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Abstract. A class of relational structures is said to have the extension preservation property if
every first-order sentence that is preserved under extensions on the class is equivalent to an existential
sentence. The class of all finite structures does not have the extension preservation property. We
study the property on classes of finite structures that are better behaved. We show that the property
holds for classes of acyclic structures, structures of bounded degree, and more generally structures
that are wide in a sense that we will make precise. We also show that the preservation property
holds for the class of structures of treewidth at most k, for any k. In contrast, we show that the
property fails for the class of planar graphs.
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1. Introduction. The subject of model theory is concerned with the relationship
between syntactic and semantic properties of logic. Among classical results in the sub-
ject are preservation theorems which relate syntactic restrictions on first-order logic
with structural properties of the classes of structures defined. A key example is the
�Loś–Tarski theorem, which asserts that a first-order formula is preserved under exten-
sions on all structures if and only if it is logically equivalent to an existential formula
(see [13]). One direction of this result is easy, namely, that any formula that is purely
existential is preserved under extensions, and this holds for any class of structures.
The other direction, going from the semantic restriction to the syntactic restriction,
makes key use of the compactness of first-order logic and hence of infinite structures.

In the early development of finite model theory, when it was realized that finite
structures are the ones that are interesting from the point of view of studying compu-
tation, it was observed that most classical preservation theorems from model theory
fail when only finite structures are allowed. In particular, the �Loś–Tarski theorem
fails on finite structures [16, 12]. These results suggest that the class of finite struc-
tures is not well behaved from the point of view of model theory. However, when one
considers the computational structures that arise in practice and are used as interpre-
tations for logical languages (for instance, program models interpreting specifications
or databases interpreting queries), in many cases they are not only finite but also
satisfy other structural restrictions as well. This motivates the study of not just the
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class of finite structures, but that of well-behaved subclasses of this class as well.
Note that classical model theory, in most of its more advanced parts, also considers
restricted classes of structures such as stable, simple, and o-minimal structures, and
specific structures that are of interest in other areas of mathematics.

There are certain restrictions on finite structures that have proved especially use-
ful in modern graph structure theory and also from an algorithmic point of view. For
instance, many intractable computational problems become tractable when restricted
to planar graphs or structures of bounded treewidth [4]. This is also the case in
relation to evaluation of logical formulas [9]. A common generalization of classes of
bounded treewidth and planar graphs are classes of structures that exclude a minor,
which have also been extensively studied.

A study of preservation properties for such restricted classes of finite structures
was initiated in [1]. There, the focus was on the homomorphism preservation theo-
rem, whose status on the class of finite structures was open. It was shown that this
preservation property holds for any class of structures of bounded degree or treewidth
or that excludes some minor (and has certain other closure properties). In the present
paper, we investigate the �Loś–Tarski extension preservation property on these classes
of finite structures. Note that the failure of the property on the class of all finite
structures does not imply its failure on subclasses. If one considers the nontrivial
direction of the preservation theorem on a class C, it says that any sentence ϕ that is
preserved under extensions on C is equivalent on C to an existential sentence. Thus,
restricting to a subclass C′ of C weakens both the hypothesis and the conclusion of
the statement.

We show that the extension preservation theorem holds for any class of finite
structures closed under substructures and disjoint unions that is also wide in the
sense that any sufficiently large structure in the class contains a large number of
elements that are far apart. This includes, for instance, any class of structures of
bounded degree. While classes of structures of bounded treewidth are not wide, they
are nearly so in that they can be made wide by removing a small number of elements.
We use this property and show that it implies the extension preservation theorem
for the class Tk—the class of structures of treewidth k or less (note that this is not
as general as saying that the property holds for all classes of bounded treewidth).
Finally, although all classes defined by excluded minors are known to be almost wide
in the same sense as Tk is, we show that the construction does not extend to them.
We provide a counterexample to the extension preservation property for the class of
planar graphs and, indeed, even for the class of planar graphs of treewidth at most
four. This contrasts with the results obtained for the homomorphism preservation
property in [1] as this property was shown to hold for all classes excluding a graph
minor and closed under substructures and disjoint unions.

The main methodology in establishing the preservation property for a class of
structures C is to show an upper bound on the size of a minimal model of a first-order
sentence ϕ that is preserved under extensions on C. The way we do this is to show
that for any sufficiently large model A of ϕ, there is a proper substructure of A and
an extension of A that cannot be distinguished by ϕ. In section 3 we establish this for
the relatively simple case of acyclic structures by means of a Hanf locality argument.
Section 4 contains the main combinatorial argument for wide structures which uses
Gaifman locality and an iterated construction of the substructure of A. In section 5,
the combinatorial argument is adapted to the classes Tk. Finally, in section 6 we
discuss the existence of a counterexample in the case of planar graphs. We begin in
section 2 with some background and definitions.
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2. Preliminaries. We use standard notation and terminology from finite model
theory (see [5]). Some particular definitions and notation are explained in this section.

2.1. Relational structures. A relational vocabulary σ is a finite set of relation
symbols, each with a specified arity. A σ-structure A consists of a universe A, or
domain, and an interpretation which associates to each relation symbol R ∈ σ of
some arity r a relation RA ⊆ Ar. A graph is a structure G = (V,E), where E is a
binary relation that is symmetric and antireflexive. Thus, our graphs are undirected,
loopless, and without parallel edges.

A σ-structure B is called a substructure of A if B ⊆ A and RB ⊆ RA for every
R ∈ σ. It is called an induced substructure if RB = RA ∩Br for every R ∈ σ of arity
r. Notice the analogy with the graph-theoretical concept of subgraph and induced
subgraph. A substructure B of A is proper if A �= B. If A is an induced substructure
of B, we say that B is an extension of A. If A is a proper induced substructure, then
B is a proper extension. If B is the disjoint union of A with another σ-structure,
we say that B is a disjoint extension of A. If S ⊆ A is a subset of the universe of
A, then A ∩ S denotes the induced substructure generated by S; in other words, the
universe of A ∩ S is S, and the interpretation in A ∩ S of the r-ary relation symbol
R is RA ∩ Sr.

The Gaifman graph of a σ-structure A, denoted by G(A), is the (undirected)
graph whose set of nodes is the universe of A, and whose set of edges consists of all
pairs (a, a′) of distinct elements of A such that a and a′ appear together in some tuple
of a relation in A. The degree of a structure is the degree of its Gaifman graph, that
is, the maximum number of neighbors of nodes of the Gaifman graph.

2.2. Neighborhoods and treewidth. Let G = (V,E) be a graph. Moreover,
let u ∈ V be a node and let d ≥ 0 be an integer. The d-neighborhood of u in G,
denoted by NG

d (u), is defined inductively as follows:
1. NG

0 (u) = {u};
2. NG

d+1(u) = NG
d (u) ∪ {v ∈ V : (v, w) ∈ E for some w ∈ NG

d (u)}.
If A is a σ-structure, a is a point in A, and G is the Gaifman graph of A, we let
NA

d (a) denote the d-neighborhood of a in G. Where it causes no confusion, we also
write NA

d (a) for the substructure of A generated by this set.
A tree is an acyclic connected graph. A tree-decomposition of G = (V,E) is a

pair (T,L) where T is a tree and L : T → ℘(V ) is a labeling of the nodes of T by sets
of vertices of G such that

1. for every edge {u, v} ∈ E, there is a node t of T such that {u, v} ⊆ L(t);
2. for every u ∈ V , the set {t ∈ T : u ∈ L(t)} forms a connected subtree of T .

The width of a tree-decomposition (T,L) is maxt∈T |L(t)| − 1. The treewidth of G
is the smallest k for which G has a tree-decomposition of width k. The treewidth of
a σ-structure is the treewidth of its Gaifman graph. Note that trees have treewidth
one.

2.3. First-order logic, monadic second-order logic, and types. Let σ be
a relational vocabulary. The atomic formulas of σ are those of the form R(x1, . . . , xr),
where R ∈ σ is a relation symbol of arity r, and x1, . . . , xr are first-order variables
that are not necessarily distinct. Formulas of the form x = y are also atomic.

The collection of first-order formulas is obtained by closing the atomic formu-
las under negation, conjunction, disjunction, and universal and existential first-order
quantification. The collection of existential first-order formulas is obtained by closing
the atomic formulas and the negated atomic formulas under conjunction, disjunction,
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and existential quantification. The semantics of first-order logic is standard.
The collection of monadic second-order formulas is obtained by closing the atomic

formulas under negation, conjunction, disjunction, universal and existential first-order
quantification, and universal and existential second-order quantification over sets. The
semantics of monadic second-order logic is also standard.

The quantifier rank of a formula, be it first-order or monadic second-order, is the
depth of nesting of quantifiers in the formula.

Let A be a σ-structure, and let a1, . . . , an be points in A. If ϕ(x1, . . . , xn) is
a formula with free variables x1, . . . , xn, we use the notation A |= ϕ(a1, . . . , an) to
denote the fact that ϕ is true in A when xi is interpreted by ai. If m is an integer,
the first-order m-type of a1, . . . , an in A is the collection of all first-order formulas
ϕ(x1, . . . , xn) of quantifier rank at most m, up to logical equivalence, for which A |=
ϕ(a1, . . . , an). The monadic second-order m-type of a1, . . . , an in A is the collection
of all monadic second-order formulas ϕ(x1, . . . , xn) of quantifier rank at most m, up
to logical equivalence, for which A |= ϕ(a1, . . . , an). In this definition, by quantifier
rank of a monadic second-order formula we mean the total quantifier rank, which
means that we include both first-order and second-order quantifiers in the count. We
note that some definitions of monadic second-order type in the literature distinguish
between first-order and second-order quantifier rank [14], but we do not need this
refinement.

2.4. Preservation under extensions and minimal models. Let C be a class
of finite σ-structures that is closed under induced substructures. Let ϕ be a first-order
sentence. We say that ϕ is preserved under extensions on C if whenever A and B are
structures in C such that B is an extension of A, then A |= ϕ implies B |= ϕ. We say
that A is a minimal model of ϕ if A |= ϕ and every proper induced substructure A′ of
A is such that A′ �|= ϕ. The following lemma states that the existential sentences are
precisely those that have finitely many minimal models. Its proof is part of folklore.

Lemma 2.1. Let C be a class of finite σ-structures that is closed under induced
substructures. Let ϕ be a first-order sentence that is preserved under extensions on C.
Then the following are equivalent:

1. ϕ is equivalent on C to an existential sentence.
2. ϕ has finitely many minimal models in C.

In the rest of the paper, we use several times the implication from item 2 to item 1.
Just for completeness, this is proved by taking the disjunction of the existential closure
of the atomic types of each of the finitely many minimal models.

3. Acyclic structures. We begin with the simple case of acyclic structures, by
which we mean structures whose Gaifman graph is acyclic. We show that any class of
such structures satisfying certain closure properties admits the extension preservation
property. Note that for structures whose Gaifman graphs are acyclic, there is no loss
of generality in assuming that the vocabulary σ consists of unary and binary relations
only.

The proof makes heavy use of a technique known as Hanf locality, for which we
provide the necessary background first.

Let A and B be structures. If a ∈ Am,b ∈ Bm are m-tuples, we write (A,a) ≡m

(B,b) to denote that the first-order m-type of a in A is the same as the first-order
m-type of b in B. In particular A ≡m B denotes that the structures A and B are not
distinguished by any first-order sentence of quantifier rank m or less. The equivalence
relation ≡m is characterized by Ehrenfeucht–Fräıssé games (see, for instance, [5]).
These can be used to show that the relation is a congruence with respect to disjoint
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union with a multiplicity threshold of m. A precise statement of this useful property
is given in the following lemma. We write A ⊕ B to denote the disjoint union of the
structures A and B and nA to denote the disjoint union of n copies of A (see [5,
Prop. 2.3.10]).

Lemma 3.1. Let A1, A2, B1, and B2 be structures, and let m, n, and n′ be
integers.

1. If A1 ≡m B1 and A2 ≡m B2, then A1 ⊕ A2 ≡m B1 ⊕ B2.
2. If n, n′ ≥ m and A ≡m B, then nA ≡m n′B.

A useful sufficient condition for the ≡m equivalence of structures is provided by
Hanf locality. The Hanf type of radius r of a structure A is the multiset of isomorphism
types of r-neighborhoods of elements in A. We say that two structures A and B are
Hanf equivalent with radius r and threshold q, written A �r,q B, if, for every a ∈ A,
either the number of occurrences of the isomorphism type of NA

r (a) in the Hanf type
of A is the same as that in the Hanf type of B or it is at least q, and conversely
for every element b ∈ B. This allows us to state the following (for a proof see, for
instance, [14, Thm. 4.24]).

Theorem 3.2 (Hanf locality). For every vocabulary σ and every m there are r
and q such that for any pair of σ-structures A and B if A �r,q B, then A ≡m B.

As a first step towards the main result of this section, we establish a useful prop-
erty of connected, acyclic structures with degree at most 2. These are structures whose
Gaifman graph consists of a simple path. This is a very restricted class of structures.
In particular, any class of such structures is wide, in the sense of Theorem 4.3 below.
Thus, on any class of such structures, the extension preservation property holds by
virtue of Theorem 4.3. However, the property in Lemma 3.3 provides a useful step-
ping stone in our proof for all acyclic structures and also serves as a useful warm-up
for the proof in section 4.

Lemma 3.3. For every vocabulary σ and every m > 0 there is a p such that if A
is a σ-structure whose Gaifman graph is connected, acyclic, and of degree at most 2
and |A| > p, then there is a disjoint extension B of A and a proper substructure A′

of A such that A′ ≡m B.
Proof. Given m, let r and q be obtained from Theorem 3.2. We first consider

the 2r-neighborhoods of elements of A, returning later to consider r-neighborhoods
when we wish to establish the Hanf types of the structures we construct. Clearly,
the 2r-neighborhood type of an element determines its r-neighborhood type. Also
note that among σ-structures whose degree is bounded (by 2) there are only finitely
many isomorphism types of 2r-neighborhoods. Let n be the number of such types,
let l = 2r(n + 1) + 1, and let p = nl(q + l).

For t the isomorphism type of a 2r-neighborhood in A, we say that t is frequent if
there are at least q+ l elements in A whose type is t. Since there are at most n types,
the number of occurrences of elements whose type is not frequent is less than n(q+ l).
Thus, in a path of length p there must be a sequence of l consecutive elements of
frequent type. Let a1, . . . , al be such a sequence. Among the 2rn+1 central elements
of the sequence ar+1, . . . , a(2n+1)r+1 there must be a pair ai, aj which have the same
type and such that j − i > 2r. Let C be the substructure of A generated by the
elements ai+1, . . . , aj . We define B to be A ⊕ C and A′ to be the substructure of A
generated by A \ C.

Our aim is to prove A′ ≡m B by showing that A′ �r,q B. We do this by
considering how the Hanf type changes in going from A to A′ and also how it changes
in going from A to B. So, for t the isomorphism type of an r-neighborhood in A, we
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say that t is rare if there are fewer than q elements in A whose type is t. Write D
for the set of elements {ai−r+1, . . . , ai, aj+1, . . . , aj+r}. That is, D consists of the r
elements that occur immediately before C and the r elements that occur immediately
after C in the sequence a1, . . . , al. For any element a ∈ A that is not in C ∪ D,
NA

r (a) = NA′

r (a). For any element a of C∪D, the multiplicity of the type t of NA
r (a)

may decrease in going from A to A′. However, t occurs at least q + l times in A and
this multiplicity cannot decrease by more than l as |C ∪D| ≤ l. Thus, t is not rare
in A′. Clearly the elements of D may have types in A′ that are different from their
types in A, and therefore the multiplicities of these types may increase.

Similarly, for any element a ∈ A, NA
r (a) = NB

r (a), thus any type t that occurs in
A has at least the same multiplicity in B. Let C ′ = {a′i+1, . . . , a

′
j} denote the elements

in the new disjoint copy of C. If a′k ∈ C ′ is such that i + r < k ≤ j − r, then the r-
neighborhood of a′k is isomorphic to NA

r (ak). Since the type of ak is frequent, adding
to its multiplicity is not significant. Thus, we only need to consider the types of the
elements in D′ = {a′i+1, . . . , a

′
i+r+1, a

′
j−r+1, . . . , a

′
j}. For these elements, the types of

their r-neighborhoods in B may be new and result in an increase of the multiplicities of
these types over their occurrences in A. Thus, to establish our result that A′ �r,q B
it suffices to show that there is a bijection f : D → D′ such that for all a ∈ D,
NA′

r (a) ∼= NB
r (f(a)). By construction, there is an isomorphism h : NA

2r(ai) → NA
2r(aj)

and therefore in particular, for −r ≤ k ≤ r, NA
r (ai+k) ∼= NA

r (aj+k). We can now
define the desired bijection f as follows: for 1 ≤ k ≤ r, f(ai−k+1) = a′j−k+1 and
f(aj+k) = a′i+k.

We now use the above lemma to obtain a similar result for connected acyclic
structures without a bound on the degree. This is done by reducing the case of general
degree to those with degree at most 2 by means of an appropriate translation. For
the vocabulary σ, there are only finitely many first-order m-types of σ-structures. Let
τ1, . . . , τn be an enumeration of the possible types of a in A, where A is a connected,
acyclic structure and a ∈ A. We refer to a as the distinguished element of (A, a).
We define a new vocabulary σ′ which has the same binary relations as σ and a unary
relation Ti for each τi.

Let A be a σ′-structure that is connected, acyclic, and of degree at most 2 with
the property that for each a ∈ A there is a unique i such that Ti(a). We construct
from A a σ-structure Ã as follows: each element a ∈ A with Ti(a) is replaced by a

structure Ta of type τi. Moreover, for any binary relation R, (b, c) ∈ RÃ if and only if
either b and c are in the same structure Ta and (b, c) ∈ RTa or b is the distinguished
element of Ta, c is the distinguished element of Ta′ , and (a, a′) ∈ RA. The structure
Ã is not uniquely determined by A as there are, in general, many structures of type τi.
However, the following lemma is easily established along the lines of Lemma 3.1.

Lemma 3.4. Let A and B be connected, acyclic structures of degree at most 2
with the property that for each element there is a unique i such that Ti holds, and let
m be an integer. If A ≡m B, then Ã ≡m B̃.

We will call a structure of the form Ã a σ-companion of A.
Lemma 3.5. For every vocabulary σ and every m > 0 there is a p such that if

A is a structure whose Gaifman graph is connected and acyclic and which contains
a path with more than p elements, then there is a disjoint extension B of A and a
proper substructure A′ of A such that A′ ≡m B.

Proof. Let σ′ be the vocabulary, as above, with a unary relation for each m-type
of σ-structures, and let p be as in Lemma 3.3 for the vocabulary σ′. Let a1, . . . , ap be
the path of length p in A. For each i, let Si be the set of elements that are reachable
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(in the Gaifman graph of A) from ai without going through aj for any j �= i, and
let Si be the substructure generated by Si. We define the σ′-structure sA as follows.
The universe of sA is {a1, . . . , ap}; Tk(ai) holds if and only if ai has type τk in Si;
and (ai, aj) ∈ RsA if and only if (ai, aj) ∈ RA. Then it is easily seen that A is a
σ-companion of sA (which is defined, since the Gaifman graph of A is acyclic).

Let sA′ and sB be the structures obtained from sA by Lemma 3.3. We obtain
A′ as a σ-companion of sA′ by replacing each element ai by the structure (Si, ai).
This ensures that A′ is a substructure of A. Similarly, we obtain B as a σ-companion
of sB, ensuring that B is a disjoint extension of A. Since sA′ ≡m sB by Lemma 3.3,
we also have A′ ≡m B by Lemma 3.4.

Note that in both Lemmas 3.3 and 3.5 B is not only a disjoint extension of A, it
is in fact also the disjoint union of A with a substructure of A.

In order to prove the main theorem of this section, we need one further compo-
sition property of acyclic structures along the lines of the properties in Lemma 3.1.
In order to define it, we introduce some further notation. Given an acyclic structure
A and an element a ∈ A, for every neighbor b of a let Sb be the set of elements in
A which are reachable from b (in the Gaifman graph) without going through a and
let tpa(b) denote the first-order m-type of b in Sb. We define the child-type of b with
respect to a to be the pair (at(a, b), tpa(b)), where at(a, b) is the atomic type of the
pair (a, b). Finally, we define the child-type of an element a, written ctA(a), to be the
multiset of the child-types of its neighbors with respect to a. Write (A, a) ∼m (B, b)
to denote that every type either occurs the same number of times in ctA(a) as it
does in ctB(b) or occurs at least m times in both. The following lemma is now a
straightforward application of games.

Lemma 3.6. If (A, a) ∼m (B, b), then (A, a) ≡m (B, b).
We are now ready for the main theorem of this section.
Theorem 3.7. Let C be a class of acyclic finite structures, closed under substruc-

tures and disjoint unions. Then, on C, every first-order sentence that is preserved
under extensions is equivalent to an existential sentence.

Proof. Let ϕ be such a sentence of quantifier rank m. We aim to show that there
is an N such that if A in C is a model of ϕ with more than N elements, then A is not
minimal. Let p be as in Lemma 3.5, let n be the number of distinct first-order m-types
of connected structures in C, and let q be the number of distinct types of the form
(at(a, b), tpa(b)), where a and b are neighbors in a structure in C. Let N = mn(qm)p.

Now, suppose A is a minimal model of ϕ in C with more than N elements. We
consider three cases.

Case 1. A has more than mn distinct connected components. Then there must
be some collection of more than m such components that have the same first-order
m-type. Consider the structure A′ obtained by removing one of these components.
By Lemma 3.1 A′ ≡m A, contradicting the minimality of A.

If A has mn or fewer connected components, one of these components must have
at least (qm)p elements. Call this component C the large component.

Case 2. The large component of A has a node of degree greater than qm. Call
this node a. The type ctA(a) must contain a type with more than m occurrences.
Let b be a neighbor of a that has this child-type with respect to a. Let A′ be the
substructure of A obtained by removing all elements in Sb. By Lemma 3.6, we have
A′ ≡m A, again contradicting the minimality of A.

Case 3. If C does not contain a node of degree greater than qm, it must contain
a path of length p. Thus, by Lemma 3.5, there is a proper substructure C′ of C and a
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disjoint extension D of C such that C′ ≡m D. Let A′ be the structure obtained from
A by replacing C by C′ and let B be the structure obtained from A by replacing C
by D. Then, by Lemma 3.1, A′ ≡m B. Note also that A′ and B are in C since it is
closed under substructures and disjoint unions. Since ϕ is preserved under extensions
on C, B |= ϕ, and hence A′ |= ϕ, again contradicting the minimality of A.

4. Wide structures. This section will focus on classes of structures that are
wide, meaning that large enough structures contain many points that are pairwise
far apart from each other. It was shown in [1] that the homomorphism preservation
theorem holds for any wide class of structures. Here we aim to establish the analogous
result for the extension preservation property.

Definition 4.1. A set of elements B in a σ-structure A is d-scattered if for
every pair of distinct a, b ∈ B we have NA

d (a) ∩NA
d (b) = ∅.

We say that a class of finite σ-structures C is wide if for every d and m there
exists an N such that every structure in C of size at least N contains a d-scattered set
of size m.

The canonical example of a wide class of structures is the collection of all struc-
tures of degree bounded by a constant. More generally, any class of structures whose
maximum degree is bounded by no(1), where n is the number of elements of the
structure, is wide.

Unfortunately, the techniques and arguments of section 3 based on Hanf locality
will not be enough for our current purpose. Instead, we will have to resort to Gaifman
locality, for which we provide the necessary background first.

For every integer r ≥ 0, let δ(x, y) ≤ r denote the first-order formula expressing
that the distance between x and y in the Gaifman graph is at most r. Let δ(x, y) > r
denote the negation of this formula. Note that the quantifier rank of δ(x, y) ≤ r is
bounded by r. A basic local sentence is a sentence of the form

(4.1) (∃x1) · · · (∃xn)

⎛
⎝∧

i �=j

δ(xi, xj) > 2r ∧
∧
i

ψNr(xi)(xi)

⎞
⎠ ,

where ψ is a first-order formula with one free variable. Here, ψNr(xi)(xi) stands for
the relativization of ψ to Nr(xi); that is, the subformulas of ψ of the form (∃x)(θ)
are replaced by (∃x)(δ(x, xi) ≤ r ∧ θ), and the subformulas of the form (∀x)(θ) are
replaced by (∀x)(δ(x, xi) ≤ r → θ). The locality radius of a basic local sentence
is r. Its width is n. Its local quantifier rank is the quantifier rank of ψ. We will
use the fact that basic local sentences are preserved under disjoint extensions. Note,
however, that they may not be preserved under plain extensions since in that case the
neighborhoods can grow.

The main result about basic local sentences is that they form a building block for
first-order logic. This is known as Gaifman’s theorem (for a proof, see, for example,
[5, Thm. 2.5.1]).

Theorem 4.2 (Gaifman locality). Every first-order sentence is equivalent to a
Boolean combination of basic local sentences.

The following theorem contains the main technical construction of the paper.
Theorem 4.3. Let C be a class of finite σ-structures that is wide and closed

under substructures and disjoint unions. Then, on C, every first-order sentence that
is preserved under extensions is equivalent to an existential sentence.

Proof. Let ϕ be a first-order sentence that is preserved under extensions on C.
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By Gaifman’s theorem we may assume that ϕ =
∨

i∈I τi, with

(4.2) τi =
∧
j∈Ji

θij ∧
∧

k∈Ki

¬θik,

where each θih is a basic local sentence. Now we define a list of parameters that we
need in the proof (the reader may skip this list now and use it to look up the values
when they are needed):

• r is the maximum of the locality radii of all θih;
• s is the sum of all widths of all θih;
• m is the maximum of the local quantifier ranks of all θih;
• 	 is the number of disjuncts in ϕ, so 	 = |I|;
• n = (	 + 2)s;
• M = m + 3r + 3;
• d = 2(r + 1)(	 + 1)s + 6r + 2;
• q is the number of monadic second-order M -types with one free variable;
• N is such that every structure in C of size at least N contains a (4dq+2r+1)-

scattered set of size (n− 1)q + s + 	s + 1.
Our goal is to show that the minimal models of ϕ have size less than N . Suppose on
the contrary that A is a minimal model of ϕ of size at least N . We define the type of
a point a ∈ A to be its monadic second-order M -type in A∩NA

d (a). In other words,
the type of a is the collection of all monadic second-order formulas ψ(x) of quantifier
rank at most M , up to logical equivalence, for which A ∩ NA

d (a) |= ψ(a). We say
that a realizes its type. The reason we consider monadic second-order types, instead
of first-order types, will become clear later in the proof. Let t1, . . . , tq be all possible
types. We need a couple of definitions. Let C be a subset of A and t a type. We say
that t is covered by C if for all realizations a of t we have NA

d (a) ⊆ C. We say that t
is free over C if there are at least n realizations a1, . . . , an of t such that NA

d (ai) and
NA

d (aj) are pairwise disjoint and do not intersect C.
Claim 4.4. There exist a radius e ≤ 2dq and a set D of at most (n− 1)q points

in A such that each type is either covered by NA
e (D) or free over NA

e (D).
Proof. We define D and e inductively. Let D0 = ∅ and e0 = 0. Suppose now that

Di and ei are already defined. Let C = NA
ei (Di). If all types are either covered by C or

free over C, then let D = Di and e = ei. Otherwise, let j be minimal such that type tj
is neither covered by C nor free over C. We define a set E inductively as follows. Let
E0 = ∅. Suppose now that Et is already defined. If there is no realization of tj outside
NA

2d(C∪Et), then let E = Et and we are done with the construction of E. Otherwise,
let at+1 be a realization of tj outside NA

2d(C ∪ Et) and let Et+1 = Et ∪ {at+1}. Note
that this iteration cannot continue beyond n − 1 steps since otherwise tj would be
free over C. This means that the iteration stops, and when it does |E| ≤ n− 1 and tj
is covered by any set that contains NA

2d(C ∪E), and in particular by NA
ei+2d(Di ∪E).

Let Di+1 = Di ∪ E and ei+1 = ei + 2d. The construction stops after at most q
steps because at each step one new type is covered and remains covered for the rest
of the construction. This shows that |D| ≤ (n − 1)q and e ≤ 2dq, which proves the
claim.

In the following, we fix e and D according to Claim 4.4. We say that a type t is
frequent if it is not covered by NA

e (D). Otherwise we say that t is rare.
We shall build a finite sequence of sets S0 ⊆ S1 ⊆ · · · ⊆ Sp ⊆ A, with p ≤ 	, so

that the last set Sp in the sequence will be such that the substructure of A induced by
Sp is a proper substructure of A that satisfies ϕ. This will contradict the minimality
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of A and will prove the theorem. The sequence Si is constructed inductively together
with a second sequence of sets C0 ⊆ C1 ⊆ · · · ⊆ Cp ⊆ A called the centers, and a
sequence of sets of indices I0 ⊆ I1 ⊆ · · · ⊆ Ip ⊆ I (recall that ϕ is the disjunction
of the formulas τi from (4.2) for i ∈ I). Moreover, the following conditions will be
preserved by the inductive construction for every i < p.

(a) Si ⊆ NA
r (Ci).

(b) |Ci| ≤ is.
(c) No disjoint extension of A ∩ Si satisfies

∨
j∈Ii

τj .

(d) NA
e (D) and NA

d (Ci) are disjoint.
(e) |Ii| = i.

Observe that it is a direct consequence of property (d) that the type of each a ∈ Ci

is frequent.
Let S0 = C0 = I0 = ∅, and let us assume that Si, Ci, and Ii have already been

defined with the properties above. We construct Si+1, Ci+1, and Ii+1. Let B be the
disjoint union of A with a copy of A ∩ Si.

(4.3) Since B is an extension of A, it satisfies ϕ.

Therefore, there exists an i′ ∈ I such that B satisfies τi′ . By property (c), since the
extension is disjoint, we know that i′ �∈ Ii. Let Ii+1 = Ii ∪ {i′}. For the rest of the
proof, the index i′ will be fixed so we drop any reference to it. For example, we will
write τ instead of τi′ and θh instead of θi

′

h . Recall that

τ =
∧
j∈J

θj ∧
∧
k∈K

¬θk.

Since B satisfies τ , in particular it satisfies the positive requirements: B |=∧
j∈J θj . Let Wj be a minimal set of witnesses in B for the outermost existential

quantifiers in θj , and let W =
⋃

j∈J Wj . We have |W | ≤ s. Some of these witnesses
may be in A and some may be in the new copy of A∩Si in B. Let WA∪WB = W be
such a partition, with WA being the witnesses in A. The following claim shows that
WA can be chosen far from Ci. This will be needed later.

Claim 4.5. There is a set W of witnesses such that NA
r+1(Ci) ∩NA

r (WA) = ∅.
Proof. Fix a set W of witnesses so that the number of points b in WA for which

NA
r+1(Ci) and NA

r (b) are not disjoint is minimal. Suppose that this number is not
zero, and let b ∈ WA with NA

r+1(Ci)∩NA
r (b) �= ∅. Let a ∈ Ci be such that NA

r+1(a)∩
NA

r (b) �= ∅. Then NA
r (b) ⊆ NA

3r+1(a) ⊆ NA
d (a). By property (d), the type t of a is

frequent. So let a′ be a realization of t such that NA
r+1(W ∪ Ci) and NA

3r+1(a
′) are

disjoint. Such an a′ exists because t is frequent and thus, by Claim 4.4, is free over
NA

e (D) and thus has

n > (	 + 1)s ≥ |W ∪ Ci|

realizations whose d-neighborhoods are pairwise disjoint and disjoint from NA
e (D).

The goal now is to find a b′ such that NA
r (b′) ⊆ NA

3r+1(a
′) ⊆ NA

d (a′) and such that
b and b′ have the same first-order m-type on A∩NA

r (b) and A∩NA
r (b′), respectively.

If we achieve this, then b′ can replace b as a witness in WA, and since NA
r+1(W ∪ Ci)

and NA
3r+1(a

′) are disjoint, so are NA
r+1(Ci) and NA

r (b′). This will contradict the
minimality of W .

In order to find b′ as above, let T be the first-order m-type of b on A ∩ NA
r (b),
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and let ξ(x) be the following first-order formula:

(∃y)

⎛
⎝(∀z)(δ(y, z) ≤ r → δ(x, z) ≤ 3r + 1) ∧

∧
χ∈T

χNr(y)(y)

⎞
⎠ .

Note that the conjunction is finite because the first-order m-type T contains finitely
many formulas up to logical equivalence, and that the quantifier rank of this formula
is bounded by 3r + 3 +m ≤ M . Also NA

d (a) |= ξ(a) because b can serve as a witness
for y. Therefore, since a and a′ have the same monadic second-order M -type and
hence the same first-order M -type in NA

d (a) and NA
d (a′), also NA

d (a′) |= ξ(a′). Note
here that we are not yet using the full power of monadic second-order type, only the
fact that it contains the first-order type as a subset. Let b′ be the witness to y in
NA

d (a′) |= ξ(a′), completing the proof.
In the following, we fix a set W of witnesses such that NA

r+1(Ci) ∩NA
r (WA) = ∅.

We let C be the substructure of A induced by NA
e (D) ∪ NA

r (WA) ∪ Si. We claim
that C satisfies the positive requirements of τ .

Claim 4.6. C is a substructure of A such that C |=
∧

j∈J θj.
Proof. It is obvious that C is a substructure of A. The point, however, is that

C is in fact the disjoint union of the substructure induced by NA
e (D) ∪ NA

r (WA)
and the substructure induced by Si. This is because Si ⊆ NA

r (Ci) and NA
r+1(Ci) is

disjoint from NA
e (D) by property (d) and also disjoint from NA

r (WA) by Claim 4.5.
It follows that the witnesses from B in WB can also be found in C. Obviously, also
the witnesses from B in WA can be found in C. This proves that C satisfies the
positive requirements of τ .

Consider ϕ on C. If C is a model of ϕ, let Sp = NA
e (D) ∪NA

r (WA) ∪ Si and we
are done. Notice that C is a proper substructure of A because A contains (n− 1)q +
s + 	s + 1 points that are (4dq + 2r + 1)-scattered, but Sp ⊆ NA

2dq+r(D ∪WA ∪ Ci)
and

|D ∪WA ∪ Ci| ≤ (n− 1)q + s + 	s.

If C is not a model of ϕ, it cannot satisfy τ . However, by Claim 4.6, C satisfies the
positive requirements

∧
j∈J θj . Therefore, C does not satisfy

∧
k∈K ¬θk. Let k ∈ K

such that C |= θk. In the next claim we find a substructure of A that extends A∩Si

and forces all its disjoint extensions to satisfy θk.
Claim 4.7. There exist Ci+1 ⊇ Ci and Si+1 ⊇ Si as required by conditions

(a)–(d).
Proof. Suppose that

θk = (∃x1) . . . (∃xs′)

⎛
⎝∧

i �=j

δ(xi, xj) > 2r′ ∧
∧
i

ψNr′ (xi)(xi)

⎞
⎠

for some r′ ≤ r, s′ ≤ s, and some formula ψ of quantifier rank m′ ≤ m. Without loss
of generality we may assume that m′ = m, and in order to simplify the notation, we
will assume that r′ = r and s′ = s. It will suffice to replace r by r′ and s by s′ in the
appropriate places.

We have C |= θk. Let V = {a1, . . . , as} be a set of witnesses for the outermost
existential quantifiers in θk. Then NC

r (ai)∩NC
r (aj) = ∅ for all i �= j and C∩NC

r (ai) |=
ψNr(xi)(ai) for all i. Necessarily, the type t of some a ∈ V is frequent. Otherwise
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NA
r (V ) ⊆ NA

e (D) ⊆ A, so A |= θk, and thus B |= θk, because B is a disjoint extension
of A. However, this is impossible because B |= τ .

So let a ∈ V have frequent type t. Let Z be a set of s realizations of t such that
(i) NA

d (b) ∩NA
d (b′) = ∅ for every pair of distinct b, b′ ∈ Z,

(ii) NA
e (D) ∩NA

d (Z) = ∅,
(iii) NA

r+1(Ci) ∩NA
r (Z) = ∅.

Such a set Z exists because t is frequent, n = (	+ 2)s, and |Ci| ≤ 	s by property (b).
Now, let F = NC

r (a). Remember that C ∩ F |= ψNr(x)(a). As F ⊆ NA
r (a), it

follows that A∩F |= ψNr(x)(a). Let X be a set variable, and let ψNr(x)∩X(X,x) denote
the simultaneous relativization of ψ(x) to Nr(x) and X, that is, the formula obtained
from ψ by replacing each subformula of the form (∃z)ξ by (∃z)(δ(x, z) ≤ r∧X(z)∧ξ),
and similarly for universally quantified subformulas. Observe that the quantifier rank
of ψNr(x)∩X(X,x) is at most m+r ≤ M−1, where we take r as an upper bound for the
quantifier rank of the formula expressing δ(x, z) ≤ r. Moreover, A |= ψNr(x)∩X(F, a)
and hence A |= ∃XψNr(x)∩X(a).

Next comes the place where we use the full power of monadic second-order types.
Since every b ∈ Z has the same monadic second-order M -type as a, we have A |=
∃XψNr(xi)∩X(b). Thus there is a set Fb ⊆ NA

r (b) such that A |= ψNr(xi)∩X(Fb, b). It
follows that

A ∩ Fb |= ψNr(x)(b).

Define Ci+1 = Ci ∪ Z and

Si+1 = Si ∪
⋃
b∈Z

Fb.

Let us prove that Ci+1 and Si+1 satisfy the properties (a), (b), (c), and (d). Prop-
erty (a) is clear since Fb ⊆ NA

r (b). For property (b) we have |Ci+1| = |Ci|+s ≤ (i+1)s.
Property (d) is satisfied by (ii) in our choice of Z.

Finally, for property (c) we argue as follows. First note that A∩Si+1 is a disjoint
extension of A∩ Si because NA

r+1(Ci)∩NA
r (Z) = ∅ by (iii) and Si ⊆ NA

r (Ci) by (a).
Therefore, no disjoint extension of A ∩ Si+1 satisfies τj for any j ∈ Ii. It remains to
show that no disjoint extension of A∩Si+1 satisfies τ . However, this is clear from the
construction because every disjoint extension of A ∩ Si+1 contains witnesses for the
outermost existential quantifiers in θk, namely, the elements of the set Z. Suppose
that Z = {b1, . . . , bs}. Note that bi have pairwise distance > 2r by (i), and we have
A ∩ Si+1 |= ψNr(xi)(bi), because NA∩Si+1(bi) = Fbi and A ∩ Fbi |= ψNr(xi)(bi).

Note that Ii+1 is constructed to satisfy property (e) as well. This completes the
definition of the inductive construction. All that remains to be shown is that the
construction stops in at most 	 steps. Because suppose for contradiction that we have
constructed S�, C�, and I� satisfying (a)–(e). Then I� = I by (e), and by (c) no
disjoint extension of A ∩ S� satisfies ϕ =

∨
i∈I τi. However,

(4.4) the disjoint union B of A ∩ S� with A is an extension of A and
hence does satisfy ϕ.

This is a contradiction.
As a direct application of Theorem 4.3, let us consider the class Dr of all finite

σ-structures of degree bounded by r. This class is both wide and closed under sub-
structures and disjoint unions. To see the wideness, note that when the degree of
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every node is at most r, for any element a, Nd(a) contains at most rd elements. Thus,
if a structure has size greater than m(rd), it must contain a d-scattered set of m
elements.

Theorem 4.8. Let r be an integer. Then, on Dr, every first-order sentence that
is preserved under extensions is equivalent to an existential sentence.

In the following section we show how the argument of Theorem 4.3 can be ex-
tended, in some cases, to classes of structures that are almost wide.

5. Bounded treewidth structures. The class of structures of bounded degree
provide a canonical example of a wide class. On the other hand, acyclic structures
(which we considered in section 3) are not wide. Indeed, in an arbitrarily large tree
of height 1 all pairs of nodes are at distance at most 2 from each other and there is
therefore no large d-scattered set for any d > 2, yet the tree may be arbitrarily large.
However, in such a structure, the removal of just one element, the root, creates a large
scattered set. This motivates the definition below.

Definition 5.1. A class of finite σ-structures C is almost wide if there is a k
such that for every d and m there exists an N such that every structure A of size at
least N in C contains a set B with at most k elements such that A − B contains a
d-scattered set of size m.

It was shown in [1] that the homomorphism preservation property holds for almost
wide classes of structures which are closed under substructures and disjoint unions.
It was also established that any class of graphs that excludes a minor is almost wide.

It is not the case that the extension preservation property holds for all almost wide
classes. This can be seen in the next section, where we show, in particular, that it fails
for the class of planar graphs. It turns out that the requirement that an almost wide
class be closed under substructures and disjoint unions is not sufficient to guarantee
the extension preservation property. Nevertheless, closure under unions over a set of
bottlenecks suffices, a notion we make more precise later. In this section we show that
this yields the preservation under extensions property for some particularly interesting
almost wide classes. To be precise, we show that the property holds for the class Tk
of all finite σ-structures of treewidth less than k. In other words, we aim to prove the
following result.

Theorem 5.2. Let k be an integer. Then, on Tk, every first-order sentence that
is preserved under extensions is equivalent to an existential sentence.

The proof of this result requires three ingredients. The first ingredient is a general-
ization of the disjoint union operation on structures by allowing some nonempty inter-
section. Let A and B be σ-structures, and let C ⊆ A∩B be such that A∩C = B∩C.
The union of A and B through C, denoted by A ⊕C B, is a new σ-structure defined
as follows. The universe of D = A ⊕C B is A′ ∪ B′ ∪ C, where A′ is a disjoint copy
of A − C and B′ is a disjoint copy of B − C. The relations of D are defined in
the obvious way: If a1, . . . , ar are points in A and a′1, . . . , a

′
r are the corresponding

points in A′ ∪C, then (a′1, . . . , a
′
r) ∈ RD if and only if (a1, . . . , ar) ∈ RA. Similarly, if

b1, . . . , br are points in B and b′1, . . . , b
′
r are the corresponding points in B′ ∪ C, then

(b′1, . . . , b
′
r) ∈ RD if and only if (b1, . . . , br) ∈ RB. Observe that this construction is

precisely the disjoint union of A and B when C = ∅.
The next lemma is a straightforward generalization of the obvious fact that Tk

is closed under disjoint unions. The lemma states, roughly, that Tk is closed under
unions through subsets of bags of tree-decompositions.

Lemma 5.3. Let k be an integer. Let A and B be two σ-structures, let C ⊆ A∩B
be such that A∩C = B∩C, and let (T,L) and (T ′, L′) be tree-decompositions of width k



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRESERVATION UNDER EXTENSIONS ON FINITE STRUCTURES 1377

of A and B, respectively. Then, if there exists nodes u ∈ T and u′ ∈ T ′ such that
C ⊆ L(u) ∩ L′(u′), then the union of A and B through C has treewidth at most k.

Proof. The tree-decomposition of the union is (T ′′, L ∪ L′), where T ′′ = T ∪ T ′

with a new tree edge joining u and u′.
The second ingredient is the fact that the class of structures of treewidth less

than k is almost wide, in the sense of Definition 5.1 that there exists a small set of
vertices whose removal produces a large scattered set. Such a set is henceforth called
a bottleneck. This was proved in [1], but here we state the stronger claim that the
bottleneck can be found in a single bag of a tree-decomposition. The proof is the
same as in [1] and is sketched here for completeness.

Lemma 5.4. For every k, and for every d and m, there exists an N such that if
A is a σ-structure of size at least N and (T,L) is a tree-decomposition of A of width
k, then there exist u ∈ T and K ⊆ L(u) such that A −K contains a d-scattered set
of size m.

Proof sketch. Let p = (m− 1)(2d + 1) + 1, M = k!(p− 1)k, and N = k(m− 1)M

and suppose that A is a structure with more than N elements. Let (T,L) be a tree
decomposition of A such that L(u) has size at most k for all u ∈ T . Note that T has
size at least N/k+1. Furthermore, suppose T has a node u of degree at least m. But
then it is easy to see that taking K = L(u) gives a graph with at least m distinct
connected components and therefore a scattered set of size m. On the other hand, if
every node of T has degree less than m, then T must have a path with length greater
than M . By the sunflower lemma of Erdös and Rado [7], it follows that we can find p
distinct nodes u1, . . . , up ∈ T and a set K ⊆ A such that for i �= j, L(ui)∩L(uj) = K.
It can then be shown that A −K must contain a d-scattered set of size m.

The third ingredient in the proof is a first-order bi-interpretation between an
almost wide structure and a wide structure. From now on we focus on graphs; the
construction extends easily to the general case. Let P1, . . . , Pk, Q1, . . . , Qk be unary
relation symbols and σ = {E,P1, . . . , Pk, Q1, . . . , Qk}. For every graph G = (V,EG)
and every tuple a = (a1, . . . , ak) ∈ V k we define a σ-structure A = A(G,a) as follows:

1. A = V .
2. EA = EG − {(a, b) ∈ A2 : {a, b} ∩ {a1, . . . , ak} �= ∅}.
3. PA

i = {ai}.
4. QA

i = {b ∈ A : (ai, b) ∈ EG}.
Let us call a σ-structure A derived if EA is a symmetric and antireflexive binary
relation, and there are elements a1, . . . , ak ∈ A such that PA

i = {ai} for 1 ≤ i ≤ k
and ai is isolated in the graph underlying A; that is, for 1 ≤ i ≤ k there is no b such
that (ai, b) ∈ EA. Note that for every derived structure A there is a unique graph
G(A) and a unique k-tuple a(A) of vertices of G(A) such that

A = A(G(A),a(A)).

The point behind the construction of A = A(G,a) is that if K = {a1, . . . , ak} is a
bottleneck of G in the sense that G−K contains a large scattered set, then A itself
has a large scattered set and maintains all the information needed to reconstruct G.
Indeed, G(A) is first-order interpretable in A, and thus we get the following lemma.

Lemma 5.5. For every first-order sentence ϕ of vocabulary {E} there is a sentence
ϕ̃ of vocabulary σ such that for all σ-structures A we have the following:

1. If A |= ϕ̃, then A is derived.
2. If A is derived, then A |= ϕ̃ if and only if G(A) |= ϕ.

This follows at once from a standard result on syntactical interpretations (cf., for
example, Theorem VIII.2.2 of [6]).
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Equipped with these three ingredients, we are ready for the main argument.
Proof of Theorem 5.2. Let ϕ be a first-order sentence that is preserved under

extensions in Tk. It suffices to show that ϕ has finitely many minimal models. Let
G = (V,EG) be a graph in Tk that is a minimal model of ϕ. Suppose for contradiction
that G is very large. Let (T,L) be a tree-decomposition of width k of G, and let
K = {b1, . . . , bk} ⊆ V be a bottleneck; that is, a set such that G − K contains a
large scattered set. By Lemma 5.4 we may assume that K ⊆ L(u) for some u ∈ T .
Let A = A(G,b), where b = (b1, . . . , bk). The idea is to work with A and ϕ̃ instead
of G and ϕ and proceed as in the proof of Theorem 4.3. The difference is that ϕ̃
is not preserved under extensions. However, preservation under extensions is used
only twice in the proof of section 4 (in (4.3) and (4.4)), both times to prove that the
disjoint union B of the structure A with A ∩ Si is a model of ϕ. Claim 5.6 shows
that in both cases, B is a model of ϕ̃.

Claim 5.6. Let C ⊆ A such that the type of each a ∈ C is frequent. Let
S ⊆ Nr(C) and let B be the disjoint union of A with a disjoint copy of A ∩ S. Then
B is derived, G is an induced subgraph of G(B), and G(B) belongs to Tk.

Proof. The bottleneck points are not in C as their type is not frequent and
therefore not in Nr(C) as they are isolated in A. Thus, note that B is derived because
the bottleneck points are not in S. Let H = G(B). Clearly, G is an induced subgraph
of H. Thus all we have to prove is that H belongs to Tk. Let A′ = A∩(S∪K), where
K is the bottleneck of G. Again, A′ is derived. Let G′ = G(A′). Clearly, G′ is an
induced subgraph of G. In particular, G′ is in Tk so it has a tree-decomposition of
width k. More importantly, since K ⊆ L(u), we can assume as well that K is a subset
of some bag of the tree-decomposition of G′. These two facts together imply that the
union of G and G′ through K, which is precisely H, is in Tk by Lemma 5.3.

This then shows that the B in (4.3) and (4.4) is a model of ϕ̃. The proof proceeds
until we construct a structure C that satisfies ϕ̃ and is a proper substructure of A.
We claim that C is derived. This is because all bottleneck points have rare type, so
they belong to D. Let H = G(C). Note now that H is the union of two subgraphs
G1 and G2 of G through the bottleneck K. Again K is a subset of a bag of the
tree-decompositions of G1 and G2, so H belongs to Tk by Lemma 5.3. Moreover H
is a proper induced subgraph of G and H |= ϕ by Lemma 5.5. This contradicts the
minimality of G, which concludes the proof.

This completes the proof of Theorem 5.2.
Note that this does not imply that the existential preservation theorem holds on

all classes of bounded treewidth. Indeed, we show in the next section that it fails, in
particular, for the class of planar graphs of treewidth 4.

6. Counterexample for planar graphs. The aim of this section is to show
that the preservation-under-extensions property fails on the class of planar graphs.
Let us focus first on the class of planar graphs whose vertices are colored either black
or white. Later we show how to remove the colors. The vocabulary contains a binary
relation symbol E for the edge relation, and a unary relation symbol P for the color.
Let ϕ be the following first-order sentence:

ϕ = (∃x)(∃y)
(
x �= y ∧ P (x) ∧ P (y) ∧ (ϕ1(x, y) → ϕ2(x, y))

)
,

ϕ1(x, y) = (∀z)
(
z �= x ∧ z �= y → ¬P (z) ∧ E(x, z) ∧ E(y, z)

)
,

ϕ2(x, y) = (∀u)
(
u �= x ∧ u �= y

→ (∃v)(∃w)
(
v �= w ∧ ¬P (v) ∧ ¬P (w) ∧ E(u, v) ∧ E(u,w)

))
.

We claim that ϕ is preserved under extensions on the class of black/white-colored
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Fig. 1. G9.

planar graphs. Before we prove this we need a technical gadget. For every n ≥ 3, let
Gn be the black/white-colored planar graph displayed in Figure 1, where the number
of black vertices is exactly n.

It is not hard to see that Gn does not have any planar proper extension in which
all other vertices are adjacent to both white vertices. Let us state this as follows.

Lemma 6.1. Let n ≥ 3, and let H be a black/white-colored planar graph that is a
proper extension of Gn. Then no vertex in H−Gn is adjacent to both white vertices
in Gn.

Proof. Let u be a vertex in H − Gn. Suppose that u is adjacent to both white
vertices in Gn. Then H contains a K5 minor by contracting one of the edges con-
necting u to a white vertex in Gn, and by contracting all but two of the edges in Gn

that do not have a white endpoint. This contradicts the planarity of H.
Now we are ready to show that ϕ is preserved under extensions on the class of

black/white-colored planar graphs.
Lemma 6.2. Let G and H be black/white-colored planar graphs such that H is a

proper extension of G. If G is a model of ϕ, so is H.
Proof. Suppose that G is a model of ϕ, so let a and b be two different white

vertices in G. If G �|= ϕ1(a, b), then clearly H �|= ϕ1(a, b) because G is an induced
substructure of H. In this case, H is also a model of ϕ and we are done. Otherwise,
since G |= ϕ and G |= ϕ1(a, b), we have G |= ϕ2(a, b). This means that every vertex
in G−{a, b} is adjacent to at least two other black vertices. It follows that G contains
some Gn as a (not necessarily induced) subgraph with a and b as white vertices. Here
n ≥ 3. It follows then by Lemma 6.1 that some vertex in H−Gn fails to be connected
to both a and b. But then H �|= ϕ1(a, b) so H is a model of ϕ again.

To complete the argument we need to show that ϕ is not equivalent to an exis-
tential sentence on the class of black/white-colored graphs.

Lemma 6.3. There is no existential sentence equivalent to ϕ on all black/white-
colored planar graphs.

Proof. By virtue of Lemma 2.1, we only need to show that ϕ has infinitely many
minimal models among planar graphs. It is easily seen that for all n, Gn is a minimal
model of ϕ. Indeed, if we remove at least one of the white vertices from Gn, we would
not have witnesses for the two outermost existential quantifiers in ϕ, and if we remove
at least one of the black vertices, then ϕ1 remains true while ϕ2 fails.
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This shows that the preservation-under-extensions property fails for the class of
black/white-colored planar graphs. Removing the colors is easy. It suffices to replace
each occurrence of P (x) by a formula ϕ3(x) stating that x is attached to a 4× 4-grid
that is otherwise disconnected from the rest of the graph. One point to note is that
a node without such a grid attached in a graph G may have a grid in an extension
of G. However, this would mean that ϕ1 would fail in the extension and thus ϕ
would necessarily be true. Thus, the formula is still preserved under extensions. This
shows then that the preservation-under-extensions property fails for the class of planar
graphs.

Note further that for any n, the treewidth of Gn is at most 4. This implies that
the existential preservation theorem fails, even for the class P of planar graphs of
treewidth at most 4. Indeed, the sentence ϕ is preserved under extensions on P since
it is preserved under extensions on all planar graphs. However, ϕ still has infinitely
many minimal models in this class as each Gn is in P.

7. Conclusions. We have established the extension preservation theorem for a
number of interesting classes of finite structures. These include all wide classes—such
as any class of structures of bounded degree—and some almost wide classes, such as
Tk, the class of all structures of treewidth less than k. The situation for the extension
preservation theorem is quite different from that established for the homomorphism
preservation theorem in [1]. In particular, the former fails on the class of planar, while
the latter holds on all classes that exclude a graph minor. Indeed, the methods of proof
used here to establish the extension preservation property are rather different from
those used in [1]. It should also be noted that Rossman [15] recently established that
the homomorphism preservation theorem holds for the class of all finite structures;
compare this with the known failure of the extension preservation theorem for the
same class.

A number of recent results in finite model theory [1, 2, 3, 8, 10, 11] indicate that
classes of structures such as trees or structures of bounded treewidth, planar graphs,
and graphs of bounded genus, graphs with excluded minors, and graphs of bounded
degree are well behaved in various ways related to their first-order model theory (in
a broad sense). So far, no serious attempt has been made to identify general criteria
connecting the different results. The locality of first-order logic always appears to
play a crucial role, and the notion of wideness formally introduced here seems to be
a good structural counterpart. But there is more to it than this simple observation;
for example, the result of this paper holds on graphs of bounded degree, but not on
planar graphs, whereas for the algorithmic results of [3] it is the other way round. The
order invariance result of [2] has so far eluded all efforts to extend it beyond acyclic
structures.
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