
9

COMPUTER SCIENCE TRIPOS Part II – 2023 – Paper 8

Optimising Compilers (tmj32)

The following excerpt from a program in C-style code is optimised by a compiler
using data-flow analyses and transformations. Assume that variables x, y and z have
already been defined:

a = x - y

if (a > 3) {

b = a + z

c = x - y

} else {

b = a + z

a = a * b

}

d = x - y

b = b / d

print(a * b)

(a) Using available expression analysis, perform common subexpression elimination
on the code showing the results of both the analysis and transformation.

[5 marks]

(b) Using very busy expression analysis, perform code hoisting on the code from
part (a) showing the results of both the analysis and transformation.

[4 marks]

(c) Using reaching definition analysis, perform copy propagation on the code from
part (b) showing the results of both the analysis and transformation. [Hint: use
the results of the analysis to transform across basic blocks.] [4 marks]

(d) Using live variable analysis, perform dead code elimination on the code from
part (c) showing the results of both the analysis and transformation.

[4 marks]

(e) Perform if simplification on the code from part (d) showing the result of the
transformation. [3 marks]

1


