Elementary Equivalence in Finite Structures

Anuj Dawar

University of Cambridge Computer Laboratory

YuriFest, Berlin, 11 September 2015

When I First Met Yuri

When I was a graduate student, I sent Yuri a draft of the paper that would become:

Dawar, Lindell and Weinstein.

Infinitary Logic and Inductive Definability over Finite Structures. Inf. Comput. (1995)

and received generously extensive feedback.

Abiteboul-Vianu Theorem

One of the main contributions of the paper was an alternative proof of the theorem of **Abiteboul-Vianu**:

Theorem FP = PFP *if*, *and only if*, PTime = PSpace.

Here:

- FP is least fixed point logic; and
- PFP is partial fixed point logic.

The proof was based on an *analysis* and *definability* of the equivalence relations \equiv_{L}^{k} .

Finite Variable Equivalences

Write L^k for the fragment of first-order logic using only variables x_1, \ldots, x_k .

For structures A and B write $A \equiv_L^k B$ to denote that they are not distinguished by *any* sentence of L^k .

By abuse of notation, for tuples $\mathbf{a}, \mathbf{a}' \in \mathbb{A}^k$ we write $\mathbf{a} \equiv_L^k \mathbf{a}'$ to denote that for every formula φ of L^k ,

 $\mathbb{A} \models \varphi[\mathbf{a}]$ if, and only if, $\mathbb{A} \models \varphi[\mathbf{a}']$.

Fixed Point Logics

A class of structures K is definable in FP iff there is some k so that K is closed under \equiv^k and

 $\mathbb{A} \in K$ is decided by an algorithm that runs in polynomial time on a quotient structure $\mathbb{A}^k / \equiv_L^k$.

A class of structures K is definable in PFP *iff* there is some k so that K is closed under \equiv^k and

 $\mathbb{A} \in K$ is decided by an algorithm that runs in polynomial space on a quotient structure $\mathbb{A}^k / \equiv_L^k$.

Oberwolfach 1994

In 1994, Yuri (together with Heinz-Dieter Ebbinghaus and Jörg Flum) was an organiser of a workshop on *Finite Model Theory* at *Oberwolfach*.

A *take-home message* from the workshop:

• *Classical model theory* is the study of the equivalence relation ≡ of *elementary equivalence*.

It tells us the limits of definability: *i.e.* properties that are not invariant are not definable.

• Can \equiv_{L}^{k} play a similar role for finite structures?

Interesting work on \equiv_L^k followed, but a more interesting notion of elementary equivalence emerged.

Doing it with Counting

 C^k is the logic obtained from *first-order logic* by allowing:

- counting quantifiers: $\exists^i x \varphi$; and
- only the variables x_1, \ldots, x_k .

Every formula of C^k is equivalent to a formula of first-order logic, albeit one with more variables.

We write $\mathbb{A} \equiv_C^k \mathbb{B}$ to denote that no sentence of C^k distinguishes \mathbb{A} from \mathbb{B} .

And similarly, for $\mathbf{a}, \mathbf{a}' \in \mathbb{A}^k$ we have $\mathbf{a} \equiv^k_C \mathbf{a}'$

This *family of equivalence relations* has many different natural formulations in *combinatorics, algebra,* and *logic*.

Tractable Approximations of Isomorphism

If \mathbb{A}, \mathbb{B} are *n*-element structures and k < n, we have:

 $\mathbb{A}\cong\mathbb{B}\quad\Leftrightarrow\quad\mathbb{A}\equiv^n_C\mathbb{B}\quad\Rightarrow\quad\mathbb{A}\equiv^{k+1}_C\mathbb{B}\quad\Rightarrow\quad\mathbb{A}\equiv^k_C\mathbb{B}.$

 $\mathbb{A} \equiv^k_C \mathbb{B}$ is decidable in time $n^{O(k)}$.

The equivalence relations \equiv_C^k form a *family* of tractable approximations of isomorphism.

There is no fixed k for which \equiv_{C}^{k} coincides with isomorphism. (Cai, Fürer, Immerman 1992).

Fixed-Point Logics with Counting

Analysis of \equiv_{C}^{k} yields results analogous to the *Abiteboul-Vianu theorem*:

```
Theorem
FPC = PFPC if, and only if, PTime = PSpace.
```

```
Grädel-Otto
```

Grohe has shown that FPC *captures* PTime on any *proper minor-closed* class of graphs.

In particular, for each such class K, there is a k such that \equiv_C^k is the same as *isomorphism* on K.

Bijection Games

 \equiv^{C^k} is characterised by a k-pebble *bijection game*. (Hella 96).

The game is played on structures A and B with pebbles a_1, \ldots, a_k on A and b_1, \ldots, b_k on B.

- *Spoiler* chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a bijection h : A → B such that for pebbles a_j and b_j(j ≠ i), h(a_j) = b_j;
- Spoiler chooses $a \in A$ and places a_i on a and b_i on h(a).

Duplicator loses if the partial map $a_i \mapsto b_i$ is not a partial isomorphism. *Duplicator* has a strategy to play forever if, and only if, $\mathbb{A} \equiv_C^k \mathbb{B}$.

Weisfeiler-Lehman Test

The *k*-dimensional Weisfeiler-Lehman test for isomorphism (as described by **Babai**), gives a way of testing for \equiv_C^k .

We obtain, by successive refinements, an equivalence relation \equiv^k on k-tuples of elements in a structure \mathbb{A} :

 $\equiv_0^k \ \supseteq \ \equiv_1^k \ \supseteq \cdots \supseteq \ \equiv_i^k \ \cdots$

 $\mathbf{u} \equiv_0^k \mathbf{v}$ if the two tuples induce isomorphic k-element structures.

The refinement is defined by an *easily checked* condition on tuples. The refinement is guaranteed to terminate within n^k iterations.

Induced Partitions

Given an equivalence relation \equiv_i^k , each k-tuple **a** induces a *labelled partition* of the elements A, where each element a is labelled by the k-tuple

α_1,\ldots,α_k

of \equiv_i^k -equivalence classes obtained by substituting a in each of the k positions in **a**.

Define \equiv_{i+1}^{k} to be the equivalence relation where $\mathbf{a} \equiv_{i+1}^{k} \mathbf{b}$ if, in the partitions they induce, the corresponding labelled parts *have the same cardinality*.

Graph Isomorphism Integer Program

Yet another way of approximating the graph isomorphism relation is obtained by considering it as a 0/1 linear program.

If A and B are adjacency matrices of graphs G and H, then $G \cong H$ if, and only if, there is a *permutation matrix* P such that:

 $PAP^{-1} = B$ or, equivalently PA = BP

A *permutation matrix* is a 0-1-matrix which has exactly one 1 in each row and column.

Integer Program

Introducing a variable x_{ij} for each entry of P , the equation PA=BP becomes a system of ${\it linear equations}$

$$\sum_k x_{ik} a_{kj} = \sum_k b_{ik} x_{kj}$$

Adding the constraints:

$$\sum_{i} x_{ij} = 1 \quad \text{and} \quad \sum_{j} x_{ij} = 1$$

we get a system of equations that has a 0-1 solution if, and only if, G and H are isomorphic.

Sherali-Adams Hierarchy

If we have any *linear program* for which we seek a *0-1 solution*, we can relax the constraint and admit *fractional solutions*:

 $0 \le x_{ij} \le 1.$

The resulting linear program can be solved in *polynomial time*, but admits solutions which are not solutions to the original problem.

Sherali and Adams (1990) define a way of *tightening* the linear program by adding a number of *lift and project* constraints. Say that $G \cong^{f,k} H$ if the *k*th lift-and-project of the *isomorphism* program on *G* and *H* admits a solution.

Sherali-Adams Isomorphism

For each k

 $G \equiv_C^{k+1} H \quad \Rightarrow \quad G \cong_C^{f,k} H \quad \Rightarrow \quad G \equiv_C^k H$

(Atserias, Maneva 2012)

For k > 2, the reverse implications fail.

(Grohe, Otto 2012)

Coherent Algebras

Weisfeiler and Lehman presented their algorithm in terms of *cellular* algebras.

These are algebras of matrices on the *complex numbers* defined in terms of *Schur multiplication*:

 $(A \circ B)(i,j) = A(i,j)B(i,j)$

They are also called *coherent configurations* in the work of Higman.

Definition

A *coherent algebra* with index set V is an algebra \mathcal{A} of $V \times V$ matrices over \mathbb{C} that is:

closed under Hermitian adjoints; closed under Schur multiplication; contains the identity I and the all 1's matrix J.

Weisfeiler-Lehman method

Associate with any graph G, its *coherent invariant*, defined as the smallest coherent algebra \mathcal{A}_G containing the adjacency matrix of G. Say that two graphs G_1 and G_2 are *WL*-equivalent if there is an isomorphism between their *coherent invariants* \mathcal{A}_{G_1} and \mathcal{A}_{G_2} . G_1 and G_2 are *WL*-equivalent if, and only if, $G_1 \equiv_G^3 G_2$.

(D., Holm) give a way of lifting this characterisation to any k.

Replacing the *complex field* \mathbb{C} by *finite fields* gives a family of equivalences that can be used to analyse FPrk—*rank logic*.

Homomorphisms

Recall a *homomorphism* from \mathbb{A} to \mathbb{B} is a map $h : \mathbb{A} \to \mathbb{B}$ so that for any tuple **a** and any relation R,

 $R^{\mathbb{A}}(\mathbf{a}) \quad \Rightarrow \quad R^{\mathbb{B}}(h(\mathbf{a})).$

 $\mathbb{A} \cong \mathbb{B}$ *if, and only if,* there are homomorphisms $h : \mathbb{A} \to \mathbb{B}$ and $g : \mathbb{B} \to \mathbb{A}$ such that

 $gh = \mathrm{id}_{\mathbb{A}}$ and $hg = \mathrm{id}_{\mathbb{B}}$.

Local Consistency Maps

The problem of deciding if there is a homomorphism from $\mathbb A$ to $\mathbb B$ is NP-complete.

In practice, a commonly used test is the *local consistency test*. There is one such for each \boldsymbol{k}

Write $\mathbb{A} \Rrightarrow^k \mathbb{B}$ to denote that for any existential, positive sentence φ of L^k

if $\mathbb{A} \models \varphi$ then $\mathbb{B} \models \varphi$.

Existential Pebble Game

The relation $\mathbb{A} \Rightarrow^k \mathbb{B}$ has a *pebble game* characterisation due to **Kolaitis-Vardi**:

The game is played on structures A and B with pebbles a_1, \ldots, a_k on A and b_1, \ldots, b_k on B.

- *Spoiler* chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a map $h: A \to B$ such that for pebbles a_j and $b_j (j \neq i)$, $h(a_j) = b_j$;
- Spoiler chooses $a \in A$ and places a_i on a and b_i on h(a).

Duplicator loses if the partial map $a_i \mapsto b_i$ is not a partial homomorphism. Duplicator has a strategy to play forever if, and only if, $\mathbb{A} \Rightarrow^k \mathbb{B}$.

Invertible Strategies

We can define strategy composition so that if $s: \mathbb{A} \Rightarrow^k \mathbb{B}$ and $t: \mathbb{B} \Rightarrow^k \mathbb{C}$ then

 $ts:\mathbb{A} \Rrightarrow \mathbb{C}$

There is a pair of strategies $s : \mathbb{A} \Rightarrow^k \mathbb{B}$ and $t : \mathbb{B} \Rightarrow^k \mathbb{A}$ such that

 $ts = id_{\mathbb{A}}$ and $st = id_{\mathbb{B}}$

if, and only if $\mathbb{A} \equiv^k_C \mathbb{B}$.

CSP Preservation

For a structure \mathbb{B} : $CSP(\mathbb{B}) = \{\mathbb{A} \mid \mathbb{A} \to \mathbb{B}\}$

Theorem

If $CSP(\mathbb{B})$ is closed under \equiv_C^k for some k, then its complement is closed under $\equiv_C^{k'}$ for some k'.

This follows from results of (Atserias, Bulatov, D.) and (Barto, Kozik).

Conjecture (Infinitary Homomorphism Preservation)

If a class of structures K is closed under homomorphisms and under \equiv_C^k for some k, then it is closed under $\Rightarrow^{k'}$ for some k'.

Definability Dichotomy

A related result was presented at (D., Wang, CSL 2015) on *finite valued constraint satisfaction problems*.

These allow *"soft"* constraints that can be violated, but at a *cost*. The aim is to find a *minimum cost solution*.

Every finite valued CSP is (Thapper-Živny) (D.-Wang)

- *either*, in PTime; closed under \equiv_C^k for some k, and definable in FPC
- or NP-complete; and not closed under \equiv_C^k for any k.

Summary

Notions of *elementary equivalence* are an essential tool for studying *definability* in finite structures.

The family of equivalence relations \equiv_C^k arises naturally from many different sources; *and* turns out to to have many computational applications.