Elementary Equivalence in Finite Structures

Anuj Dawar
University of Cambridge Computer Laboratory

YuriFest, Berlin, 11 September 2015

When I First Met Yuri

When I was a graduate student, I sent Yuri a draft of the paper that would become:

Dawar, Lindell and Weinstein.
Infinitary Logic and Inductive Definability over Finite Structures. Inf. Comput. (1995)
and received generously extensive feedback.

Abiteboul-Vianu Theorem

One of the main contributions of the paper was an alternative proof of the theorem of Abiteboul-Vianu:

Theorem
FP = PFP if, and only if, PTime = PSpace.
Here:

- FP is least fixed point logic; and
- PFP is partial fixed point logic.

The proof was based on an analysis and definability of the equivalence relations \equiv_{L}^{k}.

Finite Variable Equivalences

Write L^{k} for the fragment of first-order logic using only variables x_{1}, \ldots, x_{k}.

For structures \mathbb{A} and \mathbb{B} write $\mathbb{A} \equiv \equiv_{L}^{k} \mathbb{B}$ to denote that they are not distinguished by any sentence of L^{k}.

By abuse of notation, for tuples $\mathbf{a}, \mathbf{a}^{\prime} \in \mathbb{A}^{k}$ we write $\mathbf{a} \equiv_{L}^{k} \mathbf{a}^{\prime}$ to denote that for every formula φ of L^{k},

$$
\mathbb{A} \models \varphi[\mathbf{a}] \quad \text { if, and only if, } \quad \mathbb{A} \models \varphi\left[\mathbf{a}^{\prime}\right] .
$$

Fixed Point Logics

A class of structures K is definable in FP iff there is some k so that K is closed under \equiv^{k} and
$\mathbb{A} \in K$ is decided by an algorithm that runs in polynomial time on a quotient structure $\mathbb{A}^{k} / \equiv_{L}^{k}$.

A class of structures K is definable in PFP iff there is some k so that K is closed under \equiv^{k} and
$\mathbb{A} \in K$ is decided by an algorithm that runs in polynomial space on a quotient structure $\mathbb{A}^{k} / \equiv_{L}^{k}$.

Oberwolfach 1994

In 1994, Yuri (together with Heinz-Dieter Ebbinghaus and Jörg Flum) was an organiser of a workshop on Finite Model Theory at Oberwolfach.

A take-home message from the workshop:

- Classical model theory is the study of the equivalence relation \equiv of elementary equivalence.
It tells us the limits of definability: i.e. properties that are not invariant are not definable.
- Can \equiv_{L}^{k} play a similar role for finite structures?

Interesting work on \equiv_{L}^{k} followed, but a more interesting notion of elementary equivalence emerged.

Doing it with Counting

C^{k} is the logic obtained from first-order logic by allowing:

- counting quantifiers: $\exists^{i} x \varphi$; and
- only the variables $x_{1}, \ldots x_{k}$.

Every formula of C^{k} is equivalent to a formula of first-order logic, albeit one with more variables.

We write $\mathbb{A} \equiv{ }_{C}^{k} \mathbb{B}$ to denote that no sentence of C^{k} distinguishes \mathbb{A} from \mathbb{B}.
And similarly, for $\mathbf{a}, \mathbf{a}^{\prime} \in \mathbb{A}^{k}$ we have $\mathbf{a} \equiv{ }_{C}^{k} \mathbf{a}^{\prime}$
This family of equivalence relations has many different natural formulations in combinatorics, algebra, and logic.

Tractable Approximations of Isomorphism

If \mathbb{A}, \mathbb{B} are n-element structures and $k<n$, we have:

$$
\mathbb{A} \cong \mathbb{B} \quad \Leftrightarrow \quad \mathbb{A} \equiv_{C}^{n} \mathbb{B} \quad \Rightarrow \quad \mathbb{A} \equiv_{C}^{k+1} \mathbb{B} \Rightarrow \mathbb{A} \equiv_{C}^{k} \mathbb{B} .
$$

$\mathbb{A} \equiv{ }_{C}^{k} \mathbb{B}$ is decidable in time $n^{O(k)}$.
The equivalence relations \equiv_{C}^{k} form a family of tractable approximations of isomorphism.

There is no fixed k for which \equiv_{C}^{k} coincides with isomorphism.
(Cai, Fürer, Immerman 1992).

Fixed-Point Logics with Counting

Analysis of $\equiv{ }_{C}^{k}$ yields results analogous to the Abiteboul-Vianu theorem:
Theorem
FPC = PFPC if, and only if, PTime = PSpace.

Grädel-Otto

Grohe has shown that FPC captures PTime on any proper minor-closed class of graphs.
In particular, for each such class K, there is a k such that \equiv_{C}^{k} is the same as isomorphism on K.

Bijection Games

$\equiv \bar{C}^{k}$ is characterised by a k-pebble bijection game.
(Hella 96).
The game is played on structures \mathbb{A} and \mathbb{B} with pebbles a_{1}, \ldots, a_{k} on \mathbb{A} and b_{1}, \ldots, b_{k} on \mathbb{B}.

- Spoiler chooses a pair of pebbles a_{i} and b_{i};
- Duplicator chooses a bijection $h: A \rightarrow B$ such that for pebbles a_{j} and $b_{j}(j \neq i), h\left(a_{j}\right)=b_{j}$;
- Spoiler chooses $a \in A$ and places a_{i} on a and b_{i} on $h(a)$.

Duplicator loses if the partial map $a_{i} \mapsto b_{i}$ is not a partial isomorphism. Duplicator has a strategy to play forever if, and only if, $\mathbb{A} \equiv{ }_{C}^{k} \mathbb{B}$.

Weisfeiler-Lehman Test

The k-dimensional Weisfeiler-Lehman test for isomorphism (as described by Babai), gives a way of testing for \equiv_{C}^{k}.

We obtain, by successive refinements, an equivalence relation \equiv^{k} on k-tuples of elements in a structure \mathbb{A} :

$$
\equiv_{0}^{k} \supseteq \equiv_{1}^{k} \supseteq \cdots \supseteq \equiv_{i}^{k} \quad \cdots
$$

$\mathbf{u} \equiv{ }_{0}^{k} \mathbf{v}$ if the two tuples induce isomorphic k-element structures.
The refinement is defined by an easily checked condition on tuples. The refinement is guaranteed to terminate within n^{k} iterations.

Induced Partitions

Given an equivalence relation \equiv_{i}^{k}, each k-tuple a induces a labelled partition of the elements A, where each element a is labelled by the k-tuple

$$
\alpha_{1}, \ldots, \alpha_{k}
$$

of \equiv_{i}^{k}-equivalence classes obtained by substituting a in each of the k positions in a.

Define \equiv_{i+1}^{k} to be the equivalence relation where $\mathbf{a} \equiv_{i+1}^{k} \mathbf{b}$ if, in the partitions they induce, the correponding labelled parts have the same cardinality.

Graph Isomorphism Integer Program

Yet another way of approximating the graph isomorphism relation is obtained by considering it as a 0/1 linear program.
If A and B are adjacency matrices of graphs G and H, then $G \cong H$ if, and only if, there is a permutation matrix P such that:

$$
P A P^{-1}=B \quad \text { or, equivalently } \quad P A=B P
$$

A permutation matrix is a 0-1-matrix which has exactly one 1 in each row and column.

Integer Program

Introducing a variable $x_{i j}$ for each entry of P, the equation $P A=B P$ becomes a system of linear equations

$$
\sum_{k} x_{i k} a_{k j}=\sum_{k} b_{i k} x_{k j}
$$

Adding the constraints:

$$
\sum_{i} x_{i j}=1 \quad \text { and } \quad \sum_{j} x_{i j}=1
$$

we get a system of equations that has a 0-1 solution if, and only if, G and H are isomorphic.

Sherali-Adams Hierarchy

If we have any linear program for which we seek a $0-1$ solution, we can relax the constraint and admit fractional solutions:

$$
0 \leq x_{i j} \leq 1 .
$$

The resulting linear program can be solved in polynomial time, but admits solutions which are not solutions to the original problem.

Sherali and Adams (1990) define a way of tightening the linear program by adding a number of lift and project constraints.
Say that $G \cong f, k H$ if the k th lift-and-project of the isomorphism program on G and H admits a solution.

Sherali-Adams Isomorphism

For each k

$$
G \equiv_{C}^{k+1} H \quad \Rightarrow \quad G \cong \cong_{C}^{f, k} H \quad \Rightarrow \quad \equiv_{C}^{k} H
$$

(Atserias, Maneva 2012)
For $k>2$, the reverse implications fail.
(Grohe, Otto 2012)

Coherent Algebras

Weisfeiler and Lehman presented their algorithm in terms of cellular algebras.
These are algebras of matrices on the complex numbers defined in terms of Schur multiplication:

$$
(A \circ B)(i, j)=A(i, j) B(i, j)
$$

They are also called coherent configurations in the work of Higman.
Definition
A coherent algebra with index set V is an algebra \mathcal{A} of $V \times V$ matrices over \mathbb{C} that is:
closed under Hermitian adjoints; closed under Schur multiplication; contains the identity I and the all 1's matrix J.

Weisfeiler-Lehman method

Associate with any graph G, its coherent invariant, defined as the smallest coherent algebra \mathcal{A}_{G} containing the adjacency matrix of G.
Say that two graphs G_{1} and G_{2} are $W L$-equivalent if there is an isomorphism between their coherent invariants $\mathcal{A}_{G_{1}}$ and $\mathcal{A}_{G_{2}}$.
G_{1} and G_{2} are WL-equivalent if, and only if, $G_{1} \equiv{ }_{C}^{3} G_{2}$.
(D., Holm) give a way of lifting this characterisation to any k.

Replacing the complex field \mathbb{C} by finite fields gives a family of equivalences that can be used to analyse FPrk—rank logic.

Homomorphisms

Recall a homomorphism from \mathbb{A} to \mathbb{B} is a map $h: \mathbb{A} \rightarrow \mathbb{B}$ so that for any tuple a and any relation R,

$$
R^{\mathbb{A}}(\mathbf{a}) \quad \Rightarrow \quad R^{\mathbb{B}}(h(\mathbf{a})) .
$$

$\mathbb{A} \cong \mathbb{B}$ if, and only if, there are homomorphisms $h: \mathbb{A} \rightarrow \mathbb{B}$ and $g: \mathbb{B} \rightarrow \mathbb{A}$ such that

$$
g h=\operatorname{id}_{\mathbb{A}} \quad \text { and } \quad h g=\operatorname{id}_{\mathbb{B}} .
$$

Local Consistency Maps

The problem of deciding if there is a homomorphism from \mathbb{A} to \mathbb{B} is NP-complete.

In practice, a commonly used test is the local consistency test.
There is one such for each k
Write $\mathbb{A} \Rightarrow^{k} \mathbb{B}$ to denote that for any existential, positive sentence φ of L^{k}

$$
\text { if } \mathbb{A} \models \varphi \text { then } \quad \mathbb{B} \models \varphi \text {. }
$$

Existential Pebble Game

The relation $\mathbb{A} \Rightarrow^{k} \mathbb{B}$ has a pebble game characterisation due to Kolaitis-Vardi:

The game is played on structures \mathbb{A} and \mathbb{B} with pebbles a_{1}, \ldots, a_{k} on \mathbb{A} and b_{1}, \ldots, b_{k} on \mathbb{B}.

- Spoiler chooses a pair of pebbles a_{i} and b_{i};
- Duplicator chooses a map $h: A \rightarrow B$ such that for pebbles a_{j} and $b_{j}(j \neq i), h\left(a_{j}\right)=b_{j} ;$
- Spoiler chooses $a \in A$ and places a_{i} on a and b_{i} on $h(a)$.

Duplicator loses if the partial map $a_{i} \mapsto b_{i}$ is not a partial homomorphism. Duplicator has a strategy to play forever if, and only if, $\mathbb{A} \Rightarrow^{k} \mathbb{B}$.

Invertible Strategies

We can define strategy composition so that if $s: \mathbb{A} \Rightarrow^{k} \mathbb{B}$ and $t: \mathbb{B} \Rightarrow^{k} \mathbb{C}$ then

$$
t s: \mathbb{A} \Rightarrow \mathbb{C}
$$

There is a pair of strategies $s: \mathbb{A} \Rightarrow^{k} \mathbb{B}$ and $t: \mathbb{B} \Rightarrow^{k} \mathbb{A}$ such that

$$
t s=\operatorname{id}_{\mathbb{A}} \quad \text { and } \quad s t=\mathrm{id}_{\mathbb{B}}
$$

if, and only if $\mathbb{A} \equiv_{C}^{k} \mathbb{B}$.

CSP Preservation

For a structure $\mathbb{B}: \operatorname{CSP}(\mathbb{B})=\{\mathbb{A} \mid \mathbb{A} \rightarrow \mathbb{B}\}$

Theorem
If $\operatorname{CSP}(\mathbb{B})$ is closed under \equiv_{C}^{k} for some k, then its complement is closed under $\Rightarrow{ }^{k^{\prime}}$ for some k^{\prime}.
This follows from results of (Atserias, Bulatov, D.) and (Barto, Kozik).
Conjecture (Infinitary Homomorphism Preservation) If a class of structures K is closed under homomorphisms and under \equiv_{C}^{k} for some k, then it is closed under $\Rightarrow{ }^{k^{\prime}}$ for some k^{\prime}.

Definability Dichotomy

A related result was presented at (D., Wang, CSL 2015) on finite valued constraint satisfaction problems.
These allow "soft" constraints that can be violated, but at a cost. The aim is to find a minimum cost solution.

Every finite valued CSP is (Thapper-Živny) (D.-Wang)

- either, in PTime; closed under \equiv_{C}^{k} for some k, and definable in FPC
- or NP-complete; and not closed under \equiv_{C}^{k} for any k.

Summary

Notions of elementary equivalence are an essential tool for studying definability in finite structures.

The family of equivalence relations \equiv_{C}^{k} arises naturally from many different sources; and turns out to to have many computational applications.

