Finite Model Theory and Graph Isomorphism. III.

Anuj Dawar

University of Cambridge Computer Laboratory visiting RWTH Aachen

Beroun, 14 December 2013

Recapitulation

We obtain *stratifications* of the relation of graph isomorphism by considering *game equivalences* arising in finite model theory.

These give rise to *polynomial time decidable* approximations of graph isomorphism.

These can be computed by a *iterated refinement* of partitions of the k-tuples of vertices.

Recapitulation. II

The family of equivalences \equiv^{C^k} has many equivalent characterisations in terms of

- *Combinatorics*: as the *k*-dimensional Weisfeiler-Lehman method.
- Logic: equivalence in the logic with k variables and counting.
- Games: bijection games, counting games

and, to come

- Linear Programming relaxations of the isomorphism problem.
- Algebra: Coherent algebras.

Graph Isomorphism Integer Program

Yet another way of approximating the graph isomorphism relation is obtained by considering it as a 0/1 linear program.

If A and B are adjacency matrices of graphs G and H, then $G \cong H$ if, and only if, there is a *permutation matrix* P such that:

 $PAP^{-1} = B$ or, equivalently PA = BP

Introducing a variable x_{ij} for each entry of *P* and adding the constraints:

$$\sum_{i} x_{ij} = 1$$
 and $\sum_{j} x_{ij} = 1$

we get a system of equations that has a 0-1 solution if, and only if, G and H are isomorphic.

Fractional Isomorphism

To the system of equations:

$$PA = BP;$$
 $\sum_{i} x_{ij} = 1$ and $\sum_{j} x_{ij} = 1$

add the inequalities

 $0 \leq x_{ij} \leq 1.$

Say that G and H are fractionally isomorphic $(G \cong^{f} H)$ if the resulting system has any real solution.

 $G \cong^{f} H$ if, and only if, $G \equiv^{C^{2}} H$.

(Ramana, Scheiermann, Ullman 1994)

Equitable Partitions

An equivalence relation \equiv on the vertices of a graph G = (V, E) induces an *equitable partition* if

for all $u, v \in V$ with $u \equiv v$ and each \equiv -equivalence class S,

 $|\{w \in S \mid (u, w) \in E\}| = |\{w \in S \mid (v, w) \in E\}|.$

The *naive vertex classification* algorithm finds the *coarsest* equitable partition of the vertices of G.

Equitable Partition to Fractional Isomorphism

Let $G \equiv C^2 H$ and let A and B be the respective *adjacency matrices* of G and H.

For each $u \in V(G)$, let $d_u = |\{v \in V(G) \mid u \equiv^{C^2} v\}|$. Define the matrix P by

$$P_{uv} = \begin{cases} \frac{1}{d_u} & \text{if } u \equiv^{C^2} v \\ 0 & \text{otherwise} \end{cases}$$

Then, PA = BP.

Fractional Isomorphism to Equitable Partition

Suppose $G \cong^{f} H$ and this is witnessed by a *doubly stochastic* matrix P such that:

PA = BP

For $u, v \in V(G)$, let $u \sim v$ if there is some $w \in V(H)$ such that

 $P_{uw}P_{wv} > 0.$

Then, we can show that the partition induced by the relation \sim is an *equitable partition*.

Sherali-Adams Hierarchy

If we have any *linear program* for which we seek a *0-1 solution*, we can relax the constraint and admit *fractional solutions*.

The resulting linear program can be solved in *polynomial time*, but admits solutions which are not solutions to the original problem.

Sherali and Adams (1990) define a way of *tightening* the linear program by adding a number of *lift and project* constraints.

Sherali-Adams Hierarchy

The *k*th *lift-and-project* of a linear program is defined as follows: For each constraint $\mathbf{a}^T \mathbf{x} = b$ in the linear program, and each set *I* of variables with |I| < k and $J \subseteq I$, multiply the constraint by

 $\prod_{i\in I\setminus J} x_i \prod_{j\in J} (1-x_j)$

and then *linearize* by replacing x_i^2 by x_i and $\prod_{j \in K} x_j$ by a new variable y_K for each set K (along with constraints: $y_{\emptyset} = 1$, $y_{\{x\}} = x$ and $y_K \leq y_{K'}$ for $K' \subseteq K$). Say that $G \cong^{f,k} H$ if the *k*th lift-and-project of the *isomorphism program*

on G and H admits a solution.

Sherali-Adams Isomorphism

For each k

$$\equiv^{C^{k+1}} \subseteq \cong^{f,k} \subseteq \equiv^{C^k}$$

(Atserias, Maneva 2012)

For k > 2, the inclusions are strict.

(Grohe, Otto 2012)

Grohe, Otto also describe versions of the *k*-pebble game corresponding exactly to $\cong^{f,k}$ and variations on *Sherali-Adams* relaxations of isomorphism corresponding exactly to \equiv^{C^k} .

Limitations of FPC

There are polynomial-time decidable properties of graphs that are not definable in FPC. (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphs $G_k, H_k(k \in \omega)$ such that:

- $G_k \equiv^{C^k} H_k$ for all k.
- There is a polynomial time decidable class of graphs that includes all G_k and excludes all H_k .

Still, FPC is a *natural* level of expressiveness within P.

Restricted Graph Classes

If we restrict the class of structures we consider, FPC may be powerful enough to express all polynomial-time decidable properties.

FPC captures P on *trees*. (Immerman and Lander 1990).
FPC captures P on any class of graphs of *bounded treewidth*. (Grohe and Mariño 1999).
FPC captures P on the class of *planar graphs*. (Grohe 1998).
FPC captures P on any *proper minor-closed class of graphs*. (Grohe 2010).

In each case, the proof proceeds by showing that for any G in the class, a *canonical*, *ordered* representation of G can be interpreted in G using FPC.

Definable Canonization

We say that a class of graphs C admits *definable canonization* if there is a formula $\eta(\nu_1, \nu_2)$ of FPC with free numeric variables such that for any graph $G \in C$

 $G \cong ([n], \eta^G)$

and, if $G, H \in C$ are isomorphic, then:

$$([n], <, \eta^{\mathsf{G}}) \cong ([n], <, \eta^{\mathsf{H}}).$$

If C admits definable canonization, then there is a k such that \equiv^{C^k} coincides with isomorphism on C.

Isomorphism on Trees

To see that, on *directed trees*, \equiv^{C^2} coincides with isomorphism, note that the following conditions are equivalent

- 1. Two trees T_u , T_v rooted at u and v respectively are isomorphic.
- 2. There is a *bijection h* between the children of u in T_u and the children of v in T_v such that for each a, the trees rooted at a and h(a) are isomorphic.

If there is no isomorphism taking u to v, we can use (3) to describe a winning strategy for *Spoiler* in the 2-pebble *bijection game*.

TreeWidth

The *treewidth* of a graph is a measure of how tree-like the graph is. A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes in a tree-like fashion.

TreeWidth

Formal Definition:

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each v ∈ V, the set {t | (v, t) ∈ D} forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

We call $\beta(t) := \{ v \mid (v, t) \in D \}$ the *bag* at *t*.

The *treewidth* of *G* is the least *k* such that there is a tree *T* and a tree-decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v, t) \in D\}| \le k + 1.$

Isomorphism for Graphs of Bounded Treewidth

The argument showing that on trees, \equiv^{C^2} coincides with isomorphism extends to showing that if

• we expand graphs G and H to G* and H* encoding a tree-decomposition of width k; and

•
$$G^* \equiv^{C^{2k}} H^*$$
, then

 $G \cong H$.

Unfortunately, tree decompositions are not *unique* and G^* is not determined by G up to isomorphism.

Treelike Decompositions

A treelike decomposition of a graph G is a directed acyclic graph D, with a bag $\beta(d) \subseteq V(G)$ of vertices associated with each node of D and satisfying certain connectedness and consistency conditions.

A treelike decomposition of G can be obtained (for instance) from a *tree decomposition* by closing it under the *automorphisms* of G—starting at leaves and working upwards.

Treelike Decomposition of a 5-cycle

The picture shows a treelike decomposition of a 5-cycle C_5 . The grey nodes form a tree decomposition.

picture credit: M. Grohe: JACM, 59(5), 27.

Definable Treelike Decompositions

Grohe shows that for each k there is an FPC-definable tree-like decomposition of width k on the class of graphs of tree-width at most k.

This can be used to establish that $\equiv^{C^{2k}}$ coincides with isomorphism on the class of graphs of treewidth at most k.

A similar result for *planar graphs* is obtained by showing a *definable decomposition* of graphs into their *3-connected* components.

Graph Minors

We say that a graph G is a minor of graph H (written $G \leq H$) if G can be obtained from H by repeated applications of the operations:

- delete an edge;
- delete a vertex (and all incident edges); and
- contract an edge

Graph Minors

Alternatively, G = (V, E) is a minor of H = (U, F), if there is a graph H' = (U', F') with $U' \subseteq U$ and $F' \subseteq F$ and a surjective map $M : U' \to V$ such that

- for each $v \in V$, $M^{-1}(v)$ is a connected subgraph of H'; and
- for each edge $(u, v) \in E$, there is an edge in F' between some $x \in M^{-1}(u)$ and some $y \in M^{-1}(v)$.

Facts about Graph Minors

- G is planar if, and only if, $K_5 \preceq G$ and $K_{3,3} \preceq G$.
- If $G \subset H$ then $G \preceq H$.
- The relation ≤ is transitive.
- If $G \leq H$, then $\operatorname{tw}(G) \leq \operatorname{tw}(H)$.
- If tw(G) < k 1, then $K_k \not\preceq G$.

Say that a class of graphs C excludes H as a minor if $H \not\leq G$ for all $G \in C$.

C has excluded minors if it excludes some H as a minor (equivalently, it excludes some K_k as a minor).

• \mathcal{T}_k excludes K_{k+2} as a minor.

More Facts about Graph Minors

Theorem (Robertson-Seymour)

In any infinite collection $\{G_i \mid i \in \omega\}$ of graphs, there are i, j with $G_i \leq G_j$.

Corollary

For any class C closed under minors, there is a finite collection \mathcal{F} of graphs such that $G \in C$ if, and only if, $F \not\preceq G$ for all $F \in \mathcal{F}$.

The proof relies on Robertson and Seymour's *structure theorem*:

A graph G that excludes a minor K_k admits a tree-decomposition in which each bag is almost embeddable in a surface of genus k'

Isomorphism on Excluded Minor Classes

Grohe lifts the decomposition of planar graphs into *3-connected components* to graphs *embeddable* in an arbitrary surface.

More heavy lifting is required to obtain a *definable treelike decomposition* of the class of graphs *excluding a* K_k -*minor* into components that can be almost embedded in a surface.

The final result is that for each k, there is a k' such that on graphs excluding K_k as a minor, $\equiv^{C^{k'}}$ coincides with isomorphism.

Cai-Fürer-Immerman Graphs

To show that \equiv^{C^k} does not capture isomorphism everywhere we construct a sequence of pairs of graphs G_k , $H_k(k \in \omega)$ such that:

- $G_k \equiv^{C^k} H_k$ for all k.
- There is a polynomial time decidable class of graphs that includes all G_k and excludes all H_k .

Constructing G_k and H_k

Given any graph G, we can define a graph X_G by replacing every edge with a pair of edges, and every vertex with a gadget.

The picture shows the gadget for a vertex v that is adjacent in G to vertices w_1, w_2 and w_3 . The vertex v^S is adjacent to $a_{vw_i}(i \in S)$ and $b_{vw_i}(i \notin S)$ and there is one vertex for all even size S. The graph \tilde{X}_G is like X_G except that at one vertex v, we include v^S for odd size S.

Properties

If G is *connected* and has *treewidth* at least k, then:

- 1. $X_G \not\cong \tilde{X}_G$; and
- 2. $X_G \equiv^{C^k} \tilde{X}_G$.

(1) allows us to construct a polynomial time property separating X_G and \tilde{X}_G .

(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of balanced separators in *G*. The characterisation in terms of treewidth is from (D., Richerby 07).

Cops and Robbers

A game played on an undirected graph G = (V, E) between a player controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set $X \subseteq V$ of the nodes and the robber on a node $r \in V$.

A move consists in the cop player removing some cops from $X' \subseteq X$ nodes and announcing a new position Y for them. The robber responds by moving along a path from r to some node s such that the path does not go through $X \setminus X'$.

The new position is $(X \setminus X') \cup Y$ and *s*. If a cop and the robber are on the same node, the robber is caught and the game ends.

Strategies and Decompositions

Theorem (Seymour and Thomas 93):

There is a winning strategy for the *cop player* with k cops on a graph G if, and only if, the tree-width of G is at most k - 1.

It is not difficult to construct, from a tree decomposition of width k, a winning strategy for k + 1 cops.

Somewhat more involved to show that a winning strategy yields a decomposition.

Cops and Robbers on the Grid

If G is the $k \times k$ toroidal grid, than the *robber* has a winning strategy in the *k*-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph $G \setminus X$ contains a connected component with at least half the vertices of G.

If all vertices in X are in distinct rows then $G \setminus X$ is connected. Otherwise, $G \setminus X$ contains an entire row column and in its connected component there are at least k - 1 vertices from at least k/2 columns.

Robber's strategy is to stay in the large component.

Cops, Robbers and Bijections

We use this to construct a winning strategy for Duplicator in the k-pebble bijection game on X_G and \tilde{X}_G .

- A bijection $h: X_G \to \tilde{X}_G$ is good bar v if it is an isomorphism everywhere except at the vertices v^S .
- If *h* is good bar *v* and there is a path from *v* to *u*, then there is a bijection *h'* that is good bar *u* such that *h* and *h'* differ only at vertices corresponding to the path from *v* to *u*.
- Duplicator plays bijections that are good bar v, where v is the *robber position* in G when the cop position is given by the currently pebbled elements.

Bounding Degree and Colour-Class Size

In the construction of **Cai**, **Fürer and Immerman**, we can choose our graphs G_k , H_k (for which $G_K \equiv^{C^k} H_k$) to have:

- degree bounded by 3;
- colour-class size bounded by 4.

The latter restriction means that we can make them *coloured graphs* in which no more than 4 vertices have the same colour.

It is known that any class of graphs of *bounded degree* admits a polynomial-time isomorphism test. (Luks 1982)

It is known that any class of graphs of *bounded colour-class size* admits a polynomial-time isomorphism test. (Furst, Hopcroft, Luks 1980)