we found no significant difference in the proportion of
motion verbs used by novices with the pictorial metaphor.

2.3. Discussion

The measures used in this experiment were successful
in measuring different levels of performance – they clearly
distinguished between the expert and novice groups.
Despite the fact that the measures appear to be sufficiently
sensitive, the expected improvement in performance when
novices were given a metaphorical diagram was not
observed. Some previous experiments in HCI areas other
than programming have also failed to find improvements
in performance when metaphors are introduced (e.g. Eberts
& Bitianda [12] or Sutcliffe & Patel [35]), but those
studies have generally suggested that specific usability
problems reduced the benefits expected of an otherwise
valuable interaction metaphor.

It is possible that novices in this experiment simply
ignored the illustrations, as their attention was never drawn
to them explicitly. This behavior has been observed in
studies of illustration by Wright, Milroy and Lickorish
[43]. It may even be a sensible strategy for readers whose
comprehension and reading speed would otherwise be
reduced by the effort involved in integrating text and
illustrations, as observed by Willows [42] in studies of
reading speed in children, and by Mayer and Sims [21] in a
comparison of students with high and low scores on spatial
reasoning tests. Some experimental subjects even made
comments about the apparent complexity of the pictorial
version – in informal discussions at the end of
experimental sessions, subjects who were shown both
alternatives often expressed a preference for the cleaner
graphics of the non-metaphorical version.

The second experiment was designed to avoid the
problems of graphic complexity and of subjects ignoring
the pictorial metaphor by using only one visual format, but
providing an explicit instructional metaphor. The
complexity of the tasks was also reduced, in order to
isolate the value of metaphorical diagrams for specific
programming constructs.

3. Experiment B: Explanatory metaphor

The metaphorical interpretation in this experiment was
provided in explanatory text, in a way that is more typical
of current VPLs – that is, the diagrams are composed of
simple geometric elements rather than pictures, and users
are only aware of the metaphor if they are given explicit
instruction. It also used experimental tasks that did not, on
the surface, resemble computer programming. Subjects

were not told that the experiment had any relationship to
computer programming. Instead, we presented diagrams
using (slightly contrived) non-software task contexts to
express concepts that are more often found in computer
programs than in everyday life: control flow, closure,
database join and visibility. An example of a control flow
diagram, illustrating a washing machine cycle, is shown in
figure 4.

Wash

Turn

Cold Hot

Fill

Drain

PumpCold Hot

Fill

Spin

Turn

Rinse

Too Hot

Too Cold

Rinse 
Cycle

Water Full

Time Over

Water 
Empty

Operator Start

Turn

Figure 4. Control flow diagram (washing machine)

The explanation of each diagram incorporated either a
systematic metaphor that compared the graphical elements
to some physical situation with an appropriate structure, or
a nonsense metaphor that compared them to an irrelevant
physical situation. The example in figure 4 described a
washing machine cycle, where processes must be started,
stopped or repeated according to conditions such as water
level and temperature. Each process is shown as a circle,
which may include other sub-processes. The signal to start
a process is shown by a line with a star at the end, while a
stop signal is shown by an arc at the end. One process can
be made to start when another stops, shown by a jagged
line at the first process.

For this diagram, the systematic metaphor described the
process circles as turning cogs. The star showing when a
process starts resembles a starting cog, while the arc
showing when it stops resembles a brake shoe. The jagged
line is a spring which rebounds when the cog that it is
attached to stops. The nonsense metaphor, in contrast,
described the circles as rock pools, with the stars and
jagged lines resembling starfish and worms. The other
diagrams were presented in similar terms, with appropriate
systematic and nonsense metaphors describing their
intended interpretation.

3.1. Method

Sixteen experimental subjects were recruited from two
different populations. Eight were volunteers from the APU
Subject Panel, none of whom had any experience of
computer programming (“novices”). The other eight were



experienced programmers employed at the Advanced
Software Centre of Hitachi Europe Limited (“experts”).

The experimental material was presented as a bound
booklet containing both explanations of the diagrams and
comprehension tests. Subjects were instructed to work
through the booklet in order, without turning back to look
at previous pages. At the top of each page was a box where
the subject wrote the time (in seconds) when they started
work on that page. Each subject was presented with all
four diagrams, two of which were explained with
systematic metaphors, and the other two with nonsense
metaphors. The order and allocation of these conditions
were balanced across all subjects.

The booklet included three tasks to be performed using
each diagram: comprehension questions relating to an
example of the diagram, drawing missing graphical
elements on an incomplete diagram, given text describing
the missing information in terms of the problem domain,
and writing missing labels on an incomplete diagram
according to the constraints in a problem domain
description.

There were two dependent variables. The first was the
speed with which subjects completed each task. The
second was accuracy of each response. We calculated a
normalized accuracy score for each task, in which the
lowest score was assigned a normalized value of zero, and
the highest a value of 100. All other scores were
normalized by a linear interpolation between these values.

3.2. Results

The first hypothesis was that experts would perform
better than novices. The times taken by each group to
complete the three tasks, as well as the mean accuracy
achieved by each group, were compared in an analysis of
variance (ANOVA). This indicates that experts were
significantly more accurate, with an average score of 61%
whereas novices had an average score of 46%,
F(1,14)=5.48, p<.05. Experts did not finish the tasks more
quickly than novices – in fact they spent slightly longer,
but this difference was not significant.

The second hypothesis was that a systematic metaphor
would bring novice performance closer to that of the
experts. Figure 5 shows the interaction between expertise
and metaphor type. As expected, accuracy is poorer when
the nonsense metaphor has been given. This difference
does appear to be greater for novices than for experts, but
the interaction is not significant. The effect of this
interaction on the time taken to complete the tasks
indicates that novices spend more time trying to use the
nonsense metaphor, while experts spend less time. This
interaction is not significant either, however.

0%

20%

40%

60%

80%

100%

expert novice

A
cc

ur
ac

y

Group

0

50

100

150

200

250

expert novice

Nonsense
Systematic

T
Im

e 
to

 c
om

pl
et

e 
(s

ec
on

ds
)

Group

Figure 5. Explicit metaphor versus expertise

There was a significant interaction of task type with
experience, F(2,28)=5.60, p<.01. Experts performed best
in the task where a diagram was completed by drawing in
missing elements. Novices performed more poorly on this
task than on other tasks, with an average drawing score of
34%, versus 65% for experts. If the effect of metaphor is
considered separately for each task type within the novice
sample, metaphor appears to have had no effect at all on
drawing task performance.

3.3. Discussion

As in experiment 1, the performance measures used in
this experiment do provide a distinction between novice
and expert performance which sets a reference point for the
amount of benefit that metaphorical instruction provides to
novices. Unlike experiment A, experts did not perform
these tasks significantly faster than novices. They did
achieve greater accuracy, however. In experiment A
metaphor had little further effect on the performance of
experts, and that finding was repeated here. This is not of
great concern, as this study concentrates on the benefit that
metaphor can provide for novices. However, as with the
implicit metaphor of experiment 1, it is surprising that the
explicit explanatory metaphors in this experiment provided
little benefit for novices.

4. Experiment C: Bad metaphor or none?

The results in the first two experiments might be
criticised on the grounds that the metaphors were simply
poorly designed. Even in experiment B, where we created
an intentionally poor metaphor, it is possible that the two
metaphors could be roughly equivalent in the amount of
instructional benefit that they provided (for example, the
nonsense metaphor might assist subjects to form bizarre
mnemonic images). This third experiment therefore added
a third condition to those in experiment B, in which no
metaphor at all was given (as in the first experiment).

For this experiment, a further two diagrams were
created, illustrating the computational concepts of remote
execution and selection – once again using everyday
examples rather than programming terminology.



4.1. Method

Twelve subjects were recruited from the APU volunteer
panel. All were programming novices. As in experiment B,
subjects were given a balanced number of diagrams for
each metaphor condition: systematic, nonsense, and no
metaphor at all. They answered comprehension questions
for examples of every diagram, and completed incomplete
diagrams by writing in missing labels. The test in which
incomplete diagrams were completed by drawing was
omitted from this experiment, as it had been particularly
unaffected by metaphor use, and may therefore have
masked the benefits of metaphor in the other tasks.

Material was again presented to subjects in booklet
form. Subjects wrote directly in the booklet, and used a
stopwatch to record the amount of time they spent working
on each page. As in experiment B, performance was
measured using speed with which participants completed
the tasks, and accuracy in the tasks. Accuracy scores were
again normalised for each task, so that treatment effects
could be compared using scores on different tasks.

4.2. Results

The hypothesis for this experiment was that
performance with no metaphor would be intermediate
between that in the systematic metaphor and nonsense
metaphor cases. In fact, there was no significant difference
in speed between the three cases, F(2,22)=0.31, p=.735.
Furthermore, the mean accuracy in the no-metaphor case
was actually slightly higher overall than in either of the
other cases, as shown in table 1. This difference in
accuracy was not significant either, however,
F(2,126)=0.37, p=.694.

Table 1. Mean accuracy (%)

Metaphor type Combined mean score
Nonsense 46.2

None 51.8
Systematic 47.4

Why might the absence of a metaphor improve
performance? Participants might have noticed that the non-
metaphorical explanations were shorter than the others in
the booklet, and realised that some systematic motivation
for the choice of symbols had been hidden from them.
They may well have constructed their own explanatory
metaphor at this point. A self-generated explanation may
even be a superior mnemonic to the metaphor provided in
other explanations. In order to test this, we compared the
time that participants spent reading the diagram
explanation. Reading time would normally be shorter in
the condition with no metaphor, as the text is shorter. If
participants were constructing their own explanations,
reading time should be longer for the condition with no
metaphor.

Reading times for each metaphor condition are shown
in table 2. Reading time is in fact shorter for the no-
metaphor condition. It is longest for the nonsense
condition (as in the case of experts in experiment B),
suggesting that participants spend more time trying to
make sense of the nonsense metaphor.

Table 2. Reading time

Metaphor Type Reading Time (s) SD
Nonsense 126.2 13.9

None 95.6 5.6
Systematic 104.9 12.1

4.3. Discussion

This experiment replicates the results of experiment B,
in which no clear benefit was found as a result of
providing an explicit instructional metaphor. Not only was
no difference found between systematic metaphor and a
nonsense metaphor, but providing no metaphor at all
seems to be just as beneficial for understanding visual
representations of simple programming constructs.

5. Conclusions

Visual programming languages have often been
described as providing usability advantages for
inexperienced programmers because they are easier to
learn than textual languages [3][41]. The experiments in
this study have investigated one hypothesis regarding the
usability of visual languages – that they can assist the user
to understand a virtual machine through some
metaphorical presentation of the machine in diagrammatic
form.

The experimental results have not supported that
hypothesis, however. The experiments described in this
paper tested the hypothesis by making instructional
metaphors more or less available to inexperienced
programmers, and evaluating the resulting changes in
usability by comparison to the performance of experienced
programmers. In experiment A, the metaphor was
conveyed by making the elements of the diagram more
pictorial, while in experiments B and C the metaphor was
explicitly described in instructional material. In neither
case did the provision of the metaphor result in appreciable
performance improvements relative to more experienced
programmers, despite the fact that the computational
concepts included in the diagrams of experiment 2 were
heavily disguised, and the fact that the diagrams were
equally novel to all subjects.

This negative result is not what we expected when we
commenced the study. It cannot be criticised on the basis
that the measures of usability were ineffective, that the
diagrams and metaphors were simply poorly designed, or
that the metaphors were ignored by experimental subjects,
because the measures of performance were successful in



distinguishing between expert and novice performance, yet
they failed to demonstrate the substantial usability benefits
that are often claimed for metaphor. We confidently
expected to see those benefits when this study was
initiated. This expectation did lead to experimental designs
with smaller numbers of subjects than would be needed to
discount any effect at all – but the fact that the effects, if
any, were so small over multiple experiments casts doubt
on the central importance of metaphor.

These results do, moreover, follow a pattern consistent
with other empirical research projects in HCI, which have
failed to find significant usability benefits when metaphors
are compared to non-metaphorical interfaces [32]. These
studies generally view their findings in an optimistic light
(for example, as resulting from individual differences in
the experimental sample, as in a study by Rohr [33]), and
do not question the central assumption regarding the
usability value of metaphor (e.g. in a study by Simpson
and Pellegrino [34]).

The situation is also confused by the fact that studies
demonstrating the advantages of direct manipulation
interfaces (e.g. those by Benbasat and Todd [1] or Davis &
Bostrom [10]) are often quoted in support of the value of
metaphor. Such studies do not in fact separate the
manipulation of metaphor from other interface
characteristics. We do not deny that graphical user
interfaces in general are valuable, and that direct
manipulation in particular provides clear benefits – we
simply suggest that these benefits might have been
wrongly attributed to instructional metaphor. If those
interfaces were tested with and without explanatory
metaphors, it seems possible that direct manipulation
would be equally effective with no associated metaphor.

In the case of visual programming languages, we think
that these results do at least suggest caution regarding the
application of metaphor to visual languages. We recognise
that there are successful visual languages that include
extended metaphors (Kahn’s ToonTalk [18] is a prominent
example), so the use of an explicit metaphor in an
instructional context can obviously be valuable. However
our results show that usability benefits derived from
improved learnability are not necessarily automatic. Our
recommendations for future research are firstly, that
metaphor should not be treated as an necessary criterion
when designing visual representations, and secondly that
further empirical investigations should be made of those
VPLs which successfully incorporate explicit metaphors,
in order to determine whether the usability of the language
really derives from the metaphor, or from some other
source. Our continuing investigations suggest that some
alternative contributing factors include level of attention
given to the metaphor during training, additional cognitive
load involved in interpreting a systematic metaphor, and
the well-known mnemonic benefits of combining pictorial
images with verbal cues (even in the absence of any
systematic pictorial metaphor).

Acknowledgements

Alan Blackwell’s contribution to this research was
funded by a collaborative studentship from the Medical
Research Council and Hitachi Europe Ltd. He is grateful to
the Advanced Software Centre of Hitachi Europe for their
support.

References

[1] I. Benbasat and P. Todd, “An experimental investigation of
interface design alternatives: icon vs. text and direct manipulation
vs. menus”. International Journal of Man-Machine Studies,
38:369-402, 1993.

[2] A. F. Blackwell, “Metaphor or analogy: How should we see
programming abstractions?” In P. Vanneste, K. Bertels, B. De
Decker & J.-M. Jaques (Eds.), Proceedings of the 8th Annual
Workshop of the Psychology of Programming Interest Group, pp.
105-113, 1996.

[3] A. F. Blackwell, “Metacognitive theories of visual
programming: What do we think we are doing?” Proceedings
IEEE Symposium on Visual Languages. Los Alamitos, CA: IEEE
Computer Society Press, pp. 240-246, 1996.

[4] A. F. Blackwell, K. N. Whitley, J. Good, and M. Petre,
“Cognitive Factors in Programming with Diagrams”. To appear
in Artificial Intelligence Review, special issue on Thinking with
Diagrams.

[5] D. A. Boehm-Davis, , J. E. Fox and B. H. Philips,
“Techniques for exploring program comprehension”. In W. D.
Gray & D. A. Boehm-Davis (Eds.), Empirical Studies of
Programmers: Sixth Workshop. Norwood, NJ: Ablex, pp. 3-38,
1996.

[6] S. Booth, “The experience of learning to program. Example:
recursion”. Proceedings of the 5th Workshop of the Psychology of
Programming Interest Group: INRIA, pp. 122-145, 1992.

[7] J. J. Cañas, , M. T. Bajo and P. Gonsalvo, “Mental models
and computer programming”. International Journal of Human-
Computer Studies, 40(5):795-811, 1994.

[8] J. M Carroll and J. R. Olson, “Mental models in human-
computer interaction”. In M. Helander (Ed.), Handbook of
Human-Computer Interaction. Elsevier., pp. 45-66, 1988.

[9] Y. S. Chee, “Applying Gentner’s theory of analogy to the
teaching of computer programming”. International Journal of
Man Machine Studies, 38(3):347-368, 1993.

[10] S. A. Davis and R. P. Bostrom, “Training end users: An
experimental investigation of the roles of the computer interface
and training methods”. MIS Quarterly, 17:61-85, 1993.

[11] B. du Boulay, T. O’Shea and J. Monk, “The black box inside
the glass box: Presenting computing concepts to novices”.
International Journal of Man-Machine Studies, 14(3):237-249,
1981.

[12] R. E. Eberts and K. P. Bittianda, “Preferred mental models
for direct manipulation and command-based interfaces”.
International Journal of Man Machine Studies, 38(5):769-786,
1993.



[13] M. Eisenberg, M. Resnick and F. Turbak, “Understanding
procedures as objects”. In G.M. Olson, S. Sheppard & E.
Soloway (Eds.), Empirical Studies of Programmers: Second
Workshop. Norwood, NJ: Ablex, pp. 14-32, 1987.

[14] M. Eisenstadt, J. Breuker and R. Evertsz, “A cognitive
account of ‘natural’ looping constructs”. In B. Shackel (Ed.),
Human-Computer Interaction – Interact ‘84. Amsterdam:
Elsevier, pp. 455-460, 1984.

[15] O. Esteban, S. Chatty and P. Palanque, “Whizz’ed: A visual
environment for building highly interactive software”. In K.
Nordby, P. Helmersen, D.J. Gilmore & S.A. Arnesen (Eds.),
Human Computer Interaction: Interact ‘95. London: Chapman &
Hall, pp. 121-126, 1995.

[16] E. P. Glinert, “Nontextual programming environments”. In
S-K. Chang, (Ed.), Principles of Visual Programming Systems.
Prentice-Hall, pp. 144-232, 1990.

[17] A. Jones, “How novices learn to program”. In B. Shackel
(Ed.), Human Computer Interaction – INTERACT’84. North
Holland: Elsevier, pp. 777-783, 1984.

[18] K. Kahn, “Seeing systolic computations in a video game
world”. Proceedings IEEE Symposium on Visual Languages. Los
Alamitos, CA: IEEE Computer Society Press, pp. 95-101, 1996.

[19] R. E. Mayer, “Different problem-solving competencies
established in learning computer programming with and without
meaningful models”. Journal of Educational Psychology,
67(6):725-734, 1975.

[20] R. E. Mayer, “From novice to expert”. In M. Helander (Ed.),
Handbook of Human-Computer Interaction. Elsevier, pp. 569-
580, 1988.

[21] R. E. Mayer and V. K. Sims, “For whom is a picture worth a
thousand words? Extensions of a dual-coding theory of
multimedia learning”. Journal of Educational Psychology,
86(3):389-401, 1994.

[22] Microsoft Corporation, The Windows interface guidelines for
software design. Redmond, WA: Author, 1995.

[23] B. A. Nardi and C. L. Zarmer, “Beyond models and
metaphors: visual formalisms in user interface design”. Journal
of Visual Languages and Computing, 4(1):5-33, 1993.

[24] R. Noble, “Preferential use of examples by novices learning
Prolog”. In Proceedings 5th Workshop of the Psychology of
Programming Interest Group. INRIA, pp. 146-158, 1992.

[25] D. A. Norman, The psychology of everyday things. New
York, Basic Books, 1988.

[26] D. A. Norman, “Cognitive artifacts”. In J.M. Carroll (Ed.),
Designing Interaction: Psychology at the Human-Computer
Interface. Cambridge: Cambridge University Press, pp. 17-38,
1991.

[27] J. Pane, “A programming system for children that is
designed for usability”. In C. Kann (Ed.), Proceedings of the
First ESP Student Workshop, pp. 15-22, 1997.

[28] J. F. Pane and B. A. Myers, Usability issues in the design of
novice programming systems. School of Computer Science,
Carnegie Mellon University. Technical Report CMU-CS-96-132,
1996.

[29] S. J. Payne, “Metaphorical instruction and the early learning
of an abbreviated-command computer system”. Acta
Psychologica, 69:207-230, 1988.

[30] S. J. Payne, “A descriptive study of mental models”.
Behaviour and Information Technology, 10(1):3-21, 1991.

[31] S. J. Payne, H. R. Squibb and A. Howes, “The nature of
device models: the yoked state space hypothesis and some
experiments with text editors”. Human-Computer Interaction,
5(4):415-444, 1990.

[32] K. Potosnak, “Do icons make user interfaces easier to use?”
IEEE Software, May 1988, pp. 97-99. .

[33] G. Rohr, “How people comprehend unknown system
structures: Conceptual primitives in systems’ surface
representations”. In P. Gorny & M.J. Tauber (Eds.), Visualization
in Programming. Lecture Notes in Computer Science Vol. 282.
Berlin: Springer-Verlag, pp. 89-105, 1987.

[34] H. K. Simpson and J. W. Pellegrino, “Descriptive models in
learning command languages”. Journal of Educational
Psychology, 85(3):539-550, 1993.

[35] A. Sutcliffe and U. Patel, “3D or not 3D: Is it nobler in the
mind?” In M.A. Sasse, R.J. Cunningham & R.L. Winder (Eds.),
People and computers XI: Proceedings of HCI’96. London:
Springer-Verlag, pp. 79-94, 1996.

[36] M. J. Tauber, “On visual interfaces and their conceptual
analysis”. In P. Gorny & M.J. Tauber (Eds.), Visualization in
Programming. Lecture Notes in Computer Science Vol. 282.
Berlin: Springer-Verlag. pp. 106-123, 1987.

[37] J. Taylor, “Analysing novices analysing Prolog: What stories
do novices tell themselves about Prolog?” Instructional Science,
19:283-309, 1990.

[38] J. D. Tenenberg, “Virtual machines and program
comprehension”. In P. Vanneste, K. Bertels, B. De Decker & J.-
M. Jaques (Eds.), Proceedings of the 8th Annual Workshop of the
Psychology of Programming Interest Group, pp. 60-82, 1996.

[39] M. Treglown, “Qualitative models of user interfaces”. In G.
Cockton, S.W. Draper & G.R.S. Weir (Eds.), People and
computers IX: Proceedings of HCI’94. London: Springer-Verlag,
pp. 261-272, 1994.

[40] S. Watt, “Syntonicity and the psychology of programming”.
In J. Domingue & P. Mulholland (Eds.), Proceedings of the Tenth
Annual Meeting of the Psychology of Programming Interest
Group, pp. 75-86, 1998.

[41] K. N. Whitley and A. F. Blackwell, “Visual programming:
the outlook from academia and industry”. In S. Wiedenbeck & J.
Scholtz (Eds.), Proceedings of the 7th Workshop on Empirical
Studies of Programmers, pp. 180-208, 1997.

[42] D. M. Willows, “A picture is not always worth a thousand
words: pictures as distractors in reading”. Journal of Educational
Psychology, 70:255-262, 1978.

[43] P. Wright, R. Milroy and A. Lickorish, “Static and animated
graphics in learning from interactive texts”. European Journal of
Psychology of Education, 14(1) Special issue on Visual Learning
with New Technologies 1999.

[44] R. M. Young “The machine inside the machine: Users’
models of pocket calculators”. International Journal of Man-
Machine Studies, 15(1):51-85, 1981.


