# **Fixed-Point Logics and Computation**

### Symposium on the Unusual Effectiveness of Logic in Computer Science

### Anuj Dawar University of Cambridge

## Mathematical Logic

Mathematical logic seeks to formalise the process of mathematical reasoning and turn this process itself into a subject of mathematical enquiry.

It investigates the relationships among:

- Structure
- Language
- Proof

*Proof-theoretic* vs. *Model-theoretic* views of logic.

### **Computation as Logic**

If logic aims to reduce reasoning to symbol manipulation,

On the one hand, computation theory provides a formalisation of "symbol manipulation".

On the other hand, the development of computing machines leads to "logic engineering".

The validities of first-order logic are r.e.-complete.

## **Proof Theory in Computation**

As all programs and data are strings of symbols in a formal system, one view sees all computation as inference.

For instance, the functional programming view:

- Propositions are types.
- Programs are (constructive proofs).
- Computation is proof transformation.

## **Model Theory in Computation**

A model-theoretic view of computation aims to distinguish computational *structures* and languages used to talk about them.

| Data Structure      | Programming Language   |
|---------------------|------------------------|
| Database            | Query Language         |
| Program/State Space | Specification Language |

The structures involved are rather different from those studied in classical model theory. *Finite Model Theory.* 

#### **First-Order Logic**

terms  $-c, x, f(t_1, \ldots, t_a)$ 

atomic formulas  $-R(t_1, \ldots, t_a), t_1 = t_2$ boolean operations  $-\varphi \wedge \psi, \varphi \lor \psi, \neg \varphi$ first-order quantifiers  $-\exists x\varphi, \forall x\varphi$ 

Formulae are interpreted in structures:

$$\mathbb{A} = (A, R_1, \dots, R_m, f_1, \dots, f_n, c_1, \dots, c_n)$$

## **Success of First-Order Logic**

First-order logic is very successful at its intended purpose, the formalisation of mathematics.

- Many natural mathematical theories can be expressed as first-order theories.
- These include *set theory*, fundamental to the foundations of mathematics.
- Gödel's completeness theorem guarantees that the consequences of these theories can be effectively obtained.

### **Finite Structures**

The completeness theorem fails when restricted to finite structures.

The sentences of first-order logic, valid on finite structures are not recursively enumarable.

(Trakhtenbrot 1950)

On finite structures, first-order logic is both too strong and too weak.

#### **First-Order Logic is too Strong**

For every finite structure  $\mathbb{A}$ , there is a sentence  $\varphi_{\mathbb{A}}$  such that

 $\mathbb{B} \models \varphi_{\mathbb{A}}$  if, and only if,  $\mathbb{B} \cong \mathbb{A}$ 

For any isomorphism-closed class of finite structures, there is a first-order theory that defines it.

Anuj Dawar

### First-Order Logic is too Weak

For any first-order sentence  $\varphi$ , its class of finite models

 $\operatorname{Mod}_{\mathcal{F}}(\varphi) = \{ \mathbb{A} \mid \mathbb{A} \text{ finite, and } \mathbb{A} \models \varphi \}$ 

is trivially decidable (in LOGSPACE).

There are computationally easy classes that are not defined by any first-order sentence.

- The class of sets with an even number of elements.
- The class of graphs (V, E) that are connected.

## **Inductive Definitions**

In computing (and logic), many classes of structures are naturally defined *inductively*.

viz. The definition of the terms and formulae of first-order logic.

Includes definitions of syntax and semantics of most *languages*, of *data structures* (trees, lists, etc.), of *arithmetic functions*.

### **Definition by Fixed Point**

The collection of first-order terms can be defined as the least set containing all constants, all variables and such that  $f(t_1, \ldots, t_a)$  is a term whenever  $t_1, \ldots, t_a$  are terms and f is a function symbol of arity a.

The addition function is defined as the least function satisfying:

 $\begin{array}{rcl} x+0 & = & x \\ x+s(y) & = & s(x+y). \end{array}$ 

In each case, the set defined is the least fixed point of a monotone operator on sets.

### From Metalanguage to Language

The logic LFP is formed by closing first-order logic under the rule: If  $\varphi$  is a formula, *positive* in the relational variable R, then so is

 $[\mathbf{lfp}_{R,\mathbf{x}}\varphi](\mathbf{t}).$ 

The formula is read as:

the tuple **t** is in the least fixed point of the operator that maps R to  $\varphi(R, \mathbf{x})$ .

### Connectivity

The formula

 $\forall u \forall v [\mathbf{lfp}_{T,xy}(x = y \lor \exists z (E(x,z) \land T(z,y)))](u,v)$ 

is satisfied in a graph (V, E) if, and only if, it is connected.

The expressive power of LFP properly extends that of first-order logic.

### Immerman-Vardi Theorem

Consider finite structures with a distinguished relation < that is interpreted as a linear order of the universe.

A class of finite ordered structures is definable by a sentence of LFP if, and only if, membership in the class is decidable by a deterministic Turing machine in *polynomial time*.

(Immerman, Vardi 1982).

In the absence of the order assumption, there are easily computable properties that are not definable in LFP.

### **Iterated Fixed Points**

The least fixed point of the operator defined by a formula  $\varphi(R, \mathbf{x})$ on a structure  $\mathbb{A}$  can be obtained by an iterative process:

$$R^{0} = \emptyset$$
  

$$R^{m+1} = \{\mathbf{a} \mid \mathbb{A}, R^{m} \models \varphi[\mathbf{a}/\mathbf{x}]\}$$

There is a k such that if  $\mathbb{A}$  has n elements, the fixed point is reached in at most  $n^k$  stages.

On infinite structures, we have to also take unions at limit stages.

## **Inflationary Fixed Point Logic**

If  $\varphi(R, \mathbf{x})$  is not necessarily positive in R, the following iterative process still gives an increasing sequence of stages:

 $R^{0} = \emptyset$  $R^{m+1} = R^{m} \cup \{\mathbf{a} \mid \mathbb{A}, R^{m} \models \varphi[\mathbf{a}/\mathbf{x}]\}$ 

The limit of this sequence is the *inflationary fixed point* of the operator defined by  $\varphi$ .

**IFP** is the set of formulae obtained by closing first-order logic under the formula formation rule:

 $[\mathbf{ifp}_{R,\mathbf{x}}\varphi](\mathbf{t}).$ 

It is clear that every formula of LFP is equivalent to one of IFP.

Every formula of IFP is equivalent, *on finite structures*, to one of LFP.

(Gurevich-Shelah, 1986)

The restriction to finite structures is not necessary.

(Kreutzer, 2002)

## **Partial Fixed Point Logic**

For any formula  $\varphi(\mathbf{R}, \mathbf{x})$  and structure  $\mathbb{A}$ , we can define the iterative sequence of stages

$$R^{0} = \emptyset$$
  

$$R^{m+1} = \{\mathbf{a} \mid \mathbb{A}, R^{m} \models \varphi[\mathbf{a}/\mathbf{x}]\}.$$

This sequence is not necessarily increasing, and may or may not converge to a fixed point.

The *partial fixed point* is the limit of this sequence if it exists, and  $\emptyset$  otherwise.

**PFP** is the set of formulae obtained by closing first-order logic under the formula formation rule:

 $[\mathbf{pfp}_{R,\mathbf{x}}\varphi](\mathbf{t}).$ 

#### **Abiteboul-Vianu Theorem**

A class of finite ordered structures is definable by a sentence of PFP if, and only if, membership in the class is decidable by a deterministic Turing machine using a *polynomial amount of space*.

Every formula of PFP is equivalent (on finite structures) to one of LFP if, and only if, every polynomial space decidable property is also decidable in polynomial time.

(Abiteboul-Vianu 1995)

Similar re-formulations of various complexity-theoretic questions (including the P vs. NP question) in terms of fixed-point logics.

#### **State Transition Systems**

A class of structures of great importance in verification are *state transition systems*, which are models of program behaviour.



 $\mathbb{A} = (S, (E_a)_{a \in A}, (p)_{p \in P}),$  where A is a set of actions and P is a set of propositions.

## **Modal Logic**

The formulae of Hennessy-Milner logic are given by:

- T and F
- p  $(p \in P)$
- $\varphi \land \psi; \varphi \lor \psi; \neg \varphi$
- $[a]\varphi; \langle a \rangle \varphi$   $(a \in A).$

For the semantics, note

 $\mathcal{K}, v \models \langle a \rangle \varphi$ 

iff for some w with  $v \xrightarrow{a} w$ , we have  $\mathcal{K}, w \models \varphi$ . Dually for [a].

#### Modal $\mu$ -calculus

Generally, logics more expressive than H-M are considered.

The modal  $\mu$ -calculus  $(L_{\mu})$  extends H-M with recursion (and extends a variety of other extensions, such as CTL, PDL, CTL\*).

An additional collection of variables  $X_1, X_2, \ldots$ 

 $\mu X : \varphi$  is a formula if  $\varphi$  is a formula containing only positive occurrences of X.

$$\mathcal{K}, v \models \mu X : \varphi$$

iff v is in the least set X such that  $X \leftrightarrow \varphi$  in  $(\mathcal{K}, X)$ .

### LFP and the $\mu$ -calculus

Suppose  $\varphi$  is a formula of LFP with no more than k first-order variables (and no parameters to fixed-point operators).

There is a formula  $\hat{\varphi}$  of the  $L_{\mu}$  such that

 $\mathbb{A} \models \varphi$  if, and only if,  $\hat{\mathbb{A}}^k \models \hat{\varphi}$ ,

where  $\hat{\mathbb{A}}^k$  is the transition system with states corresponding to *k*-tuples of  $\mathbb{A}$ , *k* actions corresponding to substitutions, and propositions corresponding to the relations of  $\mathbb{A}$ .

This gives a computational equivalence between many problems of LFP and  $L_{\mu}$ .

## IFP and the $\mu\text{-calculus}$

While every formula of IFP is equivalent to one of LFP, the translation does not preserve number of variables.

Some of the desirable computational properties of  $L_{\mu}$  do not lift to IFP.

Modal logic with an inflationary fixed point operator is more expressive than  $L_{\mu}$ .

### **Modal Fixed-Point Logics**

MIC – the modal inflationary calculus.

|                       | $L_{\mu}$                                       | MIC                        |
|-----------------------|-------------------------------------------------|----------------------------|
|                       |                                                 |                            |
| Finite Model Property | Yes                                             | No                         |
| Satisfiability        | Decidable                                       | Not Arithmetic             |
| Model-checking        | $\mathrm{NP}\cap\mathrm{CO}\text{-}\mathrm{NP}$ | PSPACE-complete            |
| Languages defined     | Regular                                         | Some context-sensitive     |
|                       |                                                 | all linear-time.           |
|                       | (]                                              | D., Grädel, Kreutzer 2001) |

Modal versions of partial and nondeterministic fixed-point logic can also be separated.

# **In Summary**

- Model-theoretic methods concerned with studying the expressive power of logical languages.
- First-order logic does not occupy a central place.
- A variety of fixed-point extensions of first-order logic used to study complexity.
- Convergence of methods with fixed-point modal logics studied in verification.
- Fine structure of fixed-point logics can be studied in the modal context.