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ABSTRACT. We investigate the parameterized complexity of generalisations and variations of the
dominating set problem on classes of graphs that are nowhere dense. In particular, we show that
the distance-d dominating-set problem, also known as the (k, d)-centres problem, is fixed-parameter
tractable on any class that is nowhere dense and closed under induced subgraphs. This generalises
known results about the dominating set problem on H-minor free classes, classes with locally ex-
cluded minors and classes of graphs of bounded expansion. A key feature of our proof is that it is
based simply on the fact that these graph classes are uniformly quasi-wide, and does not rely on a
structural decomposition. Our result also establishes that the distance-d dominating-set problem is
FPT on classes of bounded expansion, answering a question of Nešetřil and Ossona de Mendez.

1 Introduction
The dominating-set problem is among the most well-studied problems in algorithmic graph
theory and complexity theory. Given a graph G and an integer k, we are asked to determine
whether G contains a set X of at most k vertices such that every vertex of G is either in X or
adjacent to a vertex in X. This is a classical NP-complete problem that has been intensively
studied from the point of view of approximation algorithms and fixed-parameter tractabil-
ity. A number of generalisations and variations of the dominating set problem have also
been studied in this context. In particular, the distance-d dominating-set problem is one where
we are given a graph G and integer parameters d and k and we are to determine whether G
contains a set X of at most k vertices such that every vertex in G has distance at most d to
a vertex in X. This problem, also known as the (k, d)-centre problem, has for instance been
studied in [5] in connection with network centres and other clustering problems (see the
references in [10]). It is clear that in the case d = 1, this is just the dominating set problem.
A number of other domination problems are considered in Section 5.

We are interested in investigating these problems from the point of view of fixed-
parameter tractability. That is we are interested in algorithms for these problems that run in
time f (k) · nc (or f (k + d) · nc in the case of the distance-d dominating-set problem) where
n is the order of the graph G, c is independent of the parameters k and d and f is any com-
putable function. Such algorithms are unlikely to exist in general, since the dominating-set
problem is W[2]-complete (see [13, 15] for a general introduction to parameterized complex-
ity, including definitions of FPT and W[2]). However, if we restrict the class of graphs under
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consideration, we can obtain efficient algorithms in the sense of fixed-parameter tractabil-
ity, even though the problem remains NP-complete on the restricted class. We are interested
in knowing how general we can make our graph classes while retaining fixed-parameter
tractability. In this paper, we push the tractability frontier forward by showing that the
distance-d dominating-set problem as well as a number of other domination problems, are
FPT on nowhere-dense classes of graphs. This generalises known results about the dominat-
ing set problem on H-minor free graphs, classes of graphs of bounded expansion and classes
with locally excluded minors. Moreover, while the latter results relied heavily on graph struc-
ture theory, our proof depends on a simple combinatorial property of nowhere-dense classes
and thus affords a great simplification to the proof. In the sequel, we will use the term effi-
cient algorithm always to mean efficient in the sense of fixed-parameter tractability.

Classes on which efficient algorithms have previously been obtained for the dominat-
ing set problem include planar graphs where an algorithm with running time O(8kn)-time
is given in [2] and graphs of genus g, where an O((4g + 40)kn2)-time algorithm is given
in [14]. Improvements to the algorithms on planar graphs have subsequently been made,
to O(4

6√34kn) in [1], to O(227
√

kn) in [18] and to O(215.13
√

kk + n3 + k4) in [16]. Efficient al-
gorithms for distance-d dominating sets are also known for planar graphs and map-graphs
[10]. For the dominating set problem, efficient algorithms were shown for H-minor free
graphs in [11]. The latter generalises the result for classes of graphs of bounded genus. More
recently, Alon and Gutner gave a linear time parameterized algorithm for dominating sets
on d-degenerate graphs running in time kO(dk)n [3]. This is a further generalisation beyond
H-minor-free classes. Another generalisation is obtained by Philip et al. [23] who show that
the problem is fixed-parameter tractable on graphs that exclude Ki,j as a subgraph. It should
be noted that while all other classes mentioned above also admit an efficient algorithm for
the distance-d dominating-set problem, this is not the case for classes of degenerate graphs.
Indeed, this problem is W[2]-hard, already on the class of 2-degenerate graphs [17].

Other generalisations of H-minor free classes that have been considered in the liter-
ature are classes with locally excluded minors [9] and classes of bounded expansion [20].
For the former, it follows from [9] that the distance-d dominating-set problem is FPT. This
is because the problem can be specified by a first-order formula (depending on d and k),
and any property so specified is FPT on classes that locally exclude a minor. For classes
of bounded expansion, Nešetřil and Ossona de Mendez [22] show that the dominating
set problem is solvable in fixed-parameter linear time, while the question of whether the
distance-d dominating-set problem is FPT on such classes is left open. Indeed, they point
out that their method cannot be used to show that the distance-2 dominating-set problem is
FPT on classes of bounded expansion. Our result settles this question as it implies the exis-
tence of an efficient algorithm for distance-d dominating-set on bounded-expansion classes.

Our main results concern classes of graphs that are nowhere dense. This is a concept in-
troduced by Nešetřil and Ossona de Mendez [19, 21] that generalises both locally excluded
minors and bounded expansion in the sense that any class of graphs that either locally ex-
cludes a minor or has bounded expansion is also nowhere dense. Nešetřil and Ossona de
Mendez show that nowhere-dense classes can be characterised by the property of being
uniformly quasi-wide (see Section 2 for the defintions). The latter is a property introduced by
Dawar [7, 8] in the study of preservation theorems in finite model theory. In the present pa-
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per we show that this property is by itself sufficient to establish that a class of graphs admits
an efficient parameterized algorithm for distance-d dominating set. The great advantage
here is that this is a combinatorial property that is easy to state and yields a transparently
simple algorithm. This should be contrasted with the algorithms [10, 11] on H-minor free
graphs that heavily rely on graph structure theory.

We begin by establishing some basic terminology and notation in Section 2, and intro-
duce nowhere-dense classes and uniformly quasi-wide classes of graphs. In Section 3 we
examine the relationship between these two notions and extract the algorithmic content of
the equivalence between them. This allows us, in Section 4, to exhibit an efficient parame-
terized algorithm for the distance-d dominating set problem on nowhere dense classes. In
Section 5, we explain how the same ideas can be carried over to a number of other parame-
terized problems that are defined in terms of domination in graphs.

2 Preliminaries
For a graph G and vertices u, v ∈ V(G), we write distG(u, v) for the distance (i.e. the length
of the shortest path) from u to v. We write NG

d (v) for the d-neighbourhood of v, i.e. the set of
vertices u in V(G) with distG(u, v) ≤ d. Where the meaning is clear from context, we drop
the superscript G. For positive integers i < j, we write [i, j] for the set {k : i ≤ k ≤ j}.

For a graph G and a set of vertices X ⊆ V(G), we write G− X for G[V(G) \ X], i.e. the
subgraph of G induced by the vertices V(G) \ X.

DEFINITION 1. Let G be a graph and d ∈N.
1. A set X ⊆ V(G) is d-scattered if for u 6= v ∈ X, Nd(u) ∩ Nd(v) = ∅.
2. A set X ⊆ V(G) d-dominates a set W ⊆ V(G) if for all u ∈ W there is a v ∈ X such

that u ∈ Nd(v).
3. A set X ⊆ V(G) is a d-dominating set if it d-dominates V(G).

We say that a graph H is a minor of G (written H � G) if H can be obtained from a
subgraph of G by contracting edges. An equivalent characterization (see [12]) states that H
is a minor of G if there is a map that associates to each vertex v of H a non-empty connected
subgraph Gv of G such that Gu and Gv are disjoint for u 6= v and whenever there is an edge
between u and v in H there is an edge in G between some node in Gu and some node in Gv.
The subgraphs Gv are called branch sets.

We say that H is a minor at depth r of G (and write H �r G) if H is a minor of G and this
is witnessed by a collection of branch sets {Gv | v ∈ V(H)}, each of which induces a graph
of radius at most r. That is, for each v ∈ V(H), there is a w ∈ V(Gv) such that Gv ⊆ NGv

r (w).
The definition of nowhere-dense classes is due to Nešetřil and Ossona de Mendez [19,

21]. We are particularly interested in classes where the excluded minors are computable and
for this purpose we introduce the notion of effectively nowhere-dense classes.

DEFINITION 2.[nowhere dense classes] A class of graphs C is said to be nowhere dense if
for every r ≥ 0 there is a graph Hr such that Hr 6�r G for all G ∈ C. We say C is effectively
nowhere dense if the map r 7→ Hr is computable.

It is immediate from the definition that if C excludes a minor then it is nowhere dense.
It is also not difficult to show that classes of bounded expansion and classes that locally
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exclude minors are also nowhere dense. Nešetřil and Ossona de Mendez [19] show an in-
teresting relationship between nowhere dense classes and a property of classes of structures
introduced by Dawar [7, 8] called quasi-wideness. Again, we are interested in effective ver-
sions of this concept.

DEFINITION 3.[quasi-wide classes] Let s : N → N be a function. A class C of graphs is
quasi-wide with margin s if for all r ≥ 0 and m ≥ 0 there exists an N ≥ 0 such that if
G ∈ C and |G| > N then there is a set S ⊆ V(G) with |S| < s(r) such that G− S contains an
r-scattered set of size at least m.

We say that C is quasi-wide if there is some s such that C is quasi-wide with margin s.
We say that C is effectively quasi-wide if s and N(r, m) are computable.

We occasionally refer to a set S as in the above definition as a bottleneck of G.
It turns out that if C is closed under taking induced subgraphs, then it is nowhere dense

if, and only if, it is quasi-wide. For such classes, quasi-wideness is equivalent to the notion
of uniform quasi-wideness defined below, which is the notion we will use in the present
paper.

DEFINITION 4.[uniformly quasi-wide classes] A class C of graphs is uniformly quasi-wide
with margin s if for all r ≥ 0 and all m ≥ 0 there exists an N ≥ 0 such that if G ∈ C and
W ⊆ V(G) with |W| > N then there is a set S ⊆ V(G) with |S| < s(r) such that W contains
an r-scattered set of size at least m in G − S. C is effectively uniformly quasi-wide if s and
N(r, m) are computable.

We often write sC for the margin of the class C, and NC(r, m) for the value of N it guar-
antees for this class. We are only interested in classes C for which these functions are com-
putable, and we tacitly make this assumption from now on. We can now state the equiva-
lence of the two central notions.

THEOREM 5.[19] Any class C of graphs that is closed under taking induced subgraphs is
quasi-wide if, and only if, it is nowhere dense.

In Section 3, we will exhibit the algorithmic content of this equivalence by showing that
in any nowhere-dense class, there is an efficient (in the sense of fixed-parameter tractability)
algorithm that can find the bottleneck S and the scattered set induced by its removal. In
particular this implies that a class C closed under subgraphs is effectively nowhere dense if,
and only if, it is effectively quasi-wide. We end this section with some examples of quasi-
wide classes.

EXAMPLE 6.
1. Bounded-degree graphs. The class of graphs Dd of valence at most d is quasi-wide

with margin 1 and NDd(r, m) = (d− 1)r + d + 1.
2. H-minor free graphs. The class of graphs excluding H as a minor is quasi-wide with

margin |H| − 1.

3 Computing Bottlenecks and Scattered Sets
In this section, our aim is to extract the computational content of Theorem 5 stating the
equivalence between nowhere dense classes and uniformly quasi-wide classes. In particu-
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lar, we show that in any nowhere dense class C, we can efficiently extract bottlenecks and
scattered sets in any graph.

The first step is to show that in any uniformly quasi-wide class with margin s, we can
compute, from s(r) and NC , a bound on the order of the graphs that are excluded as minors
of depth r.

LEMMA 7. If C is a uniformly quasi-wide class with margin s and h > NC(r + 1, s(r + 1)+ 1),
then Kh 6�r G for any G ∈ C.

PROOF. Suppose, for contradiction, that Kh �r G and let u1, . . . , uh be such that the neigh-
bourhoods NG

r (ui) contain branch sets G1, . . . , Gh witnessing this. Then, by the choice of h
and the definition of quasi-wideness, there is a set S ⊆ V(G) with |S| < s(r + 1) such that
{u1, . . . , uh} contains an r + 1-scattered set A of size s(r + 1) + 1 in G − S. Thus, since the
branch sets are pairwise disjoint, there must be two distinct vertices ui, uj ∈ A such that
S ∩ Gi = S ∩ Gj = ∅. There is an edge between some vertex in Gi and some vertex in Gj
(since they are branch sets witnessing Kh �r G). We thus have that Nr+1(ui)∩Nr+1(uj) 6= ∅
even in G− S, contradicting the fact that A is r + 1-scattered.

The other direction is based on the following theorem, stated in [8], though the proof is
extracted from that of a weaker statement proved in [4].

THEOREM 8.[8] For any h, r, m ≥ 0 there is an N ≥ 0 such that if G is a graph with more
than N vertices then

1. either Kh �r+1 G; or
2. there is a set S ⊆ V(G) with |S| ≤ h− 2 such that G− S contains an r-scattered set of

size m.

Indeed, the bound N is computable as a function of h, r and m. To be precise, let R be
the function guaranteed by Ramsey’s theorem so that for any set A with |A| > R(x, y, z)
any colouring of the y-tuples from A with x distinct colours yields a homogeneous subset of
size at least z. Let bh(x) = R(h + 1, h, (h− 2)(x + 1)) and let ch(x) = R(2, 2, bh−2

h (x)) where
bi

h(x) denotes the function bh iterated i times. Then, it follows from the construction in [4]
that taking N(h, r, m) = cr

h(m) (i.e. ch iterated r times) suffices for the proof of Theorem 8.
It follows from the above that if C is a nowhere-dense class of graphs with a computable

function h such that Kh(r) 6�r G for any G ∈ C, then C is quasi-wide with computable margin
s and a computable function NC . We now show that in this case, we can compute rather
more. That is, given a graph G ∈ C and a set W ⊆ V(G) with |W| > N(h(r), r, m), we
can find, in time O(|G|2), a set S and a subset A ⊆ W of at least m elements so that in
G − S, A is r-scattered. This is formalised in the lemma below, which relies on extracting
the algorithmic content of the proofs in [4].

LEMMA 9. Let C be a nowhere-dense class of graphs and h be the function such that Kh(r) 6�r

G for all G ∈ C. The following problem is solvable in time O(|G|2).

Input: G ∈ C, r, m ∈N, W ⊆ V(G) with |W| > N(h(r), r, m)
Problem: compute a set S ⊆ V(G), |S| ≤ h(r)− 2 and a set A ⊆ W

with |A| ≥ m, such that in G− S, A is r-scattered.
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PROOF. In what follows, we write h for h(r) and N for N(h, r, m). The proof constructs
sequences of sets of vertices W0 ⊇ W1 ⊇ · · · ⊇ Wr and S0 ⊆ S1 ⊆ · · · ⊆ Sr = S such that for
all i,

1. |Si| < h− 1
2. Wi is i-scattered in G− Si
3. cr−i

h (m) < |Wi|
4. for all v ∈ Si and u ∈Wi there is a w ∈ NG−Si

i (u) such that {v, w} ∈ E(G).
For i = 0, we take S0 = ∅ and W0 = W. It is clear that all four conditions are sat-

isfied. Suppose that Si and Wi have been constructed. We define a graph G′ on the set
of vertices Wi by putting an edge between u and v if there is an edge in E(G) between
some vertex in NG−Si

i (u) and NG−Si
i (v). Since Kh 6�i G, G′ cannot contain a h-clique and

thus as |Wi| > cr−i
h (m) = R(2, 2, bh−2

h (cr−(i+1)
h (m))), G′ contains an independent set I with

|I| > bh−2
h (cr−(i+1)

h (m)), which can be found by a greedy algorithm. Note that G′ can be
constructed from G in linear time, thus I is found in quadratic time.

The proof of Lemma 5.2 in [4] then guarantees that as long as Kh 6�i+1 G we can
find Wi+1 ⊆ I and Si+1 satisfying the four conditions above. This is because the condi-
tion Kh 6�i+1 G guarantees that there is a (possibly empty) set of vertices Z in G − Si with
|Si ∪Z| < h− 1 and a set J ⊆ I with |J| > cr−(i+1)

h (m) such that NG−Si
i+1 (u)∩NG−Si

i+1 (v) = Z for
each u, v ∈ J. Moreover, the choice of size bounds ensures that Z can be found by a greedy
algorithm. We start by taking Z0 := ∅ and I0 := I. Once Zj has been constructed (for

j < h− 2), we check if there is a vertex z such that there are more than bh−2−j
h (cr−(i+1)

h (m))

elements v ∈ Ij such that z ∈ N
G−(Si∪Zj)
i+1 (v). If there is, we take Ij+1 to be the set of such

elements v and Zj+1 := Zj ∪ {z}. This process is guaranteed to halt within at most h − 2

steps, at which point a greedy algorithm can find a set J with at least cr−(i+1)
h (m) vertices

with N
G−(Si∪Zj)
i+1 (u) ∩ N

G−(Si∪Zj)
i+1 (v) = ∅, as otherwise we will have found Kh as a minor of

G at depth i + 1. Thus, we take Si+1 = Si ∪ Z and Wi+1 = J to satisfy the four conditions
above.

The algorithm for distance-d dominating set we present in Section 4 below makes re-
peated use of the procedure defined above to recursively reduce the problem of finding a
distance-d-dominating set of size k in a graph down to the size N := NC(d, (k + 2)(d + 1)s),
at which point an exhaustive search is performed. The running time of the algorithm is thus
exponential in N (which only depends on the parameters), and cubic in |G|. On the other
hand, the exact parameter dependence of the algorithm depends on the function h, which
is determined by the class of structures C. However, even for simple classes C, where h is
linear, or constant, N may be a rather fast-growing function of k and d, as it is defined in
terms of iterations of the Ramsey function R. On the other hand, as we saw in Example 6,
there are quasi-wide classes, such as classes of graphs of bounded degree, where N can be
bounded by a simple exponential.

The property of being quasi-wide can be seen as stating the existence of weak separa-
tors. Recall that a set S is a separator of a set of vertices W in a graph G if in the graph G− S,
W is split into non-empty disjoint parts with no path between them. It is known, for in-
stance, that if G is a graph of treewidth at most h, for any set W of vertices, we can find a sep-
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arator S of W with |S| ≤ h + 1. Now, nowhere-dense graphs are a generalisation of classes
of H-minor free graphs which include, in particular, classes of bounded treewidth. While
we cannot hope for the separator property of the form that holds on bounded treewidth
classes to hold in nowhere-dense classes, uniform quasi-wideness does show us that we can
find a small set S that splits W into parts so that there are no short paths between them.

4 Distance-d-Dominating Set

In this section, we show that the distance-d-dominating set problem is fixed-parameter
tractable on any nowhere-dense class C of graphs, with parameter d + k. Throughout the
remainder of this section, fix a class C that is uniformly quasi-wide with margin sC and let
NC(r, m) be as in Definition 4.

We consider a more general form of the problem. We are given a graph G and a set
W ⊆ V(G) of vertices and we are asked to determine whether there is a set X in G of at
most k vertices that d-dominates W. We begin with the observation that this problem, when
parameterized by k, d and the size of W is FPT on the class of all graphs.

LEMMA 10. The following problem is fixed parameter tractable.

Input: A graph G, W ⊆ V(G), k, d ≥ 0
Parameter: k + d + |W|

Problem: Are there x1, . . . , xk ∈ V(G) such that W ⊆ ⋃
i Nd(xi)?

PROOF. Consider any partition of W into k sets W1, . . . , Wk. For each i ∈ [1, k], define the
set Xi :=

⋂
w∈Wi

Nd(w). That is, Xi is the set of vertices that individually d-dominate the set
Wi. Now, if each Xi is non-empty, then we can find the dominating set we are looking for
by choosing xi to be any element of Xi. Conversely, any set {x1, . . . , xk} that d-dominates W
determines a partition W1, . . . , Wk such that xi ∈ Xi.

The algorithm proceeds by considering each partition of W into k sets in turn (note that
the number of such partitions is less than k|W|). For each partition, we compute the sets Xi
by computing Nd(w) for each w ∈ W and taking appropriate intersections. This takes time
O(d · |W| · |G|). The total running time is therefore O(d · |W| · k|W| · |G|)

Now we want to consider the case where the size of W is not part of the parameter, but
G is chosen from the nowhere-dense class C. We show that in this case, we can find a set
W ′ ⊆W whose size is bounded by a function of the parameters k and d such that G contains
a set of size k that d-dominates W if, and only if, it contains such a set that d-dominates W ′.
This will then allow us to use Lemma 10 to get the desired result.

For now, fix k and d, and let s := sC(d) and N := NC(d, (k + 2)(d + 1)s). That is, for
any G ∈ C and W ⊆ V(G) with |W| > N, we can find S ⊆ V(G) and A ⊆ W such that
|S| ≤ s, |A| ≥ (k + 2)(d + 1)s and A is d-scattered in G− S. We claim that, in this case, we
can efficiently find an element a ∈ A such that G contains a set of size k that d-dominates W
if, and only if, there is such a set that d-dominates W \ {a}. We formalise this statement in
the lemma below.
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LEMMA 11. There is an algorithm, running in time f (k, d)|G|2 for some computable function
f , that given G ∈ C and W ⊆ V(G) with |W| > N returns a vertex w ∈ W such that for any
set X ⊆ V(G) with |X| ≤ k, X d-dominates W if, and only if, X d-dominates W \ {w}.

PROOF. By Lemma 9, we can find, in time O(|G|2), S ⊆ V(G) and A ⊆ W such that
|S| ≤ s, |A| ≥ (k + 2)(d + 1)s and A is d-scattered in G − S. Let S = {t1, . . . , ts} and,
for each a ∈ A, we compute the distance vector va = (v1, . . . , vs) where vi = dist(a, ti) if
this distance is at most d and vi = ∞ otherwise. Note that there are, by construction, at
most (d + 1)s distinct distance vectors. Since |A| ≥ (k + 2)(d + 1)s, there are k + 2 distinct
elements a1, . . . , ak+2 ∈ A which have the same distance vector. We claim that taking w := a1
satisfies the lemma.

CLAIM 12. For any set X ⊆ V(G) with |X| ≤ k, X d-dominates W if, and only if, X d-
dominates W \ {a1}.

The direction from left to right is obvious. Now, suppose X d-dominates W \ {a1}.
Consider the sets Ai := NG−S

d (ai) for i ∈ [2, k + 2]. These sets are, by construction, mutually
disjoint. Since there are k + 1 of them, at least one, say Aj, does not contain any element of
X. However, since aj ∈ W \ {a1} there is a path of length at most d from some element x in
X to aj. This path must, therefore, go through an element of S. Since va1 = vaj , we conclude
that there is also a path of length at most d from x to a1 and therefore X d-dominates W.

For the complexity bounds, note that all the distance vectors can be computed in time
O(|S| · |A| · |G|). This is f (k, d)|G| for a computable f . Adding this to the O(|G|2) time to
find S and A gives us the required bound.

We now state the main result of this section.

THEOREM 13. The following is fixed-parameter tractable for any effectively nowhere-dense
class C of graphs.

DISTANCE-d-DOMINATING SET

Input: A graph G ∈ C, W ⊆ V(G), k, d ≥ 0
Parameter: k + d

Problem: Determine whether there is a set X ⊆ V(G) of k ver-
tices which d-dominates W.

PROOF. The algorithm proceeds as follows. Compute s := sC(d) and N := NC(d, (k +
2)(d + 1)s). As long as |W| > N, use the procedure from Lemma 11 to choose an element
w ∈ W that may be removed. Once |W| ≤ N, use the procedure from Lemma 10 to deter-
mine whether the required dominating set exists.

This concludes the proof of Theorem 13. The following corollaries are immediate.

COROLLARY 14. The dominating set problem is fixed-parameter tractable on any effectively
nowhere-dense class.

This generalises the known results for the dominating set problem on classes of bounded
expansion and classes that locally exclude a minor. This corollary is also obtained as a con-
sequence of a result in [23].
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COROLLARY 15. The distance-d dominating set problem is fixed-parameter tractable with
parameter k + d on any class of graphs of bounded expansion, where k is the size of the
solution.

This answers a question of Nešetřil and Ossona de Mendez who show that the domi-
nating set problem is fixed-parameter tractable on such classes and ask whether the same
could be true for the distance-2 dominating set problem.

5 Other Domination Problems
Among problems that are fixed-parameter intractable, dominating set and its variants play
an important role. For instance, in the Compendium of Parameterized Problems [6], a num-
ber of problems are given which are known to be hard in general, but tractable on planar
graphs. Virtually all of them are variations on the theme of finding dominating sets. In
this section we show that all of these problems and, in many cases, their harder “distance-
d” versions remain fixed-parameter tractable on nowhere-dense classes of graphs, which
greatly generalises the results on planar graphs. We refer to [6] for formal definitions of the
problems below and references to the literature where they were first studied.

The first type of problems we look at are dominating set problems with additional re-
quirements for connectivity, such as CONNECTED DOMINATING SET where we are to com-
pute a dominating set which induces a connected sub-graph. We study its generalisation to
d-domination defined as follows.

CONNECTED DISTANCE-d-DOMINATING SET

Input: Graph G, k, d ∈N

Parameter: k + d
Problem: Is there a subset X ⊆ V(G) with |X| = k such that X d-dominates G and G[X]

is connected?

We are able to show that this problem is FPT on nowhere-dense classes of graphs by
adapting the proof of Lemma 10 to show that the following problem is FPT.

Input: A graph G, W ⊆ V(G), k, d ≥ 0
Parameter: k + d + |W|

Problem: Are there x1, . . . , xk ∈ V(G) such that W ⊆ ⋃
i Nd(xi) and

G[x1, . . . , xk] is connected?
Similar methods can be used to show that the problem d-CONNECTED DISTANCE-d-

DOMINATING SET is FPT on nowhere-dense classes. This is the problem of deciding if there
is a d-dominating set X of k vertices which is d-connected. A set is said to be d-connected in
a graph G if it induces a connected subgraph in the graph Gd obtained from G by putting an
edge between any two vertices that have distance at most d in G. The same method shows
that EFFICIENT DOMINATING SET is in FPT on nowhere-dense graph classes.

EFFICIENT d-DOMINATING SET

Input: Graph G, k, d ∈N

Parameter: k + d
Problem: Is there a subset X ⊆ V(G) with |X| = k such that X is a d-dominating set

and, in addition, all pairs x 6= y ∈ X have distance at least 2d + 1?
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Further variations of domination problems studied in the literature are ANNOTATED DOM-
INATING SET and RED-BLUE DOMINATING SET. Annotated domination means that we are
given a graph G and W ⊆ V(G) and want to find a set dominating W. The distance-d-
version of this problem is what is solved by Theorem 13. Red-Blue Domination means that
we are given a graph G whose vertex set is partitioned into blue and red vertices and we
want to dominate the blue vertices using red vertices only. Again its distance-d version can
be solved by the methods presented in Section 4.

Finally, we look at problems such as ROMAN DOMINATION, MAXIMUM MINIMAL DOM-
INATING SET, PERFECT CODE and DIGRAPH KERNEL. If we are not interested in their
distance-d-version than an even simpler algorithm than the one presented above can be
used to show that these problems are in FPT on nowhere-dense classes of graphs, which we
demonstrate using the ROMAN DOMINATION problem.

ROMAN DOMINATION

Input: Graph G, k ∈N

Parameter: k
Problem: Is there a Roman domination function R such that ∑v∈V(G) R(v) ≤ k?

A Roman domination of G is a function R : V(G) → {0, 1, 2} such that for all v ∈ V(G)
if R(v) = 0 then there exists an x ∈ N(v) such that R(x) = 2. To solve the problem on
nowhere-dense classes of graphs we first compute a set S ⊆ G such that G \ S contains a 2-
scattered set A of size 2k + 1. Clearly, for at least k + 1 vertices v ∈ A we must have R(v) = 0
and hence one of their neighbours must be labelled by 2. However, this implies that at least
one vertex in S must be labelled by 2. As |S| only depends on the parameter we can use this
to define a recursive procedure whose depth and width only depend on the parameter.

The following theorem sums up what we have established so far. It is easily seen
that INDEPENDENT SET and INDEPENDENT DOMINATING SET are FPT on nowhere-dense
classes and our procedures presented before readily solve the problems. We refer to [6] for
precise definitions of the problems.

THEOREM 16. The following problems are fixed-parameter tractable on effectively nowhere-
dense classes of graphs: CONNECTED DOMINATING SET, CONNECTED d-DOMINATING

SET, c-CONNECTED d-DOMINATING SET, ANNOTATED d-DOMINATING SET, EFFICIENT d-
DOMINATING SET, MAXIMUM MINIMAL DOMINATING SET, ROMAN DOMINATION, RED-
BLUE DOMINATING SET, INDEPENDENT SET, INDEPENDENT DOMINATING SET, PERFECT

CODE, and DIGRAPH KERNEL.

These examples show that the distance-d-dominating set problem that we showed is
tractable on nowhere-dense graph classes is actually representative of a whole class of sim-
ilar problems which become tractable in this case. Several of these are known to be in-
tractable on graph classes of bounded degeneracy. To give an example of a problem which
remains hard on nowhere-dense classes, consider the DIRECTED DISJOINT PATHS problem.

DIRECTED DISJOINT PATHS

Input: Directed graph G, pairs (s1, t1), . . . , (sk, tk) ∈ V(G)2

Parameter: k
Problem: Does G contain k vertex disjoint paths P1, . . . , Pk such that Pi links si and ti?
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This is known to be W[1]-hard even on acyclic digraphs and it is easy to see that it can be
reduced to the directed disjoint paths problem on graphs of degree at most 4 as follows. Let
G be a digraph and let v ∈ V(G) be a vertex with in-neighbours u1, . . . , ul where l > 1. Let
T be a directed rooted tree of degree at most 3 which has l leaves and where all edges are
oriented towards the root. Now eliminate all incoming edges to v and add the tree T to G
identifying v with the root of T and u1, . . . , ul with the leaves of T. A similar procedure is
used to eliminate outgoing edges of v. Applying this to all vertices in G yields a graph G′ of
degree at most 4 but which has k disjoint paths between the pairs (s1, t1), . . . , (sk, tk) if, and
only if, such paths exist in G. Since the class of graphs of degree at most 4 is nowhere dense,
this shows the problem is hard on such classes as in the general case.

6 Conclusion and Further Work

The aim of the paper is to initiate an algorithmic study of graph classes which are nowhere
dense. The examples above, including the dominating set problem and the more gen-
eral distance-d dominating set, or (k, d)-centre, problem, demonstrate that a certain class
of important algorithmic problems become fixed-parameter tractable on classes which are
nowhere dense. One of the main advantages of these results over known algorithms for
these problems on classes excluding a fixed minor is that our algorithms are elementary
and do not rely on deep results and methods from graph minor theory.

One direction for further research is to investigate what other problems might become
tractable on nowhere-dense classes of graphs. Also, it would be interesting to compare
nowhere-dense classes of graphs to graph classes of bounded degeneracy. The two concepts
are incomparable but both generalise classes excluding a fixed minor and we have already
seen that there are examples of problems that become fixed-parameter tractable on nowhere-
dense classes of graphs which are intractable on classes of graphs of bounded degeneracy.

Finally, it would be interesting to explore the extent of the algorithmic theory of nowhere-
dense classes of graphs in terms of algorithmic meta-theorems. In particular, it would be
very interesting if model-checking for first-order logic was FPT on nowhere-dense classes
of graphs. This would establish a rich algorithmic theory of such classes. However, es-
tablishing such a result would require novel methods as we do not have a decomposition
theory for nowhere-dense classes along the lines of what is used to establish the tractability
of first-order logic in classes with locally excluded minors.
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